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FOREWORD

The 1998 version of the aeroprediction code (AP98) used an empirical method to
compute pitch damping of bodies alone. This method was based on a 1970’s version of a model
developed by Bob Whyte of General Electric (GE) (Bob has since left GE and formed his own
company). The method was a data base that used aerodynamics of Army and Navy spin
stabilized shells as a means to estimate aerodynamics of other configurations. The Whyte code
(referred to as the “GE Spinner” code) worked well for configurations that had Mach numbers
less than about 3.0. However, for many missile configurations at high Mach numbers, or
configurations that used flares for stability, the GE Spinner code gives erroneous answers, since
it was not developed with those conditions in mind. The work presented in this report develops
new semiempirical technology to address the weak areas of the GE Spinner code for the pitch
damping coefficient.

The work described in this report was supported through the Office of Naval Research
through the Surface Weapons Systems Technology Program managed at the Naval Surface
Warfare Center, Dahigren Division (NSWCDD) by Mr. Robin Staton. Tasking from this
program was provided by Mr. Roger Horman and Mr. John Fraysse. Also, some support was
provided by the Ballistic Missile Defense Program through Mr. George Long. The authors
express appreciation for support received in this work.
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1.0 INTRODUCTION

The 1998 version of the NSWCDD Aeroprediction Code (AP98)! is the most complete
and comprehensive semiempirical code produced to date. It includes the capability to predict
planar aerodynamics in the roll positions of @ = 0 deg (fins in “+” or plus orientation as viewed
from the rear of the missile) and ® = 45 deg (fins in “x” or cross roll orientation as viewed from
the rear of the missile) over a broad range of flight conditions and configuration geometries with
good average accuracy, computational times and ease of use. Flight conditions include angles of
attack (AOA) up to 90 deg, control deflections of up to =30 deg, and Mach numbers up to 20.
Configuration geometries include axisymmetric and nonaxisymmetric body shapes with sharp,
blunt, or truncated nose tips, with or without a boattail or flare. Up to two sets of planar or
cruciform fins are allowed. New technology has recently been df:ve:lope:d2 to allow both six- and
eight-fin options in the fin considerations as well. Also, many of the constants used in the
aeroprediction code have been refined’ based on a more recent wind tunnel data base,4 allowing
more accurate acrodynamic estimates at angle of attack. Average accuracies are +10 percent for
normal and axial force and +4 percent of body length for center of pressure. Average accuracy
means that enough AOAs or Mach numbers are considered to get a good statistical sample. On
occasion a single data point can exceed these average accuracy values. Ease of use has been
significantly enhanced over older versions of the Aeroprediction Code (APC) through a
personal-computer-based pre- and post-processor package.’ This package has allowed inputs for
configuration geometries to be simplified significantly by many automated nose shape options.

While the AP98 is a very powerful tool, several limitations and areas of improvement
still remain. Most of these needs are driven by the desire of future weapon designers to perform
trade studies on new and innovative concepts that may fall outside of the current capability of the
AP98. An example of this type of requirement is the multi-fin requirement that has just been
completed.? Another example of this type of requirement is to include the capability to deflect
the rear segment of a fin (sometimes referred to as flaperon or aileron) for control, as opposed to
the entire fin. Also, the capability to predict drag accurately for all power on conditions is
desired. Finally, improvement in aerodynamics of projectiles that use a flare for stability (as
opposed to fins) is needed. This report will deal with the last problem area of improving
aerodynamics of configurations that use a flare for stability. Figure 1 illustrates the typical
geometrical parameters associated with a flare. The two most important parameters are the flare
length and angle, which can also be expressed in terms of the flare base to forward or reference
diameter.

The problem of inaccurate aerodynamic predictions for flared configurations from the
APC first came to the author’s attention a couple of years ago in the form of the pitch damping
moment coefficient predictions for a flared projectile concept at a AIAA meeting. The increased
interest in the use of flares for stability in recent years, particularly for higher Mach numbers (see
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FIGURE 1. TYPICAL FLARE CONFIGURATION WITH THE SIGNIFICANT GEOMETRICAL
PARAMETERS

References 6-8 for example), has also led the author to feel that improvements in the
aerodynamic predictions of flared projectiles were needed.

