GRANT NUMBER DAMD17-97-1-7142

TITLE: The Effect of MHC Class II Transactivator on the Growth and Metastasis of Breast Tumors

PRINCIPAL INVESTIGATOR: Brian K. Martin, Ph.D.
Jenny Ting, Ph.D.

CONTRACTING ORGANIZATION: University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-1350

REPORT DATE: June 1999

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The Effect of MHC Class II Transactivator on the Growth and Metastasis of Breast Tumors

Martin, Brian K., Ph.D.
Jenny Ting, Ph.D.

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-1350

Approved for public release; distribution unlimited

I have continued my investigations into the effect of the MHC class II transactivator, CIITA, on the growth and immunogenicity in breast cancer. I have utilized three different model systems: MT901, 4T1 and EMT6. In the MT901 cell line, CIITA expression does not change in vivo tumor growth properties. In the 4T1 model, expression of CIITA leads to direct killing of the tumor in vitro, suggesting that CIITA has a toxic effect in this cell line. We are actively investigating inducible CIITA expression systems to fully investigate this phenomenon. We have also investigated immunogenicity of CIITA expressing tumors. MT901 is immunogenic and cannot be used in these assays, therefore we have used the Line 1 lung carcinoma as a surrogate system (we have also started to examine EMT6 as an additional mammary tumor model). We have found that CIITA expression can result in more mice with tumor formation, suggesting a negative role for CIITA in the absence of costimulation. We have initiated preliminary investigations into novel genes induced by CIITA. The results of these experiments have important implications in proposed CIITA-human gene therapy trials.

Breast Cancer
CIITA; MHC class II; MHC class I; Immunotherapy
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 85-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Berk Munz 6/29/99
PI - Signature Date
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front Cover</td>
</tr>
<tr>
<td>2</td>
<td>Standard Form 298</td>
</tr>
<tr>
<td>3</td>
<td>Foreword</td>
</tr>
<tr>
<td>4</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>5</td>
<td>Introduction</td>
</tr>
<tr>
<td>6</td>
<td>Body</td>
</tr>
<tr>
<td>10</td>
<td>Key Research Accomplishments</td>
</tr>
<tr>
<td>10</td>
<td>Reportable Outcomes</td>
</tr>
<tr>
<td>12</td>
<td>References</td>
</tr>
</tbody>
</table>
Introduction

MHC genes are key regulators of the immune response. They present antigens to T lymphocytes and are key for the elicitation of T cell immunity. MHC class II proteins present peptides derived from extracellular sources to CD4+ T cells. In cases where there is costimulation, they may activate a helper response that can lead to a cellular response (TH1) or an antibody response (TH2). Previous work has shown that expression of α and β chains of MHC class II on a sarcoma cell line can lead to protective tumor immunity (1); however, other MHC class II pathway genes are not activated in this case. CIITA has been shown in many systems to induce several genes involved in the MHC class II antigen presentation pathway (2-5). In some instances, de novo expression of CIITA has led to enhanced antigen presenting cell (APC) function (6-8). We and others have recently shown that, in addition to class II molecules, CIITA is able to induce MHC class I surface expression in cells deficient in the expression of these molecules (9,10). I hypothesize that de novo expression of CIITA in tumor cells will upregulate class II genes, and in the case of cells with low or no expression of MHC class I, induce class I genes as well. The expression of these molecules may induce an immune response against these cells, affecting growth, metastasis, and vaccine efficacy. Should this not induce a response, the coexpression of costimulatory molecules may be necessary to obtain a protective effect. I hypothesize that CIITA expression has the potential to be a novel mechanism for induction of immunity to breast cancer.
Experimental Results

Tumor cell growth in vivo:

As demonstrated in last year's Annual Report, we had inoculated mice with the mouse BALB/c mammary tumor, MT901, expressing CIITA (this was an aim in the Year 2 Statement of Work, see Figure 1).

