NOTE

JPRS publications contain information primarily from foreign newspapers, periodicals and books, but also from news agency transmissions and broadcasts. Materials from foreign-language sources are translated; those from English-language sources are transcribed or reprinted, with the original phrasing and other characteristics retained.

Headlines, editorial reports, and material enclosed in brackets [] are supplied by JPRS. Processing indicators such as [Text] or [Excerpt] in the first line of each item, or following the last line of a brief, indicate how the original information was processed. Where no processing indicator is given, the information was summarized or extracted.

Unfamiliar names rendered phonetically or transliterated are enclosed in parentheses. Words or names preceded by a question mark and enclosed in parentheses were not clear in the original but have been supplied as appropriate in context. Other unattributed parenthetical notes within the body of an item originate with the source. Times within items are as given by source.

The contents of this publication in no way represent the policies, views or attitudes of the U.S. Government.

PROCUREMENT OF PUBLICATIONS

JPRS publications may be ordered from the National Technical Information Service, Springfield, Virginia 22151. In ordering, it is recommended that the JPRS number, title, date and author, if applicable, of publication be cited.

Indexes to this report (by keyword, author, personal names, title and series) are available through Bell & Howell, Old Mansfield Road, Wooster, Ohio, 44691.

Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000 North Glebe Road, Arlington, Virginia 22201.
1. **Title and Subtitle**

TRANSLATIONS ON EASTERN EUROPE - POLITICAL, SOCIOLOGICAL, AND MILITARY AFFAIRS, No. 1449

2. **Report Date**

20 September 1977

3. **Performing Organization**

Joint Publications Research Service
1000 North Glebe Road
Arlington, Virginia 22201

4. **Abstract**

The serial report contains articles on official party and government pronouncements and writings on significant domestic political developments; information on general sociological problems and developments in such areas as demography, manpower, public health and welfare, education, and mass organizations; and articles on military and civil defense, organization, theory, budgets, and hardware.

17. **Key Words and Document Analysis**

- International Affairs
- Albania
- Bulgaria
- Czechoslovakia
- East Germany
- Hungary
- Poland
- Romania
- Yugoslavia

17a. **Descriptors**

- Propaganda
- Political Science
- Sociology
- Military Organizations

18. **Availability Statement**

Unlimited Availability
Sold by NTIS
Springfield, Virginia 22151

19. **Security Class**

UNCLASSIFIED

20. **Security Class**

UNCLASSIFIED

21. **No. of Pages**

69

22. **Price**

$4.00
TRANSLATIONS ON EASTERN EUROPE

POLITICAL, SOCIOLOGICAL, AND MILITARY AFFAIRS

No. 1449

CONTENTS

CZECHOSLOVAKIA

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Czechoslovak-Iranian Communique on Shah's Visit (RUDE PRAVO, 31 Aug 77)</td>
<td>1</td>
</tr>
</tbody>
</table>

HUNGARY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weapons, Military Equipment Described (HADITECHNIKAI SZEMLE, No 3, 1977)</td>
<td>6</td>
</tr>
<tr>
<td>Thirty Years of the Institute of Military Technology Innovations and the Institute of Military Technology Automatic Alarm System Detailed</td>
<td></td>
</tr>
</tbody>
</table>

POLAND

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>West German 'Revanchists in Cassocks' Attacked (A. W. Wys; ZYCIE WARSZAWY, 27-28 Aug 77)</td>
<td>41</td>
</tr>
<tr>
<td>'HUMANITE' Article on Gierek Consultations With Workers Cited (SZTANDAR MLODYCH, 7 Sep 77)</td>
<td>43</td>
</tr>
</tbody>
</table>

ROMANIA

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law on Classification of Workers by Work Groups (BULETINUL OFICIAL, 16 Jul 77)</td>
<td>44</td>
</tr>
</tbody>
</table>

YUGOSLAVIA

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumidja Region Shepherdesses Being Trained in Martial Arts (R. Djukanovic; POLITIKA, 4 Aug 77)</td>
<td>63</td>
</tr>
</tbody>
</table>

- a -

[III - EE - 63]
JOINT CZECHOSLOVAK-IRANIAN COMMUNIQUE ON SHAH'S VISIT

Prague RUDE PRAVO in Czech 31 Aug 77 pp 1, 2 AU

[Text of joint CSSR-IRANIAN communique published at the conclusion of the Shah of Iran's 26-30 August official visit to Czechoslovakia]

[Text] At the invitation of CSSR President Gustav Husak, His Imperial Majesty Mohammad Reza Pahlavi Aryamehr, the Shahanshah of Iran, and Her Imperial Majesty Farah Pahlavi, the Shahbanou of Iran, paid an official visit to the CSSR 26-30 August 1977 (Iranian calendar 3-8 Shariivar 2536).

A cordial reception was extended to their imperial majesties during their stay in the CSSR by CSSR President Gustav Husak and the government and people of Czechoslovakia.

During his stay in Prague his imperial majesty, the Shahanshah of Iran, placed a wreath at the Tomb of the Unknown Soldier at Zizkov Hill. The distinguished guests paid a visit to the Old Townhall, where they were presented keys to the capital of Prague. They also paid a visit to an exhibition at the National Gallery in the St George [Jirsky] Cloister and the Institute of National Literature. Her imperial majesty, the Shahbanou of Iran, also visited a children's hospital in Motol.

Charles University conferred upon His Imperial Majesty Mohammad Reza Pahlavi Aryamehr, the Shahanshah of Iran, the honorific scientific title of doctor of legal sciences, and upon Her Imperial Majesty Farah Pahlavi, the Shahbanou of Iran, the honorific scientific title of doctor of philosophic sciences.

CSSR President Gustav Husak decorated their imperial majesties with the Order of White Lion First Class with Chain.

His imperial majesty, the Shahanshah of Iran, bestowed upon CSSR President Gustav Husak the highest Iranian decoration—the Pahlavi Order.
Their imperial majesties also visited the Slovak Socialist Republic. During their visit to Bratislava, his imperial majesty, the Shahanshah of Iran, placed a wreath at the memorial to the Slovak national uprising. The two distinguished guests were received by representatives of the Slovak Socialist Republic at Bratislava Castle and visited agricultural enterprises in the vicinity of Bratislava.

Official talks between the CSSR president and his imperial majesty, the Shahanshah of Iran, were marked by cordiality and a constructive spirit, corresponding to the traditional relations between the two states.

During the talks the CSSR president and his imperial majesty, the Shahanshah of Iran, informed one another about the development of the political and economic situation in their countries and about their foreign policies. They also assessed issues concerning the further development of Czechoslovak-Iranian cooperation and the current development of the international situation.

The CSSR president informed his imperial majesty, the Shahanshah of Iran, about the great successes the Czechoslovak people have been achieving in all spheres of social life in building an advanced socialist society and about the current key tasks of Czechoslovak foreign policy aimed at the development of international cooperation and further relaxation in international relations and at the consolidation of security and world peace.

His imperial majesty, the Shahanshah of Iran, informed the CSSR president about Iran's national independent policy and about the efforts expended on the implementation of Iran's economic development.

The two heads of state expressed their satisfaction with the recent dynamic development in CSSR-Iranian relations in the political, economic, cultural and other spheres. They expressed the conviction that the all-round development of mutual relations will continue for the benefit of the people of their two countries.

Great attention was devoted to the development of mutual economic contacts. It was stated with gratification that these contacts have been markedly intensified. The document recently concluded creates favorable conditions for intensifying and expanding economic cooperation. The work and efforts of the Czechoslovak-Iranian Mixed Commission for Economic, Scientific and Technical Cooperation were highly assessed. Both sides express the conviction that its activity will continue to contribute to the development of mutual economic relations.

The two sides share the opinion that the agreement on deliveries of Iranian natural gas and the CSSR's interest in purchases of crude oil and other Iranian products establish a good basis for expanding trade between the
two countries in the coming years. The Iranian side specified the economic spheres in which it expects a speedy development to take place within the framework of five-year plans. This demanding program provides good possibilities for the CSSR's broader participation in Iran's industrialization.

In their negotiations the two heads of state also devoted attention to the further development of cooperation in the spheres of culture, education and science, and they exchanged opinions on the possibilities of expanding it still further.

During the exchange of opinions on the current international situation the CSSR president and his imperial majesty, the Shahanshah of Iran, stated that the two states have identical or close stands on the main international problems.

They were agreed in the opinion that the process of detente is vitally important for all states of the world regardless of their geographic position, their size or the nature of their social system, and they spoke in favor of its continuing so as to become a lasting and irreversible process. They stressed that international relations should be built on such principles as mutual respect for the sovereignty and independence of individual states, the nonuse of force or the threat of force in international relations, non-interference in internal affairs and the development of cooperation in the economic and other spheres on the basis of fully equal rights and mutual advantage.

The two heads of state, bearing in mind the consolidation of peace and the security of nations, expressed their concern over the activity of the reactionary forces that would like to stop the process of detente, aggravate the atmosphere in international relations and disrupt the friendly and peaceful cooperation of states with different social systems.

The two sides pointed out the importance of the CSCE and expressed the conviction that implementation of the principles contained in the final document of the Helsinki Conference in other parts of the world as well would contribute to consolidating security and world peace. In this connection they stressed the particular significance of the development of mutually advantageous cooperation and the consolidation of peace and stability in Asia through the common efforts of all states on this continent; this could gradually lead to the materialization of the idea of establishing a collective security system in Asia which would incorporate all states on this continent.

The sides exchanges opinions on the question of achieving general and complete disarmament, including nuclear disarmament, under effective international control. They agreed that international security and worldwide disarmament are
very closely connected and therefore stressed the need for complementing
the process of international detente in the political sphere by effective
measures in the military sphere. In this respect they spoke in favor of
banning the development of new kinds of mass destruction weapons and of new
systems of these weapons, and they consider it necessary to put an end to
the perfection of mass destruction weapons.

The CSSR and Iran expressed support for the decision to convene a special
session of the UN General Assembly on disarmament problems, and they regard
this session as an important step on the road to a world disarmament con-
ference. They arrived at the conclusion that the process of detente and
consolidation of security and confidence between states would be signifi-
cantly strengthened through the conclusion of a worldwide treaty on the
nonuse of force in international relations.

Both sides expressed serious concern over the dangerous development in the
Middle East as a result of Israeli policy. They are of the opinion that a
just and lasting peace in that area can be achieved only under the conditions
of a withdrawal of Israeli troops from all the Arab territories occupied in
1967 and of the assertion of the inalienable rights of the Arab people of
Palestine. Both sides also reaffirmed that the rights of all states and
peoples to an independent existence and development in that area must be
insured. They also came out in favor of an accelerated convening of the
Geneva Middle East Conference with the participation on the basis of equal
rights of all directly interested parties including the PLO.

Both sides expressed serious concern over the possible consequences of the
emergence of another dangerous hotbed of tension in the area of the so-called
African Horn, which threatens the peace and security of the African peoples.

The two heads of state discussed the situation in the southern part of Africa,
denounced the racist minority regimes in Zimbabwe and the Republic of South
Africa and the illegal occupation of Namibia by the South African regime,
and stressed their support for the demand that power be immediately handed
over to the genuine representatives of the people, to the patriotic forces
of Zimbabwe, and that the independence of Namibia be proclaimed.

The two heads of state noted with pleasure that, as a result of the changes
which have taken place in the development of the international situation in
the past few years, the Asian, African and Latin American peoples have
achieved significant successes in strengthening their national sovereignty
and economic independence, in asserting their right to fully control their
own natural resources. They expressed support for the demands of these coun-
tries that international economic relations be restructured on the basis of
equality of rights, mutual advantage and just respect for the interests of
all countries.

