A Compositional Approach to Statecharts Semantics

Gerald Lüttgen
ICASE, Hampton, Virginia

Michael von der Beeck
Munich University of Technology, München, Germany

Rance Cleaveland
State University of New York at Stony Brook, Stony Brook, New York

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

March 2000

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
A COMPOSITIONAL APPROACH TO STATECHARTS SEMANTICS

GERALD LÜTTGEN, MICHAEL VON DER BEECK, AND RANCE CLEAVELAND

Abstract. Statecharts is a visual language for specifying reactive system behavior. The formalism extends traditional finite-state machines with notions of hierarchy and concurrency, and it is used in many popular software design notations. A large part of the appeal of Statecharts derives from its basis in state machines, with their intuitive operational interpretation. The traditional semantics of Statecharts, however, suffers from a serious defect: it is not compositional, meaning that the behavior of system descriptions cannot be inferred from the behavior of their subsystems. Compositionality is a prerequisite for exploiting the modular structure of Statecharts for simulation, verification, and code generation, and it also provides the necessary foundation for reusability.

This paper suggests a new compositional approach to formalizing Statecharts semantics as flattened transition systems in which transitions represent system steps. The approach builds on ideas developed for timed process calculi and employs structural operational rules to define the transitions of a Statecharts expression in terms of the transitions of its subexpressions. It is first investigated for a simple dialect of Statecharts, with respect to a variant of Pnueli and Shalev’s semantics, and is illustrated by means of a small example. To demonstrate its flexibility, the proposed approach is then extended to deal with practically useful features available in many Statecharts variants, namely state references, history states, and priority concepts along state hierarchies.

Key words. compositionality, operational semantics, Statecharts

Subject classification. Computer Science

1. Introduction. Statecharts [6] is a visual language for specifying reactive, embedded, and real-time systems. The formalism extends finite-state machines with concepts of hierarchy, concurrency, and priority; the success of Statecharts in the Software Engineering community is founded on its intuitive semantics and its capacity for modeling the complex control aspects inherent in many software systems. Different dialects of the language [30] have been employed in several software design notations — including ROOM [25], STATEMATE [9], and UML [3] — and commercial tools provide support for them. Nevertheless, precisely defining Statecharts’ semantics has proved extremely challenging, with a variety of proposals being offered in the literature [5, 7, 8, 12, 13, 14, 16, 17, 19, 21, 23, 24, 27].

*This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Virginia 23681–2199, USA. The third author was supported by NSF grants CCR–9257963, CCR–9505662, CCR–9804091, and INT–9603441, AFSOR grant F49620–95–1–0508, and ARO grant P–38682–MA.

1Institute for Computer Applications in Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681–2199, USA, e-mail: luettgen@icase.edu.

2Department of Computer Science, Munich University of Technology, Arcisstr. 21, D–80290 München, Germany, e-mail: beeck@in.tum.de.

3Department of Computer Science, State University of New York at Stony Brook, Stony Brook, New York 11794–4400, USA, e-mail: rance@cs.sunysb.edu.
Existing Statecharts variants typically conform to the following interpretation of system behavior. A Statechart may respond to an event entering the system by engaging in an enabled transition, thus performing a micro step. This transition may generate new events which, by causality, may in turn trigger additional transitions while disabling others. The synchrony hypothesis ensures that one execution step, a so-called macro step, is complete as soon as this chain reaction comes to a halt. There is, however, an additional desirable ingredient that a practical Statecharts semantics should have: compositionality. Compositionality ensures that the semantics of a Statechart can be determined from the semantics of its components. This is of particular importance when simulating Statecharts or generating code, as one does not want to waste resources re-compiling a large Statechart if only a few of its components are changed. Compositionality is also useful when formally analyzing or verifying Statecharts. Unfortunately, all practically-relevant approaches to Statecharts semantics ignore compositionality, except for an approach presented for synchronous STATEMATE [5] whose semantics does not obey the synchrony hypothesis. Indeed, theoretical studies conducted by Huizing and Gerth [11] showed that one cannot combine the features of causality, synchrony hypothesis, and compositionality within a step semantics which labels transitions by sets of “input/output” events. In fact, the classical semantics of Statecharts — as defined by Pnueli and Shalev [23] — satisfies the synchrony hypothesis and causality, but is not compositional.

The aim of this paper is to present a new approach to defining Statecharts semantics which combines all three abovementioned features in a formal, yet operationally intuitive, fashion. Our semantic account borrows ideas from timed process calculi [10], which also employ the synchrony hypothesis [2] and which allow one to represent ordinary system behavior and clock ticks using labeled transition systems. These transition systems are defined via structural operational rules [22] — i.e., rules in SOS format — along the state hierarchy of the Statechart under consideration. Our semantics explicitly represents macro steps as sequences of micro steps which begin and end with the ticking of a global clock. Thereby, compositionality is achieved on the explicit micro–step level and causality and synchrony on the implicit macro–step level. The current work builds on previous research by the authors [15], which developed a compositional timed process algebra that was then used to embed a simple variant of Statecharts introduced in [16]. That work indirectly yielded a compositional operational semantics for Statecharts. In this paper, we re–develop the semantics of [15] without reference to a process algebra, thereby eliminating the rather complicated indirection. Our intention is to make the underlying semantic issues and design decisions for Statecharts more apparent and comprehensible. The paper also argues for the flexibility and elegance of our approach by extending our semantics to cope with popular Statecharts features used in practice, such as state references, history states, and priority concepts.

Organization. The next section gives a brief overview of Statecharts, including our notation and its classical semantics. Sec. 3 presents our new compositional approach to Statecharts semantics. It also establishes a coincidence result with respect to the traditional step semantics and illustrates the approach by means of an example. Sec. 4 shows how our framework can be extended to include various features employed in many Statecharts dialects. Finally, Sec. 5 discusses related work, while Sec. 6 contains our conclusions and directions for future research.