FIGURE 1

These data demonstrate that CIITA expression in the MT901 tumor model system does not change the in vivo growth characteristics of the tumor. Since I had already accomplished this Year 2 goal, we went on to investigate the growth of tumor cells after irradiation; i.e., an immunogenicity experiment (and a Year 3 goal).

Primary tumor growth assays (i.e., when mice are injected with live cells) are good experimental models; however this design does not closely mimic the clinical situation with human patients. Clinical protocols rely upon the resection of primary tumor, ex vivo modification and cellular irradiation followed by injection back into the patient. To more closely approximate this protocol, an approach that tests the immunogenicity of tumors has been employed. With this method, cells were modified, irradiated and injected into the mouse. This was followed by injection of unmodified cells and tumor growth was monitored. Unfortunately, the MT901 cell line is immunogenic. That is, if unmodified wild-type cells are irradiated and injected into mice, all these mice will be protected from subsequent tumor challenge. These means that immunogenicity assays can not be conducted in this model system. We have subsequently used the Line 1 lung epithelial model system as a general system to examine immunogenicity, since this cell type has very low immunogenicity.
We have irradiated Line 1 cells and injected them intraperitoneally into syngeneic BALB/c mice. Two weeks later mice were challenged with unmodified cells and the growth of those tumor were compared to mice injected with wild-type cells. When mice were mock injected in the primary inoculation, no mice were tumor free at day 28. When irradiated vector control cells were injected, 53% of the mice were tumor free. Finally, when CIITA expressing cells were irradiated and injected, followed by challenge with unmodified cells, only 43% of the mice were tumor free at day 28. Table I demonstrates that more mice succumb to Line 1 tumor formation when injected with CIITA-expressing cell than do when injected with unmodified cells. These data indicate that, at best, CIITA expression does not increase the immunogenicity of the tumor, and may allow tumors to form in more mice.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Cells/mouse</th>
<th>None</th>
<th>Vector</th>
<th>CIITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>0/5</td>
<td>3/5</td>
<td>2/5</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0/4</td>
<td>1/4</td>
<td>2/5</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>0/4</td>
<td>3/4</td>
<td>3/5</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>0/6</td>
<td>3/6</td>
<td>3/8</td>
</tr>
<tr>
<td>Total Tumor-free at day 28</td>
<td>0%</td>
<td>53%</td>
<td>43%</td>
<td></td>
</tr>
</tbody>
</table>

*Number of mice tumor free at day 28 versus total injected

These data demonstrate that expression of CIITA in epithelial tumors of the lung does not lead to increased immunogenicity in subsequent challenge. These data are not unexpected. As outlined in my research proposal, expression of MHC proteins in the absence of costimulatory molecules often results in either deletion of reactive T lymphocytes or anergy of those cells. This suggests that the proper course of action to pursue is to use costimulatory molecules in combination with CIITA, a Year 3 goal for my research.

The reason that these data are extremely important is that our lab has been approached several times to start clinical trials with CIITA tumor therapy. While we understand that these trials involve end stage cancer patients, we are loathe to initiate work when our data demonstrate that in some cases CIITA can actually allow increased tumor growth. For instance, in primary tumor growth assays, if CIITA expression is high the tumor actually grows faster than control tumors (see Figure 2).
Inducible CIITA Systems and the 4T1 Tumor Line

We have had a major challenge with proposed experiments examining metastatic mammary tumor model systems. As explained in the Year 1 Annual Report, CIITA expression in the 4T1 metastatic model leads to cell death. This means that we have been unable to investigate changes of tumorigenicity and metastasis in this cell line. To attempt to address the question of how CIITA kills these cells, we have investigated inducible expression systems where CIITA expression is under the control of an inducible promoter. In our initial attempts at examining this question, we placed the CIITA under the control of the metallothionine promoter. In cells other than 4T1, where we could monitor MHC class II expression to determine whether or not the promoter was off in the uninduced state, we found that CIITA was expressed at a level that allowed surface class expression. This is undoubtedly due to the fact that CIITA is present at very low levels in most MHC class II positive cells and even a small amount of leakiness in an inducible promoter system will lead to sufficient levels of CIITA to activate MHC class II expression.