The two heads of state concertedly stressed the importance of the UN organi-
zation as a factor contributing to a reduction in international tension, to
the consolidation of world peace and to the security of peoples, and they reaffirmed the intention of their countries to strive for the further strengthening of this international organization on the basis of strict respect for the principles and aims of the UN Charter.

The CSSR president and his imperial majesty, the Shahanshah of Iran, expressed deep satisfaction over the course and outcome of their talks, which in their opinion significantly contribute to the further substantial development of comprehensive cooperation between the two states. They stressed that the practice of talks and exchanges of views between representatives of the two countries has proved its worth and that it will be continued at all levels in the future.

His imperial majesty, the Shahanshah of Iran, expressed his high esteem and thanked CSSR President Gustav Husak for the warm welcome accorded to their imperial majesties during their stay in Czechoslovakia.

His imperial majesty, the Shahanshah of Iran, invited CSSR President Gustav Husak to make an official visit to Iran. The invitation was accepted with pleasure. The date of the visit will be agreed upon through diplomatic channels.

CSO: 2400
WEAPONS, MILITARY EQUIPMENT DESCRIBED

Thirty Years of the Institute of Military Technology
Budapest HADITECHNIKAI SZEMLE in Hungarian No 3, 1977 pp 73-83

[Text] Following World War II, because of the sharpening international situation and the developing and then increasing cold war, the self-defense of the young Hungarian democratic state demanded the strengthening of the new army, supplying it with the tools of modern military technology. Execution of the 3-year plan proposed by the Hungarian Communist Party began on 1 August 1947, the reconstruction of our industry began and a base for creation of our munitions industry developed—the developing heavy industry.

The Institute of Military Technology began its work as a base for the military technology development of the young democratic army 30 years ago on 20 October 1947 after extensive preparatory work. The basic tasks assigned to the institute were military technology development and working out technical documentation for munitions and introducing their manufacture in order to provide our People's Army with the most important weapons and other military technology materials in adequate quantity and quality.

In the 3 decades which have elapsed since, the Institute of Military Technology has played a significant role in the fact that our People's Army has entered the ranks of modernally equipped armies and is capable, within the alliance system of the Warsaw Pact, of defending our homeland and our socialist system. The activity of the institute is best characterized by the quality and broad use of the munitions developed here or adopted and developed further. We can say that there is not a single soldier in our People's Army who has not met in the course of his everyday activity with those tools of military technology in the production of which the Institute of Military Technology played some role.

We cannot undertake to give an even approximately full picture of the 30-year activity of the Institute of Military Technology. We do feel that the tools of military technology described below offer an overall picture
of that significant activity although they represent only a fraction of the 3 decades of work. Let us repeat, we cannot strive for completeness but we offer some older and newer materials from the activity of the Institute of Military Technology, insofar as possible from every area of military technology. And let us note that the order of appearance is not a rank ordering and does not represent an evaluation.

Weapons, Ammunition

The most common tools of military technology making up the bulk of the equipment of every army are weapons and ammunition. From the beginning infantry and artillery equipment played a large role in the program of the Institute of Military Technology. With its work the institute contributed to a significant degree to the fact that our People's Army is equipped today with the most modern hand weapons.

Our hand weapons correspond to every requirement of modern battle and make our marksmen capable of carrying out fire tasks successfully in the complex conditions of battle day and night alike.

Light Weight Piston

With the spread of the Kalashnikov submachine gun at the end of the 1950's and the modification of the tactical principles it became necessary to develop a pistol with smaller muzzle velocity but with greater stopping power. Light weight, reliable operation and reliable accuracy figured among the basic requirements.

In order to achieve light weight an aluminum alloy was used for the frame material in the PA-63 pistol—the first in the world in a 9 mm caliber pistol. Thus the total weight of the pistol, with magazine and 7 cartridges, came to 665 p [pond = gram?] with a length of 175 mm. The PA-63 pistol is a weight locking, semi-automatic, revolving weapon.

Photo 1. The PA-63 aluminum frame pistol.
The pistols, which have been manufactured in series for a long time, operate almost faultlessly and their life expectancy is virtually identical with that of steel frame pistols.

New Design Submachine Guns

In the 1960's the idea arose of replacing those parts of the 7.62 mm AKM submachine gun which had been made of steamed beech wood with a synthetic. This, however, made it necessary to change the design of the submachine gun. The two grip submachine gun with synthetic stock was designated the AKM-63.

The stock and grip were made of polypropylene. As a result of the use of a synthetic the weight of the submachine gun was reduced by about 0.25 kp [kilopond = kilogram?] and the production costs became a good bit less. In addition to the use of a synthetic the design changes made the AKM submachine gun more modern too. Held by two grips during firing the submachine gun could be held more solidly and thus the target could be defeated with fewer shots.
The spread of armored transportation vehicles made it necessary to decrease the length of the submachine gun; the rigid stock used on the AKM-63 submachine gun was replaced with a folding shoulder support and the barrel was made 98 mm shorter.

Photo 4. The AMD-65 submachine gun with muzzle brake and folding stock.

An innovation on the shorter submachine gun, which was designated the AMD-65, was the muzzle brake which made possible aimed fire even with folded stock.

These submachine guns were developed on the basis of a Soviet license but the designers gave far-reaching consideration to domestic conditions and requirements too.

Rifle Grenades for Submachine Guns

With the great spread of armored targets the need arose for the development of a submachine gun which would significantly increase the self-defense capability of the fighter. This could be imagined only if the weapon continued to meet the requirements as a submachine gun while capable of using rifle grenades without firing restrictions.

The result of the development was the AMP submachine gun which has a range equal to that of the AKM submachine gun and automatic action identical to that of the very reliable Kalashnikov weapons. Innovations, as compared to traditional hand weapons, included the sliding fore grip, the recoil-absorbing [amortizalt] shoulder support and the optical sights, which the need for launching rifle grenades made necessary.

Photo 5. The AMP submachine gun for launching rifle grenades, with sight.

Photo 6. Partial section of the rifle grenade which can be fired from the AMP submachine gun.
By using the AMP submachine gun even soldiers with submachine guns can carry out tasks against so-called hard armored targets. It is a considerable advantage that with average battle noise levels the place from which the rifle grenade is launched cannot be determined.

Anti-Armor Hand Grenade

The anti-armor hand grenade was developed at the end of the 1950's in response to the massive use of armored vehicles in modern warfare. By using the cumulative effect hand grenade, which weighs 0.85 kp, armored vehicles can be rendered inoperable in the immediate vicinity of a person. More modern anti-tank weapons are ineffective at this range.

In addition to its cheapness the great advantages of the hand grenade include the fact that the fighter can quickly and easily master its use so that it can be used on a mass scale against armor or even concrete. A small "air sack" stabilizes the grenade when thrown so that its detonation on the target is very effective. Although 20 years have passed since it was developed the easily carried and simply operated anti-armor hand grenade is still a widely standardized weapon in many friendly armies.

Photo 7. Partial section of the anti-armor hand grenade.

Technology for Engineer Troops

There has been very significant development in the past 3 decades in equipment for engineer troops. The general use of powerful weapons of mass destruction is characteristic of modern war and so the role of technical security has increased to an extraordinary degree.

Development in technology for engineer troops has been significant in our homeland also as is proven by the fact that many tools developed domestically can be found in several friendly armies also.

Anti-Tank Mine and Its Detonators

The universal cumulative mine (UKA) can be laid automatically by a mine laying machine and it resists the shock waves of a nuclear explosion.
Development of this maximal explosive effect anti-tank mine began in the early 1960's.

The mine developed in 1963 has a detonator family consisting of four members so that the same mine can be used against the treads, bottom and side armor of vehicles. In addition the family of detonators makes possible the hand or automatic machine laying of the mine and insures the operation of the mine even in the event of shock waves.

When the mine explodes a "metal plate" flies upward with great speed breaking through the bottom armor of the tank. It breaks through the side armor of vehicles as a "trotyl cannon" at a range of 30–50 meters.

Photo 8. The UKA universal cumulative mine.

The universal cumulative mine and its detonators are characterized by economical manufacture, the ability to be laid swiftly, many-sided utility and great resistance to clearing tools.
Trench Blowing Unit

Modern war and a battle which may be conducted with nuclear weapons requires the swift entrenchment of personnel and equipment. Neither machines nor engineering units can do this work in the brief time available.

With the aid of the recently developed trench blowing units groups or vehicle crews can prepare their own trenches or firing positions in a short time.

The trench blowing unit consists of an earth drill, charges and detonating equipment. A single person can easily handle the earth drill with a drilling speed of 0.5 meters per minute.

A single box of explosives can prepare a small foxhole, two a medium size and three a large trench. The charges are ignited electrically from a vehicle storage battery. The new, improved trench blowing unit can prepare trenches well satisfying the requirements in a short time.

Pontoon Bridge, in Highway and Railway Versions

Preparing transportation for war conditions demands from our people's economy a well coordinated harmonization of the possibilities and tools of the present and the enforcement of military requirements. Temporary bridges must be provided to replace destroyed bridges on our rivers which constitute obstacles. The task could be solved by using, in place of and in addition to the very expensive military pontoon bridges, such items of the economy as are suitable for river crossing equipment. Such items of the economy are the 1,600-ton TS barges (for transporting oil or dry goods) belonging to MAHART [Hungarian Shipping Company].

Photo 9. TS barges on the Danube.
The goal of several years of development, harmonizing the interests of the economy and the requirements of home defense, was the creation of rear area pontoon bridges based on the TS barges. In the course of the development highway and railway pontoon bridges satisfying military engineering requirements were worked out by remodeling, not at great expense, the TS barges otherwise intended for civilian use and providing them with a few pieces of supplementary equipment (auxiliary anchors and fastening cables).

The significance of the remodeled TS barges consists of the fact that while retaining their civilian use they can be used, with stockpiled supplementary equipment, under the most varied conditions in a very short time—to create rear area highway bridges, to maintain on a continuous basis heavy highway traffic or as semi-permanent bridges. After use the pontoon bridge can be taken apart without taking the units out of service.

In such use the TS pontoon bridge uses a new type of connection system; the large TS barges are reliably connected and kept "in the bridge" even under constant burden. The pontoon bridge submerges very little and can be used even with significant changes in water level.

Photo 10. Tanks crossing a TS highway pontoon bridge.
Following the successful and economically very optimal development of the highway version they began development of a railway version of the TS pontoon bridge. This differs, by its nature, from the highway version only in that it is connected "to the railway" thus requiring a special approach bridge and a railway superstructure.

The railway version of the TS pontoon bridge, like the highway version, is a significant technical achievement in both military and engineering-economic respects.

Synthetic Camouflage Net

The development of synthetic camouflage nets offering protection against modern reconnaissance tools (infra- and colored spectrozonal reconnaissance) and well resisting the vicissitudes of weather began at the end of the 1960's.

The new synthetic nets correspond well to the remission properties of natural objects and green vegetation so that discovering them via photography is very difficult. The colors of the synthetic foils used in the base net give off light of the same wave length as natural objects, as measured by optical and reconnaissance instruments, and so provide a very good camouflaging effect.

The nets can be built up to any size out of the basic 6x8 meter units and the weight of a square meter of net is only 0.4 kp.
Ice Blowing Devices

Ice drifts and drifted ice fields represent a real problem on our rivers in winter weather. Preventing their formation or destroying them in time is of fundamental significance in preventing the danger of ice floods.