2. A Brief Overview of Statecharts. Statecharts is a specification language for reactive systems, i.e., systems characterized by their ongoing interaction with their environment. The notation enriches basic finite–state machines with concepts of hierarchy, concurrency, and priority. In particular, one Statechart may be embedded within the state of another Statechart, and one Statechart may be composed of several
simultaneously active sub-Statecharts which communicate via broadcasting events. Transitions are labeled by pairs of event sets, where the first component is referred to as trigger and may include negated events, and the second is referred to as action. Intuitively, if the environment offers all the positive but none of the negated events of the trigger, then the transition is enabled and can be executed, thereby generating the events in the label's action.

As a simple (academic) example, consider the Statechart depicted to the right. It consists of an and-state, labeled by \(n_1 \), which denotes the parallel composition of the two Statecharts labeled by \(n_2 \) and \(n_3 \), both of which are or-states describing a sequential state machine. Or-state \(n_2 \) is further refined by or-state \(n_4 \) and basic state \(n_5 \), which are connected via transition \(t_1 \) labeled by \(b \). The label specifies that \(t_1 \) is triggered by the occurrence of event \(b \); its execution does not generate any new event as its action is empty. Or-state \(n_4 \) contains the basic states \(n_8 \) and \(n_9 \), connected by transition \(t_3 \) with trigger \(a \wedge \neg b \) and empty action; hence, \(t_3 \) is enabled if event \(a \) but not event \(b \) occurs. Or-state \(n_3 \) consists of two basic states \(n_6 \) and \(n_7 \) connected via transition \(t_2 \) with label \(a/b \), so that upon occurrence of trigger event \(a \), transition \(t_2 \) can be executed and generate event \(b \).

In this paper, we first consider a simple dialect of Statecharts that supports a basic subset of the popular features present in many Statecharts variants. In particular, it considers hierarchy and concurrency. However, it ignores interlevel transitions (i.e., transitions crossing borderlines of states), state references (i.e., triggers of the form in\((n)\), where \(n \) is the name of a state), and history states (remembering the last active sub-state of an or-state). In addition, state hierarchy does not impose implicit priorities to transitions in a way that either transitions on higher levels of the hierarchy have precedence over lower level ones or the other way around. To illustrate the flexibility of our approach, we show in Sec. 4 how it can be extended to deal with state references, history states, and the abovementioned priority concepts. Interlevel transitions, however, cannot be brought in accordance with a compositional semantics, as they represent an unstructured “goto” behavior (cf. Sec. 5).

2.1. Term-based Syntax. For our purposes it is convenient to represent Statecharts not visually but by terms, as is done in [15, 16]. Formally, let \(\mathcal{N} \) be a countable set of names for Statecharts states, \(\mathcal{T} \) be a countable set of names for Statecharts transitions, and \(\Pi \) be a countable set of Statecharts events. For technical convenience we assume that \(\mathcal{N} \) and \(\mathcal{T} \) are disjoint. With every event \(e \in \Pi \) we associate a negated counterpart \(\neg e \) and define \(\neg \neg e = df e \) as well as \(\neg \mathcal{E} = df \{ \neg e \mid e \in \mathcal{E} \} \) for \(\mathcal{E} \subseteq \Pi \cup \{ \neg e \mid e \in \Pi \} \). The set \(\mathcal{S} \) of Statecharts terms is then defined by the following inductive rules.

1. Basic state: If \(n \in \mathcal{N} \), then \(s = [n] \) is a Statecharts term.
2. Or-state: Suppose that \(n \in \mathcal{N} \) and that \(s_1, \ldots, s_k \) are Statecharts terms for \(k > 0 \), with \(\mathcal{T} = df (s_1, \ldots, s_k) \). Also let \(\rho = df \{ 1, \ldots, k \} \) and \(I \in \rho \), with \(T \subseteq T \times \rho \times 2^{\Pi - I} \times 2^{\Pi} \times \rho \). Then \(s = [n; \mathcal{T}; T] \) is a Statecharts term. Here \(s_1, \ldots, s_k \) are the sub-states of \(s \), set \(T \) contains the transitions connecting these states, \(s_1 \) is the default state of \(s \), and \(s_1 \) is the currently active sub-state of \(s \).
3. And-state: If \(n \in \mathcal{N} \), if \(s_1, \ldots, s_k \) are Statecharts terms for \(k > 0 \), and if \(\mathcal{T} = df (s_1, \ldots, s_k) \), then \(s = [n; \mathcal{T}] \) is a Statecharts term, where \(s_1, \ldots, s_k \) are the (parallel) sub-states of \(s \).
Transitions of or-states \([n: (s_1, \ldots, s_k); l; T]\) are of the form \(t = df (t, i, E, A, j)\), where (i) \(t\) is the name of \(i\), (ii) \(source(t) = df s_i\) is the source state of \(i\), (iii) \(trg(t) = df E\) is the trigger of \(i\), (iv) \(act(t) = df A\) is the action of \(i\), and (v) \(target(t) = df s_j\) is the target state of \(i\). In the sequel, we let \(trg^+(i) = df trg(t)\) and \(trg^-(i) = df trg(t)\). For technical convenience, we assume that all state names and transition names are mutually disjoint. Hence, we may uniquely refer to states and transitions by using their names, e.g., we may write \(t\) for \(i\). We also assume that no transition produces an event which appears negated in its trigger. The Statecharts term corresponding to the Statechart depicted in Fig. 2.1 is term \(s_1\), which is defined as follows.\(^1\)

\[
\begin{align*}
 s_1 = & df [n_1: (s_2, s_3)] \\
 s_2 = & df [n_2: (s_4, s_5); 1; \{(t_1, 1, \{b\}, 0, 2)\}] \\
 s_3 = & df [n_3: (s_6, s_7); 1; \{(t_2, 1, \{a\}, \{b\}, 2)\}] \\
 s_4 = & df [n_4: (s_8, s_9); 1; \{(t_3, 1, \{a, -b\}, \emptyset, 2)\}] \\
 s_5 = & df [n_5] \\
 s_6 = & df [n_6] \\
 s_7 = & df [n_7] \\
 s_8 = & df [n_8] \\
 s_9 = & df [n_9]
\end{align*}
\]

