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1. Problem Statement

The aim of this research work is to build and test a large area, high resolution, digital imaging system,
which can be used in the Army and in medical care. Digital images are obtained from CCD sensor arrays.
CCD imaging has many advantages over traditional film photography, such as its linearity, larger dynamic
range and higher sensitivity. Despite all of these advantages, however, one of its major shortcomings is the
low spatial resolution. “Butting” technology is an economic solution for this problem, where one or more
CCD subarrays are butted together to achieve large area imaging (Fig. 1).

missing information about 50 micron width

X-ray sensitive
Y scintillator

fiber optic taper

CCD array

Figure 1. Demonstration of two scintillator/fiber/CCDs butted together.

Problem with butting is that no matter how close the two subarrays are, there will always be a gap on the
order of one to two pixels which is about 50 micron wide. Therefore, optimal estimation algorithms are
required to restore the missing data while at the same time recover the image from other defections, such as
blur, noise, radiometric and geometric distortions.

Figure 2. An original captured image from our imaging system.
Fig. 2 shows an original image captured from our imaging system. Severe vignetting-type radiometric dis-
tortion and pincushion-type geometric distortion can be observed. The problems we need to solve include:
® imaging system assembly;
¢ large area image display;
e radiometric correction;
e geometric correction; and

* missing data estimation along with deblurring and denoising.
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2. Results Summary

Five modules are designed and implemented in this system: image acquisition, image display, image
enhancement, image correction, and image restoration (Fig. 3).

Image Acquisition
Module

Image Enhancement

Module
[}
A
8 f
i
Image Correction Module -~ Image Restoration Module
(Radiometric and Geometric Correction "| (Missing Data Estimation with Deblurring and Denoising)

Figure 3. System module achievements.

The image acquisition module involves a 1 x 2 CCD/scintillator/fiber optic taper combinations, the CCD
driver assembly, the A/D converter, and the control circuits.

In our system, the spatial resolution of a complete image is roughly 1152 x 2484, involving a 1 x 2 1152 x
1242 arrays. Since most of the current commercial monitors can only display image with dimensions 1024 x
1024 or smaller, how to efficiently and conveniently display larger images on smaller display planes is a
problem which needs to be solved.

The image correction module consists of radiometric and geometric corrections. Both radiometric and geo-
metric distortions are caused by the distorted shape of the fiber optic tapers. We use polynomial approxima-
tion to model a series of concentric ellipses formed by vignetting-type radiometric distortion. We use both
polynomial approximation and thin-plate spline interpolation to correct the geometric distortion (mainly
pincushion distortion). We show that thin-plate spline interpolation performs better than polynomial interpo-
lation since it maps all the control points to their correspondence exactly.

The image restoration module is used to estimate missing data along with deblurring and denoising. We use
two approaches to estimate missing data in a blurred, noisy image: the “consistency method with separable
deblurring”, and the “maximum a-posteriori probability (MAP) estimate with mean field annealing (MFA)”.
Both methods try to convert an ill-posed image restoration problem to a well-posed one by relaxation theory.
The consistency method is able to recover missing data exactly from a blurred image based on a few assump-
tions, However, this exact restoration ability is limited by these assumptions, and the solution is unstable for
large noise and inaccurate estimation of the point spread function (PSF). The MFA approach solves the
MAP estimate by global optimization technique. It restores the missing data not so exact as the consistency
method, but it is more stable to large noise and inaccurate estimation of the PSE,

Experiments are carried out on both synthetic data and real data. The experimental results show that the
imaging system we developed exhibits good performance, and the algorithms high efficiency.

2.1 Image Acquisition and Display

Image acquisition is the first step in any imaging systems. For CCD imagers, the image acquisition module
functions as a combination of photo-detector, amplifier, sampler, and quantizer. The image display module
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reformulates the stream of sampled and quantized digital data to a 2-D/3-D matrix, and paints it on a 2-D
image plane/computer monitor. The whole process is illustrated in Fig. 4.

Source
(light, X-ray, etc.)

Image Acquisition Module

I
| Resampled

CCD Head | Electrical Sampling Sampled A/D , Quantized
Module Signal Signal Converter | Data Stream
1
Real World Object
. N\
2-D/3-D Matrix B
- Video Card ™ RAM -
N y,
2-D Image Plane Image Display

Figure 4. Image acquisition and display.

With a 1MHz readout rate, 1M sample rate, 1152 vertical pixels and 1242 horizontal pixels (equating to
1,430,784 total pixels in an array), the performance of our data acquisition module can be summarized as
follows: 1.43s minimum is required to readout a complete frame; 1.24ms minimum is required to readout a
complete line; and 1ps is required to readout 1 pixel of information. The detail design of image acquisition
module is described in Appendix 7.1.

In image display module, we use a secondary display board combined with the host video card to achieve the
so-called “dual-screen mode loupe” display. This technique can display complete images on host monitor,
and segments of images on the secondary monitor for in-depth analysis, such as zooming, autoscaling, con-
trast stretching, pseudo-color enhancement, and missing data estimation. The design idea is explained in
Appendix 7.2.

2.2 Image Correction

Based on the analysis of sources of radiometric and geometric distortions (Appendix 7.3), we implemented
polynomial approximation and thin-plate spline interpolation to do the correction.

2.2.1 Radiometric Correction

Radiometric distortion is modeled by a series of concentric ellipses. The conventional polynomial approxi-
mation is modified to be able to inverse this model (See details in Appendix 7.4). Fig. 5 shows two real
images (a grid template and a flat frame) captured from our imaging system, and the corrected results. It is
apparent that the concentric ellipse effect disappeared in the corrected images.

Table 1 is a rough measurement on how the correction algorithm works. Since the correction algorithm is to
correct the degraded brightness with central pixel brightness as the reference, the mean brightness of the cor-
rected image should be always larger than that of the measured image. On the other hand, for the grid tem-
plate, the corrected image show better contrast between white pixel areas and dark grid lines, therefore, the
variance of the corrected image is larger than that of the measured image; while for the flat frame image, the
variance is much less than that of the measured image since the corrected image has a homogeneous bright-
ness distribution.
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TABLE 1. Mean and Variance comparison.

mean (1) variance (%)
grid template measured image 147.24 6474.32
corrected image 183.57 9601.04
flat frame measured image 188.02 285.42
corrected image 251.60 52.67

MR K |

T
15

bl

Figure 5. Results from radiometric correction of a grid template (left) and a flat frame (right).

We also use histograms and profiles to evaluate the correction results. Fig. 6 shows histograms of measured
images and corrected ones. We can see that the histogram of the measured grid template has two peaks: one
is from dark grid lines; the other smoother peak is from white pixel areas which shows the shape of a Gaus-
sian because of radiometric distortion. The histogram of the corrected grid template also has two peaks: one
is from dark grid lines; the other peak is an impulse (Dirac delta function) instead of a Gaussian, which indi-
cates the successful correction. Histograms of the measured flat frame and the corrected frame show similar
characteristics as those of the grid template except that the smaller peak is from the boundary of the image

area.
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‘ ‘ ‘
(110 X 10 Pl L x10!
35 45 4
25
4
3 a5
35
3 2
25
3
25
2 25 16
2
2
15
15 1
15
! 1
1
[X]
o5 08 05
) 100 200 300 (] 100 200 300 o 100 200 200 o 100 200 300
_x10° x16° x 10° x 16°
L] 8
45 45
7
5
4 4
o
as as
4
5
3 3
25 25 3t 4
2 2
3
2
18] 15
2
t 1
'
Wt
05| 05 j
S _J . J
(] 100 200 300 [ 100 200 300 o 100 200 300 (] 100 200 300

Figure 6. Comparison of histograms of the measured images (top), and the corrected images (bottom). In each figure,
the left plot is for the image from the left sensor, and the right plot is that from the right sensor.

Fig. 7 is a set of profiles used to measure performance of the algorithm in further detail. These profiles are
from the same columns/rows of the measured grid template image and the corrected image. Profiles on the
left column are from the measured image which show a Gaussian envelope; while the profiles to the right are
from the corrected image that show a line envelope.
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Profiles of the measured image. Profiles of the corrected image.
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Figure 7. Comparison of profiles from the same columns and row of the measured grid template image and the
corrected image.

2.2.2 Geometric Correction

Both polynomial approximation and TPS interpolation are implemented to correct pincushion distortion.
The difference between approximation and interpolation lies in the fact that approximation methods gener-
ate transformations that map all the control points close to their correspondence, so that the summation of
displacements achieves a global minimum; whereas interpolation methods produce transformations where
all the control points can be mapped to their correspondence exactly [Daview and Samuels 96] (Appendix
7.5).

In the following experiments, control points are chosen to be equally distributed across the whole image. A
grid template is generated as a gold standard for comparison. Fig. 8. displays the corrected results by both
methods with different numbers of control points chosen. It is not that apparent as to which graph shows bet-
ter result. Therefore, we need to use some quantitative measurement to compare the results.

Two numbers are calculated to compare the quality of the corrected images: the error rate (€) and the cross
correlation coefficient (p).

The error rate € is defined by Eq. (1). Since the template is a binary image with the brightness of grid lines as
0Os, and other places 1s, the definition of the error rate in Eq. (1) is the same as the mean square error (MSE).

_ sum of misaligned pixels
total number of pixels

M

The cross correlation coefficient p is defined as Eq. (2).
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Fig. 9 and Fig. 10 are two plots of error rate comparison and cross correlation coefficients comparison.

i
} (a)
: I
: :
© ®)
(@ (h)

Figure 8. Correction results from both polynomial approximation (left column) and TPS interpolation (right column)
with respect to different numbers of control points. From top to bottom: 33 x 33,17 x 17,9 x 9, and 5 x 5. The
artifacts in (b) and (d) are explained on page 9.
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Figure 9. Comparison of error rates of polynomial approximation and TPS interpolation as a function of the number
of control points.
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Figure 10. Comparison of cross correlation coefficient between different correction results and the template.

From the above comparisons, we draw the following conclusions: (1) In general, TPS interpolation performs
better than polynomial approximation. Except that with 5 x 5 control points, TPS has a lower error rate and
a higher cross correlation coefficient than those of the polynomial approximation. (2) The quality of the cor-
rected image relates to the number of control points being chosen. Surprisingly, it is not true that the more
control points, the less the error rate. The corrected image has the lowest error rate and highest correlation
coefficient with 9 x 9 control points. The reason is stated as follows:
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* The interpolation approach can achieve exact mapping based on the assumption that the control point
positions are known exactly. In real applications, however, the positions of the control points in the mea-
sured image can only be determined approximately. Therefore, the more control points chosen, the more
the potential error might accumulate, resulting in the severe local distortion in the corrected images when
choosing 33 x 33 control points, and 17 x 17 control points, as can be observed in Fig. 8. More local dis-
tortions exist in the correct image with 33 x 33 control points than that with 17 x 17 control points.

¢ For approximation approach, the more control points chosen, the more tendency the mapping functions
show towards discontinuity. In other words, the mapping function might fit well for the control points,
but not globally for all the points in the image. Therefore, unless we choose enough control points (e.g.
all the points in the image), or we will get more errors when continue increasing the number of control
points.

2.3 Missing Data Estimation

Based on the degradation analysis in Appendix 7.6, the image restoration problem can be formulated as Fig.
11. An original image f is slightly blurred by a point spread function (PSF) # from the X-ray source. The
blurred image is further corrupted by fixed noise (n) and defects (d) from the CCD detector. g is the so called
measured image.

- detector
original noise induced

blur errors
+ A Vi

recovered measured
image image

missing data estimation with |
deblurring and denoising

Figure 11. System model.

The image formation process can be expressed by Eq. (3), where ® stands for the convolution operator.
g=f®h+n-d 3

where we assume that the PSF is already known, the noise distributes as independent Gaussian, and the posi-
tions of missing data can be identified.

‘We propose two approaches to estimate missing data along with deblurring and denoising: the consistency
method using separable deblurring, and a maximum a-posteriori probability (MAP) method, in which the
optimization is solved using Mean Field Annealing (MFA).

The basic idea behind both of our approaches is to make use of the point spread function (PSF): before a
pixel is missed, it has already distributed its information to its neighbors through the effect of blur. Fig. 12
illustrates this process, where each block indicates a pixel, and the blocks marked with “0”s are the missing
pixels. The figure shows that before pixel C is missed, it spreads its information to the neighbors g1, g3, g4,
g6, g7, and g9.
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Figure 12. Information distribution by blur.

If we can obtain a measurement of the PSF, in theory, we can reconstruct the missing data. Regularization
theory (Appendix 7.7) is used to convert an ill-posed problem to a well-posed one. The consistency method
using separable deblurring (Appendix 7.9) constructs a well-posed problem by putting several restrictions on
the image data and the blur kernel. The MAP method (Appendix 7.10) is actually a Bayesian interpretation
of regularization problems, which is solved by a global optimization technique, called mean field annealing
(MFA).

Experiments are carried on both synthetic images and real images. System distortions and degradations are
characterized in Appendix 7.8.

