WORKSHOP AND PUBLICATION WORKING GROUP ON HIGH POWER MICROWAVE SOURCES AND TECHNOLOGIES

The University of New Mexico
Dept of Electrical & Computer Eng.
Albuquerque, NM 87131-1356

AFOSR/NE
801 N. Randolph St. Rm 732
Arlington, VA 22203-1977

Approved for public release; distribution is unlimited.

A workshop was convened from June 3-12, 1999 at the University of New Mexico’s Maui High Performance Computing Center. The purpose of the workshop was to bring together contributors to an IEEE Press Book entitled *Advances in High Power Microwave Sources and Technologies* in order to draft the initial manuscript. Workshop participants discussed competing ideas and converged on an initial draft. The scientific papers presented at the workshop thus comprise the book draft. Goals were then made for finalizing the book, having assigned tasks to each of the contributors. There will be 12 chapters describing recent advances in AFOSR-funded high power microwave research. Each chapter is led by a *Chapter Master* whose task is to coordinate the contributions from the chapter coauthors. In addition to this aspect of the workshop, technical sessions discussing the role of high performance computing on high power microwave tube design were also held. There were 29 registered attendees at the workshop.
The University of New Mexico
Department of Electrical and Computer Engineering

FINAL SYMPOSIUM REPORT

“WORKSHOP AND PUBLICATION WORKING GROUP ON HIGH POWER MICROWAVE SOURCES AND TECHNOLOGIES”

AFOSR GRANT F49620-99-1-0087

Period of Performance: 1 January 1999 – 30 November 1999

Report Prepared by:

Edl Schamiloglu
Associate Professor,
Electrical and Computer Engineering
Regent’s Lecturer,
University of New Mexico,

Report Dated: 22 February 2000
ABSTRACT

A workshop was convened from June 3-12, 1999 at the University of New Mexico's Maui High Performance Computing Center. The purpose of the workshop was to bring together contributors to an IEEE Press Book entitled *Advances in High Power Microwave Sources and Technologies* in order to draft the initial manuscript. Workshop participants discussed competing ideas and converged on an initial draft. The scientific papers presented at the workshop thus comprise the book draft. Goals were then made for finalizing the book, having assigned tasks to each of the contributors. There will be 12 chapters describing recent advances in AFOSR-funded high power microwave research. Each chapter is led by a *Chapter Master* whose task is to coordinate the contributions from the chapter coauthors. In addition to this aspect of the workshop, technical sessions discussing the role of high performance computing on high power microwave tube design were also held. There were 29 registered attendees at the workshop.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Advances in High Power Microwave Sources and Technologies Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>Appendix A – Workshop Invitation</td>
<td>6</td>
</tr>
<tr>
<td>Appendix B – List of Attendees</td>
<td>7</td>
</tr>
<tr>
<td>Appendix C – Workshop Handouts</td>
<td>8</td>
</tr>
</tbody>
</table>
1. ADVANCES IN HIGH POWER MICROWAVE SOURCES AND TECHNOLOGIES

Since the technical contributions to this workshop comprise a book draft that exceeds 500 pages, we only present here the Table of Contents and frontal material from the draft. Copies of the entire manuscript can be provided upon request.
Advances in High Power Microwave Sources and Technologies

Edited by

ROBERT J. BARKER
Air Force Office of Scientific Research
Air Force Research Laboratory

EDL SCHAMIOGLU
Department of Electrical and Computer Engineering
University of New Mexico

©2000 IEEE Press

All rights reserved. No part of this publication may be reproduced without prior written permission of authors.
Preface

This book presents a snapshot in time of the status of research on high peak power microwave (HPM) sources and technologies in the United States circa 1999. In particular, the focus of this book is on the results of high power narrowband source research that has been sponsored by, or closely aligned with the Department of Defense (DoD) Multidisciplinary University Research Initiative (MURI) to investigate novel high energy microwave sources. This MURI program officially came into existence in 1995. However, it builds on over a decade of microwave research efforts funded by the plasma physics office at the Air Force Office of Scientific Research (AFOSR) where one of us (RJB) is program manager. It is also synergistic with the ongoing Tri-Service Vacuum Electronics Initiative led by Robert Parker of the Naval Research Laboratory (NRL), as well as with AFOSR and the Air Force Research Laboratory–Rome Laboratory Site’s long-standing Advanced Thermionic Research Initiative (ATRI).

