A FULLY NONLINEAR BOUSSINESQ MODEL IN GENERALIZED CURVILINEAR COORDINATES

by

FENGYAN SHI, ROBERT A. DALRYMPLE, JAMES T. KIRBY, QIN CHEN AND ANDREW KENNEDY

Research supported by the
Army Research Office, Grant No. DAAG55-98-1-0173
and the Office of Naval Research, Grant No. N00014-97-1-0283

RESEARCH REPORT NO. CACR-99-06
NOVEMBER 1999

CENTER FOR APPLIED COASTAL RESEARCH

Ocean Engineering Laboratory
University of Delaware
Newark, Delaware 19716
A Fully Nonlinear Boussinesq Model in Generalized Curvilinear Coordinates

by

Fengyan Shi, Robert A. Dalrymple, James T. Kirby, Qin Chen and Andrew Kennedy

Research supported by the
Army Research Office, Grant No. DAAG55-98-1-0173
and the Office of Naval Research, Grant No. N00014-97-1-0283

RESEARCH REPORT NO. CACR-99-06
NOVEMBER 1999

Center for Applied Coastal Research
Ocean Engineering Laboratory
University of Delaware
Newark, DE 19716
A Fully Nonlinear Boussinesq Model in Generalized Curvilinear Coordinates

Fengyan Shi, Robert A. Dairymple, James T. Kirby, Qin Chen and Andrew Kennedy

Center for Applied Coastal Research
University of Delaware
Newark, DE 19716

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

Based on the fully nonlinear Boussinesq equations in Cartesian coordinates, the equations in generalized coordinates are derived adapt computations to irregularly-shaped shorelines, such as harbors, bays and tidal inlets, and to make computations more efficient in large nearshore regions. Contravariant components of velocity vectors are employed in the derivation instead of the normal components in curvilinear coordinates or original components in Cartesian coordinates, which greatly simplifies the equations in generatized curvilinear coordinates. A high-order finite difference scheme with staggered grids in the image domain is adopted in the numerical model. The model is applied to five examples involving irregular coordinate systems. The results of these cases are in good agreement with analytical results, experimental data, and the results from the uniform grid model, which shows that the model has good accuracy and efficiency in dealing with th: computations of nonlinear surface gerativity waves in domains complicated geometries.

Coastal engineering, wave model, Boussinesq model, tidal inlets

NSN 7540-01-280-5500

Form Approved
OMB No. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimates or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
A fully nonlinear Boussinesq model
in generalized curvilinear coordinates

Fengyan Shi, Robert A. Dalrymple, James T. Kirby,
Qin Chen and Andrew Kennedy

Center for Applied Coastal Research,
University of Delaware, Newark, DE 19716, USA

Fax: (302) 831 1228, email: fyshi@coastal.udel.edu

Abstract

Based on the fully nonlinear Boussinesq equations in Cartesian coordinates, the
equations in generalized coordinates are derived to adapt computations to irregularly-
shaped shorelines, such as harbors, bays and tidal inlets, and to make computations
more efficient in large nearshore regions. Contravariant components of velocity vec-
tors are employed in the derivation instead of the normal components in curvilinear
coordinates or original components in Cartesian coordinates, which greatly simplifies
the equations in generalized curvilinear coordinates. A high-order finite difference
scheme with staggered grids in the image domain is adopted in the numerical model.
The model is applied to five examples involving irregular coordinate systems. The re-
results of these cases are in good agreement with analytical results, experimental data,
and the results from the uniform grid model, which shows that the model has good
accuracy and efficiency in dealing with the computations of nonlinear surface gravity
waves in domains with complicated geometries.
1 Introduction

Boussinesq models for surface gravity waves have been proved to be effective tools to simulate wave propagation in coastal regions. Since the introduction of the standard Boussinesq equations for variable water depth by Peregrine (1967), numerical models based on his equations have been developed by many researchers (Goring 1978; Abbott et al. 1979, 1984; Elgar & Guza 1985; Liu, Yoon & Kirby 1985; Rygg 1988) and have been shown to give good predictions in comparison with field data or laboratory data, when applied within their range of validity. Recently, extended forms of Boussinesq equations were derived by Madsen, Murray & Sørensen (1991) and Nwogu (1993), among others, to improve dispersion relationships in intermediate water depths and to simulate wave propagation from relatively deep to shallow water. Wei & Kirby (1995) developed a high-order numerical model based on Nwogu’s equations and provided additional validation tests of the model. More recently, fully nonlinear Boussinesq equations were derived by Wei et al. (1995). The resulting equations not only have improved linear dispersion properties in intermediate water depths but they are not limited to small amplitude waves. A time-domain numerical model based on the equations was then developed and verified against a broad range of experimental data (see Wei and Kirby, 1998; Kennedy et al., 1999 and Chen et al., 1999a). Chen et al. (1999b) applied the fully nonlinear Boussinesq model with the incorporation of energy dissipation by wave breaking to investigate the fully-coupled interaction of surface waves with rip currents and the nearshore circulation generated by wave breaking on a barred beach with a rip channel.

Most of the numerical Boussinesq models are solved by the finite difference method using rectangular grids. However, the geometric complexity of the general coastal environment together with the rapid change in wavelength as waves move from deep to
shallow water makes the use of undistorted grids in the models somewhat problematic. Typically, a model grid chosen to study the entire range from deep water to the shoreline results in problems such that waves are over-resolved in deep water and under-resolved in shallow water. To resolve a broad spectrum of wind waves, the time-domain Boussinesq model with a regular grid spacing may become too expensive to be used in large nearshore regions. Moreover, complicated geometries, such as harbors and tidal inlets, make the computation very expensive because of local resolution problems, and in addition, the stair-stepping boundaries associated with rectangular grids may decrease the computational accuracy. To deal with such problems, irregular grid methods are generally used through coordinate transformations, such that the physical irregularly shaped domain is transformed into a regular image domain where the finite difference computations are carried out.

There are numerous examples of irregular grid methods in the study of waves. Numerical models based on the parabolic approximation of the mild-slope equation for linear wave propagation in a non-orthogonal coordinate system were developed by Tsay and Liu (1982), Isobe (1986), Liu and Boishevain (1988), Kaku and Kirby (1988), Kirby (1988), Kirby et al. (1994). Dalrymple et al. (1994) used spectral methods to study forward-propagating water waves in conformally-mapped channels. An example of the use of a curvilinear grid system to solve Boussinesq-type equations is given in Wang et al. (1992), who studied solitary wave scattering by a vertical cylinder.

Irregular grid methods are also widely used in numerical modeling of large-scale oceanographic problems involving shallow water equations. Non-orthogonal boundary-fitted grid models were developed (e.g., Sheng 1986; Chen, Zheng and Zhu, 1999) for modeling coastal and estuarine processes. Shi and Sun (1995) developed a self-
adaptive grid model for computing the time dependent moving boundary problem of storm surge flooding using the shallow water equations.