The synthetic image are generated by simulating the image formation process: (1) blur the original image (f)
by convolving f with a finite blur kernel & calculated in Appendix 7.8; (2) insert Gaussian white noise with
zero mean and standard deviation equal to 3.9, which is obtained in Appendix 7.8; and (3) remove one col-
umn of data to generate the measured image g. Five synthetic images are generated showing different
degrees of smoothness and different image properties. These images are a piecewise constant image, a piece-
wise linear image, a piecewise quadratic image, a sinusoid image, and a mammogram (Fig. 13).

Figure 13. Five synthetic images with different properties. From left to right: piecewise constant, piecewise linear,
piecewise quadratic, sinusoid, and mammogram.

We conduct experiments by relaxing the following two assumptions one by one in order to investigate the
effect of each assumption to the quality of the restored image:

1) the blur kernel is exactly known; and
2) noise is not inserted.

Experimental results from both the consistency method (using integer criterion and neighbor least square
error criterion) and the MFA are exhibited and compared based on line profiles and column profiles.

2.3.1 Results Based on Complete Set of Assumptions

With the complete set of assumptions (the blur kernel is exactly known, the blur kernel is separable, the orig-
inal image is of integer type, and no noise is inserted) satisfied, the consistency method using integer crite-
rion can recover the missing column exactly from the measured image. The consistency method using
neighbor least square error (NLSE) criterion shows better results than the MFA method in deblurring, as
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shown in Fig. 14. To compare the results in detail, we use column/row profile comparisons, which are exhib-
ited in Fig. 15.

original
image (f)

measured
image (g)

consistency
method using
integer criterion

consistency
method using
NLSE criterion

MFA

Figure 14. Restoration of integer images blurred by an exactly known kernel.
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Figure 15. Profile comparisons of restoration results from the five synthetic images. In each plot, from top to bottom:
profile from the original image, restored images by consistency (int), consistency (NLSE), and MFA.
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A cross-correlation comparison between the original image and the restored one using different methods is
another way to compare the algorithm performance, as shown in Fig. 16.
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Figure 16. Cross-correlation comparison.

The consistency method with integer criterion always has the highest cross-correlation coefficient, which is
1. The consistency method with NLSE criterion shows better correlation than the MFA method most of the
time except for sinusoid images.

2.3.2 Relaxing the Assumption of Perfect Blur Kernel Estimation

We use blur kernel 4 to blur the original image, but use 4 + € to restore the measured image, where € repre-
sents the error added to a btur kernel. The accuracy of an estimated blur kernel is measured by correct num-
ber of digits. For example, € = 1% means the 2nd digit of elements in the blur kernel is not correct, and € =
0.1% means the error shows up in the 3rd digit. Therefore, if A = [0.0625 0.1250 0.625 0.1250 0.0625], a
possible estimation when € = 1% is h = [0.07 0.13 0.63 0.13 0.07], where the 2nd digit is not accurate. Fig.
17 shows restoration results of consistency method using NLSE criterion and MFA method at different error
rate € (0.1% and 1%), Fig. 18 is a column/row profile comparison, and Fig. 19 is the cross-correlation com-
parison.
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Figure 17. Restoration results with an inaccurate blur kernel.
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Figure 18. Profile comparisons of restoration results. In each plot, from top to bottom: profile from the original
image, restored images by consistency (NLSE) with error 0.1%, by MFA with error 0.1%, by consistency (NLSE)
with error 1%, and by MFA with error 1%.
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Figure 19. Cross-correlation comparison.

From Fig. 19, we can see that the MFA method is not sensitive to very small errors in the blur kernel since
the correlation coefficients do not change when increasing the error rate from 0.1% to 1%. However, the
coefficients of the consistency method with NLSE criterion drops when increasing the error. When error is
on the 2nd digit (€ = 0.1%), the consistency method provides better correlation than the MFA method except
for the sinusoid image.

To summarize, when the estimated blur kernel is in high accuracy (two or more than two digits are correct),
the consistency method performs better than the MFA method. However, the consistency method is more
sensitive than MFA when error in the estimated kernel is increased.

2.3.3 Relaxing the Noise-Free Assumption

Gaussian white noises n; ~ N(0, 0.012), ny~ N(O, 0.12) and n;~ N(0, 1) are inserted to the blurred image,

and one column of data are deleted. Restoration results on the piecewise constant image are shown in Fig.
20. Column/row profiles are compared in Fig. 21 and Fig. 22.

July 15, 1999 16




measured
image

restored image
by NLSE

restored image
by MFA

Figure 20. Restoration results with noise inserted in the blurred image.
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Figure 21. Column profiles comparison.
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Figure 22. Row profiles comparison.
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The results show us that when noise is very small, the consistency method performs better than the MFA
method, it achieves a higher correlation coefficient (0.998269) than the MFA method (0.998084). However,
when increasing the standard deviation of the inserted noise, the consistency method is much more disturbed
than the MFA method.
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2.3.4 Restoration Results of Real Image

Fig. 23 exhibits a stripe of the grid template image (Fig. 44), and its restoration results using both the consis-
tency method and the MFA method.

X

N g5

X

LY
[

]
41

.t L
Figure 23. Restoration results of a stripe of grid template image with flash light source. From left to right: the
measured image, restored image by NLSE, restored image by MFA.

The restored image from the consistency method is very similar to that from the MFA method, but the con-
sistency method is more efficient according to the complexity analysis in Appendix 7.11.

To summarize, the consistency method works better when noise is very small, and blur kernel is estimated
with high accuracy. Performance of the consistency method may be largely affected by perturbations in the
estimated blur matrix, or by noise, with perturbations in noise playing a more important role. The MFA
method behaves more stable for large noise or inaccuracy in the blur kernel estimation.

2.4 Original Contribution

The original contribution of this research work includes the use of conditioning theory in the analysis of
image restoration problem, the development of consistency method with separable deblurring, and the use of
thin-plate spline interpolation algorithm in geometric correction.

2.4.1 Conditioning Analysis of Missing Data Estimation

While there have been many articles in the literature discussing various image restoration algorithms, few
[Forbes and Anh 94][Milinazzo et al. 87] pay attention to quantify the ill-conditioning of the blur kernel.
The most important contribution of this research work is that we use conditioning theory to analyze image
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restoration problems, which has helped us obtain an in-depth view of how algorithms might behave theoret-
ically and how perturbation of each parameter might affect the solution. We also use the conditioning analy-
sis to guide our algorithm design and parameter selection. The conclusions we draw from the conditioning
analysis are well demonstrated by the experimental results.

2.4.2 Consistency Method with Separable Deblurring

Neither separable convolution nor the idea of converting a convolution operation into a matrix multiplication
is new. These techniques have been addressed very early, back to 70s [Andrews and Hunt 77]. Our contribu-
tion is that we first take advantage of the separability property of some blur kernel (like Gaussian), and con-
vert the separable convolution operation into a separable matrix multiplication. By inserting several
restrictions on the data, we can construct the separated circulant matrix and be able to demonstrate that the
condition number of such matrices is very small, so that the problem is well-conditioned. In this way, we
convert the ill-posed image restoration problem to a well-posed one.

By using a backward-stable algorithm, we are able to restore the missing data with 100% accuracy assuming
the defects only come from blur and the original image is of integer type.

The beauty of this algorithm lies in its simplicity and computational efficiency.
2.4.3 TPS in Geometric Correction

TPS interpolation is a conventional method for interpolation. We first apply it to correct the geometric dis-
tortion. No other published literature has used this method under this scenario. By using TPS interpolation,
we gain better performance in the correction results than the traditional polynomial method.
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7. Appendixes

7.1 Image Acquisition

The image acquisition module consists of three parts: (1) the CCD head module, that converts optical signals
to electrical signals; (2) the CCD driver assembly, that provides the system control signals, the sampling
mechanisms, and the signal amplification circuits; and (3) the analog-to-digital converter (ADC), that quan-
tizes and resamples (optional) analog signals and converts them to digital ones.

From RI Circuit
O From Battery

To Flash

Channel A
Channel B

Trigger
Ext. Clk

Gage A/D Board

Figure 24. Front view of the image acquisition system assembly.
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Data Acquisition Board

Figure 25. System connection diagram.
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Fig. 24 shows a front view of the image acquisition system assembled in a Bud box. Flash is used as the light
source instead of X-ray for experimental purpose. Fig. 25 is a simplified system hookup diagram.

7.1.1 CCD Head Module

The head module (from EEV, Inc.) performs like a detector and a transducer. It contains a scintillator screen,
a 1 x 2 CCD sensor arrays, each of which is hard coupled to a fiber optic taper. The two tapers are dry cou-
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pled together in a mechanical frame, so that the dead space between adjacent tapers is always less than
200pm, with 50pm the usual space.

missing information about 50 micron width

X-ray sensitive
scintillator

fiber optic taper

CCD array

Figure 26. The CCD head module.

The scintillator uses a phosphor screen to convert an X-ray beam into myriad points of light. The phosphor
screen is Eu doped Gd,0,S, 100um thick.

Each fiber optic taper has a 50 x 50 mm? outer surface and a 25 x 25 mm? inner surface, which is usually less
than the CCD active area. The CCD active area is 25.9 x 27.9 mm?, consists of 1152 rows and 1242 col-
umns, with each pixel size 22.5 x 22.5 um?.

Light is guided from the bottom of phosphor screen down to each CCD cell by a bundle of fibers. The CCD
cell can then convert the light signal to an electrical signal by photoelectric process, and the generated
charges are accumulated at each CCD cell.

Care must be taken not to allow too much light onto the CCD since a gross overload can cause the resulting
image to turn black. Basically, too much light entering the CCD causes the video signal out of the device to
look like there is no light entering the CCD (i.e. black). However, with no light entering the front of the optic
taper but with light still able to enter through the sides, there is still enough light entering the CCD to cause
the video signal out of the CCD to become saturated (i.e. white). Thus careful control of the lighting condi-
tions is necessary to achieve correct results. In our experiments, the Bud box is covered by opaque black
paper and the edges of the fiber optic tapers are covered by black insulating tape to prevent light leakage into

the CCD. The flash light source is covered by two layers of black insulating tapes, with a 0.5 x 0.5 cm?
square hole in the outer layer tape as our point source to reduce the amount of light getting to the CCD.

7.1.2 CCD Driver Assembly

CCD driver assembly (from EEV, Inc.) drives the CCD readout. Three boards are involved in this process:
digital board, analog board, and buffer board (Fig. 25).

Digital Board. The digital board houses the control logic for the CCD sensor and the video processing. It is
also responsible for interfacing with the outside world. The digital board sends control pulses to the analog
board via a 20-way piggyback connector, and to the buffer board via a two-meter 37-way ribbon cable. The
64-way (a and c) DIN 41612 connector is where power is fed into the CCD Driver Assembly and where the
control and synchronization signals enter and leave. The DIN connector we use is from Harting (0903 164
6821). It is a female connector with 13mm wrap posts, 64 contacts mounted on columns a and c.

Four of the most important control signals are pixel clock, line blank, grab, and request integration (RI),
where the line blank serves as the horizontal synchronization signal, and the grab as the vertical synchroni-
zation signal. The timing diagram is shown in Fig. 27.
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Figure 27. Timing diagrams of line blank, grab, and RL.
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Figure 28. The circuit design for RI signal.

¢ Pixel clock is a 200ns pulse at a IMHz rate. It occurs once for every.pixel read out from the CCD. It is
HIGH during the valid portion of each pixel in the video output from the analog board.
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e Line blank is a pulse that occurs once every line read out from the CCD. It is LOW during the output of
active video, HIGH during line transfer, readout of blank elements, dark reference elements and transi-
tion elements (Fig. 27 (a)).

® Grab is used to identify active video from the CCD. Grab is LOW during the readout of active lines,
HIGH at all other times (Fig. 27 (b)).

* Request for integration (RI) determines the integration interval. When RI goes HIGH, clocking stops,
integration starts; when it goes LOW, readout starts (Fig. 27 (b)). RI triggers the Grab signal. Fig. 28 is
the circuit design for generating RI signal. The integration interval is about 100 ms.

Buffer Board and Analog Board. The buffer board terminates the control signals from the digital board to
the sensor and amplifies the output signal from the sensor. The sensor signal is sent via a mini-COAX cable
(SMC port) to the analog board (Fig. 24, Fig. 25).

The analog board processes the sensor signal from the buffer board using correlated double sampling (CDS)
to isolate the signal level difference, and produce analog video, with adjustable gain. The video signal is
linked to a BNC connector on the front panel which will go into the input channel of the A/D board from
GaGe.

Amplification and Readout Settings. The signal read out from the CCD head module is very weak, and
amplification must be conducted before digitization. In this driver assembly, gains are set at three stages of
the video path. The first gain occurs on the buffer board, where an amplifier functions with adjustable gains
at 4, 8, or 16. The second is on the analog board with adjustable gains at 1 or 4 that adjusts the input to the
CDS circuit. The last gain stage is under control of a parameter switch on the digital board, that adjusts the
output from the CDS circuit at x1, x2, or x4.