2.2. Classical Semantics

In this section, we sketch the semantics of Statecharts terms adopted in [16], which is a slight variant of the "classical" Statecharts semantics as proposed by Pnueli and Shalev [23]. We refer the reader to [16] for a more detailed discussion of the underlying semantic issues.

As mentioned before, a Statechart \(s\) reacts to the arrival of some external events by triggering enabled micro steps in a chain–reaction manner. When this chain reaction comes to a halt, a complete macro step has been performed. More precisely, a macro step comprises a maximal set of micro steps, or transitions, that (i) are relevant, (ii) are mutually consistent, (iii) are triggered by events \(E \subseteq \Pi\) offered by the environment or generated by other micro steps, (iv) are mutually compatible, and (v) obey the principle of causality. These notions may be defined as follows. Let \(s \in \text{SC}\), let \(t\) be a transition in \(s\), let \(T\) be a set of transitions in \(s\), and let \(E \subseteq \Pi\). Transition \(t\) is relevant for Statecharts term \(s\), in signs \(t \in \text{relevant}(s)\), if the source state of \(t\) is currently active. Transition \(t\) is consistent with all transitions in \(T\), in signs \(t \in \text{consistent}(s, T)\), if \(t\) is not in the same parallel component as any transition in \(T\). Transition \(t\) is triggered by event set \(E\), in signs \(t \in \text{triggered}(s, E)\), if the positive but not the negative trigger events of \(t\) are in \(E\). Transition \(t\) is compatible with all transitions in \(T\), in signs \(t \in \text{compatible}(s, T)\), if no event produced by \(t\) appears negated in a trigger of a transition in \(T\). Finally, we say that transition \(t\) is enabled in \(s\) with respect to event set \(E\) and transition set \(T\), if \(t \in \text{enabled}(s, E, T)\), where \(\text{enabled}(s, E, T) = df \text{relevant}(s) \cap \text{compatible}(s, T) \cap \text{triggered}(s, E \cup \bigcup_{t \in T} \text{act}(t))\).

A macro step in a Statechart is a subset of enabled that is causally well-founded. Technically, causality holds when there exists an ordering among the transitions in a macro step such that no transition \(t\) of in the macro step depends on events generated by transitions occurring after \(t\). In [16], an operational approach for causally justifying the triggering of each transition of a macro step is given. It employs the nondeterministic step-construction function presented in Fig. 2.2, which is adapted from Pnueli and Shalev [23]. Given a Statecharts term \(s\) and a set \(E\) of events, the step-construction function nondeterministically computes a set \(T^*\) of transitions. In this case, Statecharts term \(s\) may evolve in the single macro step \(s \rightarrow A\) to Statecharts term \(s'\), thereby executing the transitions in \(T^*\) and producing the events \(A = df \bigcup_{t \in T^*} \text{act}(t)\). Term \(s'\) can be derived from \(s\) by updating the index \(l\).

\(^1\)Note that the second and fifth component of a transition \((t, i, E, A, j)\) in some or-state \(s = [n: (s_i, l; T)]\) refer to the indexes of the source and target state in the sequence \(s = (s_1, \ldots, s_k)\), respectively, and not to the states' names.
in every or-state \([n: (s_1, \ldots, s_k); t; T]\) of \(s\) satisfying \(t \in T^*\) for some \(t \in T\). Observe that once one has constructed a macro step, all information about how the macro step was derived at is discarded. This is the source for the compositionality defect of this semantics for Statecharts; when two Statecharts are composed in parallel, the combination of the causality orderings may introduce newly enabled transitions.

Let us illustrate a couple of macro steps of the example Statechart depicted in Fig. 2.1. For convenience, we abbreviate a Statecharts term by its active basic states, e.g., term \(s_1\) is abbreviated by \((n_8, n_6)\). Moreover, we let \(\Pi = \{a, b\}\) and assume that the environment only offers event \(a\). Then, both transitions \(t_2\) and \(t_3\) are enabled, and the execution of \(t_3\) results in macro step \((n_8, n_6) \xrightarrow{a} (n_9, n_6)\), i.e., a macro step in which only a single transition takes part. Although \(t_2\) is also enabled, it cannot be executed together with \(t_3\) in the same macro step. The reason is that this would violate global consistency, since \(t_2\) generates event \(b\) whose negated counterpart \(\neg b\) is contained in the trigger of \(t_3\). However, transitions \(t_2\) and \(t_1\) can take part in the same macro step, as \(t_1\) is located in a different parallel component than \(t_2\) and is triggered by event \(b\) which is generated by \(t_2\). This leads to macro step \((n_8, n_6) \xrightarrow{a} (n_5, n_7)\). All potential macro steps of our example Statechart can be found in Fig. 3.2, right-hand side.

3. A Compositional Statecharts Semantics. In this section, we present our approach to defining a compositional semantics for Statecharts, which is based on flat labeled transition systems. In contrast to related work, we do not develop a semantics on the macro-step level but on the micro-step level and represent macro steps as sequences of micro steps. Within such a setting, compositionality is easy to achieve. The challenge is to identify the states at which macro steps start and end so that Statecharts' traditional, non-compositional macro-step semantics can be recovered. Our solution is based on the observation that since Statecharts is a synchronous language, ideas from timed process calculi may be adapted. In particular we use explicit global clock ticks to denote the boundaries of macro steps.