Generally, there are three coordinate transformation methods for the transformation of hyperbolic-type equations (including Boussinesq-type equations if only considering leading order terms). The first method is to transform the independent variables only, retaining the unchanged primitive variable \((u, v, \eta)\) (see, for example, Häuser et al., 1985, 1986; Raghunath et al. 1987; Borthwick and Barber, 1992). In this method, the transformed expressions of both equations and boundary conditions are more complex than their Cartesian counterparts. It is not efficient to use the method to treat the fully nonlinear Boussinesq equations since the higher order differential terms in the equations would make the expressions very complicated. A typical example is that \(u_{xx}\) may be extended into six terms in the curvilinear coordinate and there are even more terms for higher order differentials. The second method is the adoption of the tangential velocity in curvilinear coordinates (e.g., Chen, Zheng and Zhu, 1999) or the covariant component of the velocity vector (Warsi, 1998) in the coordinate transformation. The resulting equations from these methods are relatively simple compared with the equations from the former method. However, difficulties were found in realizing lateral slip boundary conditions in non-orthogonal curvilinear coordinates. The third method is the contravariant component method (Warsi, 1998). The contravariant components of the velocity vector can be regarded as generalized components of velocity in the transformed image domain. Several advantages of using the contravariant velocity have been recognized in the derivations of hyperbolic-type equations, as shown by Sheng (1986), among others. Shi and Sun (1995, 1997) introduced the contravariant components in their coordinate transformation of shallow water equations and easily obtained the kinematical lateral boundary conditions,
i.e., the contravariant components of velocity are zero at boundaries. Furthermore Shi and Sun (1998) derived a new set of equations for the shallow water equations in terms of contravariant velocity and surface elevation in order to solve the transformed equations by using an alternating-direction-implicit scheme.

In this paper, contravariant velocity techniques are used in the coordinate transformation. Fully nonlinear Boussinesq equations in terms of contravariant components of velocity vector at a reference elevation z_0 and the surface elevation are derived in generalized curvilinear coordinates based on the fully nonlinear Boussinesq equations in Cartesian coordinates. Following the work of Wei and Kirby (1995) and Wei et al. (1995), a fourth-order Adams-Bashforth-Moulton predictor-corrector scheme is employed in the numerical model to perform the time integration. Unlike the spatial discretization in Wei et al. (1995), we use a staggered grid system in the transformed image domain. The first-order spatial derivative terms are discretized to fourth-order accuracy by using standard five-point finite-differencing, and the dispersive terms are discretized to second-order accuracy. This ensures that the truncation error does not contain terms which are mathematically similar to the actual dispersive terms.

The numerical model is then applied to five cases involving irregular coordinate systems. The first is wave evolution in a rectangular basin with a computational curvilinear grid. Consistency is found between the curvilinear grid model and a uniform rectangular grid model. The second case is wave shoaling on a sloping beach. Here, the element Courant number at every grid point is kept the same everywhere through adjustments of the grid size. The example illustrates the gains in efficiency afforded by the method in an open coastal application. The third case is wave propagation in a circular channel in which a curvilinear grid is generated. The fourth case examines diffraction of a solitary wave by a straight vertical wall at normal incidence. Locally
fine grids are generated in this case around the tip of the wall to resolve the scale of
the wall. This case shows that the present model is capable of the computation of
the nonlinear wave propagation with good accuracy. Finally, the model is applied to
Ponce de Leon Inlet (Florida, USA). Boundary-fitted grids with high resolution near
structures and inside the inlet are generated and monochromatic waves are simulated.

2 Equations in Generalized curvilinear coordinates

The fully nonlinear Boussinesq equations in Cartesian coordinates (Wei et al., 1995)
are written in terms of a reference velocity $u = (u, v)$ at a reference elevation z_0. The
mass conservation equation can be written as

$$\eta_t + \nabla \cdot \mathbf{M} = 0,$$ \hspace{1cm} (1)

where \mathbf{M} is the depth-integrated volume flux given by

$$\mathbf{M} = (\eta + h) \mathbf{u} + (\eta + h)[\frac{z_0^2}{2} - \frac{1}{6}(h^2 - h\eta + \eta^2)]\nabla(\nabla \cdot \mathbf{u})$$
$$+ (\eta + h)[z_0 + \frac{1}{2}(h - \eta)]\nabla(\nabla \cdot (hu)), \hspace{1cm} (2)$$

in which η is the free surface elevation relative to the still water level and h is the
still water depth. The associated momentum conservation equation is

$$u_t + (\mathbf{u} \cdot \nabla)u + g\nabla \eta + \mathbf{V}_1 + \mathbf{V}_2 = 0,$$ \hspace{1cm} (3)

where g is the gravitational acceleration and \mathbf{V}_1 and \mathbf{V}_2 are the dispersive Boussinesq
terms:

$$\mathbf{V}_1 = \frac{z_0^2}{2} \nabla(\nabla \cdot \mathbf{u}_t) + z_0 \nabla[\nabla \cdot (hu_t)] - \nabla[\frac{1}{2} \eta^2 \nabla \cdot \mathbf{u}_t + \eta \nabla \cdot (hu_t)], \hspace{1cm} (4)$$

$$\mathbf{V}_2 = \nabla\{(z_0 - \eta)(\mathbf{u} \cdot \nabla)[\nabla \cdot (hu)] + \frac{1}{2}(z_0^2 - \eta^2)(\mathbf{u} \cdot \nabla)(\nabla \cdot \mathbf{u})\}$$
$$+ \frac{1}{2} \nabla\{[(\nabla \cdot (hu)) + \eta \nabla \cdot \mathbf{u}_t]^2\}. \hspace{1cm} (5)$$
A coordinate transformation is introduced in the general form

\[\xi_1 = \xi_1(x, y), \quad \xi_2 = \xi_2(x, y), \]

(6)

where \((\xi_1, \xi_2)\) are new independent variables in the transformed image domain. Referring to Figure 1, boundaries \(\Gamma_1, \Gamma_2, \Gamma_3\) and \(\Gamma_4\) in the physical domain \((x, y)\) become \(\Pi_1, \Pi_2, \Pi_3\) and \(\Pi_4\) respectively in the image domain \((\xi_1, \xi_2)\).

Instead of \((u, v)\) in Cartesian coordinates, the contravariant components of the velocity vector at \(z_a\) are introduced as the dependent variables in the curvilinear coordinate. In the tensor space, a velocity vector can be expressed as two components of any covariant basis, i.e.

\[u = u^i g_i, \]

(7)

where \(u^i\) are the contravariant components of the covariant basis \(g_i\). As a simple example, \((u, v)\) may be the contravariant components of the covariant basis \((i, j)\) in Cartesian coordinates. In the present curvilinear coordinates, \(u^i = (U, V)\), in which \((U, V)\) are the contravariant components of the covariant basis \((g_1, g_2)\). According to the relationships among components in different basis:

\[u^k = \frac{\partial x^k}{\partial x'^i} u^i', \]

(8)

where \((')\) denotes the new basis. \((U, V)\) can be described by \((u, v)\) in Cartesian coordinates as:

\[U = \frac{1}{\sqrt{g_0}} (uy_{\xi_2} - vx_{\xi_2}), \]

(9)

\[V = \frac{1}{\sqrt{g_0}} (-uy_{\xi_1} + vx_{\xi_1}), \]

(10)

where \(g_0\) is the determinant of the metric tensor defined by

\[g_0 = \begin{vmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{vmatrix}, \]