There are 6 switches on the digital board (Fig. 29), three of which are used to set up important parameters
that control the CCD readout. Following is an overview of these three switches, and the appropriate settings
for our system.

|

SW5

(on front panel, reset button)

Switch 2

Switch 3

DIN 41612

] 37 way to bufferboardl

Figure 29. Switches on the digital board.

Switch 1 controls the readout mode, and the readout rate. Switch 2 sets up the gains for final video readout.
Switch 5 is a front panel reset button, which resets the power supply of the driver board. Switch 6 indicates
the model of the CCD assembly. Table 2 is the settings for each switch, and Table 3 is a brief explanation of
the parameters that the switch controls. More details are addressed in [EEV 94].
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TABLE 2. Switch settings.

Switch
Switch 1
00010101

Switch 2
00011100

Switch 3
00000000

Switch 4
00000000

Switch 6 indicates model CCDO5-
0100 : ; 30

TABLE 3. Explanation of switch parameters.

Switch 1 Switch 2

on off on | off
a Frame transfer Full frame Direction of vertical readout charge (0:
b Standard mode Inverted mode down; 1: up)
c Readout rate Direction of horizontal readout charge (01:
d The setting for IMHz is 010 right; 10: left)
e Gain setup for output of CDS circuit (00:
£ Normal TDI mode x8, 10: x4, 01: x2, 00: x1)
g Remote/Computer Local Switch N/A
h Visible light X-ray source N/A

7.1.3 Other Supply Accessories

Besides the CCD driver assembly, other supply accessories are needed for successful CCD readout. These
accessories include RI circuit board, power supply, test pod, etc.

Request integration (RI) is a key control signal in the driver assembly. When RI is high, the CCD sensor
stops clocking, allowing light accumulation, which is the integration process. After a 100ms integration
interval, RI goes LOW, and drives GRAB to go HIGH to start the readout process. RI circuit board (Fig. 28)
is designed to generate a 100ms pulse, controlled by an SPDT momentary switch.

To synchronize the start of integration and the flash, the RI circuit board adopts some extra design ideas to
achieve high-speed, noise-free logic [Snyder 93]. A large tantalum capacitor (10 to 20 uF) bypasses the
board to suppress the low-frequency external noise. Each chip on board is bypassed with 0.001 to 0.01 pF
ceramic or monolithic capacitors between Vecc and ground to avoid sudden voltage drop when chips demand
sudden bursts of current.

To support the CCD head module and driver assembly, a power supply is required to provide +5 volts at
400mA, +15 volts at 500mA, and -15 volts at 300mA. For a 1 x 2 CCD sensor arrays, in order to drive both
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of the CCD sensors at the same time, the current requirements for each voltage level are doubled. That is, +5
volts at 800mA, +15 volts at 1A, -15 volts at 600mA.
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Figure 30. Power supply (International Power PC Power Supplies - IHBCC-512) connection diagram.

The power supply we used is from International Power DC Power Supplies. The IHBCC-512 model pro-
vides three outputs: 5V @ 3A, 15V @ 3A, and -15V @ 3A, which is enough for our application. Fig. 30
shows the connection diagram inside the power supply.

July 15, 1999 35




Test pod (Fig. 31) is used to test the signals from the DIN connector that are generated by the digital assem-
bly. It is also used to switch between channel 1 control signals and channel 2 control signals to correctly trig-
ger the ADC.

from DIN connector

Channel

1
RI from
circuit board
Channel
2

Video Out

/

from DIN connector

Figure 31. Test pod signals.

7.1.4 Analog-to-Digital Converter

The GaGe data acquisition board functions as a 12 bit A/D converter which can quantize and resample the
analog signal into a 12-bit digital signal. The maximum data transfer rate is approximately 1.5 MBytes/sec.

location [maximum-1] location [0] .
/ Trigger Address

location [maximum -2] \ location [1]
—
End Addre
Post Trigger

(@

Figure 32. The circular on-board memory of the Gage data acquisition board.
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The data coming out of the ADC is stored in the static memory (SRAM) of the GaGe board which is config-
ured as a circular buffer (Fig. 32 (a)). Circular buffer is used to guarantee that the system will keep on cap-
turing data indefinitely until a trigger event is detected.

Once initialized, the board starts to read in data, and at the same time waiting for trigger event to happen.
The data that read in during this period is called pre-trigger data. When trigger event is received, a specified
number of pixels are captured. These data are called post-trigger data. After storing the specified number of
post-trigger data, the acquisition is stopped (Fig. 32 (b)).

The board we used is model CS512, which must be working under dual channel mode. That is, the two chan-
nels of data can be input at the same time. The array elements location[0] and location[1] hold the first pixel
value from channel 1, with location[1] storing the least significant 8 bits, and location[0] storing the most
significant 8 bits. Similarly, location[2)] and location[3] hold the first pixel value from channel 2.

The sample rate of the ADC is set at 2MHz, with each channel at IMHz, thus matching the CCD readout
rate. Since the on-board memory of this model is 1M, with 512k for each channel, three integrations and
readouts are required to capture images from one CCD sensor array, and six from both arrays.

With a IMHz readout rate, 1M sample rate, 1152 vertical pixels and 1242 horizontal pixels (equating to
1,430,784 total pixels in an array), the performance of our data acquisition module can be summarized as
follows: 1.43s minimum is required to readout a complete frame; 1.24ms minimum is required to readout a
complete line; and 1ps is required to readout 1 pixel of information.

7.2 Image Display

Image display module rﬂay be needed anywhere, from measured image display, corrected image display, to
restored image display.

In our system, the spatial resolution of a complete image is roughly 1152 x 2484, involving a 1 x 2 1152 x
1242 arrays. Since most of the current commercial monitors can only display image with dimensions 1024 x
1024 or smaller, how to efficiently and conveniently display larger images on smaller display planes is
another problem which needs to be solved.

Here, we first discuss two possible approaches for image display: (1) use the on-board video card; and (2)
use a secondary display board. We then propose to combine these two approaches and achieve dual-screen
mode loupe display in our system.

7.2.1 Image Display through On-Board Video Card

This is the most common approach for image display. Since our A/D board works only under Windows
operating system, we choose Visual C++ as the programming language, and use VisSDK (Vision Software
Developers Kit) as the display library. VisSDK is a low-level C++ library, developed by Microsoft Vision
Group. It aims to provide a strong programming foundation for research and application development, and
includes possible real-time imaging. VisSDK is organized into different projects and VisDisplay is the one
covers display related functions.

There are two ways to display a single image in VisDisplay. We can either get access to the raw pixel data
and build a Windows bitmap from it, or we can use a Windows HDC (handle of a device context). A device
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context (DC) is essentially a unified interface to a specific graphical device. It can be used to obtain informa-
tion about the device and also perform graphical output to the device.

 ViSDK

]
. [}
Paint through X ’ Apply for DC

Get Current DC

] Device Context (DC)

Devices

Figure 33. Software layers in image display.

Fig. 33 is a software layer diagram. At the lower level, device-dependent drivers are used to operate on the
corresponding hardware directly. At a higher level, the graphics device interface (GDI) performs primitive
device-independent graphical functions through DC. MFC (Microsoft Fundamental Class) is another layer
that is built upon GDL. It consists of a series of predefined classes which save the users from tedious primi-
tive GDI function calls, and provide a more convenient interface.

Once the image is read into the host memory, it can be displayed in a window’s client area. Scrolling in both
horizontal and vertical directions is needed for large image display. A window’s client area is a versatile sur-
face that can display anything a Windows program can draw.

7.2.2 Image Display by Secondary Display Board

The secondary display board we used is the Matrox Pulsar from Matrox Electronic Systems Ltd. This board
features both on-board grab and display capabilities. The reason we did not use its grab functionality is
because the minimum pixel clock it can accept is 2MHz, while the pixel clock from our image acquisition
system is 1MHz. However, the Matrox board provides a powerful display section, featuring a 2M image
frame buffer, a 2M graphics overlay (VGA) frame buffer for non-destructive overlay capabilities, and dual-
screen mode display.
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Figure 34. Display section of Matrox Pulsar.

The display section (Fig. 34) is also powered by the Matrox MGA-2064W graphics accelerator that can dis-
play at resolutions up to 1600x1200x256 colors. This graphics accelerator can be used either as the main dis-
play controller of the host system; or as a separate graphics board so that users can work in dual-screen
mode. The overlay (VGA) and main image frame buffers support common zooming (by factors of 2 or 4),
panning, and scrolling.

A software package called MIL (Matrox Imaging Library), developed by Matrox, provides interfacing func-
tion calls to the display board.

The big advantage of using a second display board is the dual-screen display mode. The users can display
images on one monitor, while doing controls on another.

7.2.3 Dual-Screen Mode Loupe Display

In medical imaging, very often some detail analysis is needed on a few interesting sections of the image,
such as a suspicious lesion area. For the purpose of conveniently processing sections of images, while at the
same time keeping a complete viewgraph of the original one, we propose to combine the use of both
approaches we discussed above, and implement the so-called dual-screen model loupe display.

We use the word loupe because it is analogous to the operation of zooming a patch of the original image. To
keep viewgraphs of images at different scales, dual-screen is a natural choice. The Matrox Pulsar board also
provides built-in functions for zooming and color mapping, that can be easily used to operate on the zoomed
patches of the original image.

Object-oriented programming language is used in developing this technique. Three objects are extracted: the
Gage ADC, the Pulsar display board, and the image. Gage object consists of methods for acquiring data
from the CCD sensor arrays. Image object involves methods for image display on the host monitor, and for
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image segmentation. Pulsar object is responsible for displaying segments of images onto the secondary
monitor, along with methods for zooming, color mapping, and contrast tuning, etc. (Fig. 35).

| Secondary Display through
Matrox Pulsar Board

Image Segments
-| Host Display through
on-board Video Card

Figure 35. Object-oriented display design.

We developed our display system on Windows NT platform. Images are captured using the interfacing func-
tions provided by GaGe ADC. The complete image is displayed on the main monitor (host display). The sec-
ondary monitor is used to display regions of interest based upon user’s selection. Users can either mark the
region of interest by a rectangular, or they can click on any interesting pixel with a surrounding region of 64
X 64 or 128 x 128 automatically extracted from the original image.

The region of interest is displayed on the secondary monitor, where several image enhancement techniques
can be operated. These techniques include zooming at any integer scale, autoscaling, contrast stretching,
pseudo-color enhancement (use color to help visual discrimination of small grey level differences), edge
enhancement (convolve image with high-pass filter kernel such as Laplacian type kernels), unsharp masking
(equivalent to high-pass spatial filtering), etc.

7.3 Sources of Radiometric and Geometric Distortions

In our system, the functions of the fiber-optic tapers are three-fold: (1) used as an aligner to make adjacent
CCD detectors aligned very close to each other such that only 1~2 columns of information is missed along
the butting edge; (2) used as the light-guide system, where a bundle of fibers connect each point on the scin-
tillator screen to a corresponding cell on the CCD detector; and (3) used as a demagnifier to increase the
field of view of the CCDs, which is usually in the ratio of 2:1.

However, the use of the fiber-optic tapers also causes radiometric and geometric distortions, which origi-
nates during manufacture. Fig. 36 illustrates how a fiber-optic taper is constructed. A fiber-optic tube is first
heated from the middle; then compressed to the middle, such that the area of the cutting surface matches the
size of a CCD array to which it will attach; finally a cut from the middle makes two fiber-optic tapers with
the smaller end attaches to the CCD array and the other end the outer-surface, facing the scintillator.

— i

Heat from the middle Compress to the middle Cut in the middle

Figure 36. The manufacturing of the fiber-optic tapers.

In this process, we can see that no matter how precise the compression process, the cutting surface of the
taper can not perfectly match the size of the CCD array. Usually, the taper is more compressed than it should
be in order to avoid missing data sensed at the boundary of the outer-surface of the taper. That is why the
captured image is always less than the CCD active area. The compression thus causes the “pincushion dis-
tortion”, a well-known type of geometric distortion, where both the horizontal and vertical lines bend
inwards toward the center of the display (Fig. 38). Instead of each bundle of fiber being guided to a corre-
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sponding cell of the CCD detector, the bundles at the boundaries of the taper is deformed like Fig. 37. The
distortion is not symmetric, exhibiting some degree of shear effect.
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Figure 37. The correct alignment (left), the misalignment of fiber optic bundles and CCD cells along the edge of the
detector which causes the pincushion distortion (right).

"Figure 38. Vignetting-type radiometric distortion and geometric distortion,

Furthermore, because of the shape of the taper, the fibers at the boundary need to travel a longer distance
than those at the center, and the light transfer is less efficient when the fiber is not normal to the CCD sur-
face. Thus, there is an intensity gradation from the center to margin like a cross section of a tree, or a set of
concentric ellipses (Fig. 38). This kind of distortion is called the vignetting-type radiometric distortion, as it
resembles the vignetting which results from an imperfect lens.

7.4 Radiometric Correction

Radiometry is the study of image formation. It concerns two sources of light energy [Trucco and Verri 98]:
the amount of light reflected from the object, and the amount of reflected light that actually reaches the sen-
sor. Assume the amount of light reflected from the object is homogeneous; if there is no radiometric distor-
tion, the captured image should have homogeneous illumination over the whole image. However, as
mentioned in Appendix 7.3, the vignetting-type radiometric distortion corrupts the homogeneity.

