The Effect of Grain Size on Mechanical Instability in Single-Phase Li-Alloy Anodes

Jeff Wolfenstine, Donald Foster, Jeffrey Read, and Wishvender Behl

ARL-TR-2116 February 2000

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
The Effect of Grain Size on Mechanical Instability in Single-Phase Li-Alloy Anodes

Jeff Wolfenstine, Donald Foster, Jeffrey Read, and Wishvender Behl
Sensors and Electron Devices Directorate

Approved for public release; distribution unlimited.
Abstract

We derived a critical grain size below which microcracking does not occur based on volume changes as a result of Li charging into brittle single-phase alloys. The predicted critical grain size is less than the unit cell size for a majority of single-phase alloys. We conducted indentation fracture toughness measurements to confirm the prediction. The critical crack length determined from fracture toughness data was in excellent agreement with the predicted critical grain size for microcracking. This result suggests that the model for predicting the critical grain size for microcracking during Li charging into brittle single-phase alloys is correct. The results of this study suggest that decreasing the particle and/or grain size is not a practical approach to solving the mechanical instability problem of single-phase Li alloys that are intended to be used as anodes in Li-ion batteries.
Introduction

The use of Li alloys (e.g., Li,M, where M could be Al, Bi, Sn, Si, and Ga) as anodes in Li batteries leads to improved safety and faster cycling rates compared to pure Li [1–5]. One disadvantage of Li alloys as anodes, compared to pure Li, is a reduction in specific energy and energy density. In addition, another problem with Li-alloy electrodes is mechanical instability. Mechanical instability refers to the observation that when Li is inserted/removed during charging/discharging, this leads to microcracking/crumbling of the alloy. Some potential solutions to solve the mechanical instability problem include [6–9] (1) incorporating the alloys within a ductile Li-ion-conducting metal or polymer matrix or (2) decreasing the alloy particle and/or grain size. Decreasing the particle and/or grain size is also important from an electrochemical viewpoint because this can lead to faster cycling rates [10]. How small must the grain size be for the Li alloys to exhibit mechanical stability during lithium charging/discharging? Are grain sizes of Li-alloy particles produced using new nanophase (particle sizes between 10 and 100 nm) techniques small enough?

The purpose of this report is to (1) derive, using an energy balance, a critical grain size below which microcracking does not occur in single-phase Li alloys and (2) confirm experimentally, using the basic concepts of fracture toughness, that the theoretical predictions are indeed correct.

Theoretical Prediction

Determination of the critical grain size below which microcracking does not occur for the Li alloys as a result of volume expansion during Li charging is based on an energy criterion. The energy criterion is based on the concept that the strain energy (generated due to a volume difference between phases) released when microcracks form must equal or exceed that required for the creation of new fracture surfaces. This criterion has been successfully applied to explain crack formation in brittle materials, microcracking due to thermal shock, and thermal expansion anisotropy [11–13].

Start with a single particle composed of fine equiaxed grains. The total energy of this system, U_{tot}, is given as follows [11–13]:

$$U_{tot} = U_0 - U_{strain} + U_{surface},$$

(1)

where U_0 is the energy of the unmicrocracked particle, U_{strain} is the strain energy per unit volume, and $U_{surface}$ is surface energy per unit area. The following discussion assumes that microcracking (1) is due to tensile stresses generated as a result of volume expansion and (2) occurs along grain boundaries. Assuming a dodecahedral grain morphology of grain size d, equation (1) reduces to [13]
\[U_{\text{tot}} = U_0 - 7.66NU_{\text{strain}}d^3 + 20.65N\gamma d^2, \]

where \(N \) is the number of grains relieving their elastic strain energy by microcracking and \(\gamma \) is the surface energy. The critical grain size \(d_{\text{crit}} \) which we calculate by differentiating equation (2) and equating it to zero, is given as

\[d_{\text{crit}} = 1.79\gamma / U_{\text{strain}}. \]