Experiments began in the early 1960's to develop ice blowing tools and technology. Experiments proved that ice fields could be effectively destroyed only with explosive charges concentrated under water.

Bomb shaped ice blowing charges containing various weights of moving force explosive (10, 20, 35, 45 kp) were developed which, if used under water, could break up ice fields and drifted ice even 8-10 meters thick.

The ice blowing charges are placed under the ice with the aid of cumulative effect ice perforating charges containing explosive with crushing or shredding qualities [brizans] and having a diameter of 200 or 300 mm.

An applications technology was developed taking into consideration the size of the ice barrier or field.

The technology and documentation for series manufacture of the ice blowing devices were prepared in 1963 and since then they have been successfully used when necessary by water affairs organs to prevent the danger of ice floods, in close cooperation with the icebreaker ships.

Electronics

The unheard of spread of electronics can be observed in virtually every area of military technology. The developed electronic industry of the countries belonging to the Warsaw Pact, not last among them Hungarian industry, has created the complex communications and radar tools needed for modern war. This is of especially great significance under conditions of nuclear warfare because it makes possible the swift establishment and the continuity of communications for the purpose of maneuvering. The electronic industry has also created those new types of equipment with which the ever increasing tasks of automation can be accomplished.

There was a great development after World War II in the area of radio technology, electronics and instrument technology. The direction of development was twofold: on the one hand electronic devices entered new areas of application and on the other hand there was a qualitative change in the earlier areas too.

Various radiation measuring and infrared technical instruments were born on the basis of the achievements of electronics. The radiation measuring devices developed domestically satisfied in every respect those requirements posed by the need to indicate reliably the effects resulting from the military use of nuclear weapons.
The First Ultra Short Wave FM Radio Transmitter

The first ultra short wave FM military radio transmitter of our People's Army was developed at the end of the 1940's, the R-10. The mechanical design and switching principles contained many ingenious solutions. The R-10 transmitter is of modular construction and the several stages can be used in a multiple fashion to decrease the weight, size and consumption of the apparatus.

The common axis variometer solution for the tuned circuits is interesting too. The active elements are battery powered miniature tubes but there were already germanium diodes in the demodulator. The frequency range extended from 20 to 30 MHz, the output was one watt and the receiver sensitivity was less than 2 microwatts. The apparatus could be remote controlled and could be used as a telephone.

A Portable, Small Capacity Ultra Short Wave Transmitter-Receiver

The manufacture of semi-conductor and other modern signal technology parts which has developed so swiftly in the socialist countries in recent years made possible and also required the development of a new ultra short wave radio set which was modern in design and in tactical requirements.

![Photo 12. Portable ultrashort wave transmitter-receiver and attachments.](image)

The electric design used the most modern manufacturing technology and parts--FET [Field-effect Transistor], integrated circuits, monolithic quartz, etc.

During reception the control oscillator of the transmitter can be used as a local oscillator. The receiver is a once transposed superheterodyne and a monolithic quartz filter provides the necessary middle frequency selectivity. Frequency control for the transmitter and beat control is through a PLL loop. The final stage of the transmitter is broad band and counter-beat and the necessary harmonic damping is done by a special filter. The set can be programmed in advance for several frequencies so that frequencies can be changed quickly.
An already designed mechanical elements of fire analyzer served as a basis for development. The new E2-BD elements of fire analyzer contained electromechanical design elements and electronic amplifiers. They were placed in overland vehicles where the battery command post was set up. No special knowledge was needed to operate them and a single person was enough to handle them.

The analog computer technology elements designed while developing the E2-BD elements of fire analyzer are used widely at the present time to carry out industrial automation tasks.

Mobile Air Defense Command Posts

A manually controlled uniform system to be placed in overland vehicles was designed in the 1960's which provided control for the air defense of the army.

Command posts or information collection centers in individual vehicles were developed for command levels. On the basis of data arriving from distant and medium range radars and other data, for example meteorological, the tasks of the air defense units could be determined. A computer stored, processed and classified the information arriving.

Some elements of the mobile air defense command posts are still used for other tasks for the system which was developed is a very good example of the modernization of control units.

Radiation Measuring Instruments

Modernization of defense against atomic weapons made necessary the development of radiation measuring instruments for the penetrating radiation
arising during a nuclear explosion and the radiation contamination of the
terrain which is harmful to personnel.

Development and manufacture of radiation measuring instruments began in
our homeland in the middle 1950's and in the past 2 decades several gen-
erations of these instruments have been used by friendly armies.

A contamination measuring instrument was developed in the early 1960's
which served to measure surface contamination in the field of equipment,
clothing, weapons and foodstuffs. The instrument used a new design, was
small in size and weight and measured alpha, beta and gamma contamination.

A uniform radiation meter was developed in the early 1970's. It was alone
at the time of its introduction in that it used semi-conductor radiation
detectors and these provided internationally recognized great reliability
and mechanical endurance in use.

Photo 17. Uniform radiation measuring instrument.

Photo 18. Radiation measuring instrument.

The laboratory counter is an instrument providing a determination of the
specific contamination of foodstuffs, drinking water and other materials.

Using different metering heads the instrument determines the specific
alpha, beta and gamma contamination and the decay times of radioactive
isotopes. Swift and simple measurements are made possible by using the
different metering methods of the instrument.
The anti-aircraft elements of fire analyzer converts the coordinates of the air target into elements of fire, that is, it determines the point of impact toward which the barrel of the anti-aircraft gun must be aimed so that the target will arrive at the same point during the time of flight of the missile fired.

Photo 14. The elements of fire analyzer module placed in a truck superstructure.

Photo 15. The central unit of the elements of fire analyzer.
The ultra short wave transmitter-receiver can operate for about 24 hours on one battery charging. Its manufacture is economical, repair is simple and reliability is very great. Its consumption is significantly less, its other electric parameters are more favorable and it offers more in way of service than older models.

Field Telephone Center

At the end of the 1950's development began of an LB-CB center which could be used under field conditions and which would have a line capacity such that it could accept LB or CB sets according to the momentary requirements or could connect them manually.

The K-80 center which was developed weighs 290 kp, it is portable, can be built into a communications center and is produced in a version which can be placed in its own packing case. The designers took into consideration the ability to disconnect so-called through and roundabout lines and connection to an automatic center.

Photo 13. The K-80 field telephone center and its packing case.

The circuit design is characterized by LB, CB or automatic line fitting bands which can be plugged into the central circuit. The common circuit fittings on the back of the center can be opened like the pages of a book making possible connections and repair during operation with the aid of similarly positioned test fittings.

It is characteristic of the utility of the centers, which were produced in series manufacture, that they were still working in 1975 after 20 years.

The K-40 field telephone center has a similar structural and circuit design but has a capacity of only 40 lines and weighs half as much.

An Elements of Fire Analyzer of Electromechanical Design

Development began in the early 1950's of an analog electronic and mechanical elements of fire analyzer which was to have the task of controlling medium range anti-aircraft artillery.
Photo 19. Laboratory counter.

Armor and Vehicle Technology

Modern war demands very great mobility from the troops and higher units alike. Thus the importance of supplying the army with modern vehicles has increased significantly.

The manufacture of trucks in our homeland after the liberation began in the Csepel Auto Factory. The Csepel 130 overland squad car and the Csepel 300 three axle overland truck, suiting the requirements of the army, were being produced by 1953. Up to 1956 various special superstructures were developed for the Csepel truck frames.

Taking into consideration the needs of the army and with the cooperation of the Institute of Military Technology they designed the Csepel D-344 and D-566 trucks with power in all wheels. Hungarian industry has provided aid in ever broader fields in supplying our People's Army with more modern vehicles.

In addition to the uniform closed superstructure, special superstructures and cars for staff work, Hungarian industry also manufactures armored vehicles.

All-Wheel Drive Trucks and Their Variations

With the development of the Csepel D-344 all-wheel drive truck it became possible to replace the old types left in service after World War II and the first highway trucks of new domestic manufacture with trucks which better suited the requirements and had better operational properties.
The truck had two axles, could carry a load of 3.5 Mp [Megapond = metric ton?] and had a liquid cooled diesel engine delivering 100 horsepower. Its special design made possible a low construction of the front axle making the D-344 truck very stable in its category.

Superstructures placed low and providing a large internal space made possible the installation of radio equipment, command posts and repair shops.

Development of the new type of truck and its superstructures provided a fortunate basis for solving the urgent task posed by creation of mobile technical services for armor and vehicle technology. The D-344 frame could be used for such special vehicles as, for example, fuel transportation and fueling trucks, bread, refrigerator and chemical decontamination trucks.

Photo 20. Truck maintenance vehicle based on the Csepel D-344 all-wheel drive truck.

Photo 22. Uniform closed superstructure on a Csepel D-344 frame.
The D-566 Overland Truck

With the increase in demands and tasks there were new developmental requirements for overland trucks. A new and modern three axle overland truck with a load capacity of 5 MP, the D-566, was developed and 200 horsepower diesel engines for it were manufactured in large quantities and in outstanding quality. Its general design, swinging axle independent suspension, rigid frame and well chosen transmission system insured very good dynamic properties and so this vehicle became one of the most efficient transportation and hauling vehicles.

The fuel consumption of the truck, with a maximum speed of 80 kilometers per hour, is very low (40 liters per 100 kilometers) which is significant from the tactical as well as the economical point of view.

The automatically controlled tire pressure, the steering servo and the disc brakes served to expand or simplify operating conditions.

Making use of the outstanding dynamic properties and large capacity of the D-566 truck this vehicle was used for various special tasks too.

With the aid of a crane superstructure and auxiliary fittings on its frame it can be used for rescuing, uprighting or towing struck or damaged vehicles. In this version it can operate as a salvage crane truck.

The D-566 truck also offers great aid in transporting and loading TRAL stores. By using a trailer it can transport stores with suitable dynamics and safety even under difficult terrain conditions. A self-loading hydraulic crane was developed for loading and unloading stores in units of nearly 3 MP weight and this was built onto the truck. Use of the crane made loading and installation quicker and more reliable.

Photo 23. The Csepel D-566 in difficult terrain.

Modern Closed Superstructures for Trucks

Modernization of closed superstructures for trucks is an important problem at this time. Simplification of transportation between countries and within a country and the possibility of easy separation from the frame have placed in the fore the development of easily exchanged container type superstructures.

The basic requirements include the ability to seal the internal space hermetically from natural environmental and battle contamination, multi-purpose use, light structure and a small unloaded weight, resistance to corrosion and economical manufacture.

A superstructure has been developed, not hermetic but of container design, in which one can place the tools and equipment needed for tank maintenance work. The superstructure is mounted on a D-566 frame and serves as a modern tank maintenance truck in the army.

Photo 26. Tank maintenance vehicle on D-566 frame.
Amphibious Reconnaissance Vehicle (FUG)

The FUG amphibious reconnaissance vehicle was developed on the basis of the D-344 truck. Although the design used the main elements of the D-344, the well known and well proven engine, the gear shift, differential and steering, they had to develop a new front suspension, a water jet drive for movement in water and the amphibious body itself.

The rear engine design came up as a solution of necessity but later it represented a great advantage. It insured good vision for driver and commander (small dead space and a large forward terrain angle) and as a result maneuvering was secure even in unknown terrain and the axle load ratios improved also.

Several versions of the FUG are well known. They are used as general and special reconnaissance vehicles. The FUG, with a maximum speed of 85 kilometers per hour, can easily overcome slopes of 32 degrees. It travels at 9 kilometers per hour in water and in addition to the four wheels it has hydraulically controlled auxiliary wheels.