(11)
and where g_{ij} is the covariant metric:

$$g_{ij} = \frac{\partial x^i}{\partial x^j} \frac{\partial x^j}{\partial x^i}.$$ \hfill (12)

Using the relations:

$$\frac{\partial y}{\partial \xi_2} = \sqrt{g_0} \frac{\partial \xi_1}{\partial x}, \quad \frac{\partial x}{\partial \xi_2} = -\sqrt{g_0} \frac{\partial \xi_1}{\partial y}$$

$$\frac{\partial y}{\partial \xi_1} = -\sqrt{g_0} \frac{\partial \xi_2}{\partial x}, \quad \frac{\partial x}{\partial \xi_1} = \sqrt{g_0} \frac{\partial \xi_2}{\partial y}$$ \hfill (13)

yields the definition of (U, V):

$$U = u \frac{\partial \xi_1}{\partial x} + v \frac{\partial \xi_1}{\partial y} = \frac{d\xi_1}{dt},$$ \hfill (14)

$$V = u \frac{\partial \xi_2}{\partial x} + v \frac{\partial \xi_2}{\partial y} = \frac{d\xi_2}{dt}.$$ \hfill (15)

Equations (14) and (15) indicate that (U, V) can be regarded as generalized velocities in the generalized coordinates.

From (9) and (10), we can also get the relationship between (U, V) and the velocity components (u_n, v_n) normal to the curvilinear coordinates (Shi and Zheng, 1996):

$$u_n = \frac{\sqrt{g_0}}{\sqrt{g_{22}}} U,$$ \hfill (16)

$$v_n = \frac{\sqrt{g_0}}{\sqrt{g_{11}}} V.$$ \hfill (17)

Equations (16) and (17) show that (U, V) are stretched velocity components normal to the curvilinear coordinates. The introduction of (U, V) makes it convenient to obtain the lateral boundary conditions as shown in Section 4.

Equation (1) and (2) are now written in tensor-invariant forms:

$$\eta + \frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^k} \left(\sqrt{g_0} M^k \right) = 0,$$ \hfill (18)
\[M^k = (h + \eta)u^k + (h + \eta)\left(\frac{z^2}{2} - \frac{1}{6}(h^2 - h\eta + \eta^2)\right)\left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l)\right]^k \]

\[+ (h + \eta)\left[\frac{1}{2}(h - \eta)\right]\left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h u^l)\right]^k. \]

(19)

The tensor-invariant forms of the momentum equations (3), (4) and (5) are:

\[\frac{\partial u^k}{\partial t} + g\eta u^k + u^l u^k + V_1^k + V_2^k = 0, \]

(20)

\[V_1^k = \frac{z^2}{2} \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l)\right]^l \]

\[+ z \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h u^l)\right]^l \]

\[- \frac{1}{2} \frac{\eta^2}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l) + \frac{\eta}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h u^l) \]

(21)

\[V_2^k = \left\{ \left[\frac{(z_\alpha - \eta)}{2} u^l \frac{\partial}{\partial x^l}\left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^m}(\sqrt{g_0}h u^m)\right]\right]^l \right\}^k \]

\[+ \frac{1}{2} \left\{\left[\frac{z^2 - \eta^2}{2} u^l \frac{\partial}{\partial x^l}\left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^m}(\sqrt{g_0}h u^m)\right]\right]^l \right\}^k \]

\[+ \frac{1}{2} \left\{\left(-\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h u^l)\right) + \frac{\eta}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l)\right\}^k \]

(22)

where \(k, l, m = 1 \) and \(2, (u^1, u^2) = (U, V), (x^1, x^2) = (\xi_1, \xi_2); \) \(\frac{\partial}{\partial x^k} \) is the partial derivative, \((\cdot)_k \) represents the covariant spatial derivative (See Appendix) while \(1^k \) represents the contravariant spatial derivative defined as

\[f^k = \frac{\partial f}{\partial x^l} g^{lk}. \]

(23)

3 Numerical method

Numerical analyses (Wei and Kirby 1995) of finite differencing for Boussinesq equations show that it is necessary to adopt high-order schemes in either space or time in Boussinesq equations because the truncation errors of a second-order approximation may contaminate the real dispersive terms in the equations. It also should be noted
that the finite differencing on irregular grids can lead to a loss of accuracy if discretizations of the untransformed equations are performed on irregular grids. In the present paper, we can avoid the problem by discretizing the transformed equations in the image domain with regular grids.

By using the tensor formula presented in the Appendix, the system of equations is rewritten in a form that makes the application of the difference procedure convenient as that of Wei et al. (1995). The mass conservation equations (18) and (19) may be expressed as:

\[\eta_t = E(\eta, U, V), \quad (24) \]

where

\[
E = -\frac{1}{\sqrt{g_0}} \{ [\sqrt{g_0}(h + \eta)U]_{\xi_1} + [\sqrt{g_0}(h + \eta)V]_{\xi_2} \} \\
- \frac{1}{\sqrt{g_0}} \left[a_1 h^2 (h + \eta) + \frac{1}{6} \eta (h^2 - \eta^2) \right] \frac{g_{22}}{\sqrt{g_0}} (DU)_{\xi_1} \\
+ [a_2 h (h + \eta) - \frac{1}{2} \eta (h + \eta)] \frac{g_{22}}{\sqrt{g_0}} (DU)_{\xi_2} \\
- \frac{1}{\sqrt{g_0}} \left[a_1 h^2 (h + \eta) + \frac{1}{6} \eta (h^2 - \eta^2) \right] \frac{g_{11}}{\sqrt{g_0}} (DU)_{\xi_2} \\
+ [a_2 h (h + \eta) - \frac{1}{2} \eta (h + \eta)] \frac{g_{11}}{\sqrt{g_0}} (DU)_{\xi_2} \\
+ \frac{1}{\sqrt{g_0}} \left[a_1 h^2 (h + \eta) + \frac{1}{6} \eta (h^2 - \eta^2) \right] \frac{g_{12}}{\sqrt{g_0}} (DU)_{\xi_1} \\
+ [a_2 h (h + \eta) - \frac{1}{2} \eta (h + \eta)] \frac{g_{12}}{\sqrt{g_0}} (DU)_{\xi_1}, \quad (25)
\]

in which,

\[
DU = \frac{1}{\sqrt{g_0}} (\sqrt{g_0} U)_{\xi_1} + \frac{1}{\sqrt{g_0}} (\sqrt{g_0} V)_{\xi_2}, \quad (26) \\
DHU = \frac{1}{\sqrt{g_0}} (\sqrt{g_0} hU)_{\xi_1} + \frac{1}{\sqrt{g_0}} (\sqrt{g_0} hV)_{\xi_2}. \quad (27)
\]
The momentum equation in ξ_1 direction can be written as

$$
\ddot{U}_t = F(\eta, U, V) + [F_1(V)]_t + [F_2(U, V)]_t
$$

$$
+ F_3(\eta, U_t, V_t) + F_4(\eta, U_t, V_t) + F_5(\eta, U, V) + F_6(\eta, U, V),
$$
(28)

where

$$
\ddot{U} = U + h^2 b_1 \frac{g_{22}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} U)_{\xi_1} \right] \xi_1 + h b_2 \frac{g_{22}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} h U)_{\xi_1} \right] \xi_1,
$$
(29)