As a result of the increased interest in flared projectiles for higher Mach number
applications, the author decided to take a relook at the APC to determine its weak areas with
respect to flared shaped projectiles. Several problem areas were identified. First of all, for the
static aerodynamics, no particular attention was given for flared projectiles for M. < 1.2. For
M.. > 1.2, low AOA aerodynamics are computed by theoretical methods such as Second-Order-
Van-Dyke (SOVD) or Second-Order-Shock-Expansion-Theory (SOSET) and reasonable
estimates of static aerodynamics (Ca, Cn, Xcp) can be obtained from the APC. For M. < 1.2, the

capability to compute static aerodynamics needs to be incorporated into the code.

The second problem uncovered in the APC prediction of aerodynamics was for the
dynamic derivative, CMq +Cy, » or pitch damping moment coefficient. No capability exists at

any Mach number in the APC for pitch damping moment of flared projectile shapes. In fact,
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based on recent computational fluid dynamic (CFD) calculations of projectiles without a flare,>1°

it was found that the pitch damping moment of configurations without flares needed
improvement as well. Table 1 summarizes the problems in predicting aerodynamics of flared
projectile shapes.

TABLE 1. AP98 WEAK AREAS IN PREDICTING AERODYNAMICS OF FLARED CONFIGURATIONS

a) Ca, Cn, Xcp not available for M. < 1.2 for flare

b) Body alone CMq + CMd needs improvement for M., > 1.2 (no flare)

¢) No pitch damping contribution for flare in AP98 at any M.

2.0 ANALYSIS

Each of the three weak areas mentioned in the Introduction and listed in Table 1 will be
discussed individually in this section of the report. The discussion will be in terms of
modifications that will be made to the AP98 to allow more accurate computations of
aerodynamics of flared projectiles. These modifications will then be a part of the next release of
the APC which will be the AP02 in 2002.

2.1  STATIC AERODYNAMICS OF FLARED PROJECTILES

The wave component of axial force for configurations with small flare angles
(B¢ < 15 deg) can be calculated approximately with the perturbation theory of Wu and Aoyoma'
that was designed for boattails, except the angle is reversed in sign. There was a sign error in the
AP98, but when this error was corrected, approximate estimates of wave drag for M. < 1.2 could
be computed from the Reference 11 method. For M. < 0.9, the wave drag component is
assumed to be zero. Base drag and skin-friction drag were already being computed within the
accuracy desired using the AP98 so no changes in the methodology for these aerodynamic terms
were made.

The normal force and pitching moment coefficients and center of pressure for the flares
are not predicted at all for M.. < 1.2. Furthermore, numerical methods do not exist in the AP98
to allow calculations of Cx, Cy and xcp for M., < 1.2. Also, as will be discussed later in the pitch
damping computations for flares, Cn, Cy and xcp for a flare will be needed at all Mach numbers.

To compute (C Ng )f and (Xcp)s, one of several options are available. The first is to utilize

the available values in the APC. Unfortunately, these values are only available for M. > 1.2
where pressures are computed and integrated over the body surface. Also, the logic of the APC
is such that this would require considerable changes to allow these calculations to be performed
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and brought forward into another subroutine. The second option would be to exercise the APC
twice, once with a flare and once without and subtract the Cy_’s and Cy_ ’s to obtain the flare

normal force coefficient derivative and its center of pressure. Again, this is not a very desirable
alternative since the APC must be exercised twice to get a single number. A third option, which

appears more attractive, is to exercise the APC code offline, compute values of (CNa )f and

(xcp)t for M., > 1.2 and store these in a table lookup as a function of geometric and freestream
parameters. For M.. < 1.2, slender body theory (SBT) can be used to approximate values of
(C Ny )f and (xcp)r. The fourth and most attractive option is to use available cone tables!?

approximate conical formulas to compute (C Ng ) ., use SBT to approximate the center of
pressure of the flare and (C N )f for M., < 1.2, and to include these parameters in a table lookup

as a function of geometry and Mach number. This last option can be used since we are assuming
the flare is a conical frustrum or can be approximated by a conical frustrum. The last option is
the one that will be used in this analysis as it has the advantage of being at least as accurate as
current computations in the APC due to use of an exact cone solution from Reference 12. Also,
this approach offers the opportunity to obtain results in a straightforward and direct way from the
APC as opposed to more costly approaches of logic change in the APC or cycling through the
APC twice to obtain results for the flare alone.