The importance of equation (3) is that a material with a grain size smaller than \(d_{\text{crit}} \) will not exhibit microcracking, whereas if the grain size is greater than \(d_{\text{crit}} \), it will exhibit microcracking. Assuming only elastic behavior, the strain energy is

\[U_{\text{strain}} = \sigma^2 / 2E, \]

where \(\sigma \) is the stress and \(E \) is the elastic modulus. For the case of a volume change, the stress is given as follows [14]:

\[\sigma = \frac{E}{3(1-2v)} \frac{\Delta V}{V_o}, \]

where \(\Delta V \) is the volume change, \(V_o \) is the initial volume, and \(v \) is Poisson’s ratio. Substitution of equation (5) into equation (4) and combining with equation (3) yields the following equation for the critical grain size as a function of volume change:

\[d_{\text{crit}} = \frac{32.2\gamma (1-2v)^2 V_o^2}{E \Delta V^2}. \]

We can use equation (6) to determine how small a grain size is required so that Li alloys (e.g., Li$_n$M, where \(M = \text{Al, Bi, Sn, Si, and Ga} \)) that are to be used as anodes will exhibit no microcracking during Li charging. A material with a grain size less than \(d_{\text{crit}} \) (eq (6)) will not exhibit microcracking as a result of tensile stresses generated by a volume expansion.

What is the critical grain size of an Li alloy that is to be used as an anode in Li batteries? Take Li$_{4.4}$Sn, for example. This binary alloy has the highest Li capacity in the Li-Sn system [7]. The volume change, \(\Delta V/V_o \), from Sn to Li$_{4.4}$Sn, is 2.59 per atom of Sn [7,15]. Determination of the critical grain size also requires that \(E, v, \) and \(\gamma \) be known. Unfortunately, a review of the literature did not reveal the values of \(E, v, \) and \(\gamma \) for Li$_{4.4}$Sn. The average \(E \) for 20 other intermetallic alloys is close to 200 GPa [16]. The surface energy for brittle materials is typically between 0.3 and 1.2 J/m2 [17]. Using \(E = 200 \) GPa, \(\gamma = 0.75 \) J/m2, \(v = 0.33 \) (a typical value for a crystalline solid), and \(\Delta V/V_o = 2.59 \), we can determine the critical grain size below which microcracking will not occur during Li charging of Sn to Li$_{4.4}$Sn. Substituting these values into equation (6) yields a predicted \(d_{\text{crit}} = 0.002 \) nm. It is important to note that this grain size (0.040 nm) is about 12 to 13 times smaller than the size of an Sn unit cell (=0.5 nm). A similar
calculation for Li_{4.4}Si (ΔV/V_p = 3.12 [7]) yields a predicted d_{crit} = 0.0014 nm. These results suggest that it is almost impossible to obtain a grain size fine enough to prevent microcracking during Li charging of a single-phase material. We believe that this is primarily a result of the strain energy generated by large tensile stresses due to the volume change that cannot be accommodated by plastic deformation because of the brittle nature (significant fraction of covalent or ionic bonding) of the material; hence, microcracking occurs.

Experimental Confirmation

Fracture toughness K_{IC} is an intrinsic material property and, for the case of a brittle material, is related to the applied stress σ and the critical crack size c_{crit} by the following relation [14,18,19]:

\[
K_{IC} = \sigma (\pi c_{crit})^{1/2}.
\]

When \(\pi (\sigma)^{1/2} > K_{IC}\), brittle fracture occurs. Thus, the critical crack size corresponds to the largest crack size the material can tolerate without exhibiting brittle fracture for a given value of applied stress. From equation (7) we observe that if K_{IC} and σ are known, this allows for a determination of the critical crack size. The value of σ, tensile stress generated due to the volume expansion as a result of Li charging, is given by equation (5). We will determine K_{IC} for Li_{4.4}Sn using an indentation technique [20–23]. Since both K_{IC} and σ are known, it is then possible to determine c_{crit} for Li_{4.4}Sn. If the previous theoretical predictions are correct, then c_{crit} = d_{crit}.