We next investigated a recently published inducible system based on a retroviral vector (11). The gene of interest is cloned into the retroviral vector under the control of a tetracycline regulated promoter. In the presence of tetracycline, the operator is bound, resulting in a lack of expression. An additional control mechanism is that the gene of interest is cloned in the antisense orientation. If there is a low level of basal expression, the mRNA is expected to be bind to the sense message from the vector and be degraded by cellular RNases. We obtained the original vector from Paulus et al. and in the last year we have created a vector that, by sequence, is perfect; however, in the uninduced state we have been seeing expression higher than in the induced state. We have attributed this to problems with early versions of the system that have not been subjected to quality control. Within the past few months, Stratagene Inc. has marketed an inducible vector system based upon this retroviral tet operon. We plan to purchase this system in order to continue our pursuit of the mechanism of CIITA induced killing of 4T1 mouse mammary tumor cells.

Since we have been unable to use the 4T1 system and the MT901 tumor model is immunogenic, we have begun investigations in the EMT6 mammary tumor, as proposed in the Statement of Work. Just this week (Jun. 28, 1999) we have transduced CIITA into this mouse model to begin these studies. The benefit of using this cell line is that it is poorly immunogenic so immunogenicity studies can be performed.

Gene Induction by CIITA

Finally, we have begun our pursuit of other genes induced by CIITA in tumor cells. We initially investigated this question by two different means. We ran 2-D SDS-PAGE gels with extracts from CIITA transfected and vector transfected cell lines, then the different banding patterns were compared between these cell types. We have sporadically observed CIITA specific spots on the gels, but we have not been able to obtain protein sequence from these bands. We have also attempted to use differential display to examine CIITA specific gene expression, but once again technical difficulties have prevented the acquisition of meaningful data. Finally, we have begun using a subtractive PCR technique pioneered by Dr. Janeil Shields in Dr. Channing Der's lab here in the Lineberger Comprehensive Cancer Center. Initial results suggest that we have
identified several CIITA induced genes and we are hopeful that additional analysis will provide us with novel gene sequences expressed in breast cancer cells.

Milestone questions to be answered in Year 2.

Does CIITA modification of tumor cells change the growth pattern in vivo? In the cancer models we have investigated (MT901 mammary tumor and the Line 1 lung carcinoma), CIITA expression does not change primary growth of mammary tumor cells. It does slightly retard primary tumor growth of Line 1 cells; however, in immunogenicity assays it has proven to be a negative factor.

Does CIITA induce antigen presentation and/or costimulatory genes molecules in breast tumors? We have reported that CIITA can induce antigen presentation in a sarcoma cell model (6). We have not seen any changes in the antigen presentation capacity as measured by cytotoxic T lymphocyte (CTL) assays from mice inoculated with CIITA expressing tumors. However, since CIITA mainly induced MHC class II expression, we would expect to see a CD4+ T lymphocyte response that may not involve CD4+ CTL. Without transgenic T cells, this question will be difficult to address; however there is evidence that some cell types lack of a non-CIITA inducible gene (cathepsin S) that is required for an complete MHC class II processing and presentation pathway. What have therefore set out to clone murine cathepsin S by reverse transcription-DNA amplification. This should give us all known genes required in the MHC class II pathway required to reconstitute the pathway.

What is the mechanism of the CIITA-induce changes in tumor growth? We have not yet seen sufficient changes in CIITA transduced cells to address this question. We suspect that the changes seen in Line 1 tumor cells may be due to NK cells. Unfortunately, the NK deficient strain, Beige, is the H-2b haplotype, while our cells are H-2d, meaning that we can not directly test this hypothesis.
APPENDICES