The Cy results for the total cone of Reference 11 must be corrected to include only the

frustrum portion of the cone and also put in the appropriate reference area format. Referring to
Figure 1, the percent of conical shape that is a flare is:

Af _____anz—rrz]___l_{i)z (1)

Ac n !’é Ig

Now the value of CNa obtained from Reference 12 is based on the cone base area. Hence,
Equation (1) must be multiplied by Ap/A; to place it in the same reference area as other Cx,

components for the total configuration of Figure 1. Thus, to relate the value of the Cy_ from

Reference 12 for a cone of given angle at a given Mach number to that of a flare we have

x, ). =n, ), M?T - 1} | @

or
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Equation (2) is valid at all Mach numbers and for all geometries. However, (CNa )C is
available from Reference 12 for conditions where the flow is supersonic and the shock wave is
attached to the conical tip. For conditions where these two assumptions are not met, SBT will be

assumed in conjunction with interpolation. SBT gives
(CNa )c =2.0 (3)

This value of (CNa )C will be assumed for M.. < 0.8. The value of (C N )C from Reference 12

can be used for low AOA calculations of most reasonable flares down to M.. of about 1.2.
Linear interpolation between SBT and Reference 12 will be used for 0.8 < M.. 1.2. Figure 2
gives results of Equations (2) and (3) as a function of Mach number and the parameter dg/d;.
Again, (CNa )c of Equation (2) and Figure 2 is based on Reference 12 supersonically,

Equation (3) subsonically, and linear interpolation of these two methods transonically.

15.0 — % F 4
dr dB
100— '\ s

\, dy/d, = 2.5 (6,=36.9°)

N S T i -
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BASED ON SBT AND NASA TR 1135"
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In examining Figure 2, it is seen that the C N, for a flare can get quite large if the flare is

long or if the flare is short but has a large flare angle. This is why use of a flare is quite popular
at higher Mach numbers, where the Cy, for a fin decreases substantially with Mach number

increase.

The SBT center of pressure for a cone is the same as that from exact theory. The center
of pressure is at 2/3 of the cone length. However, for a conical frustrum, the center of pressure in
general will vary between 0.5 {; and 2/3 [, depending on the flare angle. For flare angles
approaching O, the value of (Xcp)r approaches 0.5 ¢ whereas for large flare angles, (Xcp)s
approaches 2/3 {;. Referring to Figure 1, the center of pressure of the flare can be calculated
from

1

X op = P 1oy +44) xR @
1 A’
£+ ff L”(wa) (x)dx
where A(x)=nt> (X);T=1/(¢, +£;)
Also,
A’(x)=2RTT = 27X tan> 6, (5)

Substituting Equation (5) into Equation (4), integrating and carrying out the algebra, one obtains:

- _2 -] ©)
F U3 -, (e, +z)2J
£, I

but since =—,
£i+4; 13

Equation (6) can be written in a more convenient form as

2 -, /5 F ™

Xep ==
F 3 - /ry )

Equation (7) can also be written in a more useful form in terms of xcp/ls versus xcpfl: + {f) which
1s Equation (7). In terms of xcp/ls, one can write
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Xep _2 1 1-—(r,f/rB)3 ®)
ff 3 l—rr/rB 1—(rr/rB)2
One can also shift the point where xcp is measured from the cone tip to the point where the flare
begins by a simple translation where

— (X ) Xep — 4
O

or

(icp)f=-2-[ 1 )[1—(;/%)3} /15 ©

31—/t J|1-(, /g ) | 1-1. /18

Results of Equation (9) are computed and plotted in Figure 3 as a function solely of the
parameter 1/rg. As seen in the figure, when the body consists of a cone (1; = 0), then the center
of pressure is at 2/3 of the cone or flare length (which are one and the same). On the other hand,
when the flare angle goes to zero so that r/rg = 1.0, the center of pressure goes to xcp/ls = 0.5.
For most typical flare lengths and angles, xcp/ls will vary from about 0.54 to 0.60.

