Synthetic Discriminant Function Performance as a Function of Filter Source Attributes

Michael J. Vrabel

ARL-TN-159

April 2000

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Synthetic Discriminant Function Performance as a Function of Filter Source Attributes

Michael J. Vrabel
Sensors and Electron Devices Directorate

Sponsored by
AMCOM*
Redstone Arsenal, AL 25898-5240

*Also sponsored by the U.S. Army Research Laboratory.

Approved for public release; distribution unlimited.
Abstract

The performance of a synthetic discriminant function-based target-detection algorithm is detailed as the filter source attributes are varied to reflect various practical aspects of filter creation.
Contents

1 Introduction 1

2 Methodology and Results 2
 2.1 Baseline Model 2
 2.2 Down-Sampled Model 3
 2.3 All-Aspect Model 3
 2.4 Results 4

3 Conclusion 10

References 11

Appendix. AMCOM Image Files and ARL Codes 13

Distribution 17

Report Documentation Page 19
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example scenes with targets indicated by crosshairs</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>M60 and tnk baseline (B) performance</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Additional M60 and tnk baseline (B) performance curves</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>M60 (lower pair of curves) and tnk down-sampled (D) performance curves</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>All-aspect-angle sequence of M60: 5° through 180° (40 \times 75 pixels)</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>All-aspect-angle sequence of tnk: 5° through 180°</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>SDF test set sequence scene 275 with superimposed NVESD images</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>M60 and tnk filter performance as function of filter source aspect angle (A)</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>M60 and tnk filter performance for all scales and all aspect angle</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Introduction

This is the third report in a continuing series of reports [1,2] on the application of the synthetic discriminant function (SDF) approach to automatic target recognition (ATR) (and the exploration of related topics). This report demonstrates the performance of the SDF algorithm in a target-detection mode as the SDF filter image sources progressively transition from ideal sources to those that represent a more real-world scenario. A single filter is used with all SDF models. This use of a single filter is consistent with the optimum performance observed and detailed in the first report [1].

To test the SDF performance, I used the standard scene test set sequence L1816S....r1.bin. Each of the 236 scenes in this sequence contained two targets: M60 and tnk. For this study, the scenes were treated as if they contained but a single target. That is, if an M60 filter was created, then all scene returns about the location of tnk were suppressed and counted as neither target hits nor background false alarms. In this way, the performance of the SDF model for a comparatively easy-to-detect target (M60) and a much more difficult-to-detect target (tnk) is separately measured. This approach is also consistent with the way one would ultimately like to use the SDF model, the assumption being that it will be used in a comparatively target-poor environment.
2. Methodology and Results

As noted in the introduction, this report demonstrates SDF model performance as the filter image source progressively transitions to more realistic sources. Because the SDF model is not scale invariant, scale invariance must be built into the filter. This is done by superimposing target images of varying sizes via the filter creation mechanism. A simple mathematical function has been defined for the 236 scenes of the test set. This function permits a fairly tight square box to be fitted about all targets. The targets can as a consequence be extracted and used as needed for creating filters.

The boxes are also used to define target hits. Two circles are fitted to these boxes: an inner circle (I) just touching the center of each face and an outer circle (O) touching each vertex. (The letters indicated within the parentheses form a simple code for defining test condition attributes when the results are presented.) A target is detected if a hit occurs within one of these circles. As noted in the previous report [1], two options can be used to define the centroid of a potential target hit. The first is to define the hit location as the location of the largest peak response of the SDF model (N) within the area of one of the previously defined circles (discarding all other within-circle peaks). The second is to define the hit location as the peak value weighted average of all hit locations within the circle (Y). Because the previous report [1] indicated that the optimum detection filter count is one, I used only one filter to present the results of this report. Three models are to be used for this study: a baseline, a down-sampled, and an all-aspect model. Each represents a different approach to creating SDF target filters.

2.1 Baseline Model

A filter for the baseline model (B) is created from several of the target images contained in the scene set used to test the performance of the SDF algorithm. It is called a baseline model because it can be expected to outperform the remaining two models. This expected performance is a consequence of the unrealistic way the filter is created. Nevertheless, as the model's name implies, it represents a good baseline for comparing the performance of the remaining models.
2.2 Down-Sampled Model

As with the baseline model, a filter for the down-sampled model (D) is created from the scene test set. The sequence of test scenes contains targets with a fixed aspect angle but varying range. This is demonstrated in figure 1, a montage of four scenes taken at intervals along the sequence of test images. A single target image, the largest in the test scene sequence, is selected to create the filter. This target image is down sampled to produce a sequence of progressively smaller images spanning the target-size range in the scene set. This sequence of down-sampled images is used to create the filter.