Under the auspices of the MURI program, HPM scientists at nine U.S. universities have been attacking research projects under three Consortia led by Neville Luhmann at the University of California (Davis), Victor Granatstein at the University of Maryland (College Park), and Magne Kristiansen at Texas Tech University (Lubbock). The other university participants include the other Co-Editor (ES) at the University of New Mexico (Albuquerque), John Nation at Cornell University (Ithaca), Ned Birdsall at the University of California (Berkeley), George Caryotakis at Stanford University (Stanford Linear Accelerator Center), Ronald Gilgenbach at the University of Michigan (Ann Arbor), and Tony Lin at the University of California (Los Angeles). To facilitate the rapid transition of research results into the industrial community, formal collaborative subcontracts were established with James Benford (Microwave Sciences), Carter Armstrong (Northrop-Grumman), and Howard Jory (CPI). Furthermore, cooperative ties were strengthened with the ongoing HPM research and development efforts at the Air Force Research Laboratory–Phillips Research Site (Kirtland Air Force Base, NM) first under the leadership of Jack Agee, and later through the liaison efforts of John Gaudet.

This book presents a fair assessment of the state-of-the-art in HPM source research and associated technologies that are of relevance to the DoD. Following the introduction in Chapter 1, Chapter 2 presents HPM source research in the broad context of interest in the DoD on rf sources in general. Chap-
ters 3-6 present advances in HPM sources and a better understanding of the pulse shortening issue that has received a great deal of attention. Chapters 7-11 present advances in enabling technologies that are essential not only to achieve a better understanding of the physics of HPM sources, but also to make HPM practical. Finally, alternate approaches to achieving HPM, and future challenges in this nascent area of research, are presented in Chapter 12.

This book brings together contributions from each of the participants of, and affiliated research groups with the MURI program. The writing of each of the chapters was led by a Chapter Master whose responsibility was to not only coordinate the efforts of the coauthors, but to also follow the guidelines and notation put forth by the Co-Editors. To this end, we would like to express our deepest gratitude to each of the Chapter Masters: John Gaudet (Chapter 2), Kyle Hendricks (Chapter 3), Jim Benford (Chapter 4), John Nation (Chapter 5), Vic Granatstein (Chapter 6), Yuval Carmel (Chapter 7), Chaouki Abdallah (Chapter 8), Ryan Umstattd (Chapter 9), Andreas Neuber (Chapter 10), and John Luginsland (Chapter 11).

Finally, we thank our colleagues in the MURI program that have agreed to participate in this book project to archive the advances in the field of high power microwaves.

Robert J. Barker
Edl Schamiloglu
January 2000
Contents

1 Introduction ... 1
 1.1 High Power Microwaves 2
 1.2 Organization and Scope of the Book 4

2 HPM Sources: The DoD Perspective 9
 2.1 Introduction 10
 2.2 Role of the DoD in Basic Research 11
 2.3 DoD Needs .. 13
 2.4 History ... 14
 2.5 Advances in HPM Development 24
 2.5.1 High Power Narrow Band Source Development 25
 2.5.2 High Power Ultra-wideband Source Development 30
 2.6 Enabling Technologies 33
 2.6.1 Pulsed Power 33
 2.6.2 Novel Cathodes 34
 2.6.3 Improved Materials and Breakdown Strength 34
 2.6.4 Antennas .. 35
 2.6.5 Computational Capabilities 36
 2.7 Summary .. 36

3 Gigawatt-Class High Power Sources 47
 3.1 Introduction 49
 3.1.1 Definition of High Power Sources 50
 3.1.2 Evolution and History 50
 3.1.3 Issues for Increasing Power and Pulse Length 51
 3.2 Major Gigawatt-Level HPM Sources 57
 3.2.1 Magnetically Insulated Line Oscillator (MILO) ... 57
 3.2.2 Tapered MILO 64
 3.2.3 Relativistic Magnetron 71
 3.2.4 Relativistic Klystron Amplifier (RKA) and Triaxial RKA 75
 3.2.5 Relativistic Klystron Oscillator (RKO) 82
 3.2.6 Reltron .. 87
 3.3 Future Improvements 92

vii
4 Pulse Shortening
4.1 Introduction .. 105
4.2 Overview of Earlier Results 106
 4.2.1 Pulse Shortening Mechanisms 106
 4.2.2 Hard Tube and Soft Tube Techniques 109
4.3 Thrusts of Recent Research 116
 4.3.1 Surface and Vacuum Techniques 116
 4.3.2 Source Pulse Lengthening Progress 119
4.4 Summary .. 139