0.7 — —
MT
r : f
0.6 —
ch
0,
0.5 —
0.4 | 1 T ]
0 25 S0pj 75 1.0

FIGURE 3. SLENDER BODY THEORY CENTER OF PRESSURE OF FLARE
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Equation (9) results can be changed to body diameters by multiplying Equation (9) by {¢/d

to obtain:
Xep |(£:)_ G (10) -
I» d d

The combination of Figures 2 and 3 give the CNa and xcp for flares at all Mach numbers. Cy is

simply
Cy, =(Cy, ). @ (11)

for small angles of attack. Since most flare configurations are designed to fly at small angles of
attack, Figures 2 and 3 and Equations (10) and (11) determine two of the desired static
aerodynamic terms for a flare. The pitching moment coefficient of the flare about some
reference location is then

Xep —X
Cu =_[-——-—-CP —< )CNf (12)

22  BODY ALONE PITCH DAMPING MOMENT

The body alone dynamic derivatives are all computed based on an empirical model
developed by Whyte,'? called “Spinner.” The version that is incorporated into the AP9S8 is
basically the same version as initially included in the APC series in 1977. The technology of
Reference 13 was based on curve fits of data using standard spin stabilized rounds. The curve
fits have key parameters of length, boattail length, and Mach number for the dynamic derivative
predictions. Magnus force and moments are also estimated at both 1 and 5 deg angles of attack
to incorporate some nonlinearity due to AOA in the Magnus moment. The data bases upon
which the empirical curve fits were based were primarily limited to about 5.5 calibers and Mach
numbers less than 5.0 (newer versions of Spinner may now be available which remove these
limits). However, length was considered in a linear sense for roll damping moment and one of
the data bases had length as a parameter for pitch damping moments as well.

Since the late 1960’s and early 1970’s, the Army Research Laboratory (ARL) at
Aberdeen, Maryland has developed a very good CFD capability to compute both static and
dynamic derivatives of projectiles, with and without flares. References 6, 7, 9, and 10 are some
of the reports generated by ARL using CFD. As a result of these many CFD computations, and
comparison to data, one can now fine tune the older “Spinner” Model" to be more representative
of a broader class of configurations.

In comparing the AP98 (in essence the “Spinner” model) predictions of pitch damping
moment to ballistic range data and CFD predictions of References 6, 7, 9, and 10, a problem
existed. The Spinner results appeared to be reasonable for M. < 1.2 but overpredicted
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Cym, + Cy,, as Mach number increased. The higher the Mach number, the worse the predictions
became. On the other hand, the errors followed a fairly smooth pattern, allowing a correction to
be derived based on CFD results from References 6, 7, 9, and 10.

The modified pitch damping moment coefficient for bodies without a flare present is
therefore

Cy, *+Cog =(CMq +Cy, )S F, (13)

where (Cy_ +Cyy, )S is the value obtained from the AP98' which basically uses Reference 13.

F, is an empirical decay factor for Mach number derived using the AP98 and References 6,9,
and 10. Here, F; is a function of Mach number and total length of the projectile and is defined
by the following model.

a) 0/d<5.0
F, =1.0 : M_<12
F, =0.0043M2 - 0.151M_, +1.175 ; 12<M_<50 (14)
F, =0.53 : M_>5.0
b) 0/d=8
F, =10 : M_ <20
F, =0.0031M2 —0.0884 M +1.164 ; 2.0<M_ < 5.0 (15)
F,=0.8 . M_>5.0
c) 5<0/d<8 ]
£/d-5
F =F (¢/d=5)- [F (¢/d=5)-F (¢/d=8)] (16)
d) vd>12
F =10 - M_<20
F, =0.0011M2 -0.111M_ +1.178 ; 2<M_ <50 a7
F, =09 . M_>50
e) 8<id<12
¢/d-8
F =F (E/d=8)—( )[F1 (¢/d=8)~F, (¢/d=12)] (18)

10
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2.3 PITCH DAMPING MOMENT OF BODIES WITH FLARES

A typical body configuration with a flare present is shown in Figure 1. As already
mentioned, the AP98 code does not calculate a value of additional pitch damping due to the
presence of a flare. The approximate method used here to represent the flare is basically to use
the Reference 14 approach where

2
(ch +Cyy, )f =-2(cy, ) (.’59’(‘1_’59_91 (19)

Equation (19) was used in Reference 14 to approximate the pitch damping moment coefficient of
a wing, but here the flare replaces the wing planform area. (CNcl )f of Equation (19) is defined

by Equations (2) and (3) and Figure 2. (xCP )f /d of Equation (19) is defined by Equation (10)

and Figure 3. Finally, since Figure 2 already includes the approximate reference areas,
Equation (19) is appropriate as it stands. Equation (19) only includes that portion of the flare
area external to the cylindrical part of the body (see Equation (1)). This is because the body
alone pitch damping moment discussed in Section 2.2 already includes the cylindrical part of the
afterbody.

