REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viewgraphs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NexGenBas Testing Brief (Viewgraphs)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sid Jones</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Warfare Center Aircraft Division</td>
<td></td>
</tr>
<tr>
<td>22347 Cedar Point Road, Unit #6</td>
<td></td>
</tr>
<tr>
<td>Patuxent River, Maryland 20670-1161</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Systems Command</td>
<td></td>
</tr>
<tr>
<td>47123 Buse Road Unit IPT</td>
<td></td>
</tr>
<tr>
<td>Patuxent River, Maryland 20670-1547</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release: distribution is unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(301) 342-1601</td>
</tr>
</tbody>
</table>
NexGenBus

Fibre Channel
Test and Evaluation

Approach

- Objective:
 - Determine as reasonably possible, can Fibre Channel meet our future Operational Requirements.

- Methods:
 - Analysis
 - Demonstration
 - Simulation
Methods

• Analysis
 – Port Functions
 • Physical Plant
 • Transmission Protocol
 • Signaling Protocol
 – Node Functions
 • Common Services
 • Mapping Layer for Upper-Level Protocol

Analysis Method

• Port Functions
 – Physical Plant
 • Cable assemblies
 – Balanced transmission line
 – Unbalanced transmission line
 – Connectors
 – Operational Environmental
 • Transmitters and Receivers
 – clock recovery
 – bit error detection
Analysis Method

- Port Functions (continued)
 - Transmission Protocol
 - 8b/10b encoding/decoding
 - ensures a minimum number of clock transitions while maintaining a dc balance and providing word alignment
 - ordered sets
 - identify frame boundaries and maintain the link
 - Signaling Protocol
 - defines the rules for transferring blocks of data
 - frame structure and byte sequences

Analysis Method

- Node Functions
 - Common Services
 - a set of services that are common across multiple ports of a node
 - Mapping Layer
 - defines the steps required to perform the functions identified by a Upper-Level Protocol
 - for each ULP there is a corresponding mapping
 - a construct for establishing the endpoint of the node
Analysis Results

- Determined that most of the test elements could not be isolated for testing.
- Identify specific test objectives for Demonstration and Simulation.
 - Demonstration
 - Physical plant
 - Simulation
 - Node to Node functions

Analysis Results

- Test objectives for Demonstration
 - Physical Plant
 - Eye-diagram waveform test
 - Cable interoperability test
 - Transmission rate test
 - Noise rejection test
Analysis Results

- Cable assemblies for the tests
 - Gore Quad (balanced pair)
 - FCN-1056 w/Mil-C-38999 style connector
 - Mil-C-17/94 (unbalanced)
 - RG-179 w/BNC connector
 - Mil-C-17/110 (unbalanced)
 - RG-302 w/BNC connector

Analysis Results

- Test objectives for Simulation
 - Node to Node functions
 - Class of Service
 - Latency
 - Synchronicity
 - Topologies
 - Upper-Level Protocols
Methods

- Demonstration
 - Eye-diagram waveform
 - overall signal quality
 - Cable interoperability
 - meet the specific requirements
 - Transmission rate
 - maximum frame data rate
 - Noise rejection
 - simulate EMI interference

Demonstration Method

- Eye-diagram waveform
 - Jitter
 - bit times
 - differential skew
 - rise and fall times
 - Noise
 - amplitude
Eye-diagram Waveform

Typical Eye Pattern

Eye Response

Time

Demonstration Method

- Cable interoperability
 - cable length
 - connector loss
- Transmission rate
 - maximum frame data rate
- Noise rejection
 - signal to noise ratio
Demonstration Method

- Test data transmission
 - valid Fibre Channel data sequences
 - low frequency pattern (106.25Mhz)
 - low transition density pattern (433433...)
 - jitter tolerance pattern (50%, 100%, 30%, ...)
 - random data pattern
 - supply noise data pattern (...D31.3, ...)

Demonstration Method

- General Test Setup
Demonstration Method

- Quad Cable Layout

![Quad Cable Layout Diagram]

Demonstration Method

- Noise Test Setup

![Noise Test Setup Diagram]

\[Z_0 = \text{Nominal Characteristic Impedance} \]
Noise Results

Physical Plant Summary

- Summary table
 - dB loss per meter
 - dB loss per connector
 - Maximum Lengths
 - Transmission Rate performance
 - Noise Rejection performance
Physical Plant Summary

<table>
<thead>
<tr>
<th>Cable</th>
<th>Cable Loss (dB/m)</th>
<th>Conn. Loss (dB/Con)</th>
<th>Max Cable Length (m)</th>
<th>Trans. Rate (MB/s)</th>
<th>S/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad</td>
<td>.138</td>
<td>.45</td>
<td>20</td>
<td>93</td>
<td>2.38</td>
</tr>
<tr>
<td>RG-179</td>
<td>.62</td>
<td>.50</td>
<td>10</td>
<td>90</td>
<td>4.25</td>
</tr>
<tr>
<td>RG-302</td>
<td>.288</td>
<td>.25</td>
<td>25</td>
<td>90</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Close

- One Giga-baud data rate with copper media
- Quad and coax cables perform well
- Quad cable has excellent signal integrity - however, highest cost
- Coax cables have good performance and low cost --- isolated grounds?
- Whats next?
Why not STP?

- standard specifies for 266Mbaud (1/4x)
- Equalization
 - for long lengths
 - fixed cable assemblies
 - solid conductor?