The fundamental equation of radiometric distortion is Eq. (4) [Trucco and Verri 98], where g(x, y) and €, 1)
are the image irradiance (the power of the light at each point of the image plane per unit area) and the image
radiance (the power of the light ideally emitted by each point of a surface in 3-D space in a given direction)
respectively. Eq. (4) says that the image irradiance, g(x, y), decreases as the fourth power of the cosine of the
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angle (o) formed by the principal axis with the optical image irradiance (Fig. 39). g(x, y) is also regarded as
uniformly proportional to the scene radiance, i€, 1), over the whole image plane.

b ~ ~ ~ 4
f (E.n T‘) =~ \\ S :
-~ \: \\\\ - X
o % R [«
/ T
N
| <~ >~
Lens f b ‘[ gxy
\
Z f
- - o - - L - - -
Figure 39. Radiometry in image formation.
n(d\? 4 4
g(xy) = fE); 7) cos o< f(§,M)cos o )

Conventional method [Frei 83] simplifies the radiometric model of Eq. (4) by a polynomial approximation as
Eq' (5),

flxy) )

gxy)= R
a0+a1(x +y)

We observe from Fig. 38 that the illumination distribution of both the left and right part of the image shaped
like ellipses with different length of axes. Therefore, we modify Eq. (5) into Eq. (6), where the equation for
an ellipse is used to model the distortion. (x;, y;) are the coordinates of pixel i, and (x,, y,) denotes the origin
of the concentric ellipses.

f(xiv )’,)

2 2
ay + ax(xl- - x”) + ay(yi— yU)

g(xpy) = 6)

The coefficients a = (ay, ay, a,) must be determined in order to be used to correct the distorted image g back

into 7 (Eq. (7)), such that Eq. (8) can reach its minimum. M is the total number of pixels in the image.

fi = ex,y)laq +“x(xi'xa)2 + ay(y,—y,,)2] ™
M-1 )
e =min, ¥ (fi~f) ¥
i=0

To make the computation easier, we rewrite Eq. (7) and Eq. (8) using matrix notation. Let

2 2
1 (xo—x”) ()’0—)’0)
2 2
W = 1 (xl"xa) (yl_yﬂ)

2 2
1 (xM—l-xa) (yM-—l—yo)
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then Eq. (7) can be written as

F=GwWA
and Eq. (8) as Eq. (9),
& = min,(F - GWA)  (F~ GWA) ©)
The solution to Eq. (9) is Eq. (10),
A= (GW)'F (10)

where (GW)_1 is the pseudo-inverse, which can be computed by

©wy" = 6wy 6w ew)’

In real world applications, we do not solve Eq. (9) based on the whole set of image pixels, which would be
very time consuming and unnecessary. Instead, we choose a set of m pixels as the control points. The control
points are the ones that we know what their original intensity values should be.

We choose a rectangular grid as the testing image (Fig. 38). If not for the radiometric distortion, blur or
noise, the measured image would be binary, with only two intensity levels: 255 and 0. We neglect noise for
the time being, and choose the center point of each square as the control points to avoid blur effects. The
original intensity value of these control points should be equal to the intensity value of the origin of the
ellipse.

With the control points chosen, we can easily construct matrices W, G, and F, and apply them to Eq. (10) to
solve the coefficient matrix A. With the coefficients solved, a look-up table can be generated with each entry
indicating the scale that should be imposed onto each pixel of the measured image g(x, y) to correct the radi-
ometric distortion.

7.5 Geometric Correction

In geometric correction, a transformation function is designed to map the control points from a known pat-
tern (such as a regular grid) to their measured positions. The geometric distortion in any captured images can
then be corrected by back-projection. Control points are points whose positions in the original scene are
known a-priori. Polynomial approximation, usually in the 2nd degree, is the conventional transformation
function most often used [Pratt 78][Rosenfeld and Kak 82].

In our imaging system, we implemented the polynomial method in a higher degree. We also adopted the
thin-plate spline (TPS) as another type of transformation function. TPS is a classical method for interpola-
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tion. Bookstein [Bookstein 89] first used TPS to model the deformations between two sets of landmark
points. As far as we know, this thesis is the first application of the method to geometric correction.

*y) M control point V)

approximation

P(u, v) = (x,y) |=—]

interpolation

T, v) =&, y) [~

map exactly

Figure 40. The transformation system between the measured image and the corrected image.

The difference between approximation and interpolation lies in the fact that approximation methods gener-
ate transformations that map all the control points close to their correspondence, so that the summation of
displacements achieves a global minimum; whereas interpolation methods produce transformations where
all the control points can be mapped to their correspondence exactly [Daview and Samuels 96].

7.5.1 Polynomial Approximation

Nearly all the methods used to correct pincushion distortion so far are variants of polynomial approximation
[Beier et al. 92][Butler and Pierson 91). Pratt addressed the 2nd degree polynomial approximation in 1978
[Pratt 78)]. Here, we generalize this method to an nth degree polynomial.

T T
Assume [5;,. ygl = [Px(“i’ v;) Py(u, Vi)] , where (u;, v;) is a control point from the corrected image, (%;, ;)

is the corresponding point in the measured image, and (Py, Py) are the transformation functions for the x and
y coordinates respectively, both of which are nth degree polynomials with respect to « and v. P, and P, are
expressed in Eq. (11) and Eq. (12),

n-1

=P (uv) = z Z amurv‘v (11
j=0rts=i
n-1

y=Pwv) =3 Y b,uv (12)
j=Qrts=i

where a;,, and b;,, are the coefficients. The transformation functions should map all control points (x, v) to
(x, ) as closely as possible, that is, (%,3) as close to (x, y) as possible. Minimum mean square error
(MMSE) is used to measure the error as Eq. (13),

m-1
e = ming , 3 [(x-5) + (=591 (13)
i=0

where m is the number of control points. Coefficients a and b are determined so that € can reach its mini-
mum.

Since the pincushion distortion that our imaging system suffers is not symmetric, we use a 3rd degree poly-
nomial to model the transformation. Based on Eq. (11) and Eq. (12), we get

5 2 2 3 2 2 3
X = a000+a”0u+a101v+a220u +a2”uv+a202v +a330u +a321u v+a312uv +a303v
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and

A 2 2 3 2 2 3
J = bogy + byott + by V + boggt” + by uv + bogy V" + bazgut” + by uV + bypuv” + bygav

Again, the transformations are reformulated in matrix form. Let

T T
A= [“ooo ay10 901 -+ “303] » B = [booo bi1o bio1 -+ b303]

X= I:xo xm_l:lT, Y= [yo ym—l]T

X = [’%0 .%m__l]T’ ? = [5’0 ym-l:IT

1 2 2 3 2
uo VO uo uovo VO “0 u()VO

1 2 2 3 2
W = L T S W uvy Vi oy vy

| 2 2 3 2 2
U1 V=1 ¥ ¥ 1Vim—1 Yim=1 %1 Y= 1Vm-1 ¥m-1Vm-1 Vm -1

such that,

X =wA, ¢ =WwB

and
e = miny pl(X - WA) (X - WA)+ (Y - WB)' (Y - WB)]

The solution to Eq. (14) is

1. . -1
where W is the pseudo-inverse, computed by ww) w.

7.5.2 Thin-Plate Spline Interpolation

3
Yo

3
Vi

3

14)

Interpolation differs from approximation in the way that interpolation problem tries to construct a continu-

ous function f: R" —» R™ so that f (p;) = ¢;, where p; and g; are finite sets of distinct point of %" and ®"
1 ql 1 p

respectively; while approximation can only find function g : R" — R™ such that g(p)=q;. In order to

achieve well-posed (existence, uniqueness, and stability) solution to the interpolation problem, it proves

quite natural to require the minimization of some appropriate expression, such as the quadratic seminorm

1

If |2 [Meinguet 84]. | fI2 can be physically interpreted as the bending energy of a thin plate of infinite extent.

Therefore, interpolants of minimum seminorm can be appropriately termed thin plate splines (TPS).

1. A real-valued functional |x| , defined on a vector space X, is called a seminorm if: a) |x| 20 forall xe X ;

b) Jox| = fod - x5 €) [x+y] <1l +1y]
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Bookstein [Bookstein 78][Bookstein 89] is the first researcher to use TPS to model the deformations
between two sets of landmark points (also called control points), where TPS warps one picture into the space
of another by mapping landmarks exactly onto landmarks while minimizing a plausible bending energy, the
integral of summed squared second derivatives of the mapping as Eq. (15). In the case that f{x, y) is a bright-
ness function, the integrand is referred to as the quadratic variation.

azf 2 82f 2 azf 2
2 - ona— —
o< 4 A o

In the special case of geometric correction, TPS represents the mapping of control points from the corrected
image to their correspondence in the measured image in the manner which uniquely minimizes the bending
energy of Eq. (15).

InEq. (15), A2f = (3%1/3x%) +2(3%F/axdy) + (3°7/3y2)" is the bikarmonic equation, and the fundamen-

tal solution of A f=0isU(r) = rzlogr2 , where r is the distance between two control points. Since A? f is

non-negative, the unique solution that minimizes the bending energy is a linear combination of U(r), which
is bounded and asymptotically fiat. If scaling or homogeneous shear is allowed before applying the displace-
ments, an affine transformation should be added to the solution to indicate the behavior of f at infinity.
Therefore, the complete solution to Eq. (15) is Eq. (16):

m

fy) = Y wiU(r)+a +ax+ay (16)
j=1

where m is the number of control points. Eq. (16) consists of two parts: the non-linear part which is the sum
of functions U(r), and the linear part which is the affine transformation.

In our imaging system, we adopt TPS to correct geometric distortion. We still assume (x;, y;) to be a set of
points from the measured image, and (#;, v;) from the corrected image. The TPS transformation function 7" :

R* >R is sought such that
T T
I:xi y;I = [Tx(”i’ v;) Ty(u,., vi)] an

and T minimizes the bending energy of Eq. (15). Substituting Eq. (16) into Eq. (17), we get

m~1

z 1),~U(rij)+a1 tautay;

j=0 =%
m-1 i
Z qu(r,-j) +b; +bxui+byvi

=0

where rij = |Cuy vy = (e PV j)| . Again, we rewrite the problem in matrix form as Eq. (18),

Py )
Py 4
U("o,o) U("o,l) U(ro,m_l) 1y Yo Xy Yo
U(r Ur .. U(r 1 u v X
(r,0) (r,1) (ry,m-1) UV lpy g = | (18)
a b
U(ry-1,0) Ury_11) o Ulry g ) 1ty Vi Xm—1Ym-1
ax bx
| 9y by ]
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which we denote as Eq. (19),

[]{ Q} < [us Y] (19

A3x1 BBxl

To solve the coefficient matrices P, O, A, and B, matrix [K L] should be inverted. To make the matrix size

compatible for inverting, Eq. (19} is reconstructed into Eq. (20), where O is the zero matrix with appropriate
dimensions. The coefficients can then be solved by Eq. (21).

sEg-k o
E BJ ) t{T j_l B g] @1

Similar to the radiometric correction: with the control points chosen, we can construct matrices X, L, X, and
Y, and apply them to Eq. (21) to solve for the coefficient matrices P, Q, A, and B. With the coefficients deter-

mined, and the corresponding control points, a look-up table can be calculated with each entry indicating the
coordinates that a pixel point in the corrected image should be looked up into from the distorted image.

The more control points chosen, the longer computation time needed. However, since this kind of computa-
tion only happens once, and the mapping can be saved in a lookup table afterwards, the efficiency should not
be a concern.

7.6 Degradation Analysis

[Aghdasi et al. 94] has given a detailed analysis of the degradations in an X-ray (film) image formation sys-
tem. The complete model is illustrated in Fig. 41.

b

Qij‘@_' hfocalspotl—.| Nscatter H ni l_-l m H Niim 0 \f ‘Q—’gﬁ
logE

ny ny N3

Figure 41. A model of radiographic image formation from [Aghdasi et al. 94].

The input (Q;) is the number of X-ray quanta received at the screen per pixel, and the output (g;) is the
observed optical density of each pixel. This model consists of three sources of blur (Agcurspor Pscarter Pitm)s
three scaling factors (m, 1)1, T;), and three sources of noise (ny, np, n3).

The cause of Ay is that the focal spot on the anode of the X-ray tube is not a perfect point source,
instead, it has a finite size, which generates the blur effect as shown in Fig. 42. kg, results from the X-ray
scatter in the object, and Ay, from the film.
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X-ray source is not

a true point source
electron

original image

blurred image

Figure 42. Blur caused by finite-size X-ray source.

Of the three scaling factors, m is the mean screen amplification ratio, n; and 1, are the absorption efficien-
cies of the screen and the film respectively.

Noises mainly come from the film grain noise (n3) and the quantum noise due to the discrete nature of the X~

ray photons. Quantum noise can be further divided into the correlated components of the input quantum
noise (1), and the uncorrelated components of the input quantum noise (n5).