Key Research Accomplishments:
- Established the growth properties in vivo of three different murine mammary tumor models (4T1, MT901, and EMT6).
- Determined that CIITA expression in 4T1 leads to induced cell death.
- Found that CIITA induces no change in MT901 growth and can be a negative factor in the Line 1 tumor model system. This finding is very important since we have been approached on several occasions to start human clinical trials with CIITA in end-stage cancer patients. Although we understand that their prognosis is grim, our data suggests that at best CIITA expression will have no effect and at worse may be a negative factor.
- Initiated experiments to examine CIITA mediated killing of 4T1 tumors cells using a inducible promotor system.
- Initiated experiments to examine other genes regulated by CIITA

Reportable Outcomes:
Manuscripts-

Abstracts-

Patents Applied For-

Employment Opportunities-
Over the past two years I have applied for approximately 40 jobs. I have had four interviews. The University of Nebraska Medical School in Omaha was interested in me, but I felt that the position was not appropriate for my qualifications. I am currently waiting as the second choice at the Medical School of Wisconsin. I have a verbal offer at the University of Tennessee at Memphis and am waiting to see what the final offer will be.
Copies of Manuscripts and Abstracts are attached.
References

Combination Gene Therapy with CD86 and the MHC Class II Transactivator in the Control of Lung Tumor Growth

Brian K. Martin,* John G. Frelinger,† and Jenny P.-Y. Ting‡

Early reports suggest that the costimulatory molecule CD86 (B7-2) has sporadic efficacy in tumor immunity, whereas changes in cancer immunity mediated by the MHC class II transactivator (CIITA) have not been extensively investigated. CIITA activates MHC class II expression in most cells; however, in the Line 1 lung carcinoma model system, CIITA activates MHC class I and well as class II. Here we show that CD86 is very effective in inducing a primary immune response against Line 1. Tumor cells expressing CD86 grew in only 50% of the mice injected with live cells, and those mice that developed tumors did so with significantly delayed kinetics. Furthermore, irradiated CD86-expressing Line 1 cells served as an effective tumor vaccine, demonstrating that CD86 is effective in inducing tumor immunity in the Line 1 system. These data suggest that if CIITA and CD86 cooperate, enhanced tumor immunity could be achieved. CIITA alone was mildly beneficial in slowing primary tumor growth but only when expressed at low levels. Clones expressing high levels of class II MHC grew as fast as or faster than parental tumor, and CIITA expression in a tumor vaccine assay lacked efficacy. When CIITA and CD86 were coexpressed, there was no cooperative immune protection from tumor growth. Cells that coexpress both genes also failed as a cancer vaccine, suggesting a negative role for CIITA in this lung carcinoma. These data suggest that human cancer vaccine trials utilizing CIITA gene therapy alone or in combination with CD86 should be approached with caution. The Journal of Immunology, 1999, 162: 6663-6670.

Malignant cells utilize many different mechanisms to evade the immune recognition (reviewed in Ref. 1). A common defect in the recognition and killing of tumor cells by lymphocytes is the lack of a costimulatory signal. A central dogma in immunology states that when foreign (or mutated) peptides are recognized in the context of MHC class I or class II, lack of a costimulatory signal can lead to anergy or deletion of effector lymphocytes (reviewed in Refs. 2 and 3). The discovery of the costimulatory molecules CD80 (B7-1) (4, 5) and CD86 (B7-2) (6, 7) allowed the testing of the costimulatory hypothesis with regard to tumor immunity. It is well established that de novo CD80 expression in a wide variety of tumor model systems can lead to protective immunity (8). Interestingly, those models in which CD80 expression is ineffective often lack MHC class I expression (8). Less clear is the role of CD86 expression in tumor immunity. Some reports have suggested CD86 expression is not effective in generating tumor immunity (9-13); however, several tumor model systems do derive great benefit from CD86 expression (14-17). In the case of both CD80 and CD86, expression of these costimulatory molecules in the absence of MHC protein expression would be expected to be ineffective.

