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ABSTRACT: A particular two dimensional model in a stationary random field,
which has wide applications in statistical signal processing and in texture classifi-
cations, is considered. We prove the consistency and also obtain the asymptotic
distributions of the least squares estimators of the different model parameters. It is
observed that the asymptotic distribution of the least squares estimators are multi-
variate normal. Some numerical experiments are performed to see how the asymptotic
results work for finite samples. We propose some open problems at the end.
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1. INTRODUCTION:

We consider the following two dimensional model:
q
y(m,n) =Y AQcos(mA) +nul) + X(m,n); for m=1,...M,n=1,...,N, (1.1)
k=1

where AQ’s are unknown real numbers, A} ’s, 4 ’s are unknown frequencies. For
identifiability, we need to assume A} € (-, 7) and u € (0,7) and they are distinct.
X(m,n) is a two dimensional (2-D) stationary random field described as follows:

P Q
X(m,n) =Y S b 5)e(m—i,n - j). (1.2)

i=—P j=-Q

Here {e(m,n)} is a two dimensional sequence of independent and identically dis-
tributed (i.i.d.) random variable with mean zero and finite variance. P and Q are
arbitrary positive integers, ‘q’, the number of components, is assumed to be a known
integer. Given a sample y(m,n);m = 1,...,M,n = 1,..., N, the problem is to
estimate A2 's, A} s, u¥’s for k =1,...q.

X(m,n) is a stationary random field and y(m, n) is a non-stationary random field.
To see how this model represents different textures, the readers are referred to the
work of Mandrekar and Zhang?® or Francos et al.’, where they provided nice 2-D image
plots of y(m, n),.whose grey level at (m, n) is proportional to the value of y(m,n) and
when it is corrupted by independent Gaussian noise field. So this model represents
mixed textures of regular textures with noise pictures. Our problem is to extract
" the regular textures from the contaminated y(m,n). The problem is of interest in
spectrograph and is studied using group theoretic methods by Malliavan?!?2. Francos
et al.® considered the Wold type decomposition of the random fields due to Helson and
Lowdenslager®®, but no concrete mathematical results were obtained in that paper.
Mandrekar and Zhang® also considered the spectral analysis of this problem under
the following stationary assumptions on X (m, n)

o0 o0

X(m,n)= 3 3 b5, )e(m—i,n—j), (1.3)

1=—00 j=—00

where {e(m,n)} is a double array sequence of independent random variables such
that
o0 o0
> 2 (5 <oo, E(e(m,n)) =0, E(le(m,n)|") < oo, (1.4)
1=—~00 J=—00
for some constant r > 2. They proved that the spectral estimators of A’s and p’s are
consistent estimators of the corresponding parameters when X (m,n) satisfies (1.3)
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and (1.4). Unfortunately the corresponding estimators of the linear parameters (A’)
are not consistent. Moreover, they could not obtain the asymptotic distributions of
the different estimators. Therefore, the rates of convergence of those estimators are
not known. Their results are mainly based on the work of Lai and Wei'®, which
is quite involved mathematically. In this paper we mainly consider the least squares
estimators (LSE’s) of the different parameters and study their large sample properties.

In the particular case, when {X(m,n)}’s are i.i.d. random variables on a 2-D
plane, the problem can be interpreted as ‘signal extraction’. It has wide applications
in Multidimensional Signal Processing. See for example, the works of Barbieri and
Barone?, Cabrera and Bose®, Chun and Bose? , Hua!?, Lang and McClellan?®, Kundu
and Gupta’® and see the references there for the different estimation procedures and
its applications. It is interesting to observe that the model (1.1) is the 2-D extension
of the one-dimensional frequency model, which is a well studied model in time series
and analysis, see for example, the works of Hannan” and Walker3! in this context.