$$
F = -\frac{g}{g_0} (g_{22} \eta_{\xi_1} - g_{12} \eta_{\xi_2}) - (UU_{\xi_1} + VU_{\xi_2})
$$
$$
+ D_{11} U^2 + 2D_{12} UV + D_{22} V^2,
$$
(30)

$$
F_1(V) = -h^2 b_1 \frac{g_{22}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} V)_{\xi_2} \right] \xi_1
$$
$$
- h b_2 \frac{g_{22}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} h V)_{\xi_2} \right] \xi_1,
$$
(31)

$$
F_2(U, V) = h^2 b_1 \frac{g_{12}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} U)_{\xi_1} \right] \xi_1
$$
$$
+ h b_2 \frac{g_{12}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} h U)_{\xi_1} \right] \xi_1,
$$
(32)

$$
F_3(\eta, U_t, V_t) = \frac{g_{22}}{g_0} \left[\frac{\eta^2}{2} (DUT) + \eta(DHUT) \right]_{\xi_1},
$$
(33)

$$
F_4(\eta, U_t, V_t) = -\frac{g_{12}}{g_0} \left[\frac{\eta^2}{2} (DUT) + \eta(DHUT) \right]_{\xi_2},
$$
(34)

$$
F_5(\eta, U, V) = -\frac{g_{22}}{g_0} \left[(z_\alpha - \eta) U(DHU)_{\xi_1} + (z_\alpha - \eta) V(DHU)_{\xi_2} \right]
$$
$$
+ \frac{1}{2}(z_\alpha^2 - \eta^2) U(DU)_{\xi_1} + \frac{1}{2}(z_\alpha^2 - \eta^2) V(DU)_{\xi_2},
$$
$$
- \frac{1}{2} \frac{g_{22}}{g_0} \left[((DU)^2) + \eta(DU) \right]_{\xi_1},
$$
(35)

$$
F_6(\eta, U, V) = \frac{g_{12}}{g_0} \left[(z_\alpha - \eta) U(DHU)_{\xi_1} + (z_\alpha - \eta) V(DHU)_{\xi_2} \right]
$$
$$
+ \frac{1}{2}(z_\alpha^2 - \eta^2) U(DU)_{\xi_1} + \frac{1}{2}(z_\alpha^2 - \eta^2) V(DU)_{\xi_2},
$$
$$
+ \frac{1}{2} \frac{g_{12}}{g_0} \left[((DU)^2) + \eta(DU) \right]_{\xi_2},
$$
(36)

in which

$$
DUT = \frac{1}{\sqrt{g_0}} (\sqrt{g_0} U_t)_{\xi_1} + \frac{1}{\sqrt{g_0}} (\sqrt{g_0} V_t)_{\xi_2},
$$
(37)
\[DHUT = \frac{1}{\sqrt{g_0}}(\sqrt{g_0}hU_\xi_1)\xi_1 + \frac{1}{\sqrt{g_0}}(\sqrt{g_0}hV_\xi_2)\xi_2. \] (38)

In equation (28), we introduce \(F, F_1, \ldots, F_6 \) to represent separately the terms with different properties. \(F \) includes the pressure gradient terms and convective terms; \(F_1 \) and \(F_2 \) are the linear dispersive terms, in which \(F_2 \) is the additional term due to the non-orthogonality of the coordinate; \(F_3 \) and \(F_4 \) are the nonlinear dispersive terms with time derivatives while \(F_5 \) is the additional term due to the non-orthogonality; \(F_5 \) and \(F_6 \) are the nonlinear dispersive terms with spatial derivatives while \(F_6 \) is the term due to the non-orthogonality. \(D^i_{j\kappa} \) is the Christoffel symbol. The constants \(a_1, a_2, b_1, b_2 \) are defined as

\[a_1 = \beta^2/2 - 1/6, \quad a_2 = \beta + 1/2, \quad b_1 = \beta^2, \quad b_2 = \beta \] (39)

where \(\beta = z_\alpha/h, \quad \beta = -0.531 \) in the present paper.

Similarly, the momentum equation in \(\xi_2 \) direction can be written as

\[\ddot{V}_t = G(\eta, U, V) + [G_1(U)]_\xi + [G_2(U, V)]_\xi + G_3(\eta, U, V) + G_4(\eta, U, V) + G_5(\eta, U, V) + G_6(\eta, U, V), \] (40)

where,

\[\ddot{V} = V + h^2 b_1 \frac{g_{11}}{g_0} \frac{1}{\sqrt{g_0}}(\sqrt{g_0}V)\xi_2 |\xi_2 + h b_2 \frac{g_{11}}{g_0} \frac{1}{\sqrt{g_0}}(\sqrt{g_0}hV)\xi_2 |\xi_2, \] (41)

\[G = -\frac{g}{g_0}(-g_{12}\eta_{\xi_1} + g_{11}\eta_{\xi_2}) - (UV_{\xi_1} + VU_{\xi_2}) + D_{11}^2 U^2 + 2D_{21}^2 UV + D_{22}^2 V^2, \] (42)

\[G_1(U) = -h^2 b_1 \frac{g_{11}}{g_0} \frac{1}{\sqrt{g_0}}(\sqrt{g_0}U)\xi_2 |\xi_2 \]

\[-h b_2 \frac{g_{11}}{g_0} \frac{1}{\sqrt{g_0}}(\sqrt{g_0}hU)\xi_2 |\xi_2, \] (43)

\[G_2(U, V) = h^2 b_1 \frac{g_{12}}{g_0} \frac{1}{\sqrt{g_0}}(\sqrt{g_0}U)\xi_1 + \frac{1}{\sqrt{g_0}}(\sqrt{g_0}V)\xi_2 |\xi_1 \]
\[G_3(\eta, U_t, V_\xi) = \frac{g_{12}}{g_0} \left[\frac{1}{\sqrt{g_0}} (\sqrt{g_0} h U)_{\xi_1} + \frac{1}{\sqrt{g_0}} (\sqrt{g_0} h V)_{\xi_2} \right]_{\xi_2}, \]
\[G_4(\eta, U_\xi, V_\xi) = -\frac{g_{12}}{g_0} \left[\frac{1}{2} (DUU) + \eta (DHUT) \right]_{\xi_1}, \]
\[G_5(\eta, U, V) = -\frac{g_{11}}{g_0} [(z_a - \eta) U (DHU)_{\xi_1} + (z_a - \eta) V (DHU)_{\xi_2} \right]_{\xi_2}
+ \frac{1}{2} (z_a^2 - \eta^2) U (DU)_{\xi_1} + \frac{1}{2} (z_a^2 - \eta^2) V (DU)_{\xi_2} \right]_{\xi_1}
- \frac{1}{2} \frac{g_{22}}{g_0} [(DHU + \eta (DU))^2]_{\xi_2}, \]
\[G_6(\eta, U, V) = \frac{g_{12}}{g_0} [(z_a - \eta) U (DHU)_{\xi_1} + (z_a - \eta) V (DHU)_{\xi_2} \right]_{\xi_2}
+ \frac{1}{2} (z_a^2 - \eta^2) U (DU)_{\xi_1} + \frac{1}{2} (z_a^2 - \eta^2) V (DU)_{\xi_2} \right]_{\xi_1}
- \frac{1}{2} \frac{g_{12}}{g_0} [(DHU + \eta (DU))^2]_{\xi_1}. \]

\(G, G_1, \ldots, G_6 \) have the similar meaning as \(F, F_1, \ldots, F_6 \) as described above.