Our imaging system is different from Aghdasi’s since we use CCD detectors instead of film. This has
avoided all the degradations caused by film, but at the same time brought new types of degradations. For
example, the butted fiber optic tapers introduce missing data along the butting edge. Therefore, a modified
degradation model need to be formulated.

Blur. In our CCD imaging system, the blur caused by A, is avoided. We also assume that the X-ray scatter
can be largely absorbed by a vibrating grid. Therefore, the major blur source comes from the finite-sized X-
ray source. A simple computation shows the effect of blur from this source:

In a digital mammographic system, it is reasonable to assume that the point source is 0.6mm width, the aver-
age distance from an object to the CCD detector is 2cm, and the distance from X-ray source to the object is
64cm, then the captured image of the focal spot will be 18um. That is, the blur is about one pixel.

0.6 mm
—

X-ray source T

64 cm
apointin the
original image A

2cm
captured image i

Figure 43. An example of blur effect by finite size focal spot.

Noise. Noise mainly comes from three sources in our system: 1) dark current noise which can be reduced by
cooling; 2) quantum noise, a signal-depend noise which can be modeled by a Poisson process [Rabbani 88].
When the readout rate is very high and the amount of the readout data is very large, this kind of noise can be
neglected; 3) fixed noise, due to the electrical system noise, quantization noise, etc., which is the major noise
source in our system.
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CCD Detector Induced Errors. If a single CCD cell is defective, it can cause data from the rest of the row
missing due to CCDs serial readout mechanism. Also, butting technique can cause data at the boundary of
adjacent CCDs missing. Both of these sources introduce missing column(s)/row(s) in images. Defects in the
metallization or fibers can introduce single point defects as well.

7.7 Regularization Theory

Missing data estimation is basically an image restoration problem. Image restoration is well known to be ill-
posed [Andrews and Hunt 77][Katsaggelos 91], since a little change in the input data can dramatically affect
the solution, Ill-posedness comes from the ill-conditioning of the matrix constructed from the system PSF.
The most popular solution to ill-posedness is regularization. Although many different kinds of image resto-
ration algorithms have been proposed so far, they all share a common structure: the regularization theory.

Generally speaking, any regularization method tries to analyze a related well-posed problem whose solution
approximates the original ill-posed problem. The well-posedness is achieved by implementing one or more
of the following basic ideas [Nashed 76]:

e change of the concept of a solution;

e restriction of the data;

¢ change of the space and/or topologies;

¢ modification of the operator itself;

e the concept of regularization operators; and

¢ well-posed stochastic extensions of ill-posed problems.

According to [Tikhonov and Arsenin 77], a regularization method consists of finding regularizing operators
that operate on the data, and determining the regularization parameter from supplementary information per-

taining to the problem. The regularization operator depends continuously on the data and results in the true
solution when the regularization parameter goes to zero, or equivalently when the noise goes to zero.

In the traditional image restoration approaches, image formation is modeled as Eq. (22),

Hf+n =g 22)

where f, n, and g are N*x 1 vectors, the lexicographic representation of the original image, noise, and the

measured image respectively; and H is the N*x N? Toeplitz matrix, derived from the system PSF. The regu-
larization method constructs the solution as Eq. (23),

min [u(f, g)+Bv(f)] (23)

where f is sought to minimize u(f, g) + Bv(f). The first term, u(f, g), describes how the real image data is
related to the measured data. In other words, this term models the characteristic of the imaging system. The
second term is the regularization term with the regularization operator v operating on the original image f,
and the regularization parameter § used to tune up the weight of the regularization term. By adding the regu-
larization term, the original ill-posed problem turns into a well-posed one, that is, the insertion of the regu-
larization operator puts some constraints on what f might be, which makes the solution more stable.

In our problem, besides noise and blur, another corruption, missing data, is inserted to the measured image g.
The consistency method using separable deblurring constructs a well-posed problem by putting several
restrictions on the image data and the blur kernel. The MAP method is actually a Bayesian interpretation of
regularization problems, which is solved by a global optimization technique, called mean field annealing
(MFA).
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7.8 Degradation and Distortion Characterization

Related parameters include degrees of radiometric and geometric distortions, variances of point spread func-
tion and noise distribution, and the amount of missing columns.

7.8.1 Degree of Radiometric Distortion

For vignetting-type radiometric distortion, the brightness degradation can be modeled by a series of concen-
tric ellipses. We define the degree of radiometric distortion (1,) by the eccentricity of the most inner ellipse
(all the concentric ellipses have the same eccentricity). 11, is thus equal to ratio of the length of the major axis

(a) to the length of the minor axis (b),as n, = a/b.

Figure 44. A real image used to compute the degree of both radiometric distortion and geometric distortion.

We use the image in Fig. 44 to compute 1, of both the left sensor image and the right sensor image as Eq.
(24),

771

} n,(left) = = 1.17
705 24
n,(right) = %0 - 1.47

7.8.2 Degree of Geometric Distortion

The degree of geometric distortion (1, mainly pincushion distortion) is measured at the smaller end of the
fiber-optic taper. The 1, in the long direction is defined as Eq. (25) by the manufacturer, where L, L, Ly,
and Ly, are illustrated in Fig. 45.

L

n, = L= 100 (25)
8 Ly+Lg
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Lm

Le

Figure 45. Parameter illustration in the definition of pincushion distortion degree.

By obtaining the corresponding L,;, Ly,, L,,, and L, from both the left and right parts of the original image in
Fig. 44, we calculate the degree of pincushion distortion as Eq. (26).

1075 - 1043

T]g(left) = mx 100 = 1.42% (26)
, _ 1086 - 1049 ~
T]g(rlght) = mx 100 = 1.57%

7.8.3 Point Spread Function

The point spread function (PSF) can be estimated by the derivative of the edge spread function (ESF). Fig.
46 shows the ESFs and the corresponding PSFs along both horizontal and vertical directions at different
locations (from both left and right parts of the image, select samples at top-left, top-middle, top-right, mid-
dle-left, middle-middle, middle-right, bottom-left, bottom-middle, and bottom-right respectively) of the
image in Fig. 44, where the derivatives are taken numerically.
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Figure 46. ESFs (left column) and PSFs (right column) along the horizontal direction (top) and the vertical direction
(bottom).
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We observe that the PSFs are all behave like a Gaussian, and the ESFs are like an error function. We there-
fore fit the sample data to the error function instead of the Gaussian.

The best fitting standard deviations () for each of the error functions in Fig. 46 are listed in Table 4, and fur-
ther illustrated in Fig. 47. We observe that the values of ¢ are very close at different positions and different
edge orientations. In other words, the shapes of different ellipses in Fig. 47 are very similar, which means the
PSF is roughly homogeneous. Therefore, we substitute ¢ = 1.85 to the 2-D Gaussian function (Eq. (27)), and
sample it to create a 5 x 5 blur kernel (#') as Eq. (28). Kernel #' is further normalized to % as Eq. (29).

TABLE 4. The best fitting standard deviation for ESF.

left part of the image right part of the image
along the hori- left middle right left middle right
zontal direc- top 1.82 1.85 1.86 1.85 1.85 1.94
tion middle 1.83 1.84 1.83 1.83 1.84 1.84
bottom 1.86 1.88 1.85 1.85 1.85 1.83
along the ver- top 1.83 1.85 1.83 1.85 1.83 1.90
tical direction | mjiddle 1.84 1.84 1.75 1.90 1.85 1.84
bottom 1.84 1.83 1.85 1.82 1.83 1.82

O0000OO0
O00000
OO0

Figure 47. Tllustration of the fitting o (G,, 0,) value from Table 4 by ellipses. The length of the axes of each ellipse is
taken from o along the horizontal direction, and ¢ along the vertical direction at the same location of the image. For
example, the axes of the top-left ellipse is (1.82, 1.83) taken from celis (1, 1) and (3, 1) of the table.

1 2 y2 i X 1 y2
G(x,y) = exp( J = exp J exp 27
2n6° 26° J2rc 262) J2mc 262

0.0145 0.0224 0.0259 0.0224 0.0145]
0.0224 0.0347 0.0402 0.0347 0.0224
B = 10,0259 0.0402 0.0465 0.0402 0.0259 (28)
0.0224 0.0347 0.0402 0.0347 0.0224
0.0145 0.0224 0.0259 0.0224 0.0145

0.0210 0.0326 0.0377 0.0326 0.0210
0.0326 0.0506 0.0585 0.0506 0.0326
h = [0.0377 0.0585 0.0677 0.0585 0.0377 (29)
0.0326 0.0506 0.0585 0.0506 0.0326
0.0210 0.0326 0.0377 0.0326 0.0210]
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7.8.4 Noise Characterization

Noise is characterized by taking a homogeneous segment from the captured image, and observing its histo-
gram distribution. Fig. 48 shows a flat frame captured from our imaging system. We select nine homoge-
neous segments at different locations (top-left, top-middle, top-right, middle-left, middle-middle, middle-
right, bottom-left, bottom-middle, and bottom-right) from both the left and right parts of the flat frame and
draw their histograms as Fig. 49. From Fig. 49, we observe that all the histograms behave like Gaussian.
Again, we use interopt to fit the histograms to Gaussian and obtain the average best fitting standard deviation
which is 3.9.

Figure 48. The image of a flat frame.
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Figure 49. Noise distribution of a homogeneous segment from nine different locations of both the left (left column)
and right (right column) parts of the image.

This method gives us a hypothetical idea about how noise contributes to the formation of the image.
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7.8.5 Missing Data Identification

We measured that the thinnest line our CCD sensor can detect is about 50.8um (0.002in), that is, the width
of a pixel is 50.81tm. In order to identify how many columns are missing at the butting edge, we take images
of a Precision Ronchi ruling across the butting edge and not across the butting edge.

Ronchi rulings are evenly spaced lines running parallel to each other with line width equal to space width.
The ruling we use has 250 lines per inch. Therefore, the line width of the ruling can be calculated by Eq.
(30). Since the width of each line in the ruling matches the width of the thinnest line the sensor can detect,
the number of missing columns can be identified by counting the difference of number of lines from ruling
image across the butting edge and ruling image fully contained in one sensor, as shown in Fig. 50.

lin
250lines x 2

x 25.4cm = 0.0508cm = 50.8um 30)

Figure 50. Images of Ronchi rulings across the butting edge and not across the butting edge.

We count number of lines across different positions of the ruling, with the results that the left image detects
237 lines, and the right image detects 238 lines. Therefore, we verify that the butted CCD sensor has one
column missing at the butting edge.

7.9 The Consistency Method with Separable Deblurring

By putting some restrictions on input data, and the blur operator, we are able to transform the missing data
estimation problem into a well-posed one. Several assumptions are made to simplify the problem. Possible
relaxation of these assumptions are further discussed in Appendix 7.9.5.

the blur kernel is separable;

e the blur kernel is exactly known;

* noise is not considered at this stage of study;

¢ only one column of data is missed in the original image; and

e the original image is of integer type.
The image formation is modeled as Eq. (31),
f®h=g-n @31

where g is the measured image with one column of data missing, fis the original image, and r, the noise, is
regarded as small perturbation of g and is neglected at this stage of study. The convolution kernel 4 is dis-
crete and of finite support. Both fand g are M x N matrices.
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The consistency method is proposed based on the assumption that the blur kernel is separable, such as Gaus-
sian. The separability property of Gaussian leads to the separable deblurring where two N x N sparse matri-
ces are generated based on the separated blur kernels. We demonstrate that this transformed problem is well-
conditioned.

The consistency approach concerns three issues: separable deblurring, Householder triangularization based
QR factorization (HHQR), and consistency in missing data estimation [Qi et al. 98].