The crew of the vehicle consists of one reconnaissance squad and its equipment includes reconnaissance and signal equipment in addition to the individual equipment of the personnel.

Photo 27. Amphibious reconnaissance vehicle.

Photo 28. Amphibious vehicle for chemical-radiation reconnaissance.
An Armored Transport Vehicle

A need arose in the early 1960's to develop a modern armored vehicle for transporting infantry. Using the achievements and possibilities of the already developed amphibious reconnaissance vehicle (FUG), soon thereafter mass production of armored transport vehicles could begin.

A basic vehicle for mechanized rifles troops was developed using existing design solutions and main units with the addition of a rotating turret and the development of an enlarged fighting area.

The armored transport vehicle makes possible the protected transportation of rifles troops through infantry fire and across contaminated terrain on land and water alike.

The rifles squad is effectively supported by the 7.62 and 14.5 guns mounted in the turret.

In regard to size the PSzH [Armored Transport Vehicle] is one of the smaller ones, it has good maneuverability and thus it is one of the best vehicles for use in battle in forested and mountainous terrain.

Photo 29. Armored transport vehicle.

Other Tools

Many other tools or materials, not included in the above groups, also figure among the developmental themes of the Institute of Military Technology. A modern army requires new materials not only in the areas of weapons, vehicles, signal equipment, etc. but also in every area of life and operations. We provide below a sample of a few developments, which could not be included in the earlier groups, which includes war provisions, special instruments and training aids.

A Modern Gyrotheodolite

After initial experiments, the development of a new type of gyrotheodolite began in 1970 which has as its task the swift and precise determination of
the direction north. The operation of the new instrument is based on the
turning of the earth and thus it is not sensitive to magnetic disturbances.

There are two versions of the new gyrotheodolite, a movable and a built-in
version. The latter, installed in a tracked vehicle, can quickly deter-
mine the angle between the axis of the vehicle and the direction north
with adequate precision. The results are displayed by electronic means
in a digital form so that imprecise readings are virtually eliminated.

The new gyrotheodolite contains a number of technical innovations in
regard to both design and internal structure. Its electronic unit can be
further developed to make it almost completely automatic.

Dual Operation Sight for the Armored Transport Vehicle

The modernized armored transport vehicle equipped with a rotating turret
presented a great problem in changing the optical elements of the sights
for aimed fire under night or day conditions.

The development of a new, dual operation sight aided a solution of the
task. The sight is an optical instrument, a periscope mounted on the
horizontal surface of the turret. The line of aim changes horizontally
with the turret and vertically with the axis of the built-in armament.
A parallelogram arm provides linkage between the turning mirror and the
axis of the weapons.

A pierced mirror serves to separate the day and night channels. Night
vision uses an active system and thus an infrared source is needed to
illuminate the target. The eye lens systems of the two channels are
placed one above the other converging at an angle of 20 degrees so that
they can be used successively simply by changing the direction of eye-
sight.

Photo 30. Dual operation sight for armored transport vehicle.
The new dual operation sight is cheaper and takes up less space than its predecessor. A saving of time is achieved in that there is no need for constant changes and adjustments and so the life expectancy of the instrument is increased significantly, too.

A Mobile Field Kitchen

Development of the new 69M mobile kitchen using mixed fuels began in the middle 1960's. The basis for planning was that the mobile kitchen should provide three meals a day for 150-200 persons. The kitchen, mounted on a new frame 2.95 meters long and 1.96 meters wide, was developed as a trailer to be hauled behind a truck.

In addition to the equipment found on older type kitchens one can find here square bottomed kettles made of rust resistant material, adjustable steam release valves, and a reliably operating low pressure oil burner consuming 2.5 to 3.6 liters per hour.

Photo 31. Mobile field kitchen.

The hygienic protection, cooking capacity, set-up speed and fuel safety of the kitchen, which weighs 1,256 kp empty, were increased considerably. It can be made operational in 5-7 minutes. In case of need it can use
wood, after dismantling the burner. The low placement of the kettles makes it easier to lift them out.

Simulation and Training Devices

With the constant modernization of military technology simulation and training devices have been prepared in ever more modern forms also. Their life expectancy has been considerably increased with the spread of synthetic materials. Use of them aids tactical training, real materials need not be used, and so they are much safer for personnel. Producing them is quick and cheap and so their mass use does not present a problem from the viewpoint of manufacture.

Development of the so-called "sound grenade" began in the early 1950's for simulation of hand grenade throwing and impact. Use of colored and irritating smoke candles made possible the practice of communications, camouflage of tactical movement and use of gas masks.

In our age, in the age of nuclear weapons, the simulation of the explosion and effects of atomic bombs is of great significance for only in this way can modern defense be worked out. Development of a very modern atom bomb simulator began in the 1960's.

Pressed thermite appeared as an innovation among simulation devices in the early 1970's; its use permits the creation of a thermite effect artificially.

Last but not least, we must mention the target range hit indicator which, with its reliable indication of hits achieved, has become indispensable for target range training.

A Uniform Engine and Motor Oil

Development of a uniform engine and motor oil began at the end of the 1960's. The goal was the development of a motor oil which would be suitable for lubricating the diesel or gasoline engines of vehicles, machines and generators in winter and summer with a use norm (oil change cycle) of 4,000 and 6,000 kilometers to replace the MMA-60 and MDA-60 motor oils in use.

The multi-purpose uniform motor oil was intended for winter and summer lubrication of vehicle engines and equipment and it was further planned that with its use the power plants could achieve running norms of 50,000 kilometers in place of the previous 25,000 kilometers.

The results of field tests and examinations unambiguously proved that from the quality viewpoint and in the area of use properties the uniform engine and motor oil well satisfied the demands made of it. From the viewpoint of military use it represented a great advantage that by using the new motor oil seasonal oil changes could be eliminated and it became unnecessary to maintain a wide variety of oils depending on the types of engines.
Illustration 32. Viscosity-temperature curves for the uniform motor oil and for the MMA and MDA oils.

Key:
1. MMA-60 and MDA-60
2. Uniform motor oil
3. MMA-40 and MDA-40

Innovations and the Institute of Military Technology

Budapest HADITECHNIKAI SZEMLE in Hungarian No 3, 1977 pp 110-112

[Text] The innovations movement of our People's Army can look back on a past of nearly a quarter century. The goal of this movement is a further development of existing equipment, training and other aids of the army and helping the daily tasks of the troops in the area of the economy of operation, maintenance, storage and repair.

On the basis of what has been published earlier in this column the readers of our journal know that the results achieved in this unique area increase year after year in our People's Army and one proof of this is that soldier innovators, in their own group, won the innovation competition held by the National Patent Office in 1975.

In 1960 the Institute of Military Technology was appointed to lead the People's Army innovation movement. Since that time the Institute of Military Technology has functioned as a third level innovations organ for the Hungarian People's Army with authority over the entire army. The Institute
of Military Technology thus organizes and directs the People's Army innovation movement, develops guiding principles for the uniform professional and material support of innovators, takes care of regular professional training for innovations officials, supervises the innovations activity of organs, troops and institutions, organizes propaganda for the military innovations movement and keeps records on innovations.

The achievements of the People's Army innovation movement prove the effectiveness of this activity. We might mention in a little more detail two interesting parts of this many-sided and complex activity—record keeping and the organization of national exhibits and conferences for innovators and inventors in connection with propaganda for the innovation movement.

Keeping Records With a Computer

Machine processing of statistical data on People's Army innovations was introduced in the early 1970's—for the first time and still unique in regard to the economy as a whole—and this increased to a significant degree the operative nature of leadership of the movement.

Practical experience had shown that the effectiveness or lack of success of the innovation movement can be indicated best at the end of the year or after the first half year because the data necessary for evaluation were not available earlier and these data could not be acquired in the course of supervisory activity.

Machine data processing, however, provides the continual information needed for operative leadership because it provides a monthly or quarterly detailed review of the status of the movement. Thus the innovations activity of the divisions, higher units and units can be followed with attention and there is a possibility for intervention where shortcomings can be observed.

In addition to the advantages mentioned machine data processing makes possible a regrouping of the budget and significantly decreases the labor of People's Army innovation organs and innovation officials, simplifying administration and making it easily surveyable.

Good Propaganda

The outstanding event of the military innovation movement is the national exhibit and conference which has been held four times thus far, in 1960, 1967, 1971 and 1976.

At the exhibit the innovators and inventors themselves show the most useful innovations and inventions of our People's Army. There is thus an opportunity for a broad exchange of experiences. The national conference takes place at the same time as the exhibit and at the conference the leading personnel of our People's Army meet with those participating in the innovation movement, with the leaders and organizers of innovation
activity. Here they discuss the achievements and problems of the movement and report on the most important experiences.

Those in the Institute of Military Technology, however, not only organize and lead the innovation and inventing activity of the People's Army, they also contribute to the success of the movement with many innovations and inventions.

In what follows, naturally without the least intention of striving for completeness, we will present a few interesting and significant items which represent the achievements of the People's Army innovation and invention movement, items which have won the recognition not only of domestic experts but also of those of friendly countries.

As a result of what is expected to be the most important forms of the chemical warfare activity of the enemy, unexpected and massive chemical attacks, personnel will be destroyed. In the interest of protecting personnel it has become necessary to indicate continually, automatically and with great sensitivity the presence in the air of the most destructive chemical weapon, poisonous materials of the phosphoric acid ester type.

As the result of long developmental work an automatic chemical alert instrument has been developed which is actually an automated miniature biochemical laboratory which mimics in its operation the same process which takes place in the blood of a human under the influence of nerve poison.

The material needed for this process is placed in the instrument together with suitable chemicals and the process takes place on a strip. An electric sensing system watches this strip or the color thereof and sounds an alarm in case of need.

The instrument works in a sensitivity mode suitable for tactical applications and its sensitivity is such that when an alarm is sounded the personnel will have time to take protective action.

The maximal continuous, automatic operation time of the instrument with one filling is 24 hours. It can be mounted on a vehicle and is suitable for transmitting information in an automatic system. The instrument can operate under any weather or climate conditions according to military specifications.

An Instrument for Determining the Size and Place of Detonation of a Nuclear Weapon

One of the most important tasks of civil defense is a swift evaluation of nuclear strikes falling on the rear area—in the interest of establishing the need for rescue forces and tools and organizing and directing rescue operations.
This task can be carried out by means of a swift and reliable determination of the location of the nuclear strikes and of the force of the offensive weapons used. Up to now the methods used for this purpose have been based on individual—and subjective—visual observation which takes a long time and they are no longer suitable for modern requirements in several respects.

A newly developed instrument, the epimeter, serves to determine the front pressure of spherical waves or of waves which can be attributed to the spherical waves, their place of origin and the horizontal projection of the place of origin.

This instrument or system consists of an indicator-sensor and metering head, the power unit and connecting unit needed for its operation, an automatic data recording light pencil (registration) unit and a register voltage and evaluating nomogram needed to evaluate the data.

By means of light sensitive elements the indicator-sensor-metering head senses the light impulse arising from a nuclear explosion and automatically starts the registration instrument, alert and defensive equipment. In addition, within a determined interval, it measures and transmits the size of the air shock wave, its temporal course and pressure phase effect time. It also indicates and transmits the direction of the air shock wave arriving.

Photo 1. Metering head of the epimeter.
The connecting unit causing the system to operate provides the various voltages needed to operate the metering head and registration system with the aid of which the different units of the metering head can be put under tension separately and together.