3.0 RESULTS AND DISCUSSION

3.1  STATIC AERODYNAMICS OF FLARED CONFIGURATION

In this section of the report, we will show the comparison of the approximate methods to
predict aerodynamics of flared configurations to both CFD and experimental results. Static
aerodynamic predictions of flared configurations will be considered first. Unfortunately, the
author was only able to find data in the literature for Mach numbers of 2.0 and greater. Hence,
the new inclusion into the APC of flare static acrodynamics for M., < 1.2 cannot be validated at
present. However, existing static aerodynamic predictions for low supersonic to hypersonic
Mach numbers can be assessed. It is suspected that the reason for the lack of static aerodynamic
data at low Mach numbers for flare stabilized configurations is that the practical application of
flare configurations is at high Mach number. This is because fins lose their effectiveness as
stabilizing devices as Mach number increases, along with posing problems for leading edge
heating and ablation. On the other hand, flares are just as effective at high Mach number as at
low Mach number in providing stability, although they give high drag compared to fins,
particularly at low Mach number.

The first case considered for static aerodynamics validation is shown in Figure 4 and is
taken from Reference 15. This configuration is a blunted Von Karman ogive-cylinder-flare case
with a 10 deg, 2 caliber flare. Wind tunnel data was taken at M.. = 2.0 and Ry/ft of 2 x 10°
without a boundary layer trip present. Comparison of the theory (here shown as AP02) to
experiment for the forebody axial force, normal force, and pitching moment coefficients is given

11
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FIGURE 4. COMPARISON OF THEORY AND EXPERIMENT FOR STATIC AERODYNAMICS
OF A BODY-FLARE CONFIGURATION (M = 2.01, Ry/ft = 2x10°

in the figure. The axial force is not as accurate as desired. However, this could be due to the fact
that the base pressure term was subtracted from the total axial force. This term was larger than
the friction and wave drag terms combined. Hence, a small error in measuring the base pressure
of 5 to 10 percent could account for most or all of the discrepancy between theory and

12
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experiment for the axial force coefficient of Figure 4B. Normal force predictions are excellent
and pitching moments are quite acceptable. The average center of pressure error is less than 4
percent of the body length, which means the predictions are within the +4 percent of body length
error bound accuracy goal stated for the AP02. The average normal force error is under
2 percent. Since no tota] axial force measurements were given, an accuracy assessment on the
axial force cannot be given.

The second case considered is a fairly short (5.84 calibers), cone-cylinder-flare
configuration called the CAN4 projectile.16 A schematic of the configuration is shown at the top
of Figure 5. Figure 5 also gives the axial force coefficient along with the normal force and
pitching moment coefficient slopes near o = 0 deg. Ballistic range data consists of several tests
around M.. = 4.5 and 5.75. These data points were fairly closely scattered together and fairly
close in value so an approximate average is shown on Figure 5 at the Mach numbers of 4.5 and
5.75. As seen in the figure, the APO2 calculations are about 6 to 8 percent lower than the
ballistic range for axial force, within 1 percent of ballistic range data for Cy, and predicts Cy;

as being too stable. In terms of center of pressure, the error in Cwy, Wwill give the center of

pressure error as less than 2 percent of the body length, or about 0.1 caliber. All these errors are
well within the stated accuracy goals on static acrodynamics of =10 percent on axial and normal
force coefficient and +4 percent of the body length for center of pressure.