Another way in which cancerous cells evade immune recognition and destruction is via down-regulation of MHC class I through a variety of mechanisms (reviewed in Ref. 18). This is hypothesized to result in the lack of T lymphocyte surveillance of potential tumor Ags. One technique that has been suggested as an immunotherapeutic strategy for tumors (and is currently in clinical trials) is the introduction of genes encoding MHC class I molecules to restore the ability of the cells to present tumor-associated Ag(s). This was first proposed in the mid-1980s when it was discovered that the introduction of syngeneic MHC class I genes into some mouse cancer models led to tumor regression (19-21). Later, this observation was extended to MHC class II genes (reviewed in Ref. 22). One potential problem with these approaches is that although individual genes for the class I or class II molecules can be transfected into tumor cells, the full restoration of Ag processing and presentation requires other accessory proteins.

MHC class I Ag presentation is a complex process involving multiple steps (reviewed in Ref. 23). First, proteins in the cytosol are degraded by the proteasome complex. These peptides are then transported into the endoplasmic reticulum by the TAP system. In the endoplasmic reticulum, peptide associates with MHC class I-β2-microglobulin, and this complex is shuttled through the Golgi to the cell surface for presentation. In this process, the lack of β2-microglobulin, proteasome proteins, and/or TAP can lead to the down-regulation of class I, even if there are sufficient heavy chain products being transcribed and translated within the cell (24, 25). In the MHC class II processing and presentation pathway, the required elements include the class II α- and β-chains, the invariant chain (Ii), and the DM molecules (26). There are at least two major difficulties with proposed cancer therapies for both the MHC class I and class II pathways. First, there are codominant alleles for a given MHC molecule. For instance, in humans there are HLA-A, B, and C class I proteins and the HLA-DR, -DQ, -DP class II molecules. If only a single molecule is introduced, the allele capable of recognizing tumor-specific peptide may not be present, resulting in a less than optimal immune response. Second, since for

*Lineberger Comprehensive Cancer Center and Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
†Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642

Received for publication December 21, 1998. Accepted for publication March 8, 1999.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 This work was supported by National Institutes of Health Grant AI-41751 to J.P.-Y.T. and a United States Army Department of Defense Postdoctoral Fellowship DAMD17-97-1-7142 to B.K.M. J.P.-Y.T. is an American Cancer Society Faculty Awardee.

3 Address correspondence and reprint requests to Dr. Jenny P.-Y. Ting, Lineberger Comprehensive Cancer Center, CB# 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7395. E-mail address: panyun@med.unc.edu

Copyright © 1998 by The American Association of Immunologists
a given pathway there are several accessory proteins, the introduction of genes for the main complex chains (i.e., the heavy chain for class I and the α- and β-chains for class II) would not reconstitute the entire processing and presentation pathway. For instance, in the class II pathway, the lack of the DM heterodimer would lead to a failure to remove the Ii-derived peptide in the class II compartment, hence a failure to load foreign peptides. These caveats suggest that a global transcriptional transactivator of a given peptide processing and presentation pathway would be the most effective candidate in reconstituting the MHC class I and/or class II pathways.

One candidate master regulator for tumor immunotherapy is the MHC class II transactivator, CIITA. CIITA was cloned by its ability to restore MHC class II expression in an in vitro mutagenized cell line and was subsequently demonstrated to be the defect in a subgroup of bare lymphocyte syndrome patients (27). This gene was analyzed and found to be a global regulator of the class II MHC genes. De novo expression of CIITA facilitates expression of all the classical MHC class II α- and β-chains (27, 28, and the DM genes (28-31). Mice with a defective CIITA gene modified by homologous recombination have a phenotype similar to that of bare lymphocyte syndrome patients (32). Our recent work demonstrates that in one cell line, CIITA by itself is able to reconstitute class II processing and presentation (33), and others have also found that CIITA alone can reconstitute intact class II Ag presentation (34, 35). However, Mach et al. have shown that proper Ag presentation required an additional protease (cathepsin S) that is not induced by CIITA (36, 37). These studies demonstrate that the full reconstitution of the class II pathway via CIITA may be cell specific.

An additional reason that CIITA is an excellent candidate as a global inducer of an immune response to cancer is its ability to induce the expression of the heavy chain of MHC class I in addition to MHC class II (38, 39). We have found that CIITA can induce significant amounts of MHC class I in cells with low or no class I expression. Class I induction by CIITA provides an additional mechanism by which CIITA may initiate an antitumor immune response.