It is the task of the light writing equipment in the automatic registration unit to record the data provided by the metering head (the arrival of the super pressure, its magnitude and the time of its course). Registration is on light sensitive paper and the data recorded appear and can be read under the effect of natural light without any special developing.

The Vaccination Pistol Family

One of the important tasks of the health service is providing the civilian population and army personnel with mass and swift inoculations to prevent the danger of various epidemics. To carry out this task they have developed a vaccination pistol which does not use a needle and which can be used to inoculate 1,000 people per hour, after suitable preparation.

The "Cobra" vaccination pistol can be used for preventive inoculations, to give antidotes to chemical casualties and to give pain-killers to burn or other casualties for shock prevention.

The apparatus consists of a foot operated hydraulic device to provide the pressure and of the pistol itself which actually does the inoculating. The dosage can be varied between 0.1 and 1 ml.

When the hydraulic pedal is pressed by the foot, starting the inoculation operation, oil flows through a pressure line to the pistol and forces back a tension spring therein. At the same time the backward movement of the piston in the cylindrical vaccine chamber creates a vacuum and with the aid of a valve system the liquid or vaccine is sucked up from the vaccine ampule by means of a feed needle. When the button is pushed after that the vaccine leaves the pistol through a hole of 0.13 mm diameter at such a speed that depending on the prior setting it enters the organism intracutaneously, subcutaneously or intramuscularly.

Photo 2. The vaccination pistol family at the Budapest International Fair.
The vaccine flows from the ampule through the gun to the shooting head in a closed system. The shooting head is touched only by the delubricated skin so that constant sterilization is unnecessary. After sterilization of the appropriate parts of the apparatus about 1,000 people can be vaccinated at one go with the changing of the optimal 30-50 ml ampules.

The next member of the vaccination pistol family is a mass inoculation device called the "Boa" which can be used in veterinary medicine for introduction of all serum-vaccine and medical preparations for prevention or therapy.

The dosage per shot can be varied between 0.1 and 5 ml in steps of 0.1 ml. It can be used to advantage in times of epidemics or to prevent them to carry out the mass inoculations needed. It can be used for inoculation against hoof-and-mouth disease and hydrophobia, for tuberculosis, etc. It can be used on small animals or those up to the size of cows.

The third member of the vaccination pistol family received the name "Vipera." This pistol also uses no needle and can be used for insulin shots. It is operated by an autosyphon cartridge like that used for soda water. One syphon cartridge is enough for about 5-6 insulin injections.

Photo 3. The parts of the "Vipera" vaccination pistol.

--Lajos Nagy, engineer lieutenant colonel.

Automatic Alarm System Detailed

Budapest HADITECHNIKAI SZEMLE in Hungarian No 3, 1977 pp 105-107

[Text] In the event that a military unit, institution or other organization is placed on a higher stage of battle alert then providing a swift alarm to professional personnel always causes a big problem. The automatic calling and information transmission system described below could offer great aid to duty personnel in carrying out this important task which must be done quickly. This system is suitable for giving the alarm
automatically to personnel with urban telephone service thus freeing those on duty in the unit who can use the time to carry out other tasks connected to shifting to battle readiness.

The automatic calling and information transmission system can be linked to any postal telephone net with dial connection; no remodeling is needed for the sets of subscribers called. The task of the equipment is to call automatically the pre-programmed telephone subscribers (the personnel to be alerted), to communicate to the party called the information of a tape recorder (alert, code word, etc.) and to receive the countersign or response of the party called. This system can be used most effectively where the personnel to be alerted live scattered in a large city. On small posts or in military housing belonging to a unit the alert can be given in another, simpler manner.

Construction of the Alarm System

The system has 30 calling units each of which can alert 10 preprogrammed telephone subscribers. This means a total of 300 telephones. There is a city line attached to each calling unit. These lines are connected to the automatic alarm system only if the system is started. When in a state of rest these lines are connected to the city telephone sets of various commanders in the given installation.

The calling units are combined in groups of five by one each calling unit organizer. A cassette tape recorder can be found in the box of these organizers; the tape recorders communicate the desired information. Six such calling unit organizers belong to the control organizer unit. A supplementary power source is connected to this also. The control unit combines the entire system. The individual groups can be started from here and one can turn on here the remote starting and remote control equipment or microphone.

Photo 1. The five calling units of the completed system.
Operation of the Calling Unit

When a calling unit is put into operation it calls 10 subscribers, transmits the information text and receives and registers the countersign. The numbers of the subscribers can be put on printed circuit sheets. These sheets can be changed easily and the programming of the numbers is accomplished simply by soldering short circuit tabs.

Before it is started the calling unit is in a basic state so that a telephone set on the line wherever it may be is operational. When it is started a magnetic relay goes into operation and connects the line to the calling unit. The calling unit request a dial tone from the exchange. If the calling unit does not get a line then the line request is repeated after a determined time. An indicator lamp records the fact of the repeated line request.

The dial tone goes to the amplifying stages of the calling equipment. The frequency of the last selective amplifying stage is 400 Hz. This oscillation corresponds to the frequency of the active tone (dial tone, free indicator) which the exchange gives to the subscriber when it can receive dial signals. The electronic system of the apparatus watches for the reliable presence of the dial tone and permits the next step only after a continual 400 Hz frequency has been observed for a certain time. This is necessary because it sometimes happens that the dial tone is given for only a few seconds and then it stops. It would be a mistake to start a call at this tone because the exchange could not accept the call. And a "lost" call would steal valuable seconds (or minutes) from the calling cycle.

After the reliable presence of the dial tone the electronic circuits of the calling unit produce the necessary command for the dialing impulses which control the relay and finally put on the line the impulse series corresponding to the number of the subscriber to be called (person to be alerted). The dial impulses go onto the telephone line as a result of the operation of complex logic circuits. After electronic dialing of the number being called the tape recorder transmits the information to the line or subscriber via an amplification system.

Information can be given not only from the tape recorder for it is also possible to establish direct (live) conversation between the subscriber and the operator with the aid of the microphone of the central unit.

The time of information communication can be set at different lengths. If the calling unit does not receive from the party called a countersign within the set time then the calling unit breaks the connection established and starts a call to the next subscriber in order.

If the apparatus does receive a countersign from the subscriber then it goes to the countersign evaluator circuit and if the countersign is
correct (identifiable) then the lamp registering a successful call lights up. The apparatus continues to call the programmed subscribers until every station has acknowledged receipt of the information or until the calling process is turned off.

Any subscriber can be eliminated at will from the calling cycle with the aid of a switch. The fact of elimination is indicated by a lamp if the set is busy and by the position of the switch if the set is disconnected.

The Calling Unit Organizer

There is one organizer unit for every five calling units; this distributes the supplementary power. The calling units receive from the organizer the signals needed to authorize and control operation. The calling units are connected to the organizers by cables. The tape recorder in the calling unit organizer gets supplementary power from the organizer. The information is stored on an endless magnetic tape with a period of 6 seconds.

The Control Organizer Unit

Every control unit has one organizer unit on which one can adjust the four groups to be informed. Adjustment is made, as with the cards for the numbers to be called, by soldering short circuit tabs on printed circuit sheets. A cassette tape recorder can be found in the control-organizer too, under a sealable plexiglass top. The control-organizer is connected by cables to six caller organizers or organizer units.

The Control Unit

The elements of the system are brought together by the control unit from which the programmed four groups can be started in any order at will. The calling cycle can be checked for any calling unit with the aid of calling unit selection switch.

![Photo 2. The caller unit organizer attached to a special instrument to check a number input card.](image)

With the aid of the microphone which can be connected to the control unit two-way telephone contact can be made with any subscriber. The timer can be disconnected for the time of the conversation.
The supplementary power minimum indicator circuit of the control unit constantly watches the value of the supplementary power. If the supplementary power corresponds to the pre-set level then the indicator lamp lights up indicating the minimal value of the supplementary power.

A microphone amplifier provides for two-way telephone contact between subscriber and operator. The circuit includes a microphone amplifier, earphone amplifier and separating amplifier.

Switches and indicator lamps can be found on the front panel of the apparatus. The entire system receives supplementary power by means of a switch. The calling unit to be checked can be selected by means of a graduated switch with several positions. By means of the call stopping switch one can stop the calling cycle in such a way that the calling units retain all the information (elimination and countersign registration).

In the cancel position the start-cancel switch puts the calling units in the basic state; in the start position it starts the groups.

The timer can be stopped with the timer-stop switch. By pressing the button on the switch a continuous conversation can be held with the station to which one is connected. The timing circuit of the apparatus works only after the button is released.

With the aid of the number indicating circuit the dial impulses produced in the calling unit appear on the number indicator in digital numerals after decoding by means of delaying, stepping and counting circuits.

Photo 3. Assembly picture of the control unit organizer with tape recorder.
Photo 4. Structure of the control unit.

Operation of the Equipment

In regard to its circuit switching and parts design and manufacturing technology the automatic information communication equipment belongs among the most modern alarm systems. Informing all 300 subscribers in the complete system takes only 15 minutes. Operation of the equipment requires no special knowledge; it is enough to train the operating personnel and practice putting it into operation and operating it. The apparatus can be stored for a long time in a dry, closed warehouse. It could be transported by any type of vehicle in the prescribed packaging.

In case of failure the apparatus can be repaired only by a suitable expert in a shop equipped to repair digital electronic and integrated circuit equipment. Local repairs can be made by an expert by changing cards.

--Viktor Amaczi, engineer major

8984
CSO: 2500
WEST GERMAN 'REVANCHISTS IN CASSOCKS' ATTACKED

Warsaw ZYCIE WARSZAWY in Polish No 202, 27-28 Aug 77 p 4

[Article by A.W. Wys]

[Text] Our Bonn correspondent, Zbigniew Ramotowski, wrote in early August about a certain strange, to say the least, and disquieting revisionist spectacle staged in Koenigstein-Taunus with the very significant slogan, "The Battle for Man--Freedom in the West and East."

The spectacle was strange not so much in view of its markedly revanchist character, nor so much in view of the stormy shouts directed at us Poles--since we have had time to get used to such shouts, but in view of the fact that the West German Church hierarchy acted as its figurehead in a public and official manner.

Bishop Heinrich Maria Jansen, according to a recent issue of RHEINISCHER MERKUR, citing the rights granted to him by the German Conference of Bishops, termed this spectacle a "significant part of Catholic life" and "an event on a European scale."

Well, maybe this was an event, but we are completely at ease that it was not on a European scale. On the other hand, a well-justified uneasiness is stirred by the manner in which the West German episcopate on this occasion also approached the provisions of the agreement about normalization of relations between the FRG and Poland and the final document of CSCE.

Polish society, and especially its religious believers, together with the entire Catholic clergy which loves its country, cannot be indifferent in the face of the fact that none other than the Catholic Church in the FRG, unfortunately, has for years shown an attitude toward Poland which is significantly more intransigent than that of, for example, the Lutheran Church.

With the support and under the auspices of the Catholic Church hierarchy, very numerous organizations and groups clearly linked with the so-called League of Expellees, that is to say with Messrs Czaj and Hupka, are active in the FRG. It suffices here to name such groups, so well deserving for
propagating a revanchist state of mind but having so little to do with the principles of Catholic ethics, as the "Working Community of Catholic Expellee Organizations," "The Catholic Refugee Council," or the "Catholic Working Group for Expellee Matters," to say nothing of the famous "Catholic Eastern Academy," which is called, together with the Koenigstein Center, "the forge of the revanchist cadres of the Catholic Church."