5 Relativistic Čerenkov Devices 147
5.1 Introduction ... 149
5.2 Traveling Wave Tube Amplifiers 150
 5.2.1 Introduction 150
 5.2.2 Single-Stage TWT 152
 5.2.3 Two-Stage TWT 152
 5.2.4 Macro-particle Analysis 153
 5.2.5 Structure Tapering 154
 5.2.6 Transit Time Isolation 155
5.3 Recent High Power TWT Amplifier Research 156
 5.3.1 Introduction 156
 5.3.2 Quasi-Periodic Structures 156
 5.3.3 High Efficiency Output Structures 157
 5.3.4 Axial Extraction 157
 5.3.5 High Efficiency Amplifier Operation 158
 5.3.6 Bunch Compression 161
 5.3.7 Ka-Band Studies 161
 5.3.8 Hybrid Modes 164
 5.3.9 Interaction of Symmetric and Asymmetric Modes .. 166
 5.3.10 Discussion .. 168
5.4 Backward Wave Oscillators 169
 5.4.1 Introduction 169
 5.4.2 Repetitively Pulsed Operation 170
 5.4.3 Efficiency Enhancement 170
 5.4.4 Millimeter Wave BWO's 171
 5.4.5 Ultra-high Power Operation 172
 5.4.6 Long-pulse Operation 173
5.5 Recent High Power BWO Research 173
 5.5.1 Characterization of SWS's 173
 5.5.2 Theory of BWO's 175
 5.5.3 Experiments 180
5.6 Acknowledgment .. 185
6 Gyrotron Oscillators and Amplifiers 195
 6.1 Introduction .. 197
 6.1.1 Chapter Outline 197
 6.1.2 The Gyrotron Concept 198
 6.2 The State-of-the-Art in High Power Gyrotroons 202
 6.2.1 Gyromonotron Oscillators for Plasma Heating and Current Drive 202
 6.2.2 Gyromonotron Oscillators for Industrial Applications ... 205
 6.2.3 Gyro-amplifiers for Millimeter Wave Radar 208
 6.2.4 Gyroklystron Amplifiers for Driving Linear Colliders 213
 6.2.5 Gyro-BWO's for Millimeter Wave ECM 215
 6.2.6 Gyrotrons Driven by Intense Relativistic Electron Beams (IREB's) 216
 6.3 Frequency Multiplying Gyro-amplifiers for Advanced Radars 216
 6.4 High Harmonic Operation of Gyrotrons with Axis-encircling Beams ... 222
 6.4.1 High Harmonic Gyrotron Oscillators 224
 6.4.2 Harmonic Gyrotron Amplifiers 226
 6.5 Recent Progress in Gyrotrons Driven by IREB's 227
 6.5.1 IREB's, Gyro-devices, and Space-Charge Considerations 227
 6.5.2 RCS and Co-axial Gyrotrons 229
 6.5.3 Evaluation of Gyro-BWO’s as Broadly Tunable HPM Sources ... 232
 6.6 Recent Advances in Gyrotron Theory 235
 6.6.1 The Gyrotwystron 235
 6.6.2 Suppression of Backward Waves 237
 6.6.3 Multi-stage Traveling Wave Amplifiers 238
 6.7 Summary ... 239
 6.8 Acknowledgements 239

7 Active Plasma Loading of High Power Microwave Devices 255
 7.1 Introduction .. 257
 7.2 Overview of Earlier Results 258
 7.2.1 Historical Perspective 258
 7.2.2 Theory ... 260
 7.2.3 Experiments .. 263
 7.3 Recent Advances in Plasma-Filled HPM Sources 267
 7.3.1 Plasma Generation Techniques 267
 7.3.2 Novel Plasma Characterization Techniques 270
 7.3.3 Electromagnetic Properties of SWS’s Loaded with Radially Inhomogeneous Plasma 276
 7.3.4 Results ... 280
 7.3.5 Novel Diagnostics, Techniques, and Technologies 299
 7.3.6 Most Important Experimental Results 302
 7.4 Summary and open issues 303
 7.4.1 Summary of achievements 304
CONTENTS