In this paper, we consider the least squares estimators (LSE’s) of the unknown
parameters of the model (1.1), under the assumption (1.2) on X (m,n). It is well
known that the LSE’s play an important role in estimation theory. It has lots of
desirable properties, like consistency, asymptotic normality, asymptotic unbiasedness
etc. (see Rao®). But no where, at least not known to the authors, the properties of
the LSE’s have been discussed of this model under this general setup. It is important
to observe that the model (1.1) is a non-linear regression model, but unfortunately it
does not satisfy the standard sufficient conditions stated by Jennrich! or Wu3? for
the LSE’s to be consistent. It may be noted that when ¢ = 1, M = 1 and AJ = 0, this
model coincides with the one dimensional frequency model discussed in Hannan?,
Walker®!, Kundu'® and Kundu and Mitral”. It was shown in Kundu!® that even
the one dimensional model does not satisfy the sufficient conditions of Jennrich!! or
Wu32, Therefore, it is not immediate how the LSE’s will behave in this particular case
under this general setup. In this paper it is observed that the LSE’s are consistent,
unlike the spectral estimation method.proposed by Mandrekar and Zhang®®, where
the estimators of the linear parameters are not consistent. We obtain the asymptotic
distributions of the least squares estimators, which was not attempted before under
this general conditions for the two dimensional model. The asymptotic distributions
of the LSE’s are multivariate normal. The asymptotic distributions of the LSE’s are
useful to obtain the rates of convergence of LSE’s of the unknown parameters.

It may be argued that the assumption of Mandrekar and Zhang? on X (m,n) is
somewhat weaker than ours, because in our case P < 0o and Q < oo as defined in
(1.2). But since P and Q are arbitrary, therefore (1.3) can be approximated arbitrary
closely by (1.2) with sufficiently large P and @Q, see Fuller®. Therefore, for all practical
purposes they are equivalent. More over Mandrekar and Zhang?® use higher order
moment assumptions (r > 2) on e(m,n) to prove the necessary consistency results,




whereas we assume only the finite second moment of e(m, n), to prove the consistency
and the asymptotic normality of the LSE’s of all the unknown parameters. In this
paper the almost sure convergence means with respect to the usual Lebesgue measure
and it will be denoted by a.s. We will denote the set of positive integers by Z. Also
the notation a = O(b(M, N)), means, |a/b(M, N)| is bounded for all M and N.

The rest of the paper is organized as follows. In Section 2, we prove the strong
consistency and in Section 3 we obtain the asymptotic distributions of the LSE’s of
the parameters of the model (1.1), when g = 1. For ¢ > 1, the results are obtained
in Section 4. We perform some numerical experiments and present those results in
Section 5 and finally we draw conclusions from our work and propose some open
problems in Section 6.

2. CONSISTENCY OF THE LSE’S:

In this section, we obtain the consistency of the LSE’s of the unknown parameters
of the model (1.1), when ¢ = 1, i.e.,

y(m,n) = A%cos(mA® + npu®) + X(m,n); for m=1,...M,n=1,...,N.
The LSE’s are obtained by minimizing Q(6), where

M N
QM) = > > (y(m,n) — Acos(mA + np))?. (2.1)

m=1n=1

Here 6 = (A, A, ,u:), the true parameter value and the LSE of § are denoted by 4° =
(A% X%, %) and 6 = (A, A, ) respectively. We make it explicit the assumptions on
X (m,n) as follows.

Assumption 1: Let {X(m,n);m,n € Z} be a stationary random field and each
X(m,n) can be represented as (1.2), {e(m,n);m,n € Z} is a double array sequence
of i.i.d. random variables with mean zero and variance o2.

We use the following lemma to prove the necessary results.

Lemma 1 If the double array sequence {X(m,n);m,n € Z} satisfy Assumption 1,
then

M N
sup | sl > 3" X(m,n)cos(ma)cos(nB)| “¥ 0 when min{M,N} — oo.

Proof: See Appendix.



Note that the Lemma 1, is a very strong result. It extends some of the existing
one dimensional results of Hannan?, Walker®!, Rao and Zhao?®, Kundu!® and Kundu
and Mitra'™!® to the 2-D case. It also generalizes the multidimensional results of Bai
et al.', Rao et al.*®, Kundu and Mitra!® and Kundu and Gupta!® in some sense.

Consider the following assumption on the parameters of the model (1.1), when g = 1.

Assumption 2: Let A° be a arbitrary real number not identically equal to zero, \°
€ (—m,m) and u° € (0, 7).

Now we state the consistency result as the following theorem.

Theorem 1: Under the assumptions 1 and 2, the least squares estimators of the
parameters of the model (1.1) when ¢ = 1, are strongly consistent.