Our flat labeled transition systems therefore possess two kinds of transitions: those representing the execution of a Statecharts transition and those representing global clock ticks. In timed process calculi such transitions are referred to as action transitions and clock transitions, respectively. The ideas behind our semantics are illustrated in Fig. 3.1, where clock transitions are labeled by \(\sigma\). The other transitions are action transitions and actually carry pairs \((E', N')\) of event sets as labels. An action transition stands for a single Statechart transition which is enabled if the system environment offers all events in \(E'\) but none in \(N'\). The states of our transition systems are annotated with (extended) Statecharts terms from which one may infer the events generated at any point of execution of the considered Statechart. Accordingly, the classical macro-step semantics of Statecharts can be recovered from our semantics as follows: Assume that the global clock ticks, symbolizing the beginning of a macro step, when the system environment offers the events in \(E\). Starting from a clock transition, follow an arbitrary path of action transitions that are triggered by \(E\), i.e., whose labels \((E', N')\) satisfy \(E' \subseteq E\) and \(N' \cap E = \emptyset\). When another clock transition is executed, the constructed macro step is complete. The
states traversed in the path collect the events introduced by the fired Statecharts transitions along the path. Hence, from the source state of the concluding clock transition one may extract all events generated in the considered macro step. Note that, according to the synchrony hypothesis, clock transitions are prohibited unless no additional action transition can be executed relative to environment E. In a nutshell, our semantics is defined in a way that achieves compositionality on the explicit micro-step level, while causality and the synchrony hypothesis are observed on the implicit macro-step level.

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Functions out and default</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{out}(\emptyset)$</td>
<td>$=_{df} \emptyset$</td>
</tr>
<tr>
<td>$\text{out}([n; x; t; T])$</td>
<td>$=_{df} \text{out}(s)$</td>
</tr>
<tr>
<td>$\text{out}([n:: x; t; T])$</td>
<td>$=_{df} \text{out}(s)$</td>
</tr>
<tr>
<td>$\text{out}(\emptyset)$</td>
<td>$={df} \bigcup{i=1}^{n} \text{out}(s_i)$</td>
</tr>
<tr>
<td>default(\emptyset)</td>
<td>$=_{df} \emptyset$</td>
</tr>
<tr>
<td>default($[n; x; t; T]$)</td>
<td>$={df} [n; x{\text{default}(s)}; t; T]$</td>
</tr>
<tr>
<td>default($[n; x]$)</td>
<td>$=_{df} [n; \text{default}(x)]$</td>
</tr>
</tbody>
</table>

3.1. Formalization

To formalize our abovementioned intuitions, we first need to extend the definition of Statecharts terms such that “Statecharts snap-shots,” taken after partial executions of macro steps, can be represented. Formally, we add the following rule to the inductive definition of Statecharts terms presented in Sec. 2: If $[n; x; t; T]$ is a Statecharts term, then $[n; x; t; T]$, for $t \in T$, and $[n:: x; t; T]$ are Statecharts terms. Intuitively, term $[n; x; t; T]$ represents an or-state after firing some ‘top-level’ transition $t \in T$. On the other hand, term $[n:: x; t; T]$ represents an or-state after firing some ‘inner’ transition, i.e., a transition originating in the active sub-state s_i. The extended set of Statecharts terms is denoted by μSC, and its elements are sometimes referred to as micro terms. Our formalization of Statecharts semantics also requires us to be able to extract all events $\text{out}(s)$ from a micro term s, which are generated by transitions that have been fired during the considered partial macro step. Additionally, $\text{out}(s)$ includes all negated trigger events of the executed transitions, which is necessary to ensure the Statecharts property of global consistency, as will become clear shortly. The predicate $\text{out}(s) \subseteq \Pi \cup \neg \Pi$ can be defined inductively along the structure of s, and its definition is displayed in Table 3.1. Finally, we need one more auxiliary function, $\text{default}(s)$ which, given a Statecharts term $s \in SC$, resets all the active states of its or-states to their respective initial states. Also this function can be defined on the structure of s as is done in Table 3.1. For convenience, we write $\text{default}(s)$ for $\text{default}((s_1, \ldots, s_k)) =_{df} (\text{default}(s_1), \ldots, \text{default}(s_k))$ and define $s_{[i]} =_{df} (s_1, \ldots, s_{i-1}, s', s_{i+1}, \ldots, s_k)$, for all $1 \leq i \leq k$ and $s' \in SC$.

Now we are able to present our semantics of a Statecharts term $s \in SC$. As indicated before, the semantics of s is defined as a labeled transition system, such that (i) the states are terms in μSC, (ii) the start state is s, and (iii) the two transition relations, $\rightarrow \subseteq \mu SC \times 2^{\Pi \cup \neg \Pi} \times 2^{\Pi \cup \neg \Pi}$ and $\rightarrow \subseteq \mu SC \times \mu SC$, are defined via structural operational rules [22]. Each rule is of the form

$$\text{name} \quad \text{premise} \quad \text{side condition} \quad \text{conclusion}$$

and should be read as follows: Rule $(name)$ is applicable if both the statements in its premise and its side condition hold; in this case, one might infer the conclusion.