7.4.2 Future directions and opens issues 304
7.5 Acknowledgments ... 305

8 Beam and rf Control ... 315
8.1 Introduction .. 317
8.2 The Evolution of High Power Magnetrons in a Commercial Sys-
 tem ... 318
8.3 Beam Transport .. 319
 8.3.1 Overview ... 319
 8.3.2 IFR Transport .. 320
8.4 Depressed Collectors .. 325
 8.4.1 Enhancement of Overall Efficiency by Energy Recovery
 from Spent Beam .. 325
 8.4.2 A Library of Codes Developed for CAD of Depressed
 Collectors ... 326
 8.4.3 A New Algorithm for Tracing the Trajectories of Back-
 scattered Electrons ... 328
 8.4.4 Summary .. 330
8.5 Polarization Control of Microwave Output 330
8.6 Evolution of a Smart Tube ... 332
 8.6.1 Introduction .. 332
 8.6.2 GW-level Smart Tube ... 332
8.7 Summary ... 339

9 Cathodes and Electron Guns ... 345
9.1 Introduction .. 347
9.2 Historical Overview .. 348
 9.2.1 Advances in Thermionic Emitters 351
 9.2.2 Explosive Emitters ... 361
 9.2.3 Ferroelectric Cathodes 370
9.3 Electron Guns .. 376
 9.3.1 High Power Cusp Gun ... 377
 9.3.2 Plasma Electron Sources 382
9.4 Summary & Future Directions 386

10 Windows and rf Breakdown ... 395
10.1 Introduction .. 396
10.2 Overview of Earlier Work .. 397
10.3 Basic Considerations .. 399
 10.3.1 Physical Mechanisms ... 399
 10.3.2 Unipolar Surface Breakdown 404
10.4 Multipactor Theory ... 405
 10.4.1 Two-surface Multipactor on Metals 406
 10.4.2 Single-surface Multipactor on Dielectrics 410
 10.4.3 Further Discussion ... 414
10.5 Breakdown in rf Structures 420
CONTENTS

10.5.1 TM_{010} Cavity in an X-band Ring 420
10.5.2 TM_{020} Cavity .. 423
10.5.3 Discussion ... 431
10.6 Dielectric Window Breakdown 432
10.6.1 Experimental Approach 432
10.6.2 Experimental Results 434
10.6.3 Further Discussion 438
10.7 Methods of Breakdown Suppression 442
10.8 Summary .. 445
10.9 Acknowledgement ... 447