The arrangement of cross-differentiated and nonlinear time-derivative terms on the right hand side of equations (28) and (40) makes the resulting set of left-hand sides purely tridiagonal.

A staggered grid in \(\xi_1 - \xi_2 \) plane is employed as shown in Figure 2, where the crosses denote \(\eta \) - points at which \(\eta \) is computed, the circles denote \(U \)-points at which \(\tilde{U} \) and \(U \) are computed and the squares denote \(V \)-points at which \(\tilde{V} \) and \(V \) are computed. The separate labeling for \(\eta, U \) and \(V \) in this scheme is convenient for the implementation of boundary conditions. The new co-ordinates \((\xi_1, \xi_2) \) are taken as integer grid positions, \(\xi_1 = 1, 2, \ldots, m, \xi_2 = 1, 2, \ldots, n \). Following the work of Wei and Kirby (1995), we discretize the first-order spatial derivative terms to fourth-order accuracy by using standard five-point finite-differencing, leading to truncation errors of \(O(\Delta \xi^4) \). The dispersive terms themselves are finite-differenced only to second-order accuracy, leading to error terms of \(O(\Delta \xi^2) \) relative to the actual dispersive terms.
The fourth-order Adams-Bashforth-Moulton predictor-corrector scheme is employed to perform time updating. A sequence of time instants are defined by \(t = p \Delta t \).

Level \(p \) refers to information at the present, known time level. The predictor step is the third-order explicit Adams-Bashforth scheme, given by

\[
\begin{align*}
\eta_{i,j}^{p+1} &= \eta_{i,j}^p + \frac{\Delta t}{12} [23(E)_{i,j}^p - 16(E)_{i,j}^{p-1} + 5(E)_{i,j}^{p-2}], \\
\tilde{U}_{i,j}^{p+1} &= \tilde{U}_{i,j}^p + \frac{\Delta t}{12} [23(F')_{i,j}^p - 16(F')_{i,j}^{p-1} + 5(F')_{i,j}^{p-2}], \\
\tilde{V}_{i,j}^{p+1} &= \tilde{V}_{i,j}^p + \frac{\Delta t}{12} [23(G')_{i,j}^p - 16(G')_{i,j}^{p-1} + 5(G')_{i,j}^{p-2}],
\end{align*}
\]

where

\[
F' = F + (F_1)_t + (F_2)_t + F_3 + F_4 + F_5 + F_6,
\]

\[
G' = G + (G_1)_t + (G_2)_t + G_3 + G_4 + G_5 + G_6.
\]

In equations (50) and (51), \((F_1)_t\), \((F_2)_t\), \((G_1)_t\), and \((G_2)_t\) involves time derivatives and the calculation of \(F_3, F_4, G_3 \) and \(G_4 \) at a certain time level requires the corresponding values of \(U_t \) and \(V_t \). They can be evaluated by

\[
\begin{align*}
(w_t)^{p}_{i,j} &= \frac{1}{2\Delta t} [3w^p_{i,j} - 4w_{i,j}^{p-1} + w_{i,j}^{p-2}] + O(\Delta t^2), \\
(w_t)^{p-1}_{i,j} &= \frac{1}{2\Delta t} [w^p_{i,j} - w_{i,j}^{p-2}] + O(\Delta t^2), \\
(w_t)^{p-2}_{i,j} &= \frac{1}{2\Delta t} [3w_{i,j}^{p-2} - 4w_{i,j}^{p-1} + w_{i,j}^p] + O(\Delta t^2),
\end{align*}
\]

where \(w \) represents \(U, V, F_1, F_2, G_1 \) or \(G_2 \).

When \(\tilde{U}_{i,j}^{p+1} \) and \(\tilde{V}_{i,j}^{p+1} \) are obtained from equations (50) and (51), the contravariant velocity \((U,V)\) at the new time level can be solved by a system of tridiagonal matrix equation, using elimination method.

After the predicted values of \((\eta, U, V)_{i,j}^{p+1}\) are evaluated, the corresponding quantities of \((E, F', G')_{i,j}\) at time levels \((p+1), (p), (p-1), (p-2)\) are obtained. Then we
use the fourth-order Adams-Moulton corrector method:

\[
\eta_{i,j}^{p+1} = \eta_{i,j}^p + \frac{\Delta t}{24} [9(E)^{p+1}_{i,j} + 19(E)^p_{i,j} - 5(E)^{p-1}_{i,j} + (E)^{p-2}_{i,j}], \quad (57)
\]

\[
\tilde{U}_{i,j}^{p+1} = \tilde{U}_{i,j}^p + \frac{\Delta t}{24} [9(F')^{p+1}_{i,j} + 19(F')^p_{i,j} - 5(F')^{p-1}_{i,j} + (F')^{p-2}_{i,j}], \quad (58)
\]

\[
\tilde{V}_{i,j}^{p+1} = \tilde{V}_{i,j}^p + \frac{\Delta t}{24} [9(G')^{p+1}_{i,j} + 19(G')^p_{i,j} - 5(G')^{p-1}_{i,j} + (G')^{p-2}_{i,j}]. \quad (59)
\]

Similar to the treatment in the predictor stage, \(U, V, (F_1)_t, (F_2)_t, (G_1)_t\) and \((G_2)_t\) are evaluated in the following manner:

\[
(w_t)^{p+1}_{i,j} = \frac{1}{6\Delta t} (11w_{i,j}^{p+1} - 18w_{i,j}^p + 9w_{i,j}^{p-1} - 2w_{i,j}^{p-2}) + O(\Delta t^3), \quad (60)
\]

\[
(w_t)^p_{i,j} = \frac{1}{6\Delta t} (2w_{i,j}^{p+1} + 3w_{i,j}^p - 6w_{i,j}^{p-1} + w_{i,j}^{p-2}) + O(\Delta t^3), \quad (61)
\]

\[
(w_t)^{p-1}_{i,j} = -\frac{1}{6\Delta t} (2w_{i,j}^{p-2} + 3w_{i,j}^{p-1} - 6w_{i,j}^p + w_{i,j}^{p+1}) + O(\Delta t^3), \quad (62)
\]

\[
(w_t)^{p-2}_{i,j} = -\frac{1}{6\Delta t} (11w_{i,j}^{p-2} - 18w_{i,j}^{p-1} + 9w_{i,j}^p - 2w_{i,j}^{p+1}) + O(\Delta t^3). \quad (63)
\]

The corrector step is iterated until the error between two successive results reaches a required limit. The error is computed for each of the three dependent variables \(\eta, U, V\) and is defined as in Wei et al. (1995):

\[
\Delta f = \frac{\sum_{i,j} |f_{i,j}^{p+1} - f_{i,j}^{(p+1)*}|}{\sum_{i,j} |f_{i,j}^{p+1}|}, \quad (64)
\]

where \(f\) denotes \(\eta, U\) or \(V\) and \((\cdot)^*\) denotes the previous results. The corrector step is iterated if any of the \(\Delta f\) exceeds \(10^{-4}\).