The operational rules for action transitions are given in Table 3.2, where the subscript of the transition relation should be ignored for now; the subscript will only be needed in Sec. 4.3. For convenience, we write $s \xrightarrow{n} s'$ instead of $(s, E, N, s') \in \rightarrow$. Moreover, we let s stand for the sequence (s_1, \ldots, s_k) and write $|s|$ for k. Intuitively, Rule (OR1) states that or-state $[n; x; t; T]$ can evolve to $[n; x; t; T]$ if transition t is enabled,
Operational rules: action transitions

<table>
<thead>
<tr>
<th>Rule</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR1</td>
<td>(</td>
<td>n: \hat{s}; l; T</td>
</tr>
<tr>
<td>OR2</td>
<td>(</td>
<td>n: \hat{s}; l; T</td>
</tr>
<tr>
<td>AND</td>
<td>(\exists 1 \leq l \leq</td>
<td>s</td>
</tr>
</tbody>
</table>

\(|n: \hat{s}; l; T| \rightarrow_{\text{source}(t)} = s_i \) \(|n: \hat{s}; l; T| \rightarrow_{\text{source}(t)} = s_i \) \(|n: \hat{s}; l; T| \rightarrow_{\text{source}(t)} = s_i \)

i.e., if (i) the source state of \(t \) is the currently active state \(s_i \), (ii) all its positive trigger events \(\text{trg}^+(t) \) are offered by the environment, (iii) the positive counterparts of all its negated trigger events \(\text{trg}^-(t) \) are not offered by the environment, and (iv) the negated events corresponding to \(\text{act}(t) \) are not offered by the environment, i.e., no transition within the same macro step has already fired due to the absence of such an event. The latter is necessary for implementing global consistency in our semantics. Rules (OR2) and (OR3) deal with the case that an inner transition of the active sub-state \(s_i \) of the considered or-state is executed. Hence, sub-state \(s_i \) needs to be updated accordingly. The resulting micro term \(|n: \hat{s}_i; l; T| \) also reflects — via the double colons — that a transition originating within the or-state has been executed, in which case the or-state may no longer engage in a transition in \(T \) during the same macro step, i.e., before executing the next clock transition. Finally, Rule (AND) deals with and-states. If sub-state \(s_i \) fires a transition \(|n: \hat{s}_i; l; T| \rightarrow_{\text{source}(t)} = s'_i \), then the and-state can do so as well, provided that no event in \(N \) is offered by some other sub-state (cf. the rule’s side condition). Moreover, for triggering the transition in the context of the and-state only those events \(e \in E \) need to be offered by the environment, which are not already offered by some other ‘parallel’ sub-state of the and-state, i.e., for which \(e \in E \setminus \bigcup_{j \neq i} \text{out}(s_j) \) holds.

Operational rules: clock transitions

<table>
<thead>
<tr>
<th>Rule</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cBAS</td>
<td>(</td>
<td>n</td>
</tr>
<tr>
<td>cOR1</td>
<td>(</td>
<td>n: \hat{s}; l; T</td>
</tr>
<tr>
<td>cOR2</td>
<td>(</td>
<td>n: \hat{s}; l; T</td>
</tr>
<tr>
<td>cAND</td>
<td>(\forall 1 \leq l \leq</td>
<td>s</td>
</tr>
</tbody>
</table>

Clock transitions are defined by the rules in Table 3.3, which use the notation \(s \rightarrow_{\sigma} s' \) for \(\langle s, s' \rangle \in \sim_{\sigma} \). Intuitively, a clock transition models the completion of a macro step by updating the active states in the considered micro term according to the transitions that have been executed in the macro step. Due to the synchrony hypothesis of Statecharts, this implies in particular that a clock transition can only be performed if the considered Statechart term \(s \) cannot autonomously engage in a further action transition, i.e., if \(s \not\sim_{\sigma} \) holds, which stands for \(\exists s', s \rightarrow_{\sigma} s' \). Note that both event sets in the label must be empty; otherwise, the action transition is not enabled with respect to all potential system environments and our semantics would not be compositional. In this vein, Rule (cBAS) states that a basic state can always accept a clock tick as it does not possess any (enabled) transitions. Rule (cOR1) reflects the update of micro term \(|n: \hat{s}; l; T| \) representing an or-state after transition \(t \in T \) has fired. More precisely, the sub-state of the considered or-state is updated to the target state \(s_i \) of \(t \), where all active states of \(s_i \) are reset to their initial states. In
case that no transition of the considered or-state has been executed — i.e., the or-state is represented by micro term \([n; s; t; T]\) — and no one is enabled — i.e., \([n; s; t; T]\) holds —, a clock tick can be accepted and does not result in any change of state (cf. Rule (cOR2)). Rule (cOR3) formalizes the behavior that an or-state can engage in a clock transition if its active sub-state can engage in one. Finally, Rule (cAND) states that an and-state can engage in a clock transition if all its sub-states can, provided that there is no action transition whose execution cannot be prevented, i.e., provided that \([n; s; t; T]\) holds.

It is fairly easy to see that our new semantics is compositional, as each transition of a Statecharts term is defined by referring to the transitions of its sub-terms only. One exception is that the definition of clock transitions depends on the one of action transitions. However, the same is not true the other way around, i.e., there are no mutual dependencies in our operational rules. As an alternative means for checking compositionality, one may employ meta-theoretic results about the compositionality of semantics defined via structural operational rules [29].

3.2. Macro-step Interpretation and Coincidence Result. The above rules provide a compositional semantics of Statecharts on the micro-step level. However, our consideration of a global abstract clock allows us to retrieve the classical macro-step semantics of Statecharts, as mentioned at the beginning of Sec. 3.