11 Computational Techniques 457
11.1 Introduction .. 459
11.2 Overview of the PIC Method 460
11.2.1 Field Equations 462
11.2.2 Field Boundary Conditions 463
11.2.3 Particle Equations 467
11.2.4 Particle Boundary Conditions 468
11.2.5 Coupling Fields and Particles 469
11.3 Modeling HPM Tubes Using PIC Simulation: A Tutorial .. 470
11.4 Recent Advances in PIC 476
11.4.1 Plasma Model ... 476
11.4.2 Secondary Emission 483
11.4.3 Charge Conservation in Electromagnetic PIC Codes ... 487
11.4.4 Modal Expansion PIC 492
11.4.5 Poynting Splitter 493
11.4.6 Object-oriented Techniques 495
11.4.7 Parallel PIC Codes 497
11.4.8 Conclusion ... 503
11.5 Overview of Parametric Modeling 503
11.6 Recent Advances in Parametric Modeling 509
11.6.1 MAGY .. 509
11.6.2 Gap-Circuit Models 511
11.7 Summary and Future Issues 516
11.7.1 Body-fitted Coordinates 516
11.7.2 Probabilistic Surface Physics 517
11.7.3 Hybrid Software 517
11.7.4 Parallel Checkpointing 518
11.7.5 Data Visualization 518
Appendix A – Workshop Invitation
Appendix B – List of Attendees
<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>AM $4</th>
<th>Noon $6</th>
<th>WD $20</th>
<th>WDS $30</th>
<th>L $30</th>
<th>L S $50</th>
<th>L K $28</th>
<th>FD $20</th>
<th>FD S $30</th>
<th>Total Reg</th>
<th>Total Meals</th>
<th>Total Paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaouki</td>
<td>Abdallah</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$350.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Forrest J.</td>
<td>Agee</td>
<td>$400.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$400.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Moe J.</td>
<td>Arman</td>
<td>$400.00</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$80.00</td>
</tr>
<tr>
<td>Robert</td>
<td>Barker</td>
<td>$400.00</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$400.00</td>
<td>$234.00</td>
</tr>
<tr>
<td>James</td>
<td>Benford</td>
<td>$350.00</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$350.00</td>
<td>$180.00</td>
</tr>
<tr>
<td>Anna</td>
<td>Brown</td>
<td></td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$0.00</td>
<td>$110.00</td>
<td>$110.00</td>
</tr>
<tr>
<td>Yuval</td>
<td>Carmel</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$210.00</td>
</tr>
<tr>
<td>George</td>
<td>Caryotakis</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$266.00</td>
</tr>
<tr>
<td>Jim C.</td>
<td>Dickens</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>John</td>
<td>Gaudet</td>
<td>$400.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$400.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Ron</td>
<td>Gilgenbach</td>
<td>$400.00</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>$400.00</td>
<td>$80.00</td>
</tr>
<tr>
<td>Victor</td>
<td>Granatstein</td>
<td>$350.00</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$344.00</td>
</tr>
<tr>
<td>Frank</td>
<td>Hegeler</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$350.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Kyle</td>
<td>Hendricks</td>
<td>$400.00</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$74.00</td>
</tr>
<tr>
<td>Verboncoeur</td>
<td>John P.</td>
<td>$350.00</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$350.00</td>
<td>$32.00</td>
</tr>
<tr>
<td>Howard</td>
<td>Jory</td>
<td>$350.00</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$164.00</td>
</tr>
<tr>
<td>Kris</td>
<td>Kristiansen</td>
<td>$350.00</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$350.00</td>
<td>$80.00</td>
</tr>
<tr>
<td>Linda</td>
<td>Larsh</td>
<td>$400.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>$400.00</td>
<td>$266.00</td>
</tr>
<tr>
<td>Y.Y.</td>
<td>Lau</td>
<td>$350.00</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$350.00</td>
<td>$130.00</td>
</tr>
<tr>
<td>John</td>
<td>Luginsland</td>
<td>$400.00</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$124.00</td>
</tr>
<tr>
<td>Neville C.</td>
<td>Luhmann, Jr.</td>
<td>$400.00</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$40.00</td>
</tr>
<tr>
<td>Peter</td>
<td>Mardahl</td>
<td>paid</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$0.00</td>
<td>$130.00</td>
</tr>
<tr>
<td>John</td>
<td>Nation</td>
<td>$400.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$124.00</td>
</tr>
<tr>
<td>Andreas</td>
<td>Neuber</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Gregory</td>
<td>Nusinovich</td>
<td>$350.00</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$350.00</td>
<td>$124.00</td>
</tr>
<tr>
<td>Levi</td>
<td>Schacter</td>
<td>$400.00</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Edl</td>
<td>Schamoliglu</td>
<td>$350.00</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$350.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Tom</td>
<td>Spencer</td>
<td>$400.00</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$400.00</td>
<td>$152.00</td>
</tr>
<tr>
<td>Ryan</td>
<td>Umstettd</td>
<td>$400.00</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$400.00</td>
<td>$110.00</td>
</tr>
</tbody>
</table>

KEY

- AM: Breakfast
- Noon: Lunch
- WD: Welcome Dinner
- WDS: Welcome Dinner for spouse
- L: Luau
- LS: Luau Spouse
- LK: Luau Kids
- FD: Farewell Dinner
- FDS: Farewell Dinner Spouse

Total: $14,594.00
Appendix C – Workshop Handouts
June 4, 1999

Dear Colleague:

On behalf of the workshop and publication working group organizing committee I would like to extend a warm welcome to you and your accompanying person(s) to Wailea, Maui. We are fortunate to have the opportunity to spend an extended period of time working on our book project in such a wonderful setting. I hope that you will find the island conducive to releasing your creative energy, as well as allowing you to interact with your fellow contributors.

I would like to thank AFOSR for its sponsorship of this workshop. I would also like to thank Microwave Sciences for its sponsorship of several of the functions associated with this workshop.

I would like to thank Candace Shirley at the MHPCC (UNM West) for her assistance in organizing this event and the reception at MHPCC.