Initial testing of the present staggered-grid scheme has shown it to be a considerable improvement over the scheme of Wei and Kirby (1995), in terms of short wave length noise generation. A more extensive exploration of the behavior of the two schemes is underway and will be reported separately.
4 Boundary conditions

For computations of wave propagation in domains with complicated boundaries, appropriate boundary conditions have to be specified in the numerical model. Generally, for a perfectly reflected vertical wall, the horizontal volume flux normal to the wall is zero. Wei and Kirby (1995) derived a set of boundary conditions satisfied by normal velocity at \(z_\alpha \), tangential velocity and surface elevation by considering only the leading order terms in the mass conservation equation. i.e., for the case of a vertical wall parallel to \(x \) axis, the boundary conditions are

\[
v = 0; \quad \eta_y = 0; \quad u_y = 0.
\]

(65)

They then applied five-point off-center finite difference to the equations above. These boundary conditions may be adopted in curvilinear coordinates if we use the contravariant component \((U, V)\) instead of \((u, v)\). That is

\[
U = 0; \quad \text{at} \quad \Pi_1, \Pi_2,
\]

(66)

\[
V = 0; \quad \text{at} \quad \Pi_3, \Pi_4,
\]

(67)

\[
\eta^1 = 0; \quad V^1 = 0 \quad \text{at} \quad \Pi_1, \Pi_2,
\]

(68)

\[
\eta^2 = 0; \quad U^2 = 0 \quad \text{at} \quad \Pi_3, \Pi_4.
\]

(69)

The boundary conditions (66) and (67) can be easily obtained in the staggered grids because \(U \) points are located on \(\Pi_1, \Pi_2 \) and \(V \) points on \(\Pi_3, \Pi_4 \). The symmetric or anti-symmetric conditions are used to apply the boundary conditions, i.e., \(U \) values are anti-symmetric to \(\Pi_1 \) and \(\Pi_2 \), \(V \) values are anti-symmetric to \(\Pi_3 \) and \(\Pi_4 \) according to (66) and (67), while \(U \) and \(\eta \) values are symmetric to \(\Pi_3 \) and \(\Pi_4 \), \(V \) and \(\eta \) values
are symmetric to Π_1 and Π_2 according to (68) and (69). The symmetric or anti-
symmetric conditions also make it easy to discretize equations on boundaries or in
the vicinity of boundaries, especially for high order finite differences with five-point
schemes.

The sponge layer boundary condition and the wave generating boundary condition
are also implemented in this paper following Wei and Kirby (1995).

5 Examples

5.1 Wave evolution in a rectangular basin

As a simple yet efficient test case (Wei and Kirby, 1995), the evolution of waves
in a rectangular basin was calculated by using both the uniform rectangular grid
model and the curvilinear grid model. Though there are no corresponding nonlinear
analytical solutions or experimental data to compare with, the comparison between
the results from the two models can show a consistency of the solutions on curvilinear
grids and rectangular grids.

The basin dimensions are $20m \times 20m$, and the water depth is $0.5m$ constant over
the basin. The initial condition is provided by a motionless Gaussian hump of water
with its center located at the center of the basin (x_c, y_c):

$$\eta(x, y, t = 0) = H_0 \exp\{-\gamma[(x - x_c)^2 + (y - y_c)^2]\}, \quad (70)$$

$$u(x, y, t = 0) = 0, \quad (71)$$

$$v(x, y, t = 0) = 0, \quad (72)$$

where H_0 is the initial height of the hump, γ is the shape coefficient, and (x_c, y_c)
is the coordinate at the center of the domain. We chose $H_0 = 0.2m$, $\gamma = 0.4$, and
$x_c = y_c = 10m$.

In the rectangular grid model, grid sizes are set to be identical everywhere as $\Delta x = \Delta y = 0.1m$. For the curvilinear grid model, a grid generation method (Brackbill, 1982) can be used to generate the curvilinear grid. As a test, we generate a curvilinear grid by weighting the center point as shown in Figure 3 in which the maximum grid size is $0.15m$ near boundaries, while the minimum grid size is $0.045m$ at the center of the domain. The total number of grid points is 200×200, as the same as that of the regular grid model.

Figure 4 shows water surface contour in the physical domain and the contour obtained from the rectangular model. There is very small difference between the dashed line and the solid line in Figure 4. The small differences are caused by the interpolation errors and by the different resolutions of the initial Gaussian hump. Numerical experiments show that the difference decreases with a reduction of grid sizes in both models.

5.2 Monochromatic waves shoaling on a slope

As a second example using the coordinate-stretching approach, we study periodic wave propagation over a sloping beach where there is a contraction of the wavelength and a resulting increase in required resolution as waves shoal towards shore. The previous uniform grid model generally makes the computation expensive because fine grids with constant grid spacing are always adopted in order to resolve short waves in shallow water, and further, the time step needs to be small in order to have an appropriate Courant number in deep water. The problem can be solved by using an irregular grid in which the grid spacing is adjusted according to the water depth so that the Courant number in each element is constant in the whole domain. The
idea has been used by Kashiwama and Okada (1992) in shallow water flow analysis. To show the efficiency of the present model in dealing with wave propagation over a sloping beach, we present a 1-D model with the stretched grid size in the present case.

Figure 5 shows a mild-slope beach, where a constant depth of 8m on the left connects to a constant slope on the right. Waves with a period of 4s are generated by a wavemaker located on the left side. Two sponge layers are placed at both ends of the domain to absorb wave energy. The uniform grid model and the stretched grid model are then used respectively in this case.

In the uniform grid model, a constant grid size of 0.4m is adopted, giving a total of 2500 grid points in the computation domain. According to linear theory, the corresponding wavelength in the deepest water is 45.2m, while shortest wavelength in the shallow water is 18.4m. Thus there are 46 grid points per wavelength in the shallowest region on the right side and 113 grid points per wavelength in the deepest water region on the left side. The choice of an adequate resolution in shallow water thus leads to an over-resolution of the wave form in deep water. In addition, for a given time step, the Courant number increases with the increase of water depth. Therefore, a time step has to be selected according to the Courant number in deep water. Here, the time step in the uniform grid model is chosen to be 0.025s which leads to the Courant number of 0.19 in the shallowest region and 0.471 in the deepest region.

In the stretched grid model, gradually varying grid sizes are chosen from 1m in the deepest region to 0.40m in the shallowest region according to the following coordinate transformation:

\[\xi = \frac{x}{C} \]

(73)
where \(C \) is the wave celerity from the linearized Boussinesq equations and \(A \) is a coefficient, \(A = 7.52 \) in this case. The Courant number is constant in the whole computational domain. The total grid number decreases to 1420, 43% less than that of the uniform grid model. Even so, the resolution of the model is not reduced since there are 45 grid points per wavelength both in deep water and in shallow water, comparing to the 46 points per wavelength in shallow water in the uniform grid model. The time step for the stretched grid model can be much larger than that for uniform grid model because of the larger grid spacing in deeper water. For instance, the time step in this case is chosen to be 0.06s, which is 2.4 times larger than that in uniform grid model and gives a Courant number of 0.452. The decrease in grid number and increase in time step make the stretched grid model much more efficient in comparison with the uniform grid model. In such a case, more than a four time speed-up may usually be expected in view of the grid numbers and time steps used in the two different models. The actual computational time in the stretched grid model is 3.1 times faster than the uniform grid model, which is a little slower than expected because the stretched grid model needs a few more iterations in the calculation. In the computation of wave propagation on a natural beach with a relatively mild slope offshore and a steep slope close to the shore line, the efficiency will be more obvious.