The third case considered for static aerodynamics of flared projectiles is shown in
Figure 6 and is called CAN1A projectile.”” Tt is also a very short configuration (6.06 calibers)
with a very large flare angle (27.6 deg). It was tested in the wind tunnel at M., = 8.2 from a of
-10 deg to +10 deg. The experimental data of Reference 17, along with the APO2 computations
and Missile Datcom Computations (also obtained from Reference 17) are given in Figure 6.
Coefficients given in Figure 6 include lift, drag, and pitching moment. Both the approximate
codes gives reasonable predictions for all the aerodynamics with the AP02 and Missile Datcom
giving about equal predictions for pitching moment. However, the APO2 is slightly more
accurate than the Missile Datcom for both axial force and lift force coefficient predictions.
Neither of the approximate codes predicts the nonlinearity in aerodynamics that occurs due to the
flow separation behind the shoulder of the cone and ahead of the flare. This nonlinearity is
primarily evident between +8 deg AOA.

The last flared configuration where static aerodynamics were found in the literature is
shown in Figure 7. It is a very long (23.14 calibers) configuration with a flare that is
4.24 calibers in length and flare angle that varies from O to 20 deg. Data were given in
Reference 18 at M. = 4.4, 5.9, and 8.8. All three cases showed similar trends and the AP0O2
predictions were similar, so only the M.. = 5.9 case is shown in Figure 7. Aerodynamics shown
include the forebody axial force coefficient and the normal force and pitching moment slopes
near ¢ = 0 deg. No experimental data was given in Reference 18, only Parabolized Navier-
Stokes (PNS) calculations at sea level conditions where fully turbulent flow was assumed. The
APO2 predictions agree quite well with the PNS calculations for all the aerodynamic coefficients
at all flare angles.

13
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32  PITCH DAMPING MOMENT OF BODY ALONE CONFIGURATIONS

The next aerodynamic term to be considered in the validation process is body alone pitch
damping moment where no flare is present. The modifications to the AP98 predictions (which
are basically taken from the old GE Spinner program13 were discussed in Section 2.2 of this
report. A recent report from the Army Research Laboratory (Reference 9) showed PNS
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calculations of pitch damping on a 5, 6, and 7 caliber configuration with (SOCBT) and without a
boattail (SOC). Computations were available from M. =2 to 5. These results were instrumental
in the author concluding that the AP98 pitch damping computations for a body alone needed
improvement for higher Mach numbers. Figure 8 shows the comparison of the Section 2.2
improvements in the APO2 compared to the AP98 predictions and PNS predictions for pitch
damping moment. While the APO2 does not agree perfectly with the PNS computations, it
shows drastic improvement over the AP98 for M.. > 2.0 at all the body lengths (5, 6, and 7
calibers) shown in Figure 8. The center of gravity was held to a constant percent of the total
body length of 60 percent in these calculations. A note of caution is given here to the reader.
The Reference 9 (and all Army results) use a nondimensionalization of qd/V.. for the pitch
damping whereas the Navy uses qd/(2V.). Hence, all Army results had to be multiplied by 2 to
compare to Navy results.

Figure 9 gives the complimentary results for the SOCBT case. Here, the AP02
predictions agree much closer to the PNS calculations than for the SOC configuration. For both
the SOC and SOCBT cases, the AP02 predictions are much closer to the PNS computations than
are the AP98 calculations.

The last body alone case considered for validation of the improved pitch damping
predictions is given in Figure 10. This configuration is the Army-Navy-Spinner (ANSR) case
which consists of a 2.0 caliber tangent ogive nose followed by a 3, 5, and 7 caliber cylindrical
afterbody. Total body lengths are therefore 5, 7, and 9 calibers. Results were given in
References 9 and 10 consisting of PNS calculations and ballistic range data. Data were available
for all configurations for M.. between 1.3 and 2.5 and for the 7 caliber case, for M.. between 0.8
and 2.5. Also several center of gravity locations were given in References 9 and 10, but only the
case where the center of gravity was at about the 60 percent location (which is typical of most
ammunition) is shown here. A couple of points are of interest. First of all, for Mach numbers
below about 1.5, the old AP98 predicts pitch damping quite adequately. Also for Mach numbers
as high as 2.5, predictions are not that bad for the AP98, so only minor improvements are shown
using the APO2 for this configuration due to the low Mach numbers considered. This makes
sense because the Reference 13 methodology was based on available data, which in the 1970°s
consisted mainly of shells with 0.8 < M., < 2.5 and lengths of 4 to 7 calibers. The second point
to note from Figure 10 is that for the longest configuration ({ = 9 calibers), there is a large scatter
in the ballistic range data, but the predictions still appear to be reasonable, given the large scatter
in data.
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3.3  PITCH DAMPING OF FLARED CONFIGURATIONS