It was of interest to us on what ecclesiastical-legal basis, so many years after the signing of the agreement about the normalization of Polish-FRG relations, and also after the official acknowledgement of the western border of Poland on the Oder and the Neisse by the Vatican, the revanchists in cassocks can carry on their activity on the territory of the German Federal Republic. How do they reconcile their activities with the recent visit to Poland of the chairman of the German Conference of Bishops, Cardinal Hoeffner, who—by the way—did not neglect to send a greeting to the revisionists gathered at Koenigstein.

We have ceased to be surprised when we read the text of the official statutes of the German Conference of Bishops, which, as Article I states, "is an organization of the bishops of the German diocese, created with the agreement of the Apostolic See and charged— with regard for the provisions contained in Article II—with studying and supporting common pastoral duties, with mutual counsel, with the necessary coordination of the work of the Church, and likewise with maintaining liaison with other Conferences of Bishops."

Article II of the aforesaid statute states clearly that, "Currently, the members of the German Conference of Bishops are a) all local ordinaries of every rite, with the exception of vicars general, b) coadjutors, c) suffragans and other titular bishops filling special positions assigned to them by the Apostolic See or the Conference of Bishops..."

And in the third clause of this article it is said directly that, "Apostolic visitors from Breslau, Ermland, and Schneidemuehl, and canonie visitors from Glatz and Branitz, on account of the special situation of the expellees from the Fatherland in Germany, have the continued right which belongs to the titular bishops in the matter of participating in plenary meetings."

In order to clarify this for the younger readers, I should add here that it is a question of guaranteeing all priviledges to Church dignitaries, called by the right of escheat "apostolic visitors" or "canonical visitors" of Polish Wroclaw, Warmia, Pila, Klodzko. The Conference of German Bishops seems not to remember that, in all these diocese and church districts, only Polish bishops exercise and can exercise stewardship, about which one can read also in the Vatican's official ANNUARIO PONTIFICO."

So we already know on what basis the revanchists in cassocks are acting. Why do they, at every meeting of compatriots, say field masses? Because they dream of a return to the irrevocably lost dioceses in the East. In their obstinacy, they forget even about that "detail" that, in fact, up to 1945 the majority of Germans living in those regions were of the Lutheran faith.

CSO: 2600
'HUMANITE' ARTICLE ON GIEREK CONSULTATIONS WITH WORKERS CITED

Warsaw SZTANDAR MŁODYCH in Polish 7 Sep 77 p 5

[Text] The French weekly HUMANITE DIMANCHE has published a report by its correspondent Raymond Lavigne entitled "A Day With Edward Gierek." The journalist had the opportunity to accompany the PZPR Central Committee First Secretary during his visit to Slupsk Voivodship. The newspaper correspondent devotes a great deal of attention to the form in which Edward Gierek makes contact with working people in the countryside. On an average of once a week, Lavigne writes, the first secretary arrives at an industrial plant where he enters into direct conversation with the workers. Such visits are not inspections. Gierek is a leader who, through personal contacts, openly gets information directly from the source, who listens more than he talks, and who, during meetings, obtains information and draws conclusions for his own concrete work.

This so-called "Gierek style" is based on regular personal contacts with the people and a realistic approach to difficulties, the French journalist writes. Direct contacts with workers and consultations, of course, are not the only channel through which Poles express themselves. Nevertheless this is [according to Lavigne] an original aspect of democracy in Poland in 1977. The concern is to make it possible for citizens to participate in public life and in decisions, and socialist Poland gains much from this regular confrontation with the nation. The Polish experiences are interesting, Lavigne writes.

CSO: 2600
LAW ON CLASSIFICATION OF WORKERS BY WORK GROUPS

Bucharest BULETNUL OFICIAL in Romanian Part I No 70, 16 Jul 77 pp 1-3

[Decree of the Council of State Regarding the Placement of Workers in Work Groups I, II or III]

[Text] For the purpose of ensuring ever better work conditions and regulating the placement of persons into work groups I, II or III for pension purposes, the Council of State of the Socialist Republic of Romania decrees:

Article 1. In accordance with the conditions, complexity and ever greater and more important demands of work, places of work are classified as work groups I, II or III.

Article 2. (1) Places of work, by virtue of their nature and type, where work is carried out under unusual conditions are permanently categorized as work groups I and II. Certain places of work where there exist, likewise, unusual conditions, but conditions which can be improved by technical or organizational measures, are temporarily categorized in these two groups and are reviewed each year in accordance with the modification of the conditions.

(2) The following are permanently placed in work group I:

a) miners and other personnel categories who work underground;
b) personnel who work with radioactive ores;
c) divers and munitions workers;
d) persons on off-shore drilling platforms;
e) air crews in civil aviation who yearly meet the minimum number of hours of flight as outlined by the different types of aircraft and jobs in annex one;
f) personnel who carry out dangerous operations in the making, handling and transport of explosive products and munitions and their elements having very sensitive explosives, including the destruction and deactivation of these items;
g) persons who fire bricks and who work with silicon bricks or who work with temperatures above 40 degrees Celsius;
h) glassblowers who work with and fashion molten glass;
i) persons who paint double bottom ships;
j) persons who work in leper hospitals.

(3) The following jobs are permanently placed in work group II:

a) miners and other personnel who work underground in salt mines;
b) persons who work in drain pipes at depths greater than 8 meters;
c) air crews in civil aviation who meet at least 50 percent of the flight hour requirements (flights and take-offs) as outlined in work group I;
d) welders who work in the interior of ships, boilers, pipes, locomotive cylinders, enclosed metal supports, tanks, reservoirs, and other enclosed areas;
e) personnel who carry out dangerous operations in the making, testing, receiving, checking and handling of munitions and their elements having explosives with a lesser degree of sensitivity under the conditions outlined in annex two;
f) personnel who directly carry out the cleaning of underground sewers, industrial smokestacks, gas vents, sewers at cellulose plants, refineries, in the interior of cisterns, reservoirs, tanks and pipes containing oil;
g) personnel who make jet aircraft cabins air-tight;
h) personnel in engine rooms (boilers and motors) aboard ocean-going ships, maritime and riverine vessels and aboard vessels which carry out activities related to off-shore drilling; personnel aboard fishing vessels in maritime and ocean waters (excluding auxiliary personnel);
i) personnel who handle and move about materials in cooling cells and refrigerated rooms where the temperatures are below 25 degrees Celsius.

(4) Artistic personnel in state institutions who work as ballet dancers and acrobats are included in work group I and artistic personnel in state institutions who perform as solo vocalists in operas and operettas, players of wind instruments and as circus performers who work on horseback or who train wild animals are included in work group II.

Article 3. (1) Those places of work that are temporarily placed in work groups I or II, until measures are taken to improve conditions, will be established yearly within the maximum number allowed by the sole national plan and by the joint order of the Ministry of Labor, the Supreme Health Council and the Central Council of the General Union of Trade Unions of Romania.

(2) In all situations in which, as a result of the measures taken, the conditions at the place of work temporarily classified in work groups I or II have improved or normalized, the units are obligated to include them, according to the legal provisions, in the appropriate work group.

Article 4. The placement of jobs in work groups I and II is carried out within the limits of the maximum number of persons approved each year and parceled out to the ministries, the other central organs and the
county and municipal Bucharest peoples councils, with the adoption of the sole national plan for economic and social development, as follows:

a) for those places of work of a permanent nature, the number is established in accordance with the number of personnel necessary to achieve planned levels of production;

b) for those of a temporary nature, the number is established in accordance with the provisions of the program of measures for the improvement of work conditions or other technical-economic documents.

Article 5. Personnel at other places of work are classified in work group III.

Article 6. (1) The ministries, other central organs, the executive committees of the county people's councils and the municipality of Bucharest, industrial centrals, enterprises and institutions are obligated to take the necessary measures so as to continuously improve work conditions, to prevent professional accidents and illnesses and rigorously respect the norms of worker safety, and to protect the life and health of each worker during the production process.

(2) In those units in which the measures outlined for ensuring certain appropriate work conditions were not achieved, programs of measures will be drawn up so that by the end of 1978 the causes of these unusual work conditions will be eliminated.

(3) These programs will be discussed in workers' general assemblies and approved by hierarchically superior organizations which will then follow and systematically review the fulfillment of these programs within the established timeframes.

Article 7. (1) The planning and research institutes are obligated to outline, in accordance with existing regulations, right from the beginning phase all the solutions that can ensure the appropriate conditions for the carrying out of work with respect for the legal norms of safety techniques and worker protection so as to eliminate any danger of illness or accident.

(2) The ministries, other central organs and the executive committees of the county people's councils and the municipality of Bucharest are obligated, in their technical-economic documents regarding investments that are submitted for approval to the appropriate authority, to specify that appropriate work conditions have been ensured.

(3) In those cases in which, despite the technical and organizational measures taken, there are still places of work where work is carried out under unusual conditions because of the nature and type of activity, mention will be made of the number and category of personnel that will work under these conditions.
Article 8. The Ministry of Labor, the Ministry of Health and the Central Council of the General Union of Trade Unions in Romania will review the manner in which the provisions of this decree are respected and will annually inform the Council of Ministers regarding the results obtained in improving work conditions.

Article 9. Annexes one and two of this decree are integral parts of this decree.

Article 10. (1) The provisions of this decree go into effect on 1 July 1977.

(2) On the same date, Council of Ministers Decision No 1061 of 15 May 1968 is abrogated regarding the establishment of criteria for the placement of jobs in groups I and II as outlined in Law No 27/1968 and the establishment of the organs empowered to make these placements, as well as Council of Ministers Decision No 1296 of 25 December 1975 regarding the completion of Council of Ministers Decision No 1061/1968.

Nicolae Ceausescu, president of the Socialist Republic of Romania Bucharest, 12 July 1977, No 215.

Annex One

Group I

Types of Aircraft, Position Held and the Number of Flight Hours (flights and take-offs)

a) Public transport jet and turbo-prop aircraft, 600 flight hours;
b) Classical public transport aircraft or aircraft in health or specialized missions, 500 hours;
c) Helicopters or utility aircraft, 450 hours;
d) Prototype aircraft in test flights, 100 hours;
e) Aircraft flown in delivery flights (as a crew), instructors in schools, courses and air clubs in conventional aircraft, 250 hours;
f) Instructors in schools, courses and air clubs in jet or turbo-prop aircraft, technical personnel who take delivery and conduct technical reviews of aircraft in flight, test flight personnel for new types of aircraft, 200 hours;
g) Flight crew evaluators, in-flight, 350 hours;
h) Instructors in schools, courses and air clubs in gliders (take-offs), 600;
i) Parachutists who are professionals (jumps), 200
j) Personnel who receive new parachutes (jumps), 50
k) On-board service personnel, 700 hours.

Proof of the number of flight hours, take-offs, jumps or receipts of aircraft is presented by use of the flight card. For periods prior to 11 June 1954, proof is provided by certificates issued by the Department of Civil Aviation.
For air crews in civil aviation, calculation of a pension will take into consideration each year worked in group I or II as follows:

a) 2 years for work group I;
b) 1 year and 6 months for work group II.

Annex Two

Permanent Places of Work (Activities) Having Dangerous Operations Which Fall Within Article 2, Paragraph (3), Letter e)

1. Personnel who carry out dangerous operations in the making, testing, reception, checking and handling of munitions and their elements containing explosives of a lesser degree of sensitivity (including those operations of moving, festivites and hydraulics).

2. Personnel who take delivery of new armaments, through firing, and after carrying out capital repairs conduct firing, as well as conducting test firing in specialized and normal firing ranges.

3. Personnel who carry out analyses, tests, check-outs and technical research, for mining with explosives and pyrotechnical powders and products in laboratories organized for this purpose.