2.3 All-Aspect Model

The all-aspect model (A) constructs a filter from representations of all aspect angles of a target. The filter becomes a composite of both these all-aspect angle images and, because scale invariance is required, down-sampled representations of these images. The source of these target images is not the set of test scenes (since, among other reasons, only a single aspect angle is available). The source is an alternate data set available within the

Figure 1. Example scenes with targets indicated by crosshairs.
U.S. Army Research Laboratory (ARL). Although the scene test set contains but a single fixed aspect angle for all targets, the all-aspect model represents the most realistic of the three tests of the SDF algorithm. This is because the all-aspect model most closely represents the manner in which an SDF-based target-detection algorithm is used in a real-world scenario.

2.4 Results

In the following subsection, I present the results of the three filter models as a series of target detection versus false alarm curves. The first series is for the baseline model. Figure 2 contains detector performance for the M60 as a function of target filter image count.

The images were taken at uniform intervals along the sequence of 236 scenes. The target image count for the corresponding filter is given in the integer column of the legend. The remaining legend columns are self-explanatory. For the conditions of this test, the optimum filter for the M60 is created from eight target images. The corresponding results for the tkn are also given in figure 2. For the more difficult tkn imagery, the optimum filter is approached more or less asymptotically with increasing target image count.

Figure 2. (a) M60 and (b) tkn baseline (B) performance.

O = Outer circle of a target box
Y = Hit location that is average peak value of all hits within circle peak responses
Figure 3 gives the results for the optimum filters of figure 2 as a function of
the remaining variables as indicated in the legend.

No clear guideline emerges from this study with regard to the relationship
between performance and the variables examined. The results for the
down-sampled model are given in figure 4.

Two down-sampled schedules were used. The first schedule produced a
sequence of 11 images with each 2×2 pixels smaller than the previous
image. The second schedule produced a sequence of five images with a 4
$ \times 4$ down sample between images. The starting image was number 275, an
image near the end of the test sequence. The performance of both the M60
and tnk fell when compared with the baseline models. The performance
fall was especially severe for the tnk, where the false-alarm rate increased
by an order of magnitude for the same target-detection rate.

To create suitable filters for the all aspect model, I first examined a rather
extensive U.S. Army Aviation and Missile Command (AMCOM)-provided
image set. The available files are listed in the appendix. This list excludes
the standard SDF test sequence. These files contain approximately 30,000
target-containing scenes. Both the lack of ground-truth data and the quality of the imagery precluded the use of the image set as a filter source.

A second potential all-aspect filter image source (and the one that was used in this study) is a forward-looking infrared (FLIR) database generated by the Army’s Night Vision and Electronic Sensors Directorate (NVESD). This database has the desirable attribute that much of the target imagery is available for all aspect angles (at 5° increments). To achieve a best match between the best NVESD M60 and trk sequences and the AMCOM SDF images, I adjusted the intensity scales, and for the M60, I modified the target images themselves. The resultant NVESD sequences (40 × 75 pixels) are given in figures 5 and 6.

The M60 modifications should be apparent in figure 5. Figure 7 is scene 275 of the SDF test set sequence with the 5° aspect angle NVESD images superimposed (images not to scale).

I performed experiments to find the best down-sampling schedule for the all-aspect model. For the 5° aspect angle M60 image, the following sequence was found to produce the best filter model: 2, 4, 6, ... 28. The numbers refer to the factor by which the x and y pixel count was reduced for the original 40 × 75 windowed image (as given by the first image of figure 5). The same filter sequence was used to produce filters for all the aspect angles of the M60 from 5° through 180°. Each filter was tested on the standard sequence of images (images with an M60 and trk aspect of about 0° to 5°) with the results of the tests given in figure 8. These curves are the M60
Figure 5. All-aspect-angle sequence of M60: 5° through 180° (40 x 75 pixels).

Figure 6. All-aspect-angle sequence of tnk: 5° through 180°.
detection rates for average false-alarm rates of 0.5, 1.0, and 2.0. Unexpectedly, the performance of these curves at 180° is better than at 5°. While the 180° view of the M60 has approximately the same silhouette as the front view, the gray-scale appearance of the M60 at 180° does not look like the target presentation in the test scenes. Figure 8 also shows the results for tkn. Despite the seemingly good match at the 0° to 5° aspect angle between the NVESD and AMCOM tkn images, the performance was quite poor.