7.9.1 Separable Deblurring

Since the convolution kernel 4 is discrete and of finite support, it can be written as a matrix like Eq. (32). If &
is also separable, then the convolution can be performed separately as Eq. (33), where sy and hx are the sep-

arated vertical and horizontal components of 4. » denotes the matrix multiplication, and ® is the convolu-
tion operator.

hll e hln
b=\ .. .. (32)
hml 'hmn
f®h=f®hyohx) = (f®hy)®hx = (f ® hx) ® hy (33)

Assume fis an M x N image and 4 is an m x n Gaussian kernel, the convolution of image f with the horizontal

kernel component hx can be equally achieved by a matrix multiplication between fand an N x N ([’L%_I_J ,
[%—l )-band matrix Dx (Eq. (34)), generated from hx; and the convolution with hy can be similarly

achieved by a matrix multiplication with an M x M (L"%IJ , [’Ezll] )-band matrix Dy (Eq. (35)), generated

from hy.

pe o P2 0) s us |5 (34)

0 otherwise
h(i"_ﬂJ-H') —[@:l-ISi—‘sl’";lJ
Dy = yl_ 2 / 2 J 2 (35)
0 otherwise

For example, if we have an image f of dimension 5 x 4, and a separable blur kernel % of dimension 4 x 3:

f11 £12 f13 f14
f21 f22 £23 f24

F = |f31 f32 f33 f34]> h =
f41 f42 £43 f44
51 £52 f53 £54

K11 h12 13| [hyl
h21 h22 h23| _ |hy2|,
h31 h32 33| |hy3
hal h42 ha3]  |hy4

[hx1 hx2 hx3] s

the matrices Dx and Dy then look like:
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hy2 hy3 hyd 0 O
hyl hy2 hy3 hy4 0
0 hyl hy2 hy3 hy4| -
0 0 hyl hy2 hy3
0 0 0 hyl hy2

hx2 hx3 0 0

Dx = hx1 hx2 hx3 O , Dy =
0 hxl hx2 hx3
0 0 hxl hx2

With Dx and Dy, we can rewrite Eq. (33) into Eq. (36), which gives us another interpretation on how the
original image is blurred. Eq. (37) is the inverse problem to Eq. (36), where if matrices Dx and Dy are both
well-conditioned, the solution f should be stable. We will analyze the conditioning of Eq. (36) in detail in
Appendix 7.9.4.

g=(f®hx)®hy = Dys(Dxe 1) (36)
f=xt ey eg)) 37)
7.9.2 HHQR

To actually solve the system of Eq. (36), we use Householder triangularization based QR factorization
(HHQR) algorithm [Trefethen and Bau 97]. HHQR has been proven to be backward-stable which means if
the linear system is well-conditioned, this algorithm can provide the accurate solution. Assume the linear
system is Ax = b, HHQR can then be implemented in the following three steps:

* using QR factorization to factor A into Q e R, i.e., QRx = b where Q is a unitary matrix and R is an upper
triangular matrix generated by HH triangularization;

* since the inverse of a unitary matrix is equal to its transpose, Rx = 0'b=0"b=y;
e since R is an upper triangular matrix, we can solve x by simple scaler multiplication and subtraction
without inverse operation.

In our problem, HHQR algorithm is used twice to solve the two linear systems derived from Eq. (36):

(1) solve g = Dy f, for f and

y!
(2) solve f: = Dx-fT for f.

7.9.3 Missing Data Estimation by Consistency

Assume the original image has only integer brightness values, and these values are within [0, 255], in partic-
ular, the missing pixels should have their original integer brightness values between 0 and 255, the two linear
systems are solved as follows:

(1)Solve g = Dye f y for f y using HHQR. The process is to deblur image g along the vertical direction. We
show in Appendix 7.9.4 that matrix Dy is well-conditioned such that the inverse problem is well-posed.

(2) For the second linear system f§ = Dxef T HHQR can not be used directly, since there is one column of

missing pixels in fy- Instead, we solve each row of the image separately, i.e. solve fz(i) = Dxe fT(i) ,

where i represents the ith row in that image. For the example we took at the end of Appendix 7.9.1, the sec-
ond linear system can be written as Eq. (38),
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HGDE ama o o [r61)
FyG2) _ |hxl hx2 hx3 0 |, | f(i,2) 38)
£,6:3) 0 hxl hx2 hx3| |f(i,3)
fy(i'4) 0 0 hxt hx2 (i, 4)

Assume the missing pixel is in the 3rd column, we then have 5 unknowns (fi,1), f(i,2), f(i,3), f(i,4) and
f(@.,3)) but only 4 equations in the linear system. To solve this problem, we need to find another condition.
Since we already know that f{i,3) should be an integer between O and 255, an exhaustive search can be car-
ried on by assuming f{i,3) is each one of them, which gives us 4 unknowns and 4 equations. Reconstruct vec-
tors f,, £, and matrix Dx in Eq. (38), so that all the unknowns are at one side of the equation, like Eq. (39).

We denote the matrix reconstructed from Dx as Drx, and show in Appendix 7.9.4 that it is also well-condi-
tioned.

fy, 1) hx2hx3 0 0 |[fG1)
fy(i, 2)—hx3 - f(i, 3) = hxl hx2 0 O . fG,2) (39)
~hx2 - f(i,3) 0 hxl -1 hx3| [fy(i3)

[y, 4)-hx1- f(i, 3) 0 0 0 hx2] |f(i4)

Solve the new linear system by HHQR, and check the solution to see if it satisfies the consistency criterion,
that is, the solutions (f(i,1), fi,2), f{i,4)) are all between O and 255 and are all integers. If they do, then we
can go on and solve the next row; otherwise, next value of f{#,3) is attempted. The well-conditioned problem
and the backward-stable algorithm assure that the solution is unique and accurate.

How to choose the initial value of the missing pixel plays an important role in speeding up the exhaustive
search. We use the average brightness of the missing pixel’s left and right neighbors as the first attempt, and
pick up the next attempt by swinging around this value with increasing step (Fig. 51). In practice, this saves
half of the time compared to the normal approach which always starts from brightness 0.

4th 2nd 3rd S5th

2 -1 +1 +2
l_____________ ______ 1 (] I 1 e e - — - — - ____—*
L] L ) ¥ T
0 1st 255
attempt

Figure 51. Choose initial value for the missing pixel in exhaustive searching.

7.9.4 Conditioning Analysis

Conditioning of a mathematical problem is measured by the sensitivity of output to changes in input. For a
well-conditioned problem, a small change of input does not affect the output much; while for an ill-condi-
tioned problem, a small change of input can change the output a great deal.

Condition number is the measurement of the conditioning of a problem. Generally, it is defined as Eq. (40).
The larger the condition number, the more ill-conditioned the problem is.

change in output

condition number = —
change in input

(40)

The conditioning of a linear system Ax = b is determined by the condition number of matrix A. The relative
condition number K is defined as Eq. (41),

K = a4 1)

where || usually indicates the 2-norm. K is in the range of [1, ) . When K » 1, the linear system is ill-con-
ditioned.
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While most of the literature on image restoration concentrates on smoothing methods to reduce the effect of
noise, few [Forbes and Anh 94][Milinazzo et al. 87] pay attention to quantify the amount of ill condition of
the blur kernel. Since the whole idea of the consistency method is built upon the well-conditioning of the
two linear systems, analyzing the amount of ill condition of matrices becomes an important issue.

In the missing data estimation problem, the conditioning of the two linear systems is measured by the condi-
tion number of matrices Dx, Dy, and Drx. Since Dx and Dy has similar structure, we only analyze Dy and
Drx.

Condition number of Dy. We compute the condition number of matrix Dy generated with different image
sizes and Gaussian blur kernel sizes. The results are listed in Table 5. We can see that for kernel size larger
than 3, the condition number does not change much when increasing the image size. Also, when increasing
the kernel size, the condition number always fluctuates around 10.

TABLE 5. Condition number of matrices Dy.

Image Size (N Condition Number of Different Kernel Sizes (n x n)
xN) 3 5 7 9 11 13
15 48.3742 9.9852 9.8348 8.2826 8.6213 8.2726
100 4133.6000 9.9659 10.9641 8.9596 9.3753 8.4998
1000 406100.0000 9.9996 10.9996 8.9795 9.3997 8.8548
2000 9.9999 10.9999 8.9797 9.3999 8.8550

Fig. 52 is several plots illustrating the rate of growth of the condition number with respect to different image
sizes and kernel sizes. Fig. 52 (a) is the growth curve for 3 x 3 blur kernel. The curve increases steadily with-
out converging to an upper bound, which indicates the system is ili-conditioned.

Fig. 52 (c) shows six curves with respect to six different kernel sizes: 5x 5,7x7,9x9, 11 x 11, 13 x 13, and
15 x 15. All the curves behave similar: a sharp increase at the beginning and asymptotically converge to a
constant (less than 11) after the image size is larger than 100 x 100. Fig. 52 (b) displays three curves corre-
sponding to different image sizes. It indicates that all the condition numbers fall into the area with an upper
bound created by the largest image size (2000 x 2000) and a lower bound related to the smallest image size
(15 x 15). The upper bound is around 10, which demonstrates the well-conditioning of the system.

From the above analysis, we claim that when blur kernel is larger than 3 x 3, the first linear system
g =Dyef, is well-conditioned.

15|

Condon number with kemel si2s lrger than 2x 3

W00 20 %0 K0 W0 &0 70 e w5 1000 « 7 s
Image size (eNy

(@) ) ©)
Figure 52. Condition number of matrix Dy with respect to different image and kernel sizes.

Condition number of Drx. The condition number of Drx indicates the conditioning of the second linear

system (Eq. (39)). Drx is transformed from Dx, with only one column different. If the missing column in the

original image is column j, then Drx is constructed by setting the jth column of Dx to zero except element (j,
J) with a value -1, as indicated in Eq. (42), where j = 3.
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hx2 hx3 0 O hx2 hx3 0 O
hx1 hx2 hx3 0 - hxl hx2 0 O (42)
0 hxl hx2 hx3 0 hxl1 -1 0
0 0 hxl hx2 0 0 0 hx2
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Figure 53. Condition number of matrix Drx with respect to different image and kernel sizes.

Fig. 53 is three plots similar to Fig. 52. For kernel size larger than 3 x 3, the condition number still converges
asymptotically to a constant after an apparent increase at the beginning. Although the constant is larger (less
than 450) than that from Fig. 52, it still indicates well-conditioning. Fig. 53 (b, c) also tells us that the condi-
tion number is more affected by different kernel size than different image size, which can be seen from the
close distance between the three curves in Fig. 53 (b) and the comparatively larger distance between curves
in Fig. 53 (c).

7.9.5 Assumption Relaxation Analysis

At the beginning of Appendix 7.9, we made several assumptions to simplify the restoration problem. This
section discusses the possible relaxations to these assumptions. Except that the blur kernel still needs to be
separable, we show that other assumptions can all be relaxed to a certain degree, though by sacrificing cer-
tain amount of accuracy of the solution. We first analyze sensitivity of solution to perturbations in blur ker-
nel (h), and perturbations in measured image (g) caused by the insertion of noise (n). We also evaluate the
conditioning of problem when there are more than one column of missing data. Finally, we relax the
assumption of integer-typed original image, and design a neighbor least square error criterion to select the
optimal solution.

Sensitivity of Solution to Perturbations in Blur Kernel. According to [Trefethen and Bau 97], in a linear
system Ax = b, sensitivity of solution x to perturbations in b can be measured by Eq. (43),

-3 _ K(A)|3b]

= 43
E @)
where 1 = W . Sensitivity of x to perturbations in A can be estimated by Eq. (44).
br=3 _ 01841
<K(AyTrr 44
E RS @9

In our system, perturbations in blur kernel (%) are reflected in blur matrices Dy and Drx as shown in Eq. (45)
and Eq. (46).

(Dy+38Dy)fy = g (45)

(Drx+8Dr0)f = £ (46)
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Based on Eq. (43) and Eq. (44), sensitivity of f with respect to perturbations in Dx can be expressed by Eq.
(47), and sensitivity of f to perturbations in Dy by Eq. (48),

HOZ7Tx]] 47
I ] @D
lr-A _ k@ro) 1]  K@rokDy) 18Dy @8)
A - m, 155
where 1, = %—%ﬂ , a number greater than 1, but very close to 1. If Drx and Dy have same degree of per-

turbation, then Eq. (47) derives a smaller upper bound than Eq. (48). Therefore, sensitivity of f to perturba-
tions in blur kernel 4 is measured more accurate by Eq. (47).

If K(Drx)=10°, and |8Drx||/|Drx| = 107 , when ¢ = d, sensitivity of solution is close to 1 (Eq. (49)), which
means the problem is ill-conditioned, since we expect no correct digits from the output f.

lr=7l _ 18l <1 (49)

i

Sensitivity of Solution to Perturbations in Measured Image. Perturbations in measured image g can be
interpreted as the effect of inserted noise. The two perturbed linear systems can be written as Eq. (50) and
Eq. (51).

Dy~]~‘y = g+0g 0
Drx-f = fy+8f, [61))

Sensitivity of f; to perturbations in measured image g is defined by Eq. (52) based on Eq. (43),

Iy -7 _ koy) 15l 2
17 m, Tl
1Dyl - £, " .
where 1, = W , a number greater than 1, but very close to 1. Sensitivity of f to perturbations in mea-
bl

sured image g can be derived by Eq. (53).

lr-A _ k@) 13| _ KDk Dy) 154 53)

Compare Eq. (53) with Eq. (47), if Drx and g have same degree of perturbation, then solution f can be less
sensitive to perturbations in blur kernel than to perturbations in measured image.

Conditioning Analysis for More Than One Missing Column. If there are more than one column of miss-
ing data in the measured image, condition number of the vertical blur matrix Dy stays the same, but condi-
tion number of the reconstructed horizontal blur matrix Drx is changed. Eq. (54) shows a template of Drx
transformed from Dx when two columns of data (the 2nd and the 3rd columns) are missed. The missed ith
and jth columns of Dx are set to zeros except at element (i, i) and (j, j) with a value -1, similar to the forma-
tion in Eq. (42).

hx2 hx3 0 O hx2 0 0 O
hx1 hx2 hx3 0 - hx1 -1 0 O (54)
0 hx1 hx2 hx3 0 0-10
0 O hxl hx2 0 0 0 Ax2
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With more than one column missing, two problems need to be considered: how many missing columns can
be in the image, and how far away these missing columns should be apart for stable inverse. We still use con-
dition number to measure the conditioning of the problem.