Definition 3.1. For \(s, s' \in SC\) and \(E, A \subseteq \Pi\) we write \(s \rightarrow_A E s'\) and say that \(s\) may perform a macro step with input \(E\) and output \(A\) to \(s'\), if \(\exists s_1, \ldots, s_m \in \mu SC, \exists E_1, \ldots, E_m \subseteq \Pi, \exists N_1, \ldots, N_m \subseteq \Pi \cup \{-\}, for some \(m \in \mathbb{N}\), such that (1) \(s \rightarrow_{N_1} s_1 \rightarrow_{N_2} \cdots \rightarrow_{N_m} s_m \rightarrow_{A} s'\), (2) \(\bigcup_{i=1}^{m} E_i \subseteq E\), (3) \(\bigcup_{i=1}^{m} N_i \cap E = \emptyset\), (4) \(A = \text{out}(s_m) \cap \Pi\), and (5) \(A = \text{out}(s_m) \cap \Pi\), and (5) \(A = \text{out}(s_m) \cap \Pi\). While Conds. (2) and (3) guarantee that all considered action transitions are enabled by the environment, Cond. (5) ensures the maximality of the macro step, i.e., it implements the synchrony hypothesis. Now, we can establish the desired result, namely that our macro-step semantics coincides with the classical macro-step semantics of Statecharts. Hence, our semantics is not 'randomly' defined.

Theorem 3.2. Let \(s, s' \in SC\) and \(E, A \subseteq \Pi\). Then \(s \rightarrow_A E s'\) if and only if \(s \rightarrow_A E s'\).

Proof sketch. Consider the following construction. If \(T = (t_1, \ldots, t_m)\) is a sequence of Statecharts transitions of \(s \in SC\) generated by the step-construction function relative to environment \(E \subseteq \Pi\) and satisfying \(A = \bigcup_{i=1}^{m} \text{out}(t_i)\), then there exists a sequence of \(m\) action transitions as described in Def. 3.1, such that the \(l\)-th action transition corresponds to the execution of \(t_l\) in \(s\). Vice versa, assume that the conditions of Def. 3.1 are satisfied for some \(E \subseteq \Pi\) and that \(T = (t_1, \ldots, t_m)\) is the sequence of Statecharts transitions which can be identified with the considered sequence of action transitions starting in \(s\). Then, \(T\) can be generated by the step-construction function relative to \(s\) and \(E\), where the transitions fire in the order indicated by sequence \(T\).

3.3. Example. We now return to our example Statechart of Fig. 2.1. Our semantics of this Statechart and its classical macro-step semantics are depicted on the left and right in Fig. 3.2, respectively. In both diagrams, we represent a transition of the form \(s \rightarrow_{E} s'\) by writing \(E\) to the left of or above the arrow and \(N\) to the right of or below the arrow. We also abbreviate a set of events by listing its elements, e.g., writing \(ab\) for \(\{a, b\}\), and denote alternatives for \(E\) at the same arrow by separating them by commas. Finally, we employ our notation introduced in Sec. 2.2 and additionally write \(t\) for the micro term \([n; s; t; T]\).
The right diagram in Fig. 3.2 includes the macro steps \((n_8, n_6) \xrightarrow{b} (n_9, n_5)\) and \((n_8, n_6) \xrightarrow{a} (n_5, n_7)\) which we already considered in Sec. 2.2. According to Thm. 3.2, both macro steps can be explained in terms of sequences of micro steps displayed on the left in Fig. 3.2, which start with state \((n_8, n_6)\) and end with the execution of a clock transition. The first macro step is given by the sequence \((n_8, n_6) \xrightarrow{b} (n_9, n_5)\), where \(\text{out}((t_3, n_6)) = \{-b\}\), and the second macro step is encoded by the sequence \((n_8, n_6) \xrightarrow{a} (n_5, n_7)\), where \(\text{out}((t_1, t_2)) = \{b\}\).

4. Extensions: State References, History States, & Priority Concepts. We now illustrate the flexibility of our approach by adapting it to incorporate features offered by many popular Statecharts variants, namely state references, history mechanisms, and priority concepts along the or-state hierarchy.

<table>
<thead>
<tr>
<th>Table 4.1 Modified definition of out needed when modeling state references</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{out}([n]) = \text{df} {\text{in}(n)})</td>
</tr>
<tr>
<td>(\text{out}([n; s; T]) = \text{df} \text{out}(s) \cup {\text{in}(n)})</td>
</tr>
<tr>
<td>(\text{out}([n; (s_1, \ldots, s_k)]) = \text{df} \bigcup_{i=1}^{k} \text{out}(s_i) \cup {\text{in}(n)})</td>
</tr>
<tr>
<td>(\text{out}([n; S; T]) = \text{df} \text{act}(s) \cup \text{trg}^{-}(t) \cup {\text{in}(n)})</td>
</tr>
</tbody>
</table>

4.1. State References. Many Statecharts variants permit trigger events of the form \(\text{in}(n)\), for \(n \in \mathcal{N}\), which are satisfied whenever state \(n\) is active. In our setting, we may encode this feature via the employed communication scheme. To do so, we first extend the set \(\mathcal{S}\) of events by the distinguished events \(\text{in}(n)\), for all \(n \in \mathcal{N}\). Moreover, the sets \(\text{out}(s)\), for \(s \in \mathcal{SC}\), need to be re-defined — as shown in Table 4.1 — such that they include the events \(\text{in}(n)\), for any active state \(n\) in \(s\). It is easy to see that the resulting semantics handles state references as expected.