Proof of Theorem 1: Expanding (2.1), with the help of Lemma 1 and using the
similar technique as of Bai et al.!, the results can be obtained.

It is interesting to observe that although the errors are correlated the usual LSE’s
provide consistent solutions. For the general linear or non-linear models if the errors
are correlated, it is well known (Rao%, Seber and Wild®) that the usual LSE’s are
inconsistent. In the correlated case, we need to consider the generalized least squares
estimators, which are consistent. On the other hand, theorem 1, may not be too
surprising, because it is known (Kundu'*) that for one-dimensional frequency model,
even if the errors are correlated, the LSE’s are consistent. In this respect one or higher
dimensional frequency models are quite different than the usual non-linear models.

3. ASYMPTOTIC NORMALITY OF THE LSE’S:

In this section we obtain the asymp'totic distributions of the least squares estima-
tors of the parameters of the model (1.1) when g = 1. We use the following notations.
The first derivative of Q(6) is a 1 x 3 vector as

oy |9Q(8) 6Q(6) 6Q(6)
Q') = A’ XN u




and the second derivative is a 3 x 3, matrix as follows;

29(60)  82Q(6) $2Q(6) 1
JAT  TSASN A

gy — | 82Q(8)  62Q(8)  62Q(0)
Q"(0) = GAGA &\g) I3y

20(8) ¢%Q(8) 4%2Q(9)
L SudA SudA ouz 4

Therefore expanding @’ (6) around 6°, we obtain
QO -QE°) =(6-6Q"0) (3.1)

where @ is a point on the line joining between the points 8 and 6°. Note that Q' (9)
= 0 and consider the 3 x 3 diagonal matrix D as follows.

[ M~3iN-1 0 0
D= 0 M-iN-z 0
I 0 0 M-iN-% |
Now (3.1) can be written as
~ - 1-1
(0-6% =-Q ) [Q"0)] (3:2)
if Q"(0) is a full rank matrix (see at the end of this section). Equivalently
(9-6"D"" = —['(¢°)D][DQ"(6)D] . (3:3)

Now let’s consider different elements of [Q’(6°)D].

1 6Q(8°) -2 M N

MINE G4 N mz=1 nz::lX(m, n)cos(mA + nu),
1 6Q(6% 2 M N '

MANE oA MENT m§1 ngl X (m,n)Amsin(m\ + nu),
1 6Q(9) 2 M X ,

MINE ou I mz;“;X(m, n)Ansin(mA + ny).

Using the central limit theorem of the stochastic process (see Fulle®), and using the -
following results of Mangulis24 for B # 0,

lim ~ Zcos (t0) = lim ~ Zsm (tB) =




n

1 .1 & 1
lim — 3 t*cos’(tf) = lim nd ; t*sin?(tf) = 6

n—+oo n =1

lim % zn: tsin(tf)cos(tB) =0
t=1

n—00

it follows that [@'(6°)D] tends to a 3-variate normal distribution with mean vector
zero and the dispersion matrix 20%cX, where

P Q 2 P Q 1
c = | Y 3 b(i,5)eos(@iN)cos(Gu0)| +| S Y b(i, )cos(iA°)sin(jp°)
i=-Pj=-Q i=-Pj=-Q
P Q 2 1 p @
+ [ ST b, 5)sin(iX)cos(G0)| +| Y S b(5,5)sin(iX%)sin(iu’)|  (34)
i=—P j=-Q i=—P j=-Q
and i i
1 0 0
T=|0 149 14% (35)
2 2
0 1A% 14
Observe that because of theorem 1, § converges to ° a.s. and
ym (DQ"(6)D) = Jm (DQ"(¢°)D) = £. (3.6)

Therefore from (3.3), we have the following result

Theorem 2: Under the assumptions 1 and 2, the limiting distribution of { M 1Nz (A-
A%, MINZ(A — X%, M2N%(i — 40} as Min(M,N) — oo, is a 3-variate normal
with mean vector zero and covariance matrix 20%cZ ™!, when £~! has the following
structure:

[ 1 0 0
=10 £ -R-5 (3.7)
0 _36_1 48 1
L T 402 T 407

Note that to prove theorem 2, we use the fact Q'(f) is a full rank matrix a.s. for
large M andN. In fact, we have used DQ"()D is of full rank a.s. (see (3.3)). Now

from (3.6), it is clear that for large M and N, DQ"(6°)D is a full rank matrix. Since,
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the elements of the matrix Q”(6) are continuous functions of # and # converges to §°
a.s., therefore DQ"()D is a full rank matrix a.s. for large M and N.