4. Personnel who experiment, receive and check explosives, powders, munitions and other elements of loaded munitions, as well as pyrotechnical products.

5. Personnel who repair and maintain catapults.

6. Personnel who analyze special fuels for military technology.

8724
CSO: 2700
DECREE ON CRITERIA FOR DETERMINING DISABILITY

Bucharest BULETINUL OFICIAL in Romanian Part I No 70, 16 Jul 77 pp 3-4

[Decree of the Council of State Regarding the Criteria and Norms for the Placement of Workers in Disability Categories]

[Text] The Council of State of the Socialist Republic of Romania decrees:

Article 1. Persons who have lost their ability to work are placed in work disability categories I, II or III on the basis of the criteria and norms established in this decree.

Article 2. Placement in disability categories is done keeping in mind the following basic criteria:

a) the nature, seriousness, symptoms and evolution of illnesses, as well as their influence upon the ability to work;

b) the possibilities of recovering the ability to work in accordance with the nature of the work done;

c) the elements which can lead to the further aggravate of illnesses if work activities are continued.

Article 3. Persons placed in work disability category I are those who have totally lost their ability to work because of an illness or accident which has gravely affected their health and who are in need of permanent care and supervision from other persons.

Article 4. Persons placed in work disability category II are those who:

a) have totally lost their ability to work, but who take care of themselves, without the need of permanent care from other persons;

b) have lost their ability to work to a great degree and where their state of health does not permit them to work under the conditions of normal and reduced work programs.
Article 5. Persons placed in work disability category III are those who have lost at least half of their ability to work and can carry out an activity in the same or another profession having reduced demands during a work program that has been cut back by one-half.

Article 6. (1) The medical criteria of clinical diagnosis, functional diagnosis and evaluation of the ability to work is carried out by the Ministry of Health and the Ministry of Labor and is approved by the Superior Health Council and the Central Council of the General Union of Trade Unions.

(2) The criteria outlined in the preceding paragraph must obligatorily include the concrete characteristic elements, regardless of the nature of the illness, upon which can be established the total loss, the loss to a great degree or the loss of half of the ability to work.

Article 7. (1) Proposals for disability pensions are made by the territorial hospital which provides medical care to the person in question.

(2) The medical documentation containing the proposal for a disability pension is sent to the commission for pensions and social security in the unit. In cases where, after checks are carried out, the commission finds that the proposal for a disability pension has grounds, the unit forwards the pension folder to the directorate for work and social welfare problems, within the time limits outlined by law.

Article 8. (1) The directorate for work and social welfare problems submits the folder to the commission for medical expertise and recuperation of the ability to work which is obligated to establish the clinical diagnosis, the functional diagnosis and the conclusions regarding the person's ability to work.

(2) In cases where it is considered necessary, the commission can call for certain supplementary medical examinations, in an out-patient status or by admitting the person to a hospital.

(3) In accordance with the checks carried out, the commission recommends, according to each case, the placement of the person in a disability category or rejects the request for a disability pension.

(4) In situations where medical expertise establishes that the person in question has lost half of his ability to work and is to carry out a work program that has been reduced by one-half, the commission for medical expertise and recuperation of the ability to work will outline, if there is need, the sectors of work which are contra-indicated.

Article 9. The commission for medical expertise and recuperation of the ability to work can issue medical evaluations in locations other than the one where it is headquartered in the county if in those other locations there are territorial hospitals and there exists a number of cases that require medical evaluations.
Article 10. The decision placing a person in a disability category or rejecting a disability pension is issued by the county pension commission or the pension commission of a sector of the Bucharest municipality, whichever is appropriate.

Article 11. Medical personnel, as well as the commissions which have authority in the field of medical expertise and placement of persons in disability categories, have the entire responsibility for strictly respecting the criteria and norms outlined in this decree, as well as establishing the ability to work and the placement of persons in disability categories.

Nicolae Ceausescu, President of the Socialist Republic of Romania
Bucharest, 12 July 1977, No 216.

8724
CSO: 2700
DECREE ON OPERATION OF PENSION COMMISSIONS

Bucharest BULETINUL OFICIAL in Romanian Part I No 70, 16 Jul 77 pp 4-8

[Decree of the Council of State Regarding Approval of the Regulation for the Organization and Operation of the Commissions for Pensions and Social Security and the Commissions for Medical Expertise and the Recuperation of the Ability to Work]

Article 1. Approval is given to the Regulation for the Organization and Operation of the Commissions for Pensions and Social Security and the Commissions for Medical Expertise and Recuperation of the Ability to Work outlined in the annex of this decree.

Article 2. The Council of Ministers, the Ministry of Labor, other ministries and central organs, the executive committees of the county people's councils and the municipality of Bucharest, state units and agricultural cooperative units will take measures to constitute, within 15 days, the commissions outlined in the regulation approved by this decree.

Article 3. The Council of Ministers will present, within 30 days of the approval of this decree, proposals regarding the improvement of the organization of the central and local apparatus having authority in the field of pensions and social security.

Nicolae Ceausescu, president of the Socialist Republic of Romania Bucharest, 12 July 1977, No 217.

Regulation for the Organization and Operation of the Commissions for Pensions and Social Security and the Commissions for Medical Expertise and the Recuperation of the Ability to Work

52
Chapter I

General Provisions

Article 1. For the purpose of the strict respect of legal provisions and the operative and correct resolution of workers' requests regarding pensions, medical expertise, social security and other rights of a social nature, the following commissions are to operate, according to the laws:

a) the commissions for pensions and social security in state units and agricultural production cooperatives, as well as the commissions for pensions and social security for peasants having private farms in non-cooperativized zones;

b) the county and Bucharest municipality pension commissions;

c) the commissions for medical expertise and the recuperation of the ability to work of the counties and the municipality of Bucharest;

d) the Central Pension Commission.

Article 2. According to law, the commissions are composed of members of the collective leadership of the units, delegates of trade union and women's organizations, representatives of the workers, deputies, doctors and specialists from personnel and finance offices.

Article 3. In the exercise of their authority, the members of the commissions for pensions and social security in the units, the commissions for pensions of the counties and the municipality of Bucharest and the commissions for medical expertise and the recuperation of the ability to work are responsible for the strict respect of the legal provisions in the establishment of pensions, the placement of persons in work disability categories and the granting of the other social security rights.

Article 4. (1) All socialist units have the obligation to ensure that correct data is maintained for all their personnel regarding length of service, pay and other necessary elements for the establishment of a pension and other social security rights.

(2) Similarly, the units are obligated to provide to the commissions all the conditions necessary for the proper carrying out of their activities.

Chapter II

The Commissions for Pensions and Social Security

A. The Commissions for Pensions and Social Security in State Units

Article 5. (1) The commissions for pensions and social security constituted in the state units operate alongside the collective leadership organs of these units.
(2) The commissions for pensions and social security are composed of three to seven members and are headed by a representative of the unit's collective leadership.

Article 6. (1) The following are members of the commissions for pensions and social security in state units:

a) representatives of personnel and finance offices in the units;

b) delegates of the trade union organization and women's commissions;

c) medical personnel specializing in medical expertise and the recuperation of the ability to work or medical personnel who provide medical care to the unit's personnel;

d) one or two representatives of the workers at the unit.

(2) The nominal membership of the commission is established by the collective leadership organ together with the trade union committee at the unit.

Article 7. The commissions for pensions and social security in state units have the following attributes:

a) they follow the strict respect for the laws regarding the correct daily completion of the work card, as well as the other documents necessary for the completion of the pension folder;

b) they follow the respect for the legal provisions in the granting of other social security rights and state allotments to children, as well as other material rights of a social nature;

c) they analyze and make proposals for the placement of unit personnel in disability categories;

d) they follow and help in the timely completion of the pension folder for age limit, disability and surviving children pensions; they check the completed folders and notify the unit leadership of any irregularities found;

e) they support activities for work safety and hygiene, the prevention of accidents and illnesses; they organize, together with the appropriate authorities, periodic analyses of the state of work disabilities and incapacitations among the ranks of the personnel in the unit and controls the manner of applying the established measures;

f) they establish, together with the trade union organs, the distribution of tickets for vacations and treatment in balneo-climatic resorts for the unit's personnel;
g) they follow and support the placement of personnel who, because of certain accidents or illnesses can no longer work under the same conditions, in new places of work corresponding to their ability to work or in programs having a work schedule reduced by half;

h) they fulfill any other attributes outlined by legal provisions.

B. The Commissions for Pensions and Social Security in Agricultural Cooperative Units

Article 8. (1) The commissions for pensions and social security in agricultural cooperative units are established alongside the collective leadership organs of these units and are headed by the vice president or another member of the leadership council or, if need be, of the worker's council.

(2) The commissions are composed of three to seven members, including the health clinic doctor. The nominal membership of the commission is established by the general assembly of the agricultural cooperative unit.

Article 9. The commissions for pensions and social security in the agricultural cooperative units have the following attributes:

a) they follow the timely completion of the folders for age limit, disability and surviving children pensions; they check the completed folders and notify the unit leadership of any irregularities found;

b) they analyze and make proposals for placement of agricultural cooperative unit personnel in disability categories;

c) they follow the respect for the legal provisions in the granting of the other social security rights;

d) they make proposals to the collective leadership organ regarding the distribution of tickets for rests at balneo-climatic resorts for members of the cooperative.

C. The Commissions for Pensions and Social Security for Peasants Having Private Farms in Noncooperativized Zones

Article 10. (1) In towns in the non-cooperativized zones, commissions for pensions and social security will be established alongside the communal people's councils and headed by the vice president of the executive bureau of the people's council.

(2) The commission is composed of: the secretary of the executive bureau, the health clinic doctor, as well as five to seven deputies and peasants having private farms, as designated by the citizens' assembly. The nominal membership of the commission is approved by the executive bureau of the communal people's council.
Article 11. The commissions for pensions and social security have the following attributes:

a) they follow the timely depositing of personal contributions to the pensions and social security funds, as well as the deliveries of products to the state reserves by the peasants having private farms;

b) they check the accuracy of the entries in the pension and social security cards showing personal contributions and product deliveries to the state reserves;

c) they analyze and make proposals for the placement of peasants having private farms in work disability categories;

d) they check and confirm the pension folders for age limit, disability and surviving children pensions.

Chapter III

The County and Bucharest Municipality Commissions for Pensions

Article 12. The county commissions for pensions are named by decision of the executive committee of the county people's council, with the approval of the Ministry of Labor and the Central Council of the General Union of Trade Unions, with the following membership:

President: a vice president of the executive committee of the county people's council;

Members: the director of the directorate for work and social welfare problems;

--a member of the bureau of the county trade union council;
--a representative of the leadership of the health directorate;
--a judge designated by the president of the county tribunal;
--a representative of the county union of agricultural production cooperatives for the solution of pension requests made by the members of the agricultural production cooperatives;
--a representative from the leadership organs of the county women's and youth organizations.

Article 13. (1) In Bucharest municipality, commissions for pensions are established for each sector with the following membership:

President: a vice president of the executive committee of the sector people's council;

Members: a judge designated by the president of the Bucharest Municipal Tribunal;
--a member of the bureau of the trade union council of the sector;
--a representative of the Directorate for Work and Social Welfare Problems of Bucharest municipality;
--a representative of the Health Directorate of Bucharest municipality;
--a representative of the leadership organs of the women's and youth organizations in the sector;
--a representative of the leadership council of an agricultural production cooperative from the suburban communities for the solution of pension requests made by members of the agricultural production cooperatives.