4.2. History States. Upon entering or-states, their initial states are activated. However, in practice it is often convenient to have the option to return to the sub-state which was active when last exiting an or-state, e.g., after completing an interrupt routine. In Statecharts' visual syntax this is done by permitting distinguished history states in or-states to which transitions from the outside of the considered or-states may point. Such history states can have two flavors: deep and shallow. Deep means that the 'old' active state of the or-state and the 'old' active states of all its sub-states are restored. Shallow means that only the active state of the or-state is restored and that its sub-states are reinitialized as usual. In our term-based setting, we may model history states and transitions traversing to history states as follows. For each transition \(t\) pointing to some or-state \(s\), we additionally record a history flag \(\rho \in \{\text{none, deep, shallow}\}\). If \(\rho = \text{none}\), then transition \(t\) is interpreted as usual, otherwise it is interpreted to point to the deep — if \(\rho = \text{deep}\) — or shallow — if \(\rho = \text{shallow}\) — history state in \(s\).
In the light of this formalization, it is easy to integrate a history mechanism in our operational semantics. One just has to replace function default(s_j) in Rule (cOR_i) by function default(p, s_j), where p \in \{\text{none, deep, shallow}\} is the history flag of the considered transition t. The terms default(none, s) and default(deep, s) are simply defined by default(s) and s, respectively. The definition of default(shallow, s) can be done along the structure of Statecharts terms as follows.

\begin{enumerate}
 \item default(shallow, [n]) =_{df} [n]
 \item default(shallow, [n: \exists \beta; l; T]) =_{df} [n: \exists \beta_{l \in \text{default}([s_j])}; l; T]
 \item default(shallow, [n: \exists]) =_{df} [n: \text{default}(\text{shallow}, \exists)]
\end{enumerate}

Here, default(shallow, \exists), where \exists = (s_1, \ldots, s_k), stands for (default(shallow, s_1), \ldots, default(shallow, s_k)). Note that default(p, s) needs only be defined for Statecharts terms and not for the more general micro terms.

4.3. Priority Concepts. Many Statecharts dialects consider an implicit priority mechanism along the hierarchy of or-states. In UML Statecharts [3], for example, inner transitions of an or-state have priority over outer transitions, while this is the other way around in STATEMATE [7]. Let us provide a flexible scheme for encoding both priority concepts, for which we introduce the notion of addresses which are built according to the BNF $\alpha ::= \cdot \mid \blacktriangledown \cdot \alpha \mid || \cdot \alpha$, for $I \in \mathbb{N}$. The set of all such addresses is denoted by Addr. Each action transition is then labeled with an address pointing to the sub-term of the considered Statecharts term, from which the transition originates (cf. the subscripts of the transitions in Table 3.2).

Intuitively, the symbol \cdot encodes that the transition originates from the considered state, i.e., this state must be an or-state and the transition leaves the or-state's active sub-state. Address $\blacktriangledown \cdot \alpha$ also requires the state to be an or-state and the transition to originate from address α of the currently active sub-state of the or-state. Finally, address $|| \cdot \alpha$ indicates that the considered state is an and-state with at least I sub-states and that the transition originates from address α of the l-th sub-state.

<table>
<thead>
<tr>
<th>Priority Structure à la UML (left) and à la STATEMATE (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(\cdot)$ $=_{df} {\blacktriangledown \cdot \beta</td>
</tr>
<tr>
<td>$M(\blacktriangledown \cdot \alpha) =_{df} {\blacktriangledown \cdot \beta</td>
</tr>
<tr>
<td>$M(</td>
</tr>
</tbody>
</table>

Given an address $\alpha \in \text{Addr}$, we can now define the set $M(\alpha)$ of addresses which are considered more important than α according to the chosen priority concept. The definitions of $M(\alpha)$ for the priority concepts of UML Statecharts and STATEMATE can be done straightforwardly along the structure of α and are given in Table 4.2. They do not require any extra explanation. Now, we can define a new transition relation $\rightarrow_{\$}$ for action transitions, which coincides with the original transition relation given in Sec. 3, except that low-priority action transitions are filtered out.

$$
\begin{array}{c}
\text{Prio} \\
S \xrightarrow{\$} S', \exists \beta \in M(\alpha). S \xrightarrow{\beta}
\end{array}
$$

This rule states that an action transition located at address α may be executed if there exists no action transition at some more important address β, which cannot be prevented in any system environment. The justification for the fact that only action transitions with empty sets as labels have pre-emptive power over lower prioritized action transition is similar to the one regarding the pre-emption of clock transitions in Sec. 3. One might wonder why this “two-level” definition of Statecharts semantics is still compositional, as
the above side condition concerns a global property. In order to see this, one can distribute the side condition among the original rules for action transitions, such that compositionality becomes obvious (cf. App. A) or employ meta-theoretic results regarding SOS semantics (cf. [29]).

5. Related Work. We categorize related work along the three dimensions of Statecharts semantics: causality, synchrony, and compositionality. This classification has first been considered by Huizing and Gerth [11] who demonstrated that these dimensions cannot be trivially combined.

The original Statecharts semantics, as presented by Harel et al. [8], obeys causality and synchrony. However, it ignores compositionality and the concept of global consistency. Later on, Huizing et al. [12] provided a compositional denotational semantics for this variant, while Pnueli and Shalev [23] suggested the introduction of global consistency for improving the practicality of the variant. However, Pnueli and Shalev’s formalization is again not compositional.

Other researchers have developed languages whose semantics obey the synchrony hypothesis and compositionality but violate causality. Prominent representatives of such languages include Berry’s ESTEREL [2], to which recently some dialect of Statecharts has been interfaced as graphical front-end [26], and Maraninchi’s ARGOS [17]. Both languages are deterministic and treat causality rather conservatively in a pre-processing step, before determining the semantics of the considered program as Mealy automaton via structural operational rules [18]. Moreover, ARGOS semantics significantly differs from Statecharts semantics by allowing sequential components to fire more than once within a macro step. Another approach to formalizing Statecharts, which fits into this category, is the one of Scholz [24] who uses streams as semantic domain for defining a non-causal fixed point semantics.