These studies suggest that CIITA is a good candidate for cancer immunotherapy; however, CIITA alone may not be ideal due to the lack of costimulation. The engagement of class I or class II MHC without an additional costimulatory signal may induce deletion of reactive T lymphocytes or induction of an anergic response (2). This indicates that CIITA alone could actually negatively impact the immune response to tumor cells. Indeed, we have found that CIITA expression in a sarcoma model, Sal, does not change tumor growth properties (33); however, CIITA does not modify the high levels of MHC class I in this cell line (38). Also, in that report, we did not examine the contribution of costimulatory molecules such as CD86. Another possible negative element in CIITA therapy is the lack of NK cell surveillance. NK cells have receptors that recognize cells with decreased MHC class I expression (40, 41). Tumors that have been CIITA modified and have induced class I expression may no longer be effective NK cell targets. To test the contribution of these events in CIITA therapy, both by itself and in the context of the costimulatory molecule CD86, we investigated the changes in tumor growth and immunogenicity in a lung carcinoma model that has not been examined previously.

Here we demonstrate that CD86 expression in Line 1 cells leads to a markedly reduced tumor growth rate and decreased tumor incidence. CIITA expression by itself was mildly effective in decreasing the tumor growth rate at a low level of expression, but actually increased tumor growth at higher levels. In contrast to expectations, coexpression of CIITA and CD86 had no additive beneficial effect and actually resulted in the loss of CD86 protection. These data suggest that great caution should be considered in the use of CIITA tumor therapy. The relevance of these findings to proposed human tumor therapy is discussed.

Materials and Methods

Cell lines and culture conditions

Line 1 is a poorly immunogenic lung carcinoma and has been described previously (42). The cell line was cultured in DMEM-H (Life Sciences, Gaithersburg, MD) supplemented with 7% FBS (Life Sciences) and penicillin-streptomycin (Life Sciences).

Retroviral constructs and transduction

The derivation of the CIITA retroviral construct has been described previously (38). Murine CD86 was kindly provided by Peter Linsey, Bristol-Myers Squibb, Princeton, NJ. The CD86 gene was excised from the pCMV-NAInB7-2 vector with XhoI and BamHI, followed by filling in the overhanging ends with the Klenow fragment of DNA polymerase. It was cloned into the LXSP vector (kindly provided by John C. Olsen, University of North Carolina, Chapel Hill, NC) at the HpaI site. Retroviral packaging and transduction of Line 1 cells was done as previously described (38).

Briefly, plasmid DNA was transfected into the PA317 helper cell line via calcium phosphate precipitation, and the media were changed the following day. Forty-eight hours after transfection, the supernatant was collected, sterilized by filtration, and stored for later use at −70°C. Cells were transduced by adding 0.5 ml of virus supernatant to Line 1 cells with 8 µg/ml Polybrene (Sigma, St. Louis, MO) for 2 h. The media were changed, and the cells were allowed to grow for 48 h at which time they were split into selection medium. Cells were selected in 400 µg/ml geneticin (Life Sciences) in the case of LXSN-based clones or 2.5 µg/ml puromycin (Sigma) in the case of LXSP-based vectors. In cases where cells were transduced with both LXSN-based and LXSP-based vectors, they were first transduced with either LXSN or LCIIITASN, then subsequently transduced with LXSP or LCD86SP as indicated.

Flow cytometry

The Abs used for these studies were: mouse CD86 Ab (PharMingen, San Diego, CA) and class II Ab BP1072 (anti-I-Eβ/Ab, reactive with haplotypes d, b, p, q, u, j) (provided by Dr. J. A. Frelinger). Secondary Abs were used goat-anti-mouse IgG-FITC conjugate (PharMingen) and goat anti-rat IgG FITC (Sigma).