I would like to thank the professional staff at the Outrigger Wailea for working so closely with the organizers in planning and executing this event.

I hope you enjoy working on the book, and I hope that you will have an opportunity to enjoy the island of Maui.

Edi Schamiloğlu
University of New Mexico

Organizing Committee

R.J. Barker, AFOSR J. Gaudet, AFRL Major L. Larsh, AFOSR
J. Benford, Microwave Sciences C. Shirley, MHPCC E. Schamiloğlu, UNM
LIST OF CHAPTER MASTERS

Chapter 1: Introduction
Chapter Master: Edl Schamiloglu

Chapter 2: High Power Microwave Sources Research: The DoD Perspective
Chapter Master: John Gaudet

Chapter 3: Gigawatt Class High Power Sources
Chapter Master: Kyle Hendricks

Chapter 4: Pulse Shortening and Improved High Vacuum Techniques
Chapter Master: Jim Benford

Chapter 5: Relativistic Cerenkov Devices
Chapter Master: John Nation

Chapter 6: Gyrotron Oscillators and Amplifiers
Chapter Master: Vic Granatstein

Chapter 7: Active Plasma Loading of HPM Devices
Chapter Master: Yuval Carmel

Chapter 8: Beam and RF Control Techniques
Chapter Master: Chaouki Abdallah

Chapter 9: Cathodes and Electron Guns
Chapter Master: Ryan Umstattd

Chapter 10: Windows and RF Breakdown
Chapter Master: Andreas Neuber

Chapter 11: Modeling and Computational Techniques
Chapter Master: John Luginsland

Chapter 12: Alternate Approaches and Future Challenges
To be compiled from input from Chapter Masters
WORKSHOP AGENDA

Thursday June 3, 1999
Workshop attendees arrive

Friday June 4, 1999
8:00 AM-10:00 AM
Registration (Outside Mauna Loa)
Continental Breakfast (South Pacific Lanai)

10:00 AM-Noon
Opening Remarks, Overview of Workshop (Mauna Loa)
(Host, AFRL/AFOSR Representatives, AFRL/Phillips Site Representative)

Noon-1:00 PM
Lunch for registrants (South Pacific Lanai)

1:00 PM-4:00 PM
Presentations by Chapter Masters (Mauna Loa)

(Note: There will be a coffee break at 2:30 PM)

6:00 PM-7:00 PM
Cocktail Reception (Makani)

7:00 PM-9:00 PM
Welcome Dinner

Saturday June 5, 1999
Morning
Breakout sessions for each Chapter team (Mauna Loa available all day)

Afternoon
Open

Sunday June 6, 1999
Morning
Open

Afternoon
Breakout sessions for each Chapter team (Mauna Loa available all day)
Monday June 7, 1999
8:00 AM-9:00 AM
Continental Breakfast (South Pacific Lanai)

9:00 AM-Noon
Attendees reconvene to discuss draft chapters (breakout rooms indicated)

Noon-1:00 PM
Lunch for registrants (South Pacific Lanai)

2:30
Bus arrives at hotel for tour of Maui High Performance Computing Center (MHPCC),
demos, and reception.

6:00
Bus departs MHPCC for hotel.

Tuesday June 8, 1999
8:00 AM-9:00 AM
Continental Breakfast (Outside Makani Room)

9:00 AM-Noon
Attendees reconvene to discuss draft chapters (Makani)

Noon-1:00 PM
Lunch for registrants (Outside Makani Room)

1:00 PM-4:00 PM
Attendees reconvene to discuss draft chapters (Makani)

(Note: There will be a coffee break at 2:30 PM)

Evening
Luau (Workshop Banquet)

Wednesday June 9, 1999
8:00 AM-9:00 AM
Continental Breakfast (South Pacific Lanai)

9:00 AM-Noon
Attendees reconvene to discuss draft chapters (breakout rooms indicated)

Noon-1:00 PM
Lunch for registrants (South Pacific Lanai)
1:00 PM-5:00 PM
Attendees reconvene to discuss draft chapters (*breakout rooms indicated*)
(Note: There will be a coffee break at 2:30 PM)

Thursday June 10, 1999
8:00 AM-9:00 AM
Continental Breakfast (*South Pacific Lanai*)

9:00 AM-11:00 AM
Panel Discussion - Role of High Performance Computing in HPM Source Design (*Mauna Loa*)