The popular synchronous version of STATEMATE [7] neglects the synchrony hypothesis. Events generated in one step may not be consumed within the same step but in the next step only. The operational semantics of this dialect has been compositionally formalized by Damm et al. [5]. It was also considered by Mikk et al. [19] who translated STATEMATE specifications to specification languages of model-checking tools by using hierarchical automata [20] as intermediate language. This intermediate language was employed by Latella et al. [13], too, for formalizing the semantics of UML Statecharts [3] in terms of Kripke structures. However, UML Statecharts discard not only the synchrony hypothesis but additionally negated events and, thereby, make the notion of global consistency obsolete. Their semantics was also investigated by Paltor and Lilius [21], who developed a semantic framework on the basis of a term-rewriting system.

Our work is, however, most closely related to approaches which aim at combining all three dimensions — causality, synchrony, and compositionality — within a single formalism. These approaches may be split into two classes. The first class adapts a process-algebraic approach, where Statecharts languages are embedded in process algebras, for which structured operational semantics based on labeled transition systems are defined. Uselton and Smolka [28] have pioneered this approach which has then be refined by Levi [14]. Their notion of transition system involves complex labels of the form \((E, \prec) \), where \(E \) is a set of events and \(\prec \) is a transitive, irreflexive order on \(2^E \) encoding causality. The second class is characterized by following essentially the same ideas but avoiding the indirection of process algebra. Research by Uselton and Smolka [27] again employs the abovementioned partial order, whereas Maggiolo-Schettini et al. [16] require even more complex and intricate information about causal orderings, global consistency, and negated events. While our present work also fits into this class, although it originated in the former [15], it avoids complex labels by representing causality via micro-step sequences and by adding explicit clock transitions to retrieve
macro-step information. Thereby, our semantics is not only simple and concise but also comprehensible and suited for interfacing Statecharts to existing analysis and verification tools. In addition, our approach is very flexible as we demonstrated by adding several prominent features, namely state references, history states, and priority concepts, to our initially primitive Statecharts dialect.

Finally, we briefly comment on interlevel transitions which prohibit a compositional Statecharts semantics as they are based on the idea of "goto-programming." First of all, interlevel transitions jeopardize a strictly structural definition of Statecharts terms, which is a prerequisite for deriving any compositional semantics. Hence, for modeling interlevel transitions, the syntax of Statecharts must be changed in a way such that interlevel transitions may be represented by several intralevel transitions which are connected via dedicated ports. This can be done either explicitly, as in the Communicating Hierarchical State Machine language introduced by Alur et al. [1], or implicitly via a synchronization scheme along the hierarchy of or-states, as in Maraninchi’s ARGOS [17].

6. Conclusions. This paper presented a new approach to formalizing Statecharts semantics, which is centered around the principle of compositionality and borrows from ideas developed for timed process algebras. In contrast to related work, our approach combines all desired features of Statecharts semantics, namely causality, synchrony, and compositionality, within a single formalism, while still being simple and comprehensible. Its foundation on structural operational rules guarantees that our semantics is easy to implement in specification and verification tools and that it can be adapted to several Statecharts dialects. The proposed semantic framework also permits the integration of many features desired in practice, as we demonstrated by extending it to dealing with state references, history states, and priority concepts. Last, but not least, we hope that this paper testifies to the utility of applying knowledge from the field of Concurrency Theory to formalizing practical specification languages rigorously yet clearly.

Acknowledgments. The authors would like to thank César Muñoz for carefully reading and commenting on a draft of this report.

REFERENCES

Appendix A. Revised Operational Rules for Priority Concepts. In this appendix, we show that our semantics, when incorporating some priority concept along the hierarchy of or-states, does not need to be defined in two levels, as is done in Sec. 4.3. Instead one may modify the rules of action transitions presented in Sec. 3 to achieve a single-level semantics. However, this can only be done when having a specific priority concept — e.g., à la UML Statecharts [3] or à la STATEMATE [9] — in mind and is not as elegant as the approach presented in the main part of the paper.

If one is interested in the priority concept of UML Statecharts, one has to replace Rules (OR1) and (AND) by Rules (OR1') and (AND') which are displayed in Table A.1 in order to obtain a single-level semantics. In case of STATEMATE's priority concept, one must substitute Rules (OR2) and (AND) by Rules (OR2') and (AND'). It is easy to inspect that the new sets of rules lead to compositional semantics. The more complex side conditions in the rules presented in Table A.1, when compared to the ones in the original rules, correspond to the "localizations" of the side condition of Rule (Prio) introduced in Sec. 4.3 and are
Revised operational rules for action transitions

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR1</td>
<td>$\delta t \in \delta \wedge (t) \in \delta(t)$, $s', s^* \in S$, $\alpha \in \text{Addr}$, $t \not\in \alpha$ \Rightarrow $s, s' \in S(\delta(t))$</td>
</tr>
<tr>
<td>OR2</td>
<td>$\forall t \in \text{trg}(t) = \emptyset$</td>
</tr>
<tr>
<td>AND</td>
<td>$\exists t \leq</td>
</tr>
</tbody>
</table>

The modified transition relations for action transitions are equivalent to the transition relations introduced in Sec. 4.3, in both the UML Statecharts and the STATEMATE setting.

Theorem A.1. Let $s, s' \in \mu SC$, $E \subseteq \Pi$, $N \subseteq \Pi \cup \neg \Pi$, and $\alpha \in \text{Addr}$. Then $s \xrightarrow{\alpha} s'$ if and only if $s \xrightarrow{\alpha} s'$. As a consequence, the operational semantics presented in Sec. 4.3 is compositional. The proof of this theorem bears no theoretical complexity and can be done along the structure of s. Similar proofs and constructions are standard in process-algebraic frameworks with pre-emption (see, e.g., [4]).