A final test was performed in which the filter was composed of images at all scales and all aspect angles. Four curves are generated for M60 and tkn. A 360° representation of the images for figures 5 and 6 was created by mirroring of the images below 180°. These images were sampled at 5°, 10°, 20°, and 40° increments. The results are given in figure 9. Because the angular increments show little difference in performance, I did not label the individual curves.
Figure 8. (a) M60 and (b) tnk filter performance as function of filter source aspect angle (A).

Figure 9. (a) M60 and (b) tnk filter performance for all scales and all aspect angle.

O = Outer circle of a target box
Y = Hit location that is average peak value of all hits within circle peak responses
3. Conclusion

The performance of an SDF-based target-detection algorithm is examined for a range of filter image sources. Results of a baseline source taken from the algorithm test set are compared with results from sources that represent more of a realistic operational scenario. The results demonstrate the difficulty of maintaining SDF performance as filter sources transition away from unrealistic image sets.
References

Appendix. AMCOM Image Files and ARL Codes

The list of AMCOM-provided FLIR image sets noted in the main body of the report are given below:

m1.t38.110143.1A040.seqb
m1.t39.110215.1A713.seqb
m3.t13a.072640.4C899.seqb
m3.t14a.072738.4D515.seqb
m3.t15.073100.4F140.seqb
m3.t16.073159.4FDC0.seqb
m3.t16a.073138.4F94E.seqb
m3.t53.061215.232F1.seqb
m3.t56.061130.2294F.seqb
m3.t66.074805.5A12E.seqb
m3.t74.075225.5D89C.seqb
m3.t85.080812.698FD.seqb
m3.t94.080840.69EFC.seqb
m4.144120.5e35.seqb
m4.150426.e8b2.seqb
m5.t11.12.133825.dd50.seqb
m5.t1.132143.2B4D.seqb
m5.t2.132253.3A39.seqb
m5.t3.132446.5251.seqb
m5.t4.132533.5C7B.seqb
m5.t5.132956.70AD.seqb
m5.t6.133054.7D0E.seqb
m5.t7.133335.9F62.seqb
m5.t9.133610.C069.seqb
m8.t10.194316.241ED.seqb
m8.t12.194450.25605.seqb
m8.t13.194840.28359.seqb
m8.t14.194920.28C0A.seqb
m8.t16.195040.29D18.seqb
m8.t18.200130.seqb
m8.t19.201932.4019.seqb
m8.t21.202300.6CBD.seqb
m8.t28.204210.1624D.seqb
m8.t29.204250.16AE1.seqb
m8.t8_193833_22256.seqb
m8.t8a_193915_22B5F.seqb
m8.t9_194240.seqb
m8.ta_185500_C4B0.seqb
m8.tb_185540_CD73.seqb
m9.135251_8963.seqb
m9.135600_b5d2.seqb
m9.143026_9b05.seqb

The following is a list of all codes including brief descriptions that I developed for this study (sdf.c: modified*):

aspect_angle.m60.c: Reads one of the outputs of sdf_evaluate.c: results.%d.dat and extracts information for MATLAB plots.

aspect_angle.mnk.c: See aspect_angle.m60.c.

convert.c: Converts the output of montage.c into an sdf.c usable format.

display_file.c: Reads and displays contents of an image file.

display_file1.c: Reads and displays contents of an image file.

filter_cluster.c: Clusters to generate detection filters for use by sdf.c.

filter_cluster1.c: Same as filter_cluster.c but modified to allow code to operate on a subset of the input imagery (see main). This code requires the existence of file: merged_file.

flip_chip.c: Flips 40 × 75 NVESD chips to make a full 360° SDF target presentation.

make_filter_image.c: Creates SDF target filter images from the standard scene test set.

make_frame_list.c: Lists the frames of the standard scene test set for use as test.list by sdf.c (a.out -td 1).

make_list.c: Lists masked target image files for sdf.c detector filter builder.

make_nvl_list.c: Lists test.list for sdf.c from NVESD all aspect angle 40- × 75-pixel images (chips).

make_scene_list.c: Lists (test.list) the SDF test set scenes as input to the filter maker in sdf.c.

montage.c: Creates a montage of sig 40- × 40-chip images for one aspect of M60 or T72 and includes as final image in montage the corresponding SDF target image. Also creates a montage of all aspect angles for a selected NVESD chip. This version is optimized for tk.

