13. ABSTRACT (Maximum 200 words)
Interactive visualization allows scientists and engineers to analyze massive data sets in new ways. They can prune useless data, identify important features, and see the science behind the data. We address computational tasks of image generation, dynamical visualization, and interactive manipulation and quantitative querying. The data sets comprise of scalar fields (volumetric histological scans of spinal cord injuries), vector fields (numerical simulation of turbulent flows) and tensor fields (Reynolds stresses produced by vortices in the flow). Image generation is the core of visualization. Dynamical visualization brings out time dependent features that are hard to recognize in static images. Interactive manipulation and querying allows users to focus and quantify key features in large datasets.
1. Principal Investigator Name: Chandrajit Bajaj
2. Institution: Purdue University
3. Full Address: Computer Science Dept., 1398 CS Bldg.,
 West Lafayette, IN 47907-1398
4. Current Phone: 765-494-6531
5. Current Fax: 765-496-2567
6. E-mail: bajaj@cs.purdue.edu
7. Project Title: Visualization and Querying of Scalar, Vector and Tensor Field Data
8. Grant No.: F49620-97-1-0278
9. Web pages that provide project descriptions:
 URL: http://www.cs.purdue.edu/research/shastra/projects/visualization/shaviz.html
10. Objectives:
 Interactive visualization allows scientists and engineers to analyze
 massive data sets in new ways. They can prune useless data, identify
 important features, and see the science behind the data. We
 address computational tasks of image generation, dynamical visualization,
 and interactive manipulation and quantitative querying. The data sets
 comprise of scalar fields (volumetric histological scans of spinal cord
 injuries), vector fields (numerical simulation of turbulent flows) and
 tensor fields (Reynolds stresses produced by vortices in the flow).
 Image generation is the core of visualization.
 Dynamical visualization brings out time dependent features that are
 hard to recognize in static images. Interactive
 manipulation and querying allows users to focus and quantify
 key features in large datasets.
11. Project Status:
 Visualization research has been
 considerably enhanced with the acquisition of the high performance
 of spinal cord injuries, paper [6] with macromolecular visualization,
 paper [10] with a novel graphical user interface for both scalar and
 vector data visualization and paper [11] on soon to be completed work
 on collaborative interfaces and computational steering of turbulent
 flow simulations on the Intel Paragon supercomputer.
12. a. Number of AFOSR supported:
 i. Papers published or accepted for publication in refereed journals: _3
 ii. Papers published or accepted for publication in refereed conferences: _4
 iii. Books or book chapters published or in press: _3
12. b. Trainee Data: Total 8 Female 2 Male 6
 Minority 0 Non Us Citizen 5
 i. No. of Grad Students 6
 ii. No. of Postdoctorals 0
 iii. No. of Undergraduates 1
12. c. Number, cost and description of equipment items costing
 more than $1000 that were purchased on your AFOSR grant.
 Silicon Graphics Onyx2 Rack System with 2xR10K processors, Infinite
 Reality Graphics Board with 2 Raster Managers with 64MB Texture memory,
 256MB RAM, 9.1.GB disk.
12. e. Awards/Honors to PI and/or members of PI's research
 group (please describe).
Awarded Visualization Chair, University of Texas at Austin
Austin, TX.

Appointed Director of the Visualization Research Center with the Texas
Institute of Computational and Applied Mathematics (TICAM), The
University of Texas at Austin.

f. Brief description of all transitions (or intended
transitions) of your ideas or techniques to industry, to military
laboratories or to military application.

Transition of Dynamic Mesh Simplification, Compression and
Visualization Techniques to the Institute of Defense Analysis,
Arlington, VA.

g. Attach list of papers and other publications with
full citation.

[1] ‘‘Sliced Configuration Spaces’’,
(with E. Sacks).
Full version accepted for publication in (International Journal Of
Robotics Research), (1997).

[2] ‘‘Rational Parameterizations of Nonsingular Cubic Surfaces’’,
(with R. Holt and A. Netravali).
Full version accepted for publication in (ACM Transactions on

[3] ‘‘Two and Three Dimensional Computer Graphic Evaluation of the
Subacute Spinal Cord Injury’’,
(with L. Moriarty, B. Duerstock, K. Lin, and R. Borgens).
Full version accepted for publication in (Journal Of
Neurological Sciences), (1997).

[4] Book: (lsf Scientific Visualization Techniques), John Wiley and
Sons, (1997)

[5] ‘‘Splines and Geometric Modeling’’,
(with S. Evans)
(CRC Handbook of Discrete and Computational Geometry),
edited by J. Goodman and J. O’Rourke,
CRC Series, (Discrete and Combinatorial Mathematics),

(Introduction to Implicit Surfaces), edited by J. Bloomenthal,

[7] ‘‘Interrogative Data Visualization’’,
(Invited Paper at the 7th INA Conference on the Mathematics of Surfaces),
(The Mathematics of Surfaces VII),
edited by T.N.T. Goodman and R. Martin, (Oxford University Press),
(1997).

(with H-Y. Lee, R. Merkert, V. Pascucci),
(Proc. of the 1997 ACM Symposium on Solid Modeling),

[9] ‘‘Contour Trees and Small Seed Sets for Isosurface Traversal’’,
(with M. van Kreveld, R. van Oostrum, V. Pascucci, D.
Schikore)
(Proc. of the 13th Annual ACM Symposium on Computational
Geometry),

h. List of Invited Presentations

Dagstuhl-Seminar on Scientific Visualization, Schloss Dagstuhl, West Germany, May 1997.

IMACS conference on Problem Solving Environments Berlin, Germany, August 1997.

Invited Speaker at the Laredo Course on Applications of Symbolic Computing, Laredo, Spain, September 1997.

Invited Speaker for the Conference on New Themes in Computer Aided Geometric Modeling, Tel-Aviv, Israel, February 1998

Invited Speaker at the Mathematisches Forschungsinstitut Oberwolfach Seminar on Free-Form Curves and Surfaces, West Germany, June 1998.

i. List of Program Committees Served

Pacific Graphics '97, Korea, 1997

Program Committee Member of the IEEE Visualization Conference '97, Phoenix, Arizona, October 1997.

Program Committee Member of Fifth International Conference on Computer-Aided Design and Computer Graphics, Shenzhen, China, December 1997.

Program Committee Member of the ACM symposium on Computational Geometry (Theory) Minneapolis, MN, June 1998.

Program Committee Member of IMA Math of Surfaces VIII, Birmingham, UK, August 1998.