Fig. 54 shows the condition number of Drx with blur kernel (%) at dimension 5 x 5. The three plots are gen-
erated with different numbers of missing columns (2, 3, and 4). We can see that no matter how many col-
umns are missed in the measured image, and how far away the two nearest missing columns are apart, all of
the plots behave similarly - after an initial perturbation, all plots converge to a constant condition number,
which is around 120.

]

Cenion rambec of matix Dox wewn miesing 2 cohare

Conditon number of matix Drx whan miesing 3 cokrmee
‘Condifon reriber o et Dex when miesng 4 cotumvs

() 3 w6 20 % %

% 40 45 0 O 0
'Dwance between the 2 missing coksmre.

1§ 20 2 30 8 40 4 5 W B 20 2% 30 3% 40 4
‘Orstaice between e Irissing columns. Oixtance betweer e & misaing calurve

Figure 54. Condition number of Drx with different numbers of missing columns at kernel size 5 x 5.

Fig. 55 shows the condition number of Drx with blur kernel (%) at dimension 7 x 7. The three plots also have
similar characteristics as those from Fig. 54. The difference lies in that after an initial perturbation, the three
plots in Fig. 55 converge to a larger constant condition number, which is around 260.
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Figure 55. Condition number of Drx with different numbers of missing columns at kernel size 7 x 7.

Fig. 56 compares the condition number of Drx with different kernel size when two columns of data are
missed. Both of the two curves increase steadily with respect to the kernel size.

two closes| missing columns are adjacent ’ B
= = — - two closest missing columns are 1 column apart
’

N . N
& -] 7 8 10 "
Kemel size ()

Figure 56. Condition number comparison of Drx, missing 2 columns of data, with different kernel size: 5x5,7x 7,
9x9,and 11 x 11.
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These results substantiate our claim that when more than one column of data are missed, it is not the image
size, or the distance between two nearest missing columns, or the number of missing columns that affect the
condition number, it is the kernel size that plays the most important role. When the kernel size is less than 10
x 10, the problem is still well-conditioned. The larger the kernel size, the worse the problem is conditioned.

Neighbor Least Square Error Consistency Criterion. The last assumption we made is that the original
image needs to be of integer type. We relax this assumption to float-type image and design a new consis-
tency criterion to be used when selecting the optimal solution at the last step of the consistency method. We
call it neighbor least square error consistency criterion. It works in the following steps:

1) Estimate the missing column in the measured image using average value of its left and right neighbors;

2) Apply HHQR to solve the first linear system g = Dy s f y for f;

3) Reconstruct horizontal blur matrix Dx to Drx, and solve the second linear system of Eq. (39) one row ata
time.

4) For each possible solution of f{i) (the ith row of the restored image), compute the neighbor least square
error by Eq. (55), where d is the column position of the missing data, and d is the number of neighbors that
is involved in this least square error computation. It is important to choose close neighbors instead of the
entire row for the computation.

d+d
prer-f,0F = X () ®hx);~ £ DT (55)

j=d-3

This criterion relaxed the integer-type assumption, unfortunately, the search in the fourth step has to be
exhaustive. That is, we need to assume the value of the missing pixel to be from 0 to 255. Based on the 256
solution, we select the one that minimizes Eq. (55).

7.10 MAP Using MFA

This is another approach we proposed to solve the problem of missing data estimation with denoising and
deblurring. This approach uses the optimization technique, MFA, to solve an MAP estimate. With the image
formulated as Eq. (24), the maximum a-posteriori probability (MAP) approach tries to find an estimate of
image f that maximizes the a-posteriori probability p(f|g) as Eq. (56).

¥ = argmax p(f|g) (56)
According to Bayes’ rule, p(f|g) can be written as Eq. (57),

_ pElNPU)
p(flg) = O (57)

where P(f) is the a-priori probability of the unknown image f, P(g) is the probability of g which is a constant
when g is given, and p(g|f) is the conditional probability density function (pdf) of the observation g. In
[Szeliski 891, P(f) is called the prior model, and p(g|f), the sensor model, which is a description of the
noisy or stochastic processes that relate the original unknown image f to the measured image g.

Based on Bayes’ rule, the MAP approach can then be derived as Eq. (58), where we neglect the constant
P(g).

J = agmax;p(flg) = argmax (p(g|fIP(f)) (58)

The MAP approach may be regarded as a Bayes interpretation to the regularization theory [Demoment
89][Li 95]. It eventually formulates an image restoration problem into finding the optimal solution of an
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objective function which is very similar to the traditional regularization method, but derived from a different
point of view.

In the next four subsections, we will discuss our design of the sensor model and the prior model. The mean
field annealing global optimization technique is adopted here to obtain the restored image f which maxi-
mizes the g-posteriori probability.

7.10.1 Sensor Model

If we define the &-function 8(i) as Eq. (59), then the sensor model can be expressed as Eq. (60),

5() =(1 ieQ-Q, (59)
0 ieQ,
n = {nn;=380) [(f ®h);- g1} (60)

where i denotes individual pixel, d denotes locations of missing data, Q is the set of pixels of the entire
image, and Q; is the set of missing pixels.

Assume noise is independent Gaussian noise with zero mean, i.e., n;~ N(0, 02) , then the likelihood density

function can be written as Eq. (61), a product over the pixels of the image.

1 [(f®h),-—g,-]2] 1
- : 61
pelf) .-eln_{g,, Jz_mexp( - LI}J e (61)

7.10.2 Prior Model

The prior model is a probability description of the original image. It plays the same role as the regularization
term: by providing some prior knowledge of the original image, so to put some constraints in the solution,
the original ill-posed image restoration problem turns into a well-posed one.

The prior knowledge of the original image refers to the a-priori belief that the state of a pixel is entirely
determined by the states of its neighboring pixels. Specifically, it is expected that pixels close to each other
tend to have the same or similar brightness values [Besag 74][Besag 86]. [Geman and Geman 84] uses
Markov Random Field (MRF) to represent the local property of the image.

An MREF is a probabilistic process in which all interaction is local. It is defined over a discrete field where
the probability of a particular variable f; defends only on a small number of its neighbors, which is expressed
as Eq. (62).

pUfilf) = pUfi|{fpie R 62)

Although an MRF is the correct model to represent the local property in the image, it is difficult to estimate
either the conditional Markov distribution p(f i|f), or the joint probability directly from the conditional dis-

tribution. Fortunately, [Hammersley and Handscomb 64] and later paper [Besag 74] have shown the equiva-
lence between Gibbs distributions and MRF. This equivalence allows the modeling of local structure through
energies which describe the interactions of pixels within each clique of the neighborhood. The a-priori prob-
ability of an image by a Gibbs distribution is defined as Eq. (63),

P(f) = w (63)

where Z = Zexp(—U (f)/T) is a normalizing constant, called the partition function; T is the temperature of
f
the model; and U(f) is the energy function, that can be written as Eq. (64),
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() = YVl 64)

where C; is the clique formed involving pixel i. Vel£) is called the potential, which depends on the local

configuration of clique C;.

The prior energy function is usually formulated based on the smoothness property of the original image.
Since the more probable configurations are those with higher P(f) (thus lower U(f)), U(f) should measure the
extent to which the smoothness is violated [Li 95]. For spatially continuous MRFs, the energy function often
involves derivatives. Different orders of derivatives imply different classes of smoothness. Based on the dis-
cussions in [Li 95], we summarize the different formulations of the energy function according to different
kinds of image surfaces in Table 6:

TABLE 6. Prior energy for different surfaces.

Surface property Derivative Prior energy U(f)
flat surface: 1st-ord 2, .2 -
at surface zero Ist-or ‘er I ,[( £ Foydxdy mem
fxy)=a, derivative: brane
fr=0f,=0
planar surface: zero 2nd-order quadratic variation: plate
= derivative: 2 2, 2
f(x’ y) Gyt a x+ayy f -0 f =0 J.J.(fxx+2fxy+fyy)dXdy
xx = Dy
fry=0 square Laplacian:
2
[[(f a1y dxdy
uadratic surface: zero 3rd-order 2 2 2 2
i ivative: ”(fxxx 3  xy ¥ 3y Fyyy)lxdy
Flny) = ag+ alxz rayxy+ a;yz derivative: .
’ fxxx =0, f)']'y = 2 2

[Blake and Zisserman 87] designed a clipped parabola (Fig. 57) to model the energy of interaction between
neighbors in the weak string (the 1-D case of membrane), where V represents any operator which returns a
measure of the local “edginess” of the image, such as the square Laplacian. The central dip of this energy
function punishes the difference V,(f), and the plateaus allow discontinuity. Since both noise and edges can

increase the brightness difference between neighbor pixels, and the model should only punish the noise but
not the edges, the energy curve turns into a constant after Vi( f) surpasses a certain threshold. This model

is in general not convex, therefore, graduated nonconvexity (GNU) algorithm is developed which approxi-
mates the energy with a piecewise smooth function as Eq. (65),

V(Vif)

o

Vif

Figure 57. Prior energy of the GNC algorithm.
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A4 if (Il <q)
VIO =Y a-c(d-r)r2 if (g<ld <r) ©
o if (] 2 r)

where r* = (x(2,+l), and ¢ = £
¢ A A%

In our system, we adopt the energy model proposed in [Bilbro and Snyder 88a], where the penalty function
of Fig. 57 is interpreted as a Gaussian with the upside down, shown in Fig. 58. The prior energy function can
then be written as Eq. (66),

1
09f
o8f-
(%48
0.6f
F
io.s F
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03}

02¢

0.1

3

0
g

Figure 58. An ideal curve to represent energy function for the prior model (the horizontal axis is the difference in
brightness of adjacent pixels).

k.2
V'f) ] 66)

B (
uin) = exp
; J2m 27
where {3 is the parameter used to adjust how smooth the image goes, v f; is some norm of the k-th deriva-
tive, and depends upon the property of the image. The derivative operation can also be formulated into a con-

volution as (f ®r)2, with appropriate convolution kernel r. Therefore, the a-priori probability can be
written as Eq. (67).

2
5 (e,
e

P(f) = Z " exp -

67

7.10.3 Objective Function

With both p(g|f) and P(f) developed, we can derive our objective function as Eq. (68) from the MAP esti-

mate by taking the natural logarithms of Eq. (58); and by changing the sign, we convert the problem from
maximizing a probability to minimizing an objective function.

H = -In(p(g|NIP(f)) = -In(p(g|f)-InP(f))=H,+H, (68)

where
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Hy=L 3 ((f®mn-g’ (69)
20 ieQ-9,

and

2
(f® r),-J 70)

B
H =- E ex
P ~ J2nt P 27°

H, is called the noise term (Eq. (69)) which concerns both the measured image g and the original image f. H,,

is the prior term (Eq. (70)), which is determined only by f. A global optimization technique called mean field
annealing is used to find f which minimizes the objective function H globally.

7.10.4 Optimization by Mean Field Annealing

Mean field annealing (MFA) is used to find image f which minimizes the objective function H. MFA was
introduced in late 80s by different groups working independently [Bilbro and Snyder 88a]{Bilbro et al.
89][Peterson and Soderberg 89]. It is derived based on the principles of simulated annealing (SA). SA is able
to locate the global minimum/maximum instead of being trapped in local minima/maxima because it allows
uphill moves with a certain probability. Both MFA and SA relate to the physical process of annealing, where
at high temperatures, the particles in an object are more likely to randomly change their states; when temper-
ature is gradually reduced, particles remain comparatively stable, and a minimum energy state is achieved at
last. The difference between MFA and SA is that SA stochastically simulates this process by random search,
while MFA analytically approximates this process with a series of deterministic gradient descents [Bilbro et
al. 92]. Therefore, MFA is much more efficient than SA, as much as 50 times faster [Bilbro et al. 89].

Since its introduction, MFA has found its applications in restoration of locally-homogeneous images [Hiriy-
annaiah et al. 89], range images [Bilbro and Snyder 89], and locally smooth images [Bilbro and Snyder 90];
in image segmentation [Snyder et al. 91]; in motion analysis [Abdelqader et al. 92]; in sensor fusion [Bilbro
and Snyder 88b]; in image resolution increasing [Wang 96}, and in solving anisotropic diffusion problems
[Qi et al. 97]. :

In order to use MFA in our problem, the derivative of H with respect to f in the gradient descent equation
(Eq. (71)) need to be derived. Eq. (72) shows the derivation.

fk+1 - fk—ocg—l}r a1
oH _ oH, aHp
3, " 3f, 97,
n®h); ((8(r@r) o (72)
- (o 22 o, )
c J2nr 2t ;

where h,,, and r,,, are the reversed kernel of 4 and . n is defined in Eq. (60) where n; is zero for unmeasured
elements. The reverse convolution with A,,, will be discussed in detail in Appendix 7.10.5.

MFA is implemented by replacing parameter 1 in the Gibbs distribution with T + 7, where T 'is called the tem-
perature. Initially, T is very large which results in a convex function minimized by f; = g;. Gradient descent

uses this point as the starting point. By gradually reducing 7, and making it approach zero, a minimum
energy state will finally be achieved which is where the optimal solution locates.