An Li_{4.4}Sn alloy was chosen as representative of a typical brittle single-phase Li-alloy anode material. We prepared the Li_{4.4}Sn alloy by mixing the appropriate amounts of Li (rod; Foote Co.) and Sn (powder; Aldrich Co.) in an Mo crucible. We then heated the Li-Sn mixture at 800 °C for 0.5 hr in a glove box having an oxygen concentration and moisture level of less than 1 ppm to form a molten alloy. The molten alloy was rapidly quenched onto a stainless steel cooling plate. We crushed and ground several of the smaller solid pieces in the glove box using a mortar and pestle. These powders were sealed in capton for x-ray diffraction studies. Some of the larger chunks were mounted and polished for fracture toughness measurements. The samples were cold mounted in the glove box. They were rough polished by SiC paper with mineral oil as the lubricant. Final polishing was done with 1.0- and 0.3-μm Al₂O₃ powder suspended in mineral oil. The samples were indented immediately after polishing. We kept to a minimum the time that the samples were exposed to the ambient atmosphere to prevent a reaction with the moisture and oxygen in the air. If such reactions occurred, the sample was not indented but repolished so that the reaction layer was removed before indentation.
We made measurements of room-temperature fracture toughness using the indentation technique [20–23]. For fracture toughness, a total of five indents per sample were made at 5 kg with a Vickers indenter. The indentation crack lengths were measured immediately after unloading. Fracture toughness was evaluated by the following relation for median cracks [20]:

$$ K_{IC} = C_v \left(\frac{P}{C_o^{3/2}} \right) \left(\frac{E}{H} \right)^{1/2} \, , $$

where $C_v (= 0.016)$ is a material-independent constant for a Vickers-produced radial median crack, H is the measured hardness, P is the load, and C_o is the crack dimension. Hardness was measured at different indentations than those used for the fracture toughness determination. Crack propagation was examined by optical microscopy.

Figure 1 shows a typical Vickers indentation in the Li$_{4.4}$Sn alloy. A crack emanating from a corner of the indent can be seen; the length of the crack is about 500 μm.

The values of H, P, and C_o determined from the indentation measurements are listed in table 1. K_{IC} for Li$_{4.4}$Sn, determined from equation (8) on the basis of the data in table 1 and $E = 200$ GPa [24], is 0.8 ± 0.2 MPa-m$^{1/2}$. K_{IC} values for the ideal brittle material, glass, are close to unity [18–23]. Thus, the K_{IC} results confirm that Li$_{4.4}$Sn is a very brittle material.

The volume change, $\Delta V/V_o$, from Sn to Li$_{4.4}$Sn is 2.59 per atom of Sn [7,15]. Substituting this value into equation (2) with $E = 200$ GPa and $v = 0.25$ yields a value of $\sigma = 2.1 \times 10^5$ MPa. Substituting $K_{IC} = 0.8$ MPa-m$^{1/2}$ and $\sigma = 2.1 \times 10^5$ MPa into equation (7) and rearranging yields c_{crit} for Li$_{4.4}$Sn = 0.005 nm. We can compare the $c_{crit} = 0.005$ nm value to the critical grain size, $d_{crit} = 0.002$ nm, that was predicted for Li$_{4.4}$Sn. From the comparison it can be observed that c_{crit} for Li$_{4.4}$Sn is in excellent agreement with the predicted d_{crit} for Li$_{4.4}$Sn. This result suggests that the model for predicting the critical grain size for microcracking during Li charging into brittle single-phase Li alloys is correct.

Figure 1. Typical Vickers indentation in Li$_{4.4}$Sn. A crack emanating from a corner is shown. (Magnification = 200×.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (kg)</td>
<td>5</td>
</tr>
<tr>
<td>H (GPa)</td>
<td>25.8 ± 1.5</td>
</tr>
<tr>
<td>C_o (μm)</td>
<td>322 ± 27</td>
</tr>
</tbody>
</table>
Conclusions

It is important to note that both the model and experimental data reveal a grain size below which fracture will not occur that is less than the unit cell size for a majority of brittle single-phase alloys. This suggests that decreasing the particle and/or grain size alone will not solve the mechanical instability problem in brittle single-phase Li alloys that are to be used as anodes in Li-ion batteries. More likely solutions to solve the mechanical instability problem involve a composite approach that would include (1) incorporating the Li alloys within a ductile metal or polymer matrix or (2) surrounding the alloys within a matrix that places them under compressive stresses, which prevents microcrack formation.