Panel Members Scientists from MHPCC, Scientists from AFRL/Phillips Site, University Representatives

11:00 AM-Noon
Continued discussions

Noon-1:00 PM
Lunch for registrants (*South Pacific Lanai*)

1:00 PM-3:00 PM
Attendees reconvene to discuss draft chapters (*breakout rooms indicated*)

3:00 PM-5:00 PM
Chapter Masters give report to workshop attendees (*Mauna Loa*)

(Note: There will be a coffee break at 2:30 PM)

6:00 PM-7:00 PM
Farewell Reception (*Pacific Terrace*)

7:00 PM-9:00 PM
Farewell Dinner (*Pacific Terrace*)

Friday June 11, 1999
8:00 AM-9:00 AM
Continental Breakfast (*South Pacific Lanai*)

9:00 AM-Noon
Wrap-up

Noon-1:00 PM
Lunch for registrants (*South Pacific Lanai*)

Adjourn

Saturday June 12, 1999
Departures
Chapter Number:
Your Name:
Date:

1. Does this chapter follow the prescribed layout (Introduction, Overview of earlier work, Recent accomplishments—primarily MURI, but DO include other important advances)? If not, advise the chapter master which element is lacking.

2. Does this chapter read uniformly? What sections within this chapter appear to require considerable editing to achieve congruency? (Please make sure that the writing style is uniform. We decided to write using active voice—"we studied" as opposed to passive voice—"it was studied." Make sure active voice is used throughout.)

3. Is this chapter balanced? What sections appear to have either too little or too much emphasis compared with the rest of the chapter? Is there any superfluous material in this chapter not directly linked to the stated topic of this book?

4. Is the notation within the chapter uniform? Please assist the Chapter Master with establishing a notation list for this chapter.
5. A. Is there an important topic within this chapter that has been missed?

B. Is there an additional researcher who should be asked to contribute to this chapter? If so, please provide the Chapter Master with complete contact information.

6. Identify what sections within this chapter need to refer to other chapters in the book (make sure that there are appropriate "hooks"). (Example, to save on figure count, if the same figure is used in multiple chapters, use it in the first possible chapter, and let later chapters refer to that same figure.)

7. Is the reference list complete?

8. Please identify figures that are not of sufficient quality and would need to be reworked. Please identify problem explicitly (line widths too thick, font size of text too small, etc.)

9. Please provide any other comments regarding this chapter.
MHPCC Hosts DoD Multi-Disciplinary University Research Initiative Workshop
Scientists Focus on Advances in the Field of High Power Microwave Sources

Maui, Hawaii -- June 28, 1999 -- The Maui High Performance Computing Center (MHPCC) recently hosted a Multi-Disciplinary University Research Initiative (MURI) Workshop to examine the role of high performance computing in the design of high power microwave sources. MHPCC sponsored demonstrations showcasing the use of computer simulation in research and development to the group of 30 scientists from Department of Defense (DoD), academic, and commercial organizations.

MURI is a multi-agency DoD program chartered to accelerate the development of technologies that are critical to national defense and facilitate the rapid transition of research results into the industrial community. The purpose of the High Power Microwave MURI Workshop was to explore how high performance computing could be incorporated into on-going research efforts and review research materials for future publication. DoD researchers from the Air Force Office of Scientific Research (AFOSR) and the Air Force Research Laboratory (AFRL), private industry researchers from Communications and Power Industries and Microwave Sciences, and academic researchers from Cornell University, Stanford University, Texas Tech University, the University of California at Berkeley, the University of Maryland, the University of Michigan, and the University of New Mexico participated in the workshop.

AFOSR sponsors the High Power Microwave MURI in cooperation with AFRL, the Naval Research Laboratory (NRL), and the Army Research Laboratory (ARL). Research topics include increasing the efficiencies of microwave devices while reducing their weight and volume, analyzing and simulating higher energy microwave sources, and designing future microwave devices with higher output power.

A national resource, MHPCC is uniquely chartered to provide high performance computing technology resources to DoD, government, commercial, and academic users. MHPCC is a Distributed Center of the DoD High Performance Computing Modernization Program and a SuperNode of the National Computational Science Alliance, a National Science Foundation supercomputing initiative. MHPCC is a supercomputing center of the University of New Mexico, established in 1993 under a Cooperative Agreement with AFRL.

###