REPORT DOCUMENTATION PAGE

PUBLIC REPORTING BURDEN FOR THIS COLLECTION OF INFORMATION IS ESTIMATED TO AVERAGE 1 HOUR PER RESPONSE, INCLUDING THE TIME FOR REVISING RESPONSES. SEND COMMENTS REGARDING THIS BURDEN ESTIMATE TO THE OFFICE OF MANAGEMENT AND BUDGET, PAPERWORK REDUCTION PROJECT (0704-0188), WASHINGTON, DC 20503.

1. AGENCY USE ONLY (Leave blank)
 AFRL-SR-BL-TR-00-

2. REPORT DATE
 May 3, 2000

3. REPORT TYPE AND DATE COVERED
 Final Technical: 1 AUG 1996--31 OCT 1999

4. TITLE AND SUBTITLE
 Photorefractive Polymers for Integrated Optics

5. FUNDING NUMBERS
 G F49620-96-1-0331, Ammend P00002
 Project-Task 3484/BS

6. AUTHOR(S)
 Stephen Ducharme and James M. Takaes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 University of Nebraska
 Department of Physics and Astronomy
 Lincoln, NE 68588-0111

8. PERFORMING ORGANIZATION REPORT NUMBER
 NA

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Charles Y-C Lee
 AFOSR/NL
 801 N. Randolph St., Ste 732
 Arlington, VA 22203-1977

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
 The goal of this project was to produce and characterize improved organic ferroelectric materials with emphasis on improving the response time and sensitivity. We demonstrated 300-fold improvements in the mobility of photorefractive polymer composites by identifying and mitigating the dipolar disorder mobility-reducing mechanism endemic to organic photorefractive materials and choosing transport agents that were relatively insensitive to this mechanism. We also synthesized dendrimers with design features further reducing dipolar disorder and also the significant van der Waals disorder for use in improved-speed photorefractive composites.

14. SUBJECT TERMS
 photorefractive polymers dendrimers optoelectronic materials

15. NUMBER OF PAGES
 11

16. PRICE CODE
 Unlimited

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT
 Unlimited

NSN 7540-01-280-5500

DTIC QUALITY INSPECTED 4

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
Final Report
Period Covered: 1 August 1996 to 31 October 1999

1. **Grant Information**

 AFOSR Grant #: F49620-96-1-0331

 Photorefractive Polymers for Integrated Optics

 Program Manager: Dr. Charles Y.C. Lee

 Principal Investigators:

 Stephen Ducharme
 Associate Professor
 Department of Physics and Astronomy
 Center for Materials Research and Analysis
 University of Nebraska
 Lincoln, NE 68588-0111
 (402) 472-8590
 FAX (402) 472-2879
 sducharme1@unl.edu

 James M. Takacs
 Professor
 Department of Chemistry
 Center for Materials Research and Analysis
 University of Nebraska
 Lincoln, NE 68588-0304
 (402) 472-6232
 FAX (402) 472-9402
 jtaakacs1@unl.edu

2. **Objectives**

 To produce and characterize improved organic ferroelectric materials with emphasis on improving the response time and sensitivity.

3. **Status**

 We demonstrated improvements in the mobility of photorefractive polymers and preliminary results from photorefractive dendrimers intended for further mobility improvement. Our contributions are illustrated by the mobilities (graph at right) of several photorefractive polymer composites. The Prototypical Photorefractive Polymer\(^1\) (red squares) consists of a polycarbonate (PC) host with attached NLO chromophore 4'-nitro-4'-aminostilbene (NAS), and a hole transport agent diethylamino-benzaldehyde diphenyl hydrazone (DEH). All three functional components are polar, leading to unacceptably low carrier mobility due to the dipolar disorder effect. The Transport-Optimized Photorefractive Polymer\(^2\) (blue circles) minimizes dipolar disorder using a nonpolar polystyrene (PS) host and using a weakly polar transport agent tri-p-tolylamine (TTA), even in the presence of the even more polar chromophore 2,5-dimethyl-4-(p-nitrophenylazo)phenol (ENDNPB). This composition shows a 300-fold improvement over the prototypical composi-
tion at 800 kV/cm. The NLO chromophore remains highly polar as is necessary to produce electrooptic or orientational birefringence effects for generation of phase gratings, but careful choice of transport agent minimizes the dipolar disorder effect while maintaining electrooptic activity.