From theorem 2, it is clear that the LSE of the amplitude (A’s) is asymptotically
independent with the LSE’s of the frequencies. Where as, the LSE’s of the two
frequencies have a high negative correlation The asymptotic variances of the LSE’s
of A, A\ and u are proportional to —+ M ¥ BN Aof and 7 A02 respectively. Therefore, it

is immediate that the convergence rates of A and j are of the orders O(M~3N~1) and
O(M~'N~?) respectively and both of them are faster than the convergence rate of A,
which is O((MN)~!). Moreover, the asymptotic variances of A and /i are inversely
proportional to A®”. This may not be very surpnsmg, because if A% is small, then it
is difficult to estimate the frequencies.

4. MULTIPARAMETER CASE:

In this section we consider the model (1.1) for any integer g. We use the following
notations

01 = (Al,/\l,ul),. . .,0q = (Aqa/\qvuq)y v = (01,. . ,Bq)

The true parameter value and the LSE’s of ¥ will be denoted by \Il° and ¥ respectively.
We investigate the consistency and the asymptotic properties of ¥, which is obtalned
by minimizing

q 2.

Z Z ( ,n) =Y Agcos(mAg + nuk)) (4.1)
m=1n=1 k=1

with respect to ¥. We need the following assumption.

Assumption 3: Let A?,...,Ag be érbitrary real numbers not any one of them
are identically equal to zero, A{,...,A} € (—m,7) and they are distinct, similarly
1, ..., 43 € (0,7) and they are distinct. '

The following result provides the consistency results of the LSE’s of the model pa-
rameter for the general case.

Theorem 3: Under assumptions 1 and 3, ¥ is a strongly consistent estimator of ¥°.
Proof: It is quite similar to the proof of Theorem 1, so it is omitted.

To establish the asymptotic distribution of \il, we use the following notations. The
3g x 3¢ diagonal matrix V and the 3¢ x 3¢ block diagonal matrix ®-1 are defined as



follows. i i

0 ... D| 0 ... X7

where Ej’l can be obtained from £~! defined in (3.6) by replacing A” with A% and
similarly c;’s can be obtained from c's defined in (3.4) by replacing A® and ,u6 with
M) and pf respectively. '

Theorem 4: Under the same assumptions as Theorem 3, (¥ — ¥°)V~! converges
to a 3¢-variate normal distribution with mean vector zero and the dispersion matrix
202®-! where V~! and ®~! are as defined above.

Proof: The proof can be obtained quite similarly as Theorem 2, so it is omitted.
5. NUMERICAL EXPERIMENTS AND DISCUSSIONS:

In this section we present some results of the numerical experiments performed to
see how the asymptotic results behave for finite sample sizes. We performed all the
experiments in Silicon Graphics, using the random deviate generator of Press et al.®,
We considered the following model:

y(m,n) = 4.0cos(2.0m + 1.0n) + 5.0cos(2.5m + 1.5n) + X (m, n), (5.1)
X(m,n) has the following form .
X(m,n) = e(m,n)+.25¢(m—1,n)+.25e(m+1,n) +.25¢(m,n—1)+.25¢(m,n+1)

{e(m,n);m = 1,...,M,n = 1,...,N} are 7.i.d. Gaussian random variables with
mean zero and finite variance o?. The stationary random field X(m,n) has that
particular structure indicates that the error at the point (m,n) is equally influenced
by the four equidistant points from (m,n). We considered M = N = 10, 20, 30, 40, 50
and ¢ = .25, .50, .75, 1.0. For each sample size and for each o we computed the
LSE’s of Ay, A3, A1, A9, 111 and o and observed the average estimates and the average
mean squared errors (MSE’s) over five hundred replications. We present the results
in Tables 1-5. We also report the asymptotic variances (ASV) for each parameters
for comparison purposes.