We are now ready to validate the AP0O2 predictions of pitch damping moment for flare
configurations. Recall that this was the primary reason for this report and the improvements to
the AP98, as the AP98 did not give any additional pitch damping due to the presence of a flare.
Figure 11 gives the first case considered. It is termed the CS-V4-1 configuration in Reference 7.
This configuration consists of a blunt cone-cylinder-flare, where the flare angle is 6 deg and the
flare length is 3.51 calibers. The overall configuration length is 15.36 calibers. The
configuration of Figure 11 shows rifling grooves, but a smooth body was assumed in the PNS
and aeroprediction calculations. Pitch damping results are shown in Figure 11 for Mach
numbers 0.4 to 5.0 from the APO2 and AP98. PNS results are shown from M.. = 3 to 4.5 and
ballistic range results are shown at M.. = 4.0. Note the AP02 methodology agrees much closer to
the experimental data and PNS results than does the AP98. The AP98 results are basically those
of a cone-cylinder that is 15.36 calibers long.

Figure 12 shows pitch damping results for a configuration similar to that of Figure 11,
except the flare is longer, 4.49 versus 3.51 calibers, and the overall Figure 12 configuration
length is longer (16.34 versus 15.36 calibers) than that of Figure 11. Again, AP98 and AP02
results are shown for Mach number of 0.4 to 5 whereas PNS calculations were available for
Mach number of 3 to 4.5 and ballistic range data was available for M.. = 4.0 only. The APO2
results match the PNS calculations quite nicely with the AP98, being much lower than the PNS
results due to not accounting for the flare. The ballistic range data are somewhat lower than the
PNS data and APO2 for this configuration, possibly due to the impact of the grooves on the pitch
damping.

The third case considered for pitch damping is the CAN4 projectile which was previously
considered for static aerodynamics in Figure 5. The pitch damping results are shown in

Figure 13 in terms of AP98 and AP02 for Mach numbers 2 to 6 and CFD and ballistic range

results at M. =4.4 and 5.72. The APO2 results agree very well with the CFD results and both are
10 to 15 percent lower than the experimental data. Errors of +20 percent are quite reasonable
and so these results are quite acceptable for dynamic derivative predictions. However, the older
AP98 gives unacceptable results.

The fourth flared configuration where experimental pitch damping data or CFD
computations was found in the literature is shown in Figure 14.° This configuration is also a
cone-cylinder-flare of 12.28 calibers total length. It has a flare with a 15 deg flare angle that is
2.67 calibers in length. Only one CFD data point was given in Reference 6 at M. = 4.4 in.
However, APO2 and AP98 computations are shown for Mach numbers of 2 to 6.0. The AP02

results are about 12 percent lower than the data point at M., = 4.4 (CMq +Cy,, = 550 versus
-625), which is considered to be acceptable prediction accuracy. However, the AP98
predictions are about 60 percent too low.

The final configuration where CFD or experimental pitch damping data was found was
also taken from Reference 6 and results are given in Figure 15. It consists of a 13.16 caliber
cone-cylinder-flare where the flare angle varies from 4 to 14 deg. Again, only M.. = 4.4 data was
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given in Reference 6. Notice the good agreement of the AP02 to the CFD computations. Here
the worst error of the AP0O2 compared to the CFD is under 6 percent for the 6; = 14 deg case.
Again, the AP98 gives unacceptable agreement to the CFD, except for small 6.

4.0 SUMMARY AND CONCLUSIONS

To summarize, new capability has been added to the NSWC aeroprediction code to allow
static aerodynamics to be computed for flared configurations at all Mach numbers.
Improvements have been added to pitch damping predictions for high Mach numbers for body
alone configurations (no flare present). Finally, new capability has been added to allow pitch
damping computations to be made for flare configurations for all Mach numbers where the
aeroprediction code is operational (Mach numbers O to 20).

In comparing the new aeroprediction code (AP02) to experimental data and both
Parabolized and Full Navier-Stokes predictions, the following conclusions were drawn:
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Comparison of static aerodynamic predictions for configurations that have flares to
experimental data and CFD computations appears to show the AP98 and AP02 give
predictions within the standard accuracy goals for configurations with wings or tails.
That is average accuracy of +10 percent for axial and normal force and +4 percent of
the body length for center of pressure.