4. ACCOMPLISHMENTS

The photorefractive speed and sensitivity are proportional to, and often limited by, the charge carrier mobility, and therefore increasing the mobility is essential to the development of higher performance photorefractive materials.

a. Identification and quantification of mobility reduction mechanisms

We have shown that the main cause of mobility-reduction in organic photorefractive materials is dipolar disorder due to the polar chromophores, a necessary component of organic photorefractories. It is clear from our studies\(^2\)-\(^4\) of transport in polymer-based organic photorefractive materials that it is not reasonable to expect significantly faster operation, presently in the millisecond range at 1 W/cm\(^2\) intensity, with conventional polymer systems.\(^5\),\(^6\) The limitation is not in photogeneration efficiency, which can be made close to 100 %, but in carrier mobility, which is severely limited by energetic disorder in the hopping manifold. This disorder is a result of the defects and environmental inhomogeneity inherent in conventional polymer-based systems.\(^4\) The effects of dipolar disorder on mobility were first observed in the early 1990s\(^7\),\(^8\) in similar composites used in Xerography,\(^9\) but our work demonstrated the distinct importance of the NLO chromophores unique to photorefractive composites.

The figure at right summarizes our results from doping a nonpolar host polymer (polystyrene, PS) with a fixed amount of a hole transport agent (30 wt. % DEH) and varying amounts of a typical high-performance NLO chromophore (4'-nitro-4'-aminostilbene, NAS). The hole mobility drops precipitously with the addition of the chromophore,\(^10\) consistent with the predicted dependence that the mobility decreases exponentially in the square of the dipole moment.\(^11\)

Since the polar chromophores are necessary for producing refractive-index modulation, whether through linear electro-optic (Pockles) effect\(^12\)
or by orientational birefringence13 it is not possible to reduce dipolar disorder sufficiently by reduction of dipole moments or concentration of dipoles. We therefore sought transport agents with reduced sensitivity to dipolar disorder.

\textbf{b. Mitigation of mobility reduction by careful choice of transport agents}

We have established methods for choosing combinations of charge transport and NLO agents to minimized the effects of dipolar disorder and increase mobilities 2-3 orders of magnitude. Transport agents with low dipole moment relatively insensitive to inhomogeneous electric fields, and therefore maintain high carrier mobility in the presence of dipolar disorder. This principle is demonstrated in the graph at right, which shows the strong dependence of the carrier mobility for both hole (open symbols) and electron (closed symbols) transport agents in the presence of a high concentration (25 wt. \%) of the highly polar EHDNPB chromophore.10 Reducing the transport agent dipole moment by a factor of 8 from PTS to TTA increases the mobility by over two orders of magnitude. The low-dipole transport agents TTA and TAPC, by virtue of their relatively small dipole moments, are insensitive to the dipolar disorder due to the chromophores, thus restoring most of the mobility reduction from addition of 25 wt. \% of the highly polar EHDNPB chromophore.

\textbf{c. Development of Photorefractive Dendrimers for further mobility increases}

Even after minimizing the dipolar disorder effect, carrier mobility in polymers remains unacceptably low. This is because significant energetic disorder remains, a problem inherent in the large inhomogeneities of conventional polymer-based systems.14 To visualize the inhomogeneity problem, think about conventional linear polymers, with their unavoidable polydispersity, as an intertwined bunch of strings in a beaker, strings of varied length. Compare this picture with a beaker filled with dendrimers (dendritic or hyper-branched polymers), spheres of uniform size. In addition, physical defects introduce deep traps in the matrix, and defects at the level of a tenth of a percent or more will substantially detract from photorefractive performance. Dendrimers afford excel-
lent synthetic control over their topology by rational design; that is, we can ensure a much more homogenous (i.e., uniform and low polarity) microenvironment for charge transport.

Dendrimers have received little attention, yet perhaps hold the greatest potential for understanding and optimizing photorefractive properties. Dendrimer composites like the one shown above consist of three main subunits: a core (black), branches (blue), and surface groups (red). These three subunits can be independently varied to make chemically and topologically homogeneous arrays of optimal charge transport agents and/or chromophores. Dendrimers remain relatively small and are readily doped with other molecules like the chromophores (green) and sensitizers (black). Such structural control allows optimization of the transport mechanisms in ways not possible in less ordered systems, while maintaining good control over thermo-physical properties. We have begun making photorefractive dendrimer systems to validate our hypotheses.

We have synthesized dendrimers capped with 4-12 carbazole endgroups as transport agents (D4, D6, D8, D8E, D12). These dendrimers were doped with an NLO chromophore.
(EHDPNB) and a sensitizer (TNF). The D4 dendrimer (with carbazole end-groups) exhibits mobilities (graph at right) above $10^{-6} \text{ cm}^2/\text{Vs}$ at 800 kV/cm electric field,15 considerably higher than in the PVK:TNF systems the prototypical photorefractive epoxy polymer:DEH systems. The D8E carbazole dendrimer with 37 wt. % NAS chromophores exhibits reasonable photorefractive response (graph at right), with two-beam coupling gain of 12 cm-1 at only 350 kV/cm.15,16 Other groups, Yu at Chicago and Wada at RIKEN,17 made dendrimeric systems intended for photorefraction. But, while their results are encouraging, only our group has reported successful demonstration of photorefraction in a dendrimer system.