For flow cytometry, cells in mid-log growth phase were harvested and washed twice with 1× PBS containing 0.1% sodium azide. The cells were resuspended at 1 × 10⁶ cells/ml, and 100 µl were used for each sample. The cells were incubated for 30 min with diluted primary Ab (20 µl total volume per sample). The cells were washed three times with 1× PBS-sodium azide and then incubated for 20 min in diluted secondary Ab (20 µl total volume per sample) followed by three washes with 1× PBS-sodium azide. These cells were either analyzed immediately or stored in 2% paraformaldehyde for <1 wk before analysis.

Flow cytometry was performed on a FACScan (Becton Dickinson, San Jose, CA) and analyzed using Cyclops software (Cytomation, Fort Collins, CO). Data are presented in table form as the fold induction of the secondary Ab vs the Ab in question. For instance, if the mean channel fluorescence of secondary Ab was 4.0 and the mean channel fluorescence of CD86 Ab was 24.0, then the fold induction is 6.0×.

Tumor studies

BALB/c mice were either purchased from The Jackson Laboratory (Bar Harbor, ME) or bred in University of North Carolina facilities from breeders purchased from Jackson. In all cases, cells in mid-log growth were harvested, washed three times in PBS, and then resuspended at the appropriate concentration. For primary tumor growth assays, mice were injected with the indicated tumor dose (500-1000 cells in 50 µl) in the calf muscle of the hind limb. The mice were individually monitored for tumor growth. In each experiment, there were four to six mice per group. Graphs indicate the mean tumor size ± SE. Each experiment was repeated two to four times, and a representative experiment is shown.

For tumor challenge studies, 2.5 × 10⁵ parental or modified Line 1 cells were irradiated at 10,000 rads. These cells were injected into BALB/c mice i.p. in a volume of 100 µl. One group of mice in each experiment was not injected and served as the control group. One week later, the mice were

3 Abbreviation used in this paper: CIITA, MHC class II transactivator.
Table 1. Expression of CD86 and MHC class II in transduced Line 1 cells

<table>
<thead>
<tr>
<th>Name</th>
<th>Used in</th>
<th>MHC class II</th>
<th>CD86</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Line 1</td>
<td>Figs. 1-6</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>B. LCD86SP poly</td>
<td>Figs. 1, 5</td>
<td>1.0</td>
<td>12.0</td>
</tr>
<tr>
<td>C. LCD86SPD10</td>
<td>Fig. 2</td>
<td>1.0</td>
<td>44.0</td>
</tr>
<tr>
<td>D. LCITASN poly</td>
<td>Figs. 3, 5</td>
<td>7.7</td>
<td>1.1</td>
</tr>
<tr>
<td>E. LCITASN15</td>
<td>Fig. 4</td>
<td>7.7</td>
<td>1.2</td>
</tr>
<tr>
<td>F. LCITASN12</td>
<td>Fig. 4</td>
<td>6.0</td>
<td>1.1</td>
</tr>
<tr>
<td>G. LCITASN8H</td>
<td>Fig. 4</td>
<td>12.0</td>
<td>0.7</td>
</tr>
<tr>
<td>H. LCITASN7</td>
<td>Fig. 4</td>
<td>17.1</td>
<td>1.1</td>
</tr>
<tr>
<td>I. LCITASN6</td>
<td>Fig. 4</td>
<td>18.4</td>
<td>1.1</td>
</tr>
<tr>
<td>J. LCITASN6/6/LCD86SP10</td>
<td>Fig. 5</td>
<td>6.9</td>
<td>46.2</td>
</tr>
<tr>
<td>K. LXSN/LXSP</td>
<td>Fig. 6, Table II</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>L. LXSN/LCD86SP</td>
<td>Fig. 6, Table II</td>
<td>1.0</td>
<td>12.0</td>
</tr>
<tr>
<td>M. LCITASN/LXSP</td>
<td>Fig. 6, Table II</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>N. LCITASN/LCD86SP</td>
<td>Fig. 6, Table II</td>
<td>2.2</td>
<td>11.9</td>
</tr>
</tbody>
</table>

*Data are expressed as the fold induction: i.e., the mean channel fluorescence of the specific Ab divided by the mean channel fluorescence of the secondary Ab control. Boldface type indicates the gene coded for by that construct.