The surface elevations obtained from the stretched grid model are presented in the image domain as shown in Figure 6. It is clear that the wavelength in the image plane is almost constant, which illustrates that the model provides the same resolution when waves propagate from deep water to shallow water. The surface elevations in the physical domain are shown in figure 7 in comparison with the results from the uniform grid model. Figures 8 and 9 respectively display the comparisons of wave height and wave number between the two models. The wave numbers here are obtained from
the wave elevation distributions calculated in the two models. The comparisons show that the stretched grid model results are in good agreement with results from the uniform grid model.

5.3 Waves in a circular channel

The present example is a constant depth channel with vertical sidewalls laid out in a circular planform. Dalrymple et al. (1994) used spectral methods with coordinate-transformed equations to analytically study linear wave propagation. In their study, three cases with different widths of channel, namely, narrow, wider and very wide channels, were carried out. The case of the very wide channel presents a more complicated pattern of waves with diffraction and strong reflection. Thus, this case is chosen for study in this paper, and comparison is made between the numerical results and analytic solution.

Let \(r_1 \) and \(r_2 \) be the inner and outer radius of the channel respectively, with \(r_1 = 75m, r_2 = 200m \) in this case. The depth of the channel is 4m. The coordinate transformation can be described as:

\[
\begin{align*}
\xi_1 &= \frac{\sqrt{x^2 + y^2}}{r_2 - r_1} \\
\xi_2 &= \frac{1}{\pi} \tan^{-1}\left(\frac{y}{x}\right)
\end{align*}
\]

The grid mesh in the physical domain is shown in Figure 10. The grid spacing in the radial direction is constant at 1m, while a constant angular grid is used along the channel length, resulting in a maximum tangential grid size of 1.26m near the outer wall and a minimum of 0.47m near the inner wall. The waves propagate primarily counter-clockwise from the mouth of the channel. A wavemaker is located internally at the eastern end of the channel and two sponge layers are placed in straight channels.
extending from the eastern and western end of the circular channel (not shown in Figure 10). The wavemaker produces linear waves with a period of 4s and a very small amplitude for comparison with the linear analytic solution. The time step is chosen as 0.05s in the present case.

To illustrate the process of wave propagation in the channel, Figures 11 - 13 show the transient propagation of a wave train into the channel. It is shown that the waves initially propagate in a straight line, but as the channel bends, the waves start to diffract around the bend and simultaneously run into the curving channel sidewall and are reflected around the bend. The present method allows for transient wave propagation while the spectral method given by Dalrymple et al. can only describe a steady-state linear solution. Figures 14 and 15 depicted the comparisons of the water surface variation along outer wall and inner wall between the analytic solution and numerical solution after a periodic steady state has been achieved. Good agreements are found in the comparisons.

5.4 Diffraction of a solitary wave by a straight vertical wall

An experiment on the diffraction of a solitary wave by a straight thin wall was carried out by Perroud (1957) in a wave tank. A diffracting wall of 0.8cm thickness is placed in the tank to diffract the solitary wave at normal incidence. Figure 16 shows the experiment layout, where the measurements were made at a point (ρ, θ) in the defined polar coordinate. The tests were run at a constant water depth of 6.1cm and various ratios, ranging from 0.27 to 0.58, of the incident wave height to water depth. Measurements of wave heights and patterns of the diffracted waves were performed in different directions θ from the diffracting wall and the central axis at the distance ρ.

22
To simulate the diffraction of waves in the experiment, it is necessary to use stretched grid model to resolve the thin diffraction wall. Thus a stretched rectangular grid mesh is generated in the computation domain with linear variation of grid sizes along the axis direction. The finest grids are obtained around the wall with the smallest grid size of 0.8cm, which is exactly the thickness of the wall. The largest grid size in the whole domain is 2.54cm (1in) at the two sides of the domain. The grid size in the normal direction of the axis is identical as 2.54cm. The location of initial solitary wave is set at 76.2cm eastward from the wall.

The diffraction and reflection process after an incident solitary wave impacts on the wall is shown in a time sequence of contour plots of the surface elevation for the case of $a_0/h = 0.42$ (Figure 17). When the wave impinges on the wall ($t = 0.8s$), the wave on the upward side runs up and reflects back. The initial development of the diffracted wave can be clearly seen near the tip of the wall. Following the wave impact, the early stages of propagation of the diffracted solitary wave and the back-scattered reflected wave are then shown at $t = 0.9s$. At $t = 1.4s$, the initial primary wave separates into a forward transmitted diffracted wave and a backward scattered reflected wave. The newly evolved secondary backscattered and forward-scattered waves generated from the tip of the wall propagated outward and follow the leading reflected and diffracted waves, respectively.

The numerical results and measurement data obtained from four solitary waves with different wave heights are compared in Figure 18(a)-(h). The diffraction coefficient k, defined as the ratio of the diffracted wave height to the incident wave height (a/a_0), is plotted against the distance ρ for different values of the angle θ. The close agreement proves that the present model is capable of simulating nonlinear wave propagation.
5.5 Application to Ponce de Leon Inlet

To demonstrate the practicality of the present model, we use the model to simulate the propagation of monochromatic waves in Ponce de Leon Inlet, Florida, USA. Smith and Harkins (1997) used numerical models to estimate wave transformation over Ponce de Leon Inlet and comparisons were made between numerical results and measurement data from the physical model. The geometry is shown in Figure 19, which consists of a coastline, a jetty, an inlet leading to the Halifax and Indian Rivers, and a complex bathymetry. A boundary-fitted grid is generated as shown in Figure 20. In order to resolve structures and short waves in shallow water, finer resolution is used near the jetty, coastal lines and the inlet. At the offshore boundary of the domain, monochromatic waves are generated with a period of 15s and a small amplitude. To avoid wave reflections by the coastal boundaries and wave breaking in shallow water, sponge layers are placed in shallow water area along the coastlines. Figure 21 shows a snapshot of surface elevations, showing wave reflection on the upward side of the jetty, wave diffraction on the leeward side, refractive wave focusing in the area to the right of the inlet mouth, and standing waves inside the inlet. Though the numerical results have not been compared with measurement data as there is no consideration of energy dissipation by wave breaking and wave runup on sloping beaches yet, this case study illustrates that the present model has a potential prospect for computations in complicated domains, such as in harbors and tidal inlets.