The dendrimer approach also allows us to prepare single compound (mono-dispersed) dual-function systems. For example, we have recently synthesized CZD6NS3 (right). We expect dual-function dendrimers to be superior due to very low electronic defect density, and by virtue of synthetic control over their topology, we can ensure a much more homogenous microenvironment for the transport states, resulting in increased mobility. In polymers, you can work to minimize polydispersity and defect density, but the dendrimeric systems are inherently superior in this respect. In addition, the dendrimeric systems permit detailed control of molecule orientations and environment so that redox potentials and photoionization energies can be adjusted without increasing disorder. For example, the electron-withdrawing group of a hole transport agent can be presented to the outside of the dendrimer structure while the remainder of the molecule is "protected" nearer the molecular core.
However, the carbazole moiety is a poor choice for photorefractive composites because it is polar and therefore very sensitive to the dipolar disorder effect, resulting in low carrier mobility and low photorefractive speed. A preferred system with a TTA transport agent (below) to increase carrier mobility is currently undergoing transport measurements.
REFERENCES

5. PERSONNEL SUPPORTED

Graduate Assistant Aroska Gooneseekera was supported by this grant to fabricate samples and perform photoconductance and other electrical and optical characterization. Aroska completed his PhD in August 1998 and joined the Moerner group at UCSD/Stanford as a postdoctoral assistant and is now employed by Nanometrics, Inc. in Mountain View, CA. Physics PhD student Jael Bai continued the work on sample preparation, characterization, and photorefractive measurements for the new dendrimer systems. Chemistry postdoc Lu Liu and PhD student Alexie Leonov have been synthesizing the dendrimer systems and conducting physical and chemical characterization. Leonov has also been conducting mobility measurements of the dendrimer systems he has synthesized.

An undergraduate student, Kelly Newsome, worked one summer on dendrimer synthesis as part of the UNL/NSF Research Experiences for Undergraduates (REU) program in Nanostructured Materials Research and another undergraduate, Jennifer Webster, prepared summaries of our photorefractive polymer research for the web.

6. PUBLICATIONS

a. Refereed Journals

b. Conferences Proceedings

"Charge-Carrier Mobility Studies of Potential Photorefractive Dendrimers," A. P. Leonov, Stephen Ducharme, L. Lu, and James M. Takacs, Proceedings of the ACS/OSA Symposium on

c. Other Publications

Web Dissemination: http://physics.unl.edu/directory/ducharme/photorefrac.html

7. INTERACTIONS/TRANSITIONS

a. Meetings and Conferences

Ducharme chaired and co-edited the proceedings for the five SPIE Conference on Organic Photorefractive Materials 1995-99. This conferences were coordinated with the Conference on Xerographic Photoreceptors to enable these two communities to compare notes on the essentially similar physics underlying the different phenomenologies of photorefraction and Xerography.

Invited Conference Presentations

Colloquia and Seminars

"Photorefractive Fairy Tales," Colloquium, Department of Physics, University of Missouri-Rolla, 3 October 1996.

Contributed Conference Presentations

Consultative and Advisory Functions

None

c. Transitions

None

8. NEW DISCOVERIES, INVENTIONS, OR PATENT DISCLOSURES

None

9. HONORS/AWARDS

None
AFOSR Grant/Contract Summary

Grant Number: F49620-96-1-0331
PI Names: Stephen Ducharme and James M. Takacs
Institution: University of Nebraska-Lincoln

(1) Number of PI and Co-PI involved in the research project: 2
(listed below)

(2) Number of Post Docs Supported by AFOSR: 1
(listed below)

(3) Number of graduate students supported by AFOSR: 3
(listed below)

(4) Other researchers supported by AFOSR: 1
(listed below)

(5) Number of publications by PI's in refereed journals: 3

(6) Number of publications (in refereed journals only) that acknowledge AFOSR support: 3

(7) Awards and Honors received by the PI (life-time received): 0

ADDITIONAL INFORMATION:

(1) Pl and Co-PI: Assoc. Prof. Stephen Ducharme, Department of Physics and Astronomy
Prof. James M. Takacs, Department of Chemistry
(both, UNL Center for Materials Research and Analysis)

(2) Postdoc: Dr. Liu Lu, Department of Chemistry

(3) PhD Students: Arosha Gooneseckera, Physics and Astronomy
Jaeil Bai, Physics and Astronomy
Alexie Leonov, Chemistry

(4) Undergraduate: Jennifer Webster, Physics and Astronomy