Acknowledgment

This work was performed under the Director’s Research Initiative Program (99-SEDD-02) of the U. S. Army Research Laboratory.

References

Distribution

Adminstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Ofc of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn OUSD(A&T)/ODDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

Advry Grp on Elect Devices
Attn Documents
Crystal Sq 4 1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

CECOM Night Vsn/Elect Sensors Dirctrtr
Attn AMSEL-RD-NV-D
FT Belvoir VA 22060-5806

Commander
CECOM R&D
Attn AMSEL-IM-BM-I-L-R Stinfo Ofc
Attn AMSEL-IM-BM-I-L-R Techl Lib
Attn AMSEL-RD-AS-BE E Plichta
FT Monmouth NJ 07703-5703

Deputy for Sci & Techlgy
Attn Ofc Asst Sec Army (R&D)
Washington DC 30210

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

US Army ARDEC
Attn AMSTA-AR-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

Commander
US Army CECOM
Attn AMSEL-RD-CZ-PS-B M Brundage
FT Monmouth NJ 07703-5000

US Army Info Sys Engrg Cmd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC
Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn
Cmd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmd Dir of
Rsrch & Techlgy Dirctrtr
Attn SMCCR-RS J G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtvc Cmd Rsrch, Dev, &
Engrg Ctr
Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmnd
Battle Lab Integration & Techl Dirctrtr
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A LTC M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786
Nav Rsrch Lab
Attn Code 2627
Washington DC 20375-5000

Nav Surface Warfare Ctr A
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Marine Corps Liaison Ofc
Attn AMSEL-LN-MC
FT Monmouth NJ 07703-5033

USAF Rome Lab Tech
Attn Corridor W Ste 262 RL SUL
26 Electr Pkwy Bldg 106
Griffiss AFB NY 13441-4514

DARPA
Attn S Welby
3701 N Fairfax Dr
Arlington VA 22203-1714

Hicks & Associates Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

US Army Rsrch Ofc
Attn AMSRL-RO-EN W Bach
Attn AMSRL-RO-EN B Mann
Attn AMSRL-RO-D C Chang
PO Box 12211
Research Triangle Park NC 27709

US Army Rsrch Lab
Attn AMSRL-CI-Al-A Mail & Records Mgmt
Attn AMSRL-CI-AP Techl Pub (3 copies)
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-DC T Wolfenstine (15 copies)
Attn AMSRL-DD J M Miller
Attn AMSRL-SE-D E Scannell
Attn AMSRL-SE-DC S Gilman
Attn AMSRL-SE-E J Mait
Adelphi MD 20783-1197
The Effect of Grain Size on Mechanical Instability in
Single-Phase Li-Alloy Anodes

Jeff Wolfenstein, Donald Foster, Jeffrey Read, and
Wishvender Behl

U.S. Army Research Laboratory
Attn: AMSRL-SE-DC
gmail: jef_wolfenstein@stinger.arl.mil
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

We derived a critical grain size below which microcracking does not occur based on volume changes as a result of Li charging into brittle single-phase alloys. The predicted critical grain size is less than the unit cell size for a majority of single-phase alloys. We conducted indentation fracture toughness measurements to confirm the prediction. The critical crack length determined from fracture toughness data was in excellent agreement with the predicted critical grain size for microcracking. This result suggests that the model for predicting the critical grain size for microcracking during Li charging into brittle single-phase alloys is correct. The results of this study suggest that decreasing the particle and/or grain size is not a practical approach to solving the mechanical instability problem of single-phase Li alloys that are intended to be used as anodes in Li-ion batteries.