Optical Field Reconstruction using Phase-Space Tomography

FINAL PROGRESS REPORT (3 copies) 12/21/99
Michael G. Raymer
U.S. Army Research Office

Grant Number: DAAH04-94-G-0416

Views, opinions, and/or findings in this report are those of the author and should not be construed as an official Department of the Army position, policy or decision, unless designated by other documentation.

(1). Manuscripts submitted or published under ARO sponsorship during this period:

(2). Supported Personnel and Degrees:
Chung-Chieh Cheng, Ph.D. student
Daniel Toloudis, Ph.D. student
M. G. Raymer, PI

(3). Inventions: (none)
(4). Statement of Problem Studied and Main Results Obtained

Measurement of light transport in a random, multiple-scattering medium can provide details about the spatial structure of inhomogeneities within the medium. A precursor to this is the understanding of optical wave transport in a homogeneous, random dielectric medium. The goal is to measure the two-point optical field correlation function for continuous-wave laser light after propagating through a random-dielectric medium. This can be related to the Wigner function (WF), which is a quasi-distribution function representing the generalized radiance of the light. The WF contains both wave and ray-like transport behavior. A theoretical model should be developed that is capable of describing and predicting such optical transport.

Progress made includes construction of a new system for making measurements of the complex, two-point optical field correlation function for continuous-wave laser light after propagating through a random-dielectric medium, in particular polystyrene spheres in water. The new system is based on a Sagnac shearing interferometer, with a CCD camera and computer processor. Several important design issues, dealing with resolution and throughput were solved by use of optical design software.

The system was used in preliminary measurements of a variety of medium thicknesses and scatterer concentrations. Progress was made is developing a model for the transport. In certain cases good agreement between experiment and theory was found, but further work was called for. We were successful in observing and modeling the transition from wave-like (coherent) to particle-like (incoherent) transport.

This result provides a solid base for the next phase of the project, which is continuing into 1999 under a new grant.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
12-21-99 Final Report 9/30/94-9/30/98

4. TITLE AND SUBTITLE
Optical Field Reconstruction using Phase-Space Tomography

6. AUTHOR(S)
M.G. Raymer

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
University of Oregon
Department of Physics
Eugene, OR 97403

8. PERFORMING ORGANIZATION REPORT NUMBER
DAAH04-94-G-0416

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
AR032887.3-PH

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Measurement of light transport in a random, multiple scattering medium can provide details about the spatial structure of inhomogeneities within the medium.

Progress made includes construction of a new system for making measurements of the complex, two-point optical field correlation function for continuous-wave laser light after propagating through a random-dielectric medium, in particular polystyrene spheres in water. The new system is based on a Sagnac shearing interferometer, with a CCD camera and computer processor. Several important design issues, dealing with resolution and throughput were solved by use of optical design software. Quantitative agreement has been found between measurements and theory, providing new insights into the behavior of light as it travels in random media.

14. SUBJECT TERMS
phase retrieval, photon migration

15. NUMBER OF PAGES
3 including this page

16. PRICE CODE
UL

17. SECURITY CLASSIFICATION OR REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

4 Enclosure 1

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18