Comparison of AP02 pitch damping predictions for bodies without flares to the
AP98, experimental data and CFD computations showed the AP0O2 predictions to be
superior to the AP98 for M. > 2 for all cases considered. The average accuracy goal
of +20 percent was met for the APO2 but not with the AP98.

Comparison of the APO2 pitch damping predictions for bodies with flares to the
AP98, experimental data and CFD computations showed the AP02 predictions to be
within the desired average accuracy goal of +20 percent, whereas the AP98 could be
off as much as 60 to 70 percent due to failure to account for the flare.

No data (either static or dynamic) was found for flared configurations for Mach
numbers below 2.0. Hence, the new capability for both static aerodynamics for
M. < 1.2 and pitch damping for flared configurations could not be adequately
validated for low Mach numbers. While the author would like to have data for
validation in this Mach number range, it is impractical from a usage standpoint. This
is due to the fact that fins are better at both stability and drag for moderate supersonic
Mach numbers and lower than flares.

While the pitch damping methods for flared configurations have not been validated
for Mach numbers below 2.0, the author believes they can still be used with
confidence in preliminary design tradeoffs to compare flared configurations to those
with wings. This is due to the accuracy of the methodology for Mach numbers above
2.0 and the consistency of the methodology for Mach numbers above and below 2.0.
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6.0 SYMBOLS AND DEFINITIONS

Angle of Attack

Aeroprediction Code

2002 and 1998 versions of the APC, respectively
Computational Fluid Dynamics

Naval Surface Warfare Center, Dahlgren Division
Parabolized Navier-Stokes

Slender Body, Slender-Body Theory

Reference area (maximum cross-sectional area of body, if a body is
present, or planform area of wing, if wing alone)(ft?)

Base area = md3 /4

Axial force coefficient

Base, skin-friction, and wave components, respectively, of axial force

coefficient

Forebody axial force coefficient (C ar =Ca; TCay )

Drag coefficient
Lift coefficient

Pitching moment coefficient (based on reference area and body diameter,
if body present, or mean aerodynamic chord, if wing alone)

Pitching moment coefficient derivative (per radian)

28




Rn

Xcp, icp

X,Y,Z
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Pitching damping moment coefficient
[Cml@)/(ad 72V, )+ Cy (6)/(6d /2V,,)]

Pitching moment coefficient due to a constant pitching rate of q
Pitching moment coefficient due to a constant vertical acceleration of
Normal force coefficient

Normal-force coefficient derivative (per radian)

Caliber(s) (one body diameter)

Body diameter (ft) at base

Reference body diameter (ft)

Degree(s)

Body length, nose length, afterbody length, and flare length, respectively
Distance from cone apex to flare-cylinder juncture

Freestream Mach number

Normal force (Ibs)

Local body radius (ft) .
Reynolds number

Freestream velocity (ft/sec)

Center of pressure (in feet or calibers from some reference point that can
be specified) in x direction

Axis system fixed with x along centerline of body
Angle of attack (deg)
Roll position of missile fins (P = 0 deg corresponds to fins in the plus (+)

orientation; ® = 45 deg corresponds to fins rolled to the cross (x)
orientation)
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Subscripts

CG
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Flare angle (deg)

Cone
Center of gravity
Flare

Freestream conditions
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1640 RHODE SAINT GENESE B51 (ARMISTEAD) 1
BELGIUM B60 (TECHNICAL LIBRARY) 3
C 1
ATTN P CHAMPIGNY 1 D 1
DIRECTION DE L AERONAUTIQUE G 1 )
ONERA ‘ G02 1 .
29 AV DE LA DIVISION LECLERC G04 5
92320 CHATILLON SOUS BAGNEUX CEDEX G20 1
FRANCE G205 1
G23 1
1
1
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Copies

G23  (HANGER)
G23  (HARDY)
G23  (HYMER)
G23  (OHLMEYER)
G23  (ROWLES)
G23  (WEISEL)
G24  (ROBINSON)
G30

G305

G32  (DAY)

G33  (FRAYSSE)
G33  (RINALDI)
G50

G50  (SOLOMON)
G60

G70

G72

G72  (ALEXOPOULOS)
G72  (CHEPREN)

K40
K44 (ICHNIOWSKTI)
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