6 Conclusions

Based on the fully nonlinear Boussinesq equations derived by Wei et al. (1995), the equations in generalized curvilinear coordinates are derived by using contravariant
velocity method. Then the numerical model is developed with a high-order finite
difference scheme in staggered grids. To test the model, five examples involving
curvilinear or stretched coordinate systems are applied. The computation of wave
evolution in a rectangular basin with a curvilinear grid indicates that the model is
consistent with the uniform grid model. In the case of wave propagation on a sloping
beach, the same element Courant number is obtained in every grid points by adjusting
the grid size, so that the resolutions of waves are the same both in shallow water and
deep water. The computational efficiency is shown to be greatly improved by the
new model. Wave propagation in a circular channel is simulated by employing the
present model with the boundary-fitted grid. Good agreement is found between the
numerical results and analytic solution. Then the model is used to simulate the
diffraction of a solitary wave by a straight vertical wall at normal incidence. The
comparison between numerical results and measurements shows that the model has
good accuracy in dealing with the computation of nonlinear wave propagation with
complex lateral boundaries. Finally, the model is applied to Ponce de Leon Inlet. In
this case, monochromatic waves are simulated in the complex-shaped domain with a
real bathymetry.

For practical application in complicated domains, the present model needs to be
further improved with the incorporation of energy dissipation by wave breaking and
wave runup on sloping beaches and structures. The development will be reported on
in the near future, in conjunction with a more complete investigation of Ponce de
Leon Inlet.

Acknowledgements

This study has been supported by the Army Research Office, Terrestrial Sciences
Program through grant number DAAG55-98-1-0173, and by the Office of Naval Re-
search, Base Enhancement Program through grant number N00014-97-1-0283. The authors would like to express their appreciation to Zeki Demirbilek and Jarrell Smith, U. S. Army Corps of Engineering, Waterway Experiment Station, who supplied the bathymetry data of Ponce de Leon Inlet.

References

Kirby, J. T., 1988, Parabolic wave computations in non-orthogonal coordinate systems, Journal of Waterway, Port, Coastal and Ocean Engineering, 114, 673-685.

Rygg, O. B., 1988, Nonlinear refraction-diffraction of surface waves in intermediate and shallow water, Coastal Engineering, 12, 191-211.

29
Appendix: Spatial derivative in tensor forms

The tensor-invariant forms of controlling equations (18) - (22) can be expanded into equations (24) - (48) by using the following tensor formulas.

The gradient of a scalar f can be written as:

$$\nabla f = \frac{\partial f}{\partial x^i} g^i$$ \hspace{1cm} (76)

where g^i is the contravariant basis. According to the relationship between two different basis:

$$g^i = g^{ij} g_j$$ \hspace{1cm} (77)

in which g^{ij} is the contravariant metric, the gradient can be expressed on the covariant basis g_i as

$$\nabla f = \frac{\partial f}{\partial x^i} g^{ij} g_j = f^{ij} g_j$$ \hspace{1cm} (78)

In the present paper, for example, since the contravariant velocity is introduced as the dependent variable, the equations have to be expended on the covariant basis g_i.
The pressure gradient term may be expressed as

\[\nabla \eta = \eta^i g_i \]
\[= (g^{11} \frac{\partial \eta}{\partial \xi_1} + g^{21} \frac{\partial \eta}{\partial \xi_2}) g_1 + (g^{12} \frac{\partial \eta}{\partial \xi_1} + g^{22} \frac{\partial \eta}{\partial \xi_2}) g_2 \]
\[= \frac{1}{g_0} (g_{22} \frac{\partial \eta}{\partial \xi_1} - g_{12} \frac{\partial \eta}{\partial \xi_2}) g_1 + \frac{1}{g_0} (-g_{12} \frac{\partial \eta}{\partial \xi_1} + g_{11} \frac{\partial \eta}{\partial \xi_2}) g_2 \]

(79)

where \(g_0 \) is the determinant of the metric tensor. In equation (79), we employed the following formula:

\[g_{ik} g^{jk} = \delta^j_i \]

(80)

where \(\delta^j_i \) is the Kronecker delta.

The divergence of a vector \(\mathbf{u} \) can be written as

\[\nabla \cdot \mathbf{u} = \frac{1}{\sqrt{g_0}} \frac{\partial \sqrt{g_0} u^i}{\partial x^i} \]

(81)

In the present paper, \(\nabla \cdot \mathbf{u} \) can be expanded as

\[\nabla \cdot \mathbf{u} = \frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^i} (\sqrt{g_0} u^i) \]
\[= \frac{1}{\sqrt{g_0}} \frac{\partial \sqrt{g_0} U}{\partial \xi_1} + \frac{1}{\sqrt{g_0}} \frac{\partial \sqrt{g_0} V}{\partial \xi_2} \]

(82)

where \(U \) and \(V \) are the contravariant components of velocity vector.

To a vector \(\mathbf{u} \) in a two-dimensional space, the covariant spatial derivative \(u^i_j \) can be expressed in terms of the contravariant component \(u^i \) of \(\mathbf{u} \) as following

\[u^i_j = \frac{\partial u^i}{\partial x^j} + u^k D^i_{jk} \]

(83)

where \(D^i_{jk} \) is the Christoffel symbol. Then the convective terms in the paper can be expanded as follows:

\[u^i u^1 = u^1 u^1 + u^2 u^1 \]
\[= U \frac{\partial U}{\partial \xi_1} + V \frac{\partial U}{\partial \xi_2} + U U U D^1_{11} + 2 U V D^1_{12} + V V D^1_{22} \]

(84)
\[u'u = u'u + uu^2, 2 \]
\[= U \frac{\partial V}{\partial \xi_1} + V \frac{\partial V}{\partial \xi_2} + UU D^2_{11} + 2UV D^2_{12} + VVD^2_{22}. \]
(85)
Figures

Figure 1: Physical domain \((x, y)\) and transformed image domain \((\xi_1, \xi_2)\).

Figure 2: Staggered grid in the image domain (\(\times - \eta\)-point, \(\bigcirc - U\)-point and \(\square - V\)-point).
Figure 3: Curvilinear grid for rectangular basin experiment.

Figure 4: Comparison of surface elevations ($t = 8s$) in the physical domain between regular grid model (solid line) and curvilinear grid model (dashed line).

Figure 5: Schematic of the wave flume.
Figure 6: The stretched grid model: surface elevations in the image domain.

Figure 7: Surface elevation comparison between the uniform grid model (solid line) and the stretched grid model (dashed line) in the physical domain.

Figure 8: Comparison of wave heights between uniform grid model (solid line) and stretched grid model (dashed line).
Figure 9: Comparison of wave numbers between uniform grid model (solid line) and stretched grid model (dashed line).
Figure 10: Calculation grid in the circular channel.

Figure 11: Wave propagation in the circular channel (t = 50 seconds).
Figure 12: Wave propagation in the circular channel ($t = 100$ seconds).

Figure 13: Wave propagation in the circular channel ($t = 200$ seconds).
Figure 14: Comparison of the surface variation along outer wall between the analytic solution (solid line) and numerical solution (dashed line).

Figure 15: Comparison of the surface variation along inner wall between the analytic solution (solid line) and numerical solution (dashed line).
Figure 16: Experimental layout.
Figure 17: Contour plots of surface elevation for $a_0/h = 0.42$ at various times.
Figure 18: Comparisons of diffraction coefficients between experimental data (⋆ or ×) and numerical results (solid or dashed lines)
Figure 19: Bathymetry in Ponce de Leon Inlet (mean low water in meters)
Figure 20: Computational grid in Ponce de Leon Inlet
Figure 21: A snapshot of wave surface elevations in Ponce de Leon Inlet\((T = 15s)\)