From the simulations it became very clear that as sample size increases or the
variance decreases, the average MSE’s and biases of all the estimators decrease. It
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shows that all the estimators are consistent and asymptotically unbiased. Biases are
quite small even when the sample sizes are quite small. It is clear that the MSE’s
of the estimators of the non-linear parameters are smaller than that of the linear
parameters even for small sample sizes. From the experimental study also it is clear
that the estimation of the linear parameters are more difficult (in terms of accuracy)
compared to the non-linear parameters. Some of the asymptotic behaviors are present
even at small sample sizes. For example if A; < A,, then it is observed that the MSE’s
of fi; and A, are smaller than that of ; and ), respectively. It is also observed that
as sample size increases the MSE’s become closer to the asymptotic variances, i.e.
|ASV - MSE | decreases. Therefore looking at the behavior of the MSE’s we can say
that the asymptotic results can be used to draw the small sample inferences for the
different model parameters. In some of the cases it is observed that the ASV is lower
than the corresponding MSE. This may not be very surprising, since we considered
only five hundred replications, it may be due to the sampling errors (see Karian and
Dudewicz; [7]).

6. CONCLUSIONS:

In this paper we consider the estimation of the parameters of a two dimensional
model, which has wide applicability in Statistical Signal Processing and in Texture
classifications. We study the asymptotic properties of the LSE’s of the model param-
eters and show that the LSE’s are strongly consistent. We also obtain the asymptotic
distributions of the LSE’s, which provides the rate of convergence of the LSE’s. This
paper generalizes some of the existing one dimensional results to the 2-D case. It
generalizes some of the multidimensional results also in certain way. Numerical ex-
periments suggest that the asymptotic results can be used to draw the small sample
inferences for the linear and non-linear parameters. We do not address one important
problem, namely the estimation of ‘q’. That is a very important problem in practice.
We may have to use certain information theoretic criteria like AIC, BIC or we may
have to use the cross validation type technique as proposed by Rao [21] for the one-
dimensional case. Another important problem is to obtain an efficient estimator of
the different parameters by some non-iterative technique. Non iterative techniques
are important for online implementations or to use as initial guesses for any iterative
procedures. More work is needed in these directions.
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APPENDIX

Proof of Lemma 1: First we prove the result when X (m, n) is replaced by e(m,n)

Consider the following random variables;

Z(m,n) = e(m,n) if ]X(m,n)|<(mn)%
= 0 otherwise

First we will show that Z(m,n) and e(m,n) are equivalent sequences. Consider

iip{em, n) # Z(m, )}
Z=:1 ;P{!e m,n)| > (mn)%}

Now observe that there are at most 2* k combinations of (m,n)’s such that mn < 2%,
therefore we have

S P{le(m,n)] > (mn)?)

n=1

™s

3
'I}‘

P{le(m,n)| > r%} [here r=mn]
k—ls,.<2k

k2¥P{le(1,1)| > 2*-D3}

Ms

<

Eend
]
—

%)

s

<

x>
1]
po

& Ele(1,1)? > k
k
< CY k2 ————-——2“_1)3 z_:—_,;_

Here C is a constant and note that it may represent different constant at different
places. Therefore, e(m,n) and Z(m,n) are equivalent sequences. So

Ple(m,n) # Z(m,n) 4.0} =0
Here i.0. means infinitely often. Let U(m,n)=Z(m,n)-E(Z(m,n)), then

E(Z(m,n))cos(ma)cos(nB)|
Since E(Z(m,n)) — 0 as M,N — oo, therefore as M,N — oo
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Therefore, it is enough to prove that

1

TV_M Z Z U(m, n)cos(ma)cos(nB)| =3 0

m=1ln=1

S

Now for any fixed e > 0,-7 < a,f<7mand 0 < h < W, we have

M N
P{I Z > U(m,n)cos(ma)cos(nB)| > €}
m.=1n.=1
hMN ﬁH hU(m,n)cos(ma)cos(nf3)
< 2e” € Ee m,n)cos(ma)cos(n
m=1n=1

Since [RU(m, n)cos(ma)cos(nB)| < 1/2, using e* < 1+ z + 2 for |z| < 1/2, we have

M N

2e—hMNe H H Eth(m,n)cos(ma)eos(nﬁ)
m=1n=1
S ze—hMNe(l + h20'2)MN.