7.10.5 Missing Data Estimation by MFA

Compare to the consistency method, MFA is more flexible, less vulnerable to large amount of noise and the
inaccuracy calculation of blur kernel. Three issues need to be discussed in order to implement this approach:
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(1) the choice of the blur kernel (h); (2) the choice of the neighborhood operation kernel (r); and (3) the
reverse convolution with 4,,, in the noise term.

The blur kernel (). How to compute the blur kernel in an optimal way is beyond the scope of this research.
[Hussain 97] states in detail about how to estimate the point spread function with subpixel accuracy. Here,
we use the edge spread function (ESF) to estimate the point spread function (PSF). We first choose several
sets of sample pixels around a horizontal edge and a vertical edge respectively from the measured image.
Averaging the brightness of the sets of sample pixels to obtain a discrete data set of ESF in the horizontal

and vertical direction, denoted as {ij!j efe'-8,¢ + 8]}, and {f}b‘i € [eh -3, s 5]}, where ¢° and "

are the locations of the vertical and horizontal edges from the measured image, 8 is a small distance away
from the edge location. The data sets { f?, it and { f:", j1 should behave like Fig. 59 (a), shape of an error
function. The derivatives (or difference in discrete case) of { fﬁ ;1 and { f}’, it (denoted as {dff." it and

{df:.’, it ) should behave like Fig. 59 (b), shape of a Gaussian.

Edge spread function Polnt spread function 1o be ikt to a Gaussian
T T T T T T T T

Difference in brighiness.

(a)

L " n i n . " L L 2
-4 -3 -2 -1 0 1 2 3 4 5 - 3 -2 -1 ) 1 2 3 4
Pixel postion

Figure 59. The edge spread function and the point spread function.

The PSF is characterized by fitting the discrete data sets {df:f ;3 and { df}" j} toa Gaussian, thus to obtain
the standard deviations. Based on the relationship between an error function and a Gaussian function

(expressed in Eq. (73)), we can instead fit the error function directly with the sampled data sets { f:: i and

{ f}i ;1 By doing so, we avoid the difference operation and achieve higher accuracy in parameter estimation.

_ T o-wisacd _a x=U
Glx) = ﬁ% i WAy, ;(uerf(xﬁc)) (73)

With the standard deviations solved, we can then obtain the 2-D PSF, which is shown in Eq. (74). The con-
tinuous PSF is sampled to construct a 5 x 5 blur kernel A. Here, we use a software package called inreropt
[Bilbro and Snyder 91] to fit the sample data to an error function.

o2+ oty

l X xy

G(x,y) = exp| -2 (74)

270, { Zcici J

The neighborhood operation kernel (r). We choose quadratic variation (QV) to model the prior energy

2 2

function. Compared to squared Laplacian, QV does not go to zero when @_[2_ = j—ff (a saddle point) and

ox dy
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conclude that a saddle point is a plane as Laplacian does. QV has a more stable description about the surface,
it also simulates the second derivative operation, and permits piecewise linear solutions.

The discrete form of quadratic variation can be expressed as Eq. (75),

DLl )+ 205y 1)+ (i ) (75)
LJ
where fxx=fi,j—1+fi,j+l_2fi,j’ fxy=—fi,j_fi+1,j+1+fi,j+1+f"—1»j’ and

Fyy = ficy, j*¥ Fisn, j= 280 [Blake and Zisserman 87]. All of the three 2nd derivatives can be constructed
into a convolution operation with certain kernels A,,, h,, and h,, as Eq. (76).

01 0 1
he = (12 1)y = |01 1] by = |2 (76)
00 -1 1

The reverse convolution in noise term. In Eq. (72), the convolution with reverse kernel (&,,,) is different
from others because g has certain amounts of data missed. The convolution should be taken at places where

a pixel has a measurement. Snyder derived the formulation for reverse convolution in [Snyder 99], which is
briefly described as follows:

Take the 1-D example, assume the measured image has every other column of data missing as indicated in
Fig. 60, where f; is a pixel from the original image, g; is a pixel from the measured image, and A is the hori-

zontal blur kernel with a finite kernel size 5. We explain the derivative of the noise term (Eq. (72)) in gradi-
ent descent in detail.

fO fl f2 f3 f4 f5 f6 f7 f8 f9 ......

& 8, & 8 | | e

=

N

h-2 h-l hO hl h?.
h-Z h—l hO hl h2

“Figure 60. A 1-D example with every other sample missing in the measured signal.

We first write out all the terms involving a pixel (f;) at which a measurement (g,) was made in the noise term
H,, according to Eq. (69) as Eq. (77),
Ey = (F®h)y=g)2 + (f®h)y=g) +((f @ h)g-gg)”
= (fohgy + fih_y + fohg+ f3hy "“f4hz‘8’2)2
+(fohg+ f3h 1+ faho+ fshy + f6h2‘84)2
¥ (Fahg+ Fshoy+ feho+ fohy + Fghy —g6)°

an

The derivative of H,, with respect to pixel f; can then be derived as Eq. (78), and further generalized as Eq.
(79),
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E‘f—f = 2((f®h)y—g)hy +2((f ® h)y— 8)hy + 2((f ® h)g—ge)h_y (78)

oH

5};':’ = (f®h)y~ghy+0-h +((f®h),—ghy+0-h_y
79
+((F® R)g- g, 7

= (f®h)-8)®hy,),

where h,,, = hy by hg h.y hy, and (f ® h—g) is computed at all points where g; is measured (that is, at g5, g4,
and gg).

We also write out all the terms involving an unmeasured pixel (say f3) in the noise term H,, as Eq. (80).
Ey = (f®h),=8))" +(f ®h)y-g,)°
= (fohg+ fihoy + faho+ oy + Loy = 8)° (80)
+(fohog+ f3ho+ Faho+ fshy + f6h2‘84)2

Again, the other three terms which seem to involve f; (convolutions centered at fj, f3, and f5) are not in the
summation. The derivative of H, with respect to f; is derived in Eq. (81), and generalized in Eq. (82).

oH
af: = 2((f ®h)y—g)hy +2((f ® h)y— g4)h_ @D

oH
- = 0-hy+((f®h)y—g)h  +0 - hy+((f®h)y~g4)h_1+0-h_y

of3 (82)

=(((f®h)-g)®h,,,),
Again, we compute the derivative at all points where g; exists (that is, at g, and g,).

We summarize the computation of the derivative of noise term with respect to a certain pixel in the following
steps:

1) From f, compute f, = f®h;

2) Compute n = {"il"i =08()- (fy-8)}» where 8(i) is 1 only at those points where g; has a measurement,

and O otherwise;

oH
fi

3) Compute 5—” =(n®h

rev),' :

Step 3 can be clarified with the illustration in Fig. 61, where #; is non-zero only when i is even in this exam-
ple.

n] [»] [n] ol Ia] -]
o H,
dH,
~— Kemelused o find —5 "
3

Figure 61. The reverse convolution in the derivation of the noise term.
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We observe that the same kernel, A,,,, is actually used every time, but since some elements of # (those with
odd indices) are zero, speed up may be accomplished by only using the elements of 4,,, corresponding to
even indices of n.

The convolution of 2-D images with the reverse kernel follows the same rule as that under 1-D case. Take the
2-D example that only one column of data (the fourth column) are missed, and the size of the blur kernel (h)
is 3 x 3, as illustrated in Fig. 62. Similarly, f; represents a pixel from the original image, g;; represents a pixel
from the measured image, the question mark (?) represents unmeasured g;; at that pixel, and h is the 3 x 3
blur kernel.

f()() f()l ” f()2 f()3" f()4 f()5

S0 o1 82 80a S5
Fioo 1 M, fu |fa, |
&0 811 812 ? 814 815 by [Bao|
Fo (fa, o, fu [fu, (s Bo [ hoo | oy
&0 & & ? 84 &5 - - -
f f f f f f hl -1 hl 0 hl,[
0, /3 E?) 3 |Taa, |J3s,
&0 & & ? 834 &5
w, fa, [fao, |fa |[fu, |fs,
Sa0 &1 L-7%3 ? 844 &5

Figure 62. A 2-D example with one column of data (the fourth column) missed.

Similar to the derivation steps in 1-D case, we first write out all the terms involving a pixel (f,,) at which a
measurement (g,,) was made in the noise term H,, as Eq. (83),

Epy = (F®h)~g1) +(F®h)p—21)° +((f ®h)y - 29)

(83)
F((f ® )y =830) +((f ®h)yy = g3)" + (f @ h)3y - g35)°
where the convolution of f with the blur kernel % is extended as Eq. (84).
1 1
(f®h)ij= 2 z fi+m,j+n'hm,n (84)

m=-lnp=-1

The derivative of H, with respect to pixel f5, can then be derived as Eq. (85), and further generalized as Eq.
(86),

oH
Wi =2((f®h) —g1) by +2((f ®h) 13— 813) by o+ 0-hy

85
+2((f ®h)y = 821) - ho 1 +2((f @ Ry = 82) - ho o+ 0y @9
+2((f®h)3 —83)  hoy +2((f®h)yp—83) h_y o+0-hy
oH,,
== {((f®h)-g)®h,,,),, (86)

9fxn

where h,,, has the form as indicated in Eq. (87), and ((f ® h)-g) is computed at all points where g;; exists
(that is, at gy, 812, 821, 822, &31» and g3))-

hl,l hl,O hl,—l
hrev = hO,l h0,0 hO,—l (87)
h—l,l h—l,O h—l,-l

We also write out all the terms involving an unmeasured pixel (say f»3) in the noise term H,, as Eq. (88).
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Ey = (F®h)p-81)" +((f®h)y—810) +((f ®h)yy—g5)°

(88)
+((f®h)y ‘824)2 +((f® h)3p- 832)2 +((f®h)3y~ 834)2
The derivative of H,, with respect to fp4 is derived in Eq. (89), and generalized in Eq. (90).
Hn
Y 2(f®h)p—812) hy 1 +0-hy o +2((f O h)14=814) 1y
S (89)
+2((f ®h)yy—82) g 1 +0- by o+ 2((f ® h)yy—824) - 1o,
+2(f®h)3p—gm) by +0-h g o+ 2((f O h)yy—g34) by -
oH,
= (((f®h)-8)®h,,,),, (90)

93

where A,,, has the same form as Eq. (87), and ((f ® h)-g) is computed at all points where g;; exists (that is,
at g12, 814> 822 824» 832> and g3).

We summarize the computation of the derivative of noise term with respect to a certain pixel under 2-D case
in the following steps:

1) From f, compute f, = f®#h;

2) Compute n = {niilnii =38, j) - (fy- g)l.}.} , where 6(i, j) is 1 only at those points where g;; has a measure-

ment, and 0 otherwise;

3) Compute —L = ( h
= n
af,j

rev),'j .

The following program implements this algorithm in 2-D.

for (r=0; r<rows; r++)
for (c=0; c<cols; c++)
fh{r][c] = convolve(f, h, r, c);
for (r=0; r<rows; r++)
for (c=0; c<cols; c++)
if (measured(r,c))
n[r]ic] = th{r][c]-glrl[c];
else
n[r]ic] = 0;
for (r=0; r<rows; r++)
for (c=0; c<cols; c++)
gradf{r][c] = convolve_speedup(n, hrev, r, c);

7.11 Complexity Analysis

Before comparing performance of the consistency methods and the MFA method using experimental tech-
niques, we first analyze the algorithm complexity. We count each addition, subtraction, multiplication, divi-
sion, or square root as one flop.

For the consistency method using NLSE criterion, if the dimension of image is m x n where m and n are
large, and b is the number of brightness level, the restoration work is dominated by the operations of HHQR
for the two linear systems and the consistency testing which takes b iterations for each row. The complexity

of HHQR algorithm is on the order of 0(2mn2 - §n3) [Trefethen and Bau 97], and that of the consistency
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testing is on the order of 0(2bmn2) . Therefore, the complexity of the consistency method is on the order of

0((2 + 2b)mn2 - §n3) , where two HHQR is counted.

The complexity for the MFA method is not deterministic since the times of annealing is image-dependent. It
takes O((2pq + 5)mn) flops for noise term related operations O((2s + 2t + 2st + 32)mn) flops for prior term
related operations, and O(5mn) for the update operations, where p x ¢ is the dimension of blur kernel, s x ¢
is the dimension of convolution kernel that simulates nth derivatives. Thus, the complexity of each annealing
is on the order of O((42 +2pq + 2s + 2t + 2st)mn) . The number of annealing iterations is determined by the
initial temperature, the final temperature, and the decreasing step of the temperature, which are chosen
image-dependent. If the initial temperature is 10, final temperature 0.1, and decreasing step is 0.99, then the
annealing times is 10000.

Therefore, generally, for image dimension on the order of 1000 x 1000, the MFA method has higher com-
plexity than the consistency method. However, there is a straightforward hardware implementation of MFA
restoration [Bilbro and Snyder 90][Bilbro et al. 98] which is very efficient.
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