(2) The nominal membership for the pension commissions in the sectors is established by decision of the Executive Committee of the Bucharest Municipality People's Council with the approval of the Ministry of Labor and the Central Council of the General Union of Trade Unions.

Article 14. The county and Bucharest municipality pension commissions have the following attributes:

a) they issue decisions on pensions for reaching certain age limits, disability and surviving children on the basis of the proposals of the commissions for pensions and social security in the units, as verified by the pension offices within the directorates for work and social welfare problems in the counties and Bucharest municipality;

b) they issue decisions to place persons in disability categories at the proposal of the commission for medical expertise and the recuperation of the ability to work;

c) they examine appeals against the solution adopted by the commissions for pensions and social security and the commissions for medical expertise and the recuperation of the ability to work. The examination of appeals is to be carried out within 30 days after their receipt and the person making the appeal is to also be summoned;

d) they guide and control the activities of the commissions for pensions and social security in state units and agricultural cooperative units, as well as those commissions alongside the communal people's councils.

Article 15. (1) The decisions of the county and Bucharest municipality pensions commissions are communicated to the units and persons in question in 15 days at the most.

(2) Appeals against the decisions of the pension commissions outlined in paragraph one can be made within 30 days of the decision to the Central Pension Commission.

Chapter IV

The Commissions for Medical Expertise and the Recuperation of the Ability to Work
Article 16. (1) The commissions for medical expertise and the recuperation of the ability to work operate within the directorates for work and social welfare problems in the counties.

(2) In the Bucharest municipality, the commissions operate within the directorate for work and social welfare problems and are organized in each sector.

Article 17. (1) The commissions for medical expertise and the recuperation of the ability to work are composed of 9 to 13 members. Members of the commissions include:

--the director of the directorate for work and social welfare problems or his deputy;
--the director of the health directorate or his deputy;
--representatives of local trade union organs;
--representatives of women's organizations;
--representatives of the workers in socialist units;
--a doctor specializing in medical expertise regarding the ability to work or two medical specialists in the areas of the type of afflictions experienced. President of the commission is the director of the health directorate or his deputy.

(2) The nominal membership of the commission for medical expertise and the recuperation of the ability to work is approved by decision of the executive committee of the county or Bucharest municipal people's council, with the approval of the Ministry of Labor and the Central Council of the General Union of Trade Unions.

Article 18. The commissions for medical expertise and the recuperation of the ability to work have the following attributes:

a) they check the basis and legality of the proposals of the commissions for pensions and social security regarding the placement of persons in work disability categories; to verify the diagnosis and establish the conclusions, the commissions can, if need be, call the person in question before the commission, ask for additional medical examinations or enter the person in a specialized health unit;

b) they establish the cause of the disability, the category of disability and the period of medical review, according to law;

c) they propose that the county and Bucharest municipality pension commissions issue decisions for the placement of persons in disability categories or the rejection of disability pension requests;

d) they periodically analyze the state of health of workers in the socialist units in their territories together with local health and trade union organizations and propose the measures necessary for the elimination of the deficiencies found;
e) they analyze proposals for extensions of medical leaves over 90 days and approve the issuance of medical certificates for these leaves;

f) they guide and control the activities of the commissions for pensions and social security in state units and agricultural cooperative units and those alongside the communal people's councils in problems referring to medical expertise and the recuperation of the ability to work.

Article 19. The commissions for medical expertise and the recuperation of the ability to work carry out their activities within hospitals and polyclinics.

Chapter V

The Central Pension Commission

Article 20. The Central Pension Commission operates at the Ministry of Labor and has the following membership:

President: a deputy minister of labor;

Vice President: a secretary of the Central Council of the General Union of Trade Unions;

Members: the director general of the General Directorate of Social Security and Pensions in the Ministry of Labor;

--the director of the Institute for Medical Expertise and the Recuperation of the Ability to Work;

--a representative of the Ministry of Justice, the Ministry of Finance, the Ministry of Health, the Central Council of the General Union of Trade Unions, the Central Committee of the Union of Communist Youth and the National Council of Women designated from among the members of the leadership organs of these ministries and organizations;

--a representative of the National Union of Agricultural Production Cooperatives for the solution of pension requests made by the members of the agricultural production cooperatives.

Article 21. (1) The Central Pension Commission is an organ of appeal and review. In this quality, the commission judges and decides upon requests for the review of decisions handed down by the county and Bucharest municipality pension commissions and follows the correct application of pension legislation.

(2) In fulfilling its tasks, the Central Pension Commission has the following attributes:
a) it examines and resolves appeals for the review of decisions on pensions or the placement of persons in work disability categories issued by the county and Bucharest municipality pension commissions;

b) it guides and controls the commissions for pensions and the commissions for medical expertise and the recuperation of the ability to work, in the counties and Bucharest municipality, following these organizations' respect for legalities in their fields of activity;

c) it follows the correct application of pension legislation by territorial pension units and organizations for state social security.

(3) In fulfilling its attributes of guiding and controlling, the Central Pension Commission uses specialized personnel from the Ministry of Labor and the Institute for Medical Expertise and the Recuperation of the Ability to Work. Similarly, the commission is assisted in these actions by the Ministry of Health and the Central Council of the General Union of Trade Unions.

Article 22. Appeals to the Central Pension Commission are addressed directly or through the directorates for work and social welfare problems within 30 days of the receipt of a decision.

Article 23. The decisions of the Central Pension Commission in resolving appeals regarding the placement of persons in work disability categories are adopted with the approval of the Institute for Medical Expertise and the Recuperation of the Ability to Work.

Article 24. (1) Documentation of the secretariat of the commission is ensured by the General Directorate for Social Security and Pensions in the Ministry of Labor.

(2) Decisions of the commission are communicated to the persons in question and the directorates for work and social welfare problems concerned within 30 days.

Chapter VI

The General Work Procedures of the Commissions

Article 25. (1) The pension folder is completed by the unit where the person employed is to be pensioned.

(2) The pension folder must include the pension file and other official documents completed according to law which show the person's age, length of service, group of work, pay received and other elements to calculate his rights to a pension. The pension folder for a disability pension must obligatorily include medical documentation with the conclusions of medical evaluation confirmed by the doctor of the enterprise and territorial hospital.
(3) The unit has the entire responsibility for the accuracy of the data contained in the pension folder and the pension file.

Article 26. (1) In the case in which the commission for pensions and social security in the unit considers that the total or partial loss of the ability to work cannot be confirmed, it informs, in writing, the leadership of the unit, as well as the person in question, of this conclusion.

(2) If it is necessary to change the place of work or enroll the person in a work program that has been reduced by half or requalify the person in question, the commission for pensions and social security makes proposals to the leadership of the unit and assists in realizing these programs.

Article 27. (1) The completed folders, checked by the commission for pensions and social security, are forwarded by the units to the directorate for work and social welfare problems in the area where the person in question lives according to the following timeframes:

a) at least 90 days prior to the date of pensioning for the amount of work done and for reaching a certain age limit;

b) within 30 days from the receipt of the decision of placement in a disability category for disability pensions;

c) within 30 days from the date of death of the provider for surviving children pensions.

(2) The directorate for work and social welfare problems examines the folder and, within 30 days, proposes to the county or sector of Bucharest municipality pension commission that it issue a decision or, if need be, returns the folder to the unit if the legal conditions have not been fulfilled.

(3) In cases of disability pensions, the directorate for work and social welfare problems submits the folder to the commission for medical expertise and the recuperation of the ability to work.

Article 28. The commissions for medical expertise and the recuperation of the ability to work verifies the grounds and legality of the proposals of the commissions for pensions and social security in units regarding the placement of persons in work disability categories and propose to the county or Bucharest municipality pension commissions that they issue decisions or, if need be, reject requests for work disability pensions.

Article 29. The county and Bucharest municipality pension commissions issue pension decisions in three copies, with one copy being sent to the person in question and one to the unit that submitted the pension folder.
Article 30. The periodic medical review is carried out by the offices for medical expertise and the recuperation of the ability to work according to the established timeframes and laws. The conclusions of the medical review are sent to the commissions for medical expertise and the recuperation of the ability to work.

Article 31. Documentation and the medical folders for disability pensions are held by the offices for medical expertise and the recuperation of the ability to work.

Chapter VII

Joint and Final Provisions

Article 32. In each case, the conclusions, proposals and decisions of the commissions outlined in this regulation are valid if they were agreed upon by at least two-thirds of the number of the members in the commission.

Article 33. The decisions of the county and Bucharest municipality pension commissions, as well as those of the Central Pension Commission, are final if they are not contested within the noted timeframes.

Article 34. The provisions of this regulation supplement other legal provisions in this matter contained in legislation for pensions and social security.
SUMIDJA REGION SHEPHERDESSES BEING TRAINED IN MARTIAL ARTS

Belgrade POLITIKA in Serbo-Croatian 4 Aug 77 p 6

[Article by R. Djukanovic: "A Company of Shepherdeses Is on the Way"]

[Text] Moving in single file, carrying gear as though they were in wartime formation, the girls in the company crossed the road that meanders through the docile village of Banja and suddenly vanished into a dense field of corn. One of the girls stopped to observe the slopes of Vencac through her binoculars.

A little later, the girls were listening to a lecture on the submachine gun at the "Slobodan Milic" youth center, which is undoubtedly the most modern in this part of the Sumadija region. The girls are from the villages in the vicinity of Bukulja and Vencac. They are the ones who stayed home after finishing elementary school to make a living from agriculture, raising livestock and fruits and vegetables.

"Where were you just now?"

"It was reported to us," responded Snezana Stankovic from the village of Garasi, "that an enemy group was poisoning livestock and drinking water on the slopes of Vencac."

The company of shepherdeses had successfully executed the assignment, eliminating the three spies before they could try anything.

On the grounds, a fine whitewashed building; inside, clean bedrooms, dining hall, classrooms, laboratory, kitchen, rifle racks; outside, in front, tents where instruction is given. Everything is just like a real garrison. And life is as it is in a garrison: up at 0500 hours as day is breaking, taps at 2100 hours, afterwards dancing, singing, strolling, the television program when night has fallen over the village.
The command staff consists of Milinko Simicevic, chief of staff; Lieutenant Colonels Milan Zivanovic and Dragan Gavrilovic; and health worker Nada Celovic. They all make an effort to teach the girls as well as possible about how to defend the country if need be, about the ordering of our society, about self-management, about human health, and about various types of first aid. From time to time, there is a chance to chat with veterans from Sumadija.

According to the staff people, the girls are most interested in weapons and rifle firing. In the last 2 days, they have been listening with extraordinary attention to lectures on nuclear and chemical weapons.

"Certainly," said Nada Djordjevic from Gornja Tresnjevica. "What use is it to me if I have sheep, cows, fields, orchards if I don't know how to defend all that against an enemy. If need be." The same opinion is held by her companions from Vencac, Misaca, Ranilovic, Stojnik, Orašac, Garasi--they are the descendants of the heroine Darnika Radovic from Rajkovac and the courageous partisan women Nada Pavlovic and [line or lines omitted] Tenkic from Banja, Danica Pajevic from Vrbica, and the 7,500 Sumadija partisans who gave their lives for today's freedom.

"But now," someone interjected, "all of this is just practicing."

Almost all of them shrieked at the top of their lungs: "Just let a real enemy come and he'll see how the girls of Sumadija will be waiting for him." Many of them were actually angry at the remark about the difference between playacting and reality.

We left behind the bivouac with its shepherdesses, diggers, and gardeners--hard-working farm women who are acquiring a new skill.