Now choose h = m, therefore for large M and N

P{INM Z Z U(m, n)cos(ma)cos(nf)| > €}

m=1n=1
< Ce~MN) ez (C is a constant).
Let K = M?N?, choose K points, 6, = (ay, £1), ...,
0x = (ax,Bk), such that for each point # = (o, ) € (—m,7), we have a point 6;
satisfving
Iaj - a| + Iﬁ] !
Note that ’

11 M N
lﬁﬁ > 2 U(m, n){cos(ma)cos(nf)

m=1

M2N2

—cos(ma,)COS(nﬂJ)}l

1 MN
<CWZ ZM2N2m+n] -0

m=1n=1
as M,N — .
Therefore for large M and N, we have

11 M N
P{sup NMZZU(T”" X

m=1n=1
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cos(ma;)cos(n ;)] > e}

< CM2N26_<MN %e/2'
Since Y2, et < oo, from Borel Cantelli’s lemma, we have
sup| L $~ 5y (nB)| %% 0
}3) NV 2 m, n)cos(ma)cos(n
Therefore,

Supl-l—ﬁ > Z e(m, n)cos(ma)cos(nB)| =3 0

m=1ln=1

Since P < 00, @ < oo and |b(%, j)| < oo, it proves the lemma.

Table 1

<
It
=
If

Para.

41

H2

LSE
MSE
ASV

3.998
1.14E-3
1.41E-3

2.500
2.15E-6
1.38E-6

1.000
6.60E-6
6.04E-6

1.500
2.05E-6
1.38E-6

.50

LSE
MSE
ASV

4.000
5.75E-3
5.64E-3

2.500
8.96E-6
5.53E-6

1.000
3.12E-5
2.42E-5

1.500
8.05E-6
5.53E-6

75

LSE
MSE
ASV

3.992
1.25E-2
1.27E-2

2.500
1.87E-5
1.24E-5

1.000
6.27E-5
5.44E-5

1.500
1.82E-5
1.24E-5

1.0

LSE
MSE
ASV

3.989
2.15E-2
2.26E-2

2.500
3.55E-5
2.21E-5

1.000
1.08E-4
9.67E-5

1.500
3.38E-5
2.21E-5

16




Table 2

[~
o

Para.

H1

2

LSE
MSE
ASV

4.000
1.24E-4
3.53E-4

2.500
1.11E-7
8.64E-8

1.000
3.69E-7
3.78E-7

1.500
1.16E-7"
8.64E-8

.50

LSE
MSE
ASV

3.999
5.48E-4
1.41E-3

2.500
3.T7TE-7

6 | 3.45E-7

1.000
1.65E-6
1.51E-6

1.500
3.61E-7
3.45E-7

75

LSE
MSE
ASV

3.997
1.65E-3
3.17E-3

2.500
8.81E-7

6| 7.77E-7

1.000
2.94E-6
3.40E-6

1.500
9.91E-7
7. 77E-7

1.0

LSE
MSE
ASV

4.000
2.33E-3
5.64E-3

2.500
1.72E-6
1.38E-6

1.000
6.63E-6
6.04E-6

1.500
1.71E-6
1.38E-6

jo-)

Para.

h

H2

LSE
MSE
ASV

4.000
5.37E-5
1.57E-4

2.500

8 | 2.15E-8

1.71E-8

1.000
7.96E-8
7.46E-8

1.500
1.99E-8
1.71E-8

.50

LSE
MSE
ASV

4.000
2.16E-4
6.27E-4

2.500
8.27E-8

7| 6.82E-8

1.000
2.80E-7
2.98E-7

1.500
7.79E-8
6.82E-8

75

LSE
MSE
ASV

4.001
5.31E-4
1.41E-3

2.500
1.75E-7
1.54E-7

1.000
7.19E-7
6.71E-7

1.500
1.69E-7
1.54E-7

1.0

LSE
MSE
ASV

4.001
1.04E-3
2.51E-3

2.500

6 | 3.22E-7

2.73E-7

1.000
1.24E-6
1.19E-6

1.500
2.97E-7
2.73E-7
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