*The original version of sdf.c was written by Lipchen (Alex) Chan of ARL.
montage1.c: Is same as montage.c but optimized for M60.
movie.c: Creates MATLAB-compatible image file to test ground-truth values in movie mode.
movie_maker.c: Reads and displays contents of a file.
plot_maker.c: Creates MATLAB 2-D plots for SDF filter results.
plot_maker1.c: Is same as plot_maker.c but allows a more general labeling of the output legends.
read_file1.c: Reads and displays contents of a file.
read_test_dfil.c: Reads and displays contents of test_dfil.
sdf.c: Is the modified version of sims_sdf.c, the implementation of the SDF-based ATR algorithm.
sdf_evaluate1.c: Evaluates output of sdf.c: detection rate versus false-alarm rate. This version expects the first entry from sdf_output.dat to be scene ID. Scene ID is used to adjust the value of edge to either an inner box circle or an outer box circle.
sdf_imaging.c: Reads and displays in MATLAB format the detector images outputted by sdf.c. Images contain target ground truths. Also has option of reading a set of the original scenes.
template.c: Is a target-tracking code.
temptape.c: Reads and displays contents of an image file.
test_gt.c: Creates a MATLAB-compatible image file to test ground-truth values.
view.c: Views 128 x 128 SDF scene with superimposed target images.
view_aspect.c: Creates M60 and trk (5° through 180° aspect angle) image montage.
view_aspect1.c: Creates M60 and trk (0° through 355° aspect angle) image montage.

Source code listings for these codes are available from the author upon request.

The core codes and their execution sequence for the data generated for the aspect angle models are given below:

- **make_nvl_list.c** ↓
- **sdf.c → a.out -bd 1** ↓
- **make_frame_list.c** ↓
- **sdf.c → a.out -td 1** ↓
- **sdf_evaluate1.c**
Distribution

Adminstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Ofc of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn OUSD(A&T)/ODDDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Attn AMSMI-RD-MG-IP R Sims
Redstone Arsenal AL 35898-5240

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsml
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

Night Vsn & Elect Sensors Dir
Attn AMSEL-RD-NVOD L Garn
10221 Burbeck Rd Ste 430
FT Belvoir VA 22060-5806

US Army ARDEC
Attn AMSTA-AR-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army Info Sys Engrg Cmd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC
Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn
Cmd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Tank-Automtx Cmd Rsrch, Dev, &
Engrg Ctr
Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmd
Battle Lab Integration & Techl Dirctr
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A LTC M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

DARPA
Attn S Welby
3701 N Fairfax Dr
Arlington VA 22203-1714

Hicks & Associates Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

US Army Rsrch Ofc
Attn AMSRL-RO-D JCI Chang
Attn AMSRL-RO-EN W Bach
PO Box 12211
Research Triangle Park NC 27709
Distribution (cont'd)

US Army Soldier & Biol Chem Cmd Dir of Rsrch & Techlgy Dirctrt
Attn SMCCR-RS I G Resnick
Aberdeen Proving Ground MD 21010-5423

TECOM
Attn AMSTE-CL
Aberdeen Proving Ground MD 21005-5057

US Army Rsrch Lab
Attn AMSRL-DD J M Miller
Attn AMSRL-CI-AI-A Mail & Records Mgmt

US Army Rsrch Lab (cont’d)
Attn AMSRL-CI-AP Techl Pub (3 copies)
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-IS-EP P Gillespie
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-SA J Eicke
Attn AMSRL-SE-SE M Vrabel (5 copies)
Adelphi MD 20783-1197
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April 2000</td>
<td>Final, 1 Oct 98 to 30 Sept 99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
</table>
| Synthetic Discriminant Function Performance as a Function of Filter Source Attributes | DA PR: AH16
PE: 62120A |

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(ES) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>
| Michael J. Vrabel | U.S. Army Research Laboratory
Attn: AMSRL-SE-SE
email: vrabel@arl.mil
2800 Powder Mill Road
Adelphi, MD 20783-1197 | ARL-TN-159 |

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(ES) AND ADDRESS(ES)</th>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
</table>
| AMCOM*
Redstone Arsenal, AL 25898-5240 | |

*Also sponsored by the U.S. Army Research Laboratory.

11. SUPPLEMENTARY NOTES

ARL PR: 9NE4MM
AMS code: 622120.H16

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release;
distribution unlimited.

12b. DISTRIBUTION CODE

UL

13. ABSTRACT (Maximum 200 words)

The performance of a synthetic discriminant function-based target-detection algorithm is detailed as the filter source attributes are varied to reflect various practical aspects of filter creation.

14. SUBJECT TERMS

Target tracking, automatic target recognition, template matching, correlation filters, SDF

15. NUMBER OF PAGES

24

16. PRICE CODE

UL

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by AR 385-18
298-102

19