Injected with wild-type Line 1 cells at the indicated dose. The mice were individually monitored for tumor growth. In each experiment, there were four to eight mice per group.

All mouse experiments were approved by the University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee. University of North Carolina animal facilities are accredited by the American Association for the Accreditation of Laboratory Animal Care.

Results

CD86 expression increases immunity against the Line 1 carcinoma

Line 1 is a poorly immunogenic spontaneous lung tumor derived from BALB/c mice (38). CD86 has been shown to cause a decrease in primary tumor growth in this system by enhancement of NK cell killing and not increased CTL activity (43). However, the influence of CD86 in Line 1 immunity has not been investigated.

We began our studies by investigating the effect of CD86 on the primary tumor growth in syngeneic BALB/c mice. Line 1 cells were transduced with recombinant retrovirus encoding the gene for murine CD86. This virus also contained the gene for puromycin resistance. Cells were selected in puromycin, and the polyclonal population was analyzed for CD86 expression by flow cytometry.

As shown in Table 1, row A, Line 1 cells are negative for MHC class II and CD86. However, after transduction with CD86 retrovirus, surface CD86 expression was increased 12-fold in the polyclonal population (Table 1, row B). Parental cells and CD86-transduced cells exhibited no difference in growth rates in vitro (data not shown). This polyclonal population of cells was injected into immunocompetent BALB/c mice in the calf muscle. Mice injected with unmodified Line 1 cells grow tumors progressively and require sacrifice after 19 to 26 days. CD86-modified polyclonal Line 1 tumors grew significantly slower than control tumors, delaying tumor growth by ~10 days (Fig. 1). The mean leg diameter of Line 1 control mice at day 15 was similar to the mean leg diameter of CD86-expressing tumors at day 25. These data show that CD86 is beneficial in the Line 1 tumor model, and a test of a cloned population of CD86-expressing tumor was warranted because the CD86 polyclonal cells did have a low but significant number of puromycin-resistant cells that had undetectable surface expression of CD86. When using a polyclonal population, it is possible that the CD86-negative cells eventually outgrew the CD86-expressing cells, because any immune response elicited by these cells was insufficient to overcome the growth of these negative cells. To investigate this possibility, the LCD86SPD10 clone was isolated by limiting dilution and tested by flow cytometry (Table 1, row C).

This clone expressed high, stable levels of CD86 and maintained stable expression over time in culture (data not shown). This clone was injected into BALB/c mice, and these mice were monitored for tumor growth. As shown in Fig. 2, LCD86SPD10 grew with greatly delayed kinetics. At the day of sacrifice for the control mice, the difference in the tumor size of the mice in the two groups was highly significant (p < 0.005). In fact, of eight mice in two experiments, four did not develop tumors, demonstrating the great beneficial effect of CD86 expression in the Line 1 model system.

CIITA expression in the Line 1 carcinoma can be beneficial or detrimental depending on expression level

Line 1 expresses low to undetectable levels of MHC class I and is MHC class II negative (38). However, IFN-γ can effectively induce MHC class I but not MHC class II in these tumor cells (data
not shown) (44). We have previously shown that CIITA-transduced Line 1 cells up-regulate expression of both MHC class I and class II, whereas in a sarcoma model only MHC class II is induced (38). This suggests that Line 1 cells modified to express CIITA may have potential changes in tumorigenicity and immunogenicity that could be mediated by MHC class I, MHC class II, or both. The use of CIITA in combination with CD86 was also worthy of analysis because cooperative interaction between these molecules in tumor immunity induction has not been determined.

To study the effectiveness of CIITA/CD86 therapy, we first determined the effect, if any, that CIITA alone has in the Line 1 model. Cells were transduced with CIITA coding retrovirus, selected for G418 resistance, and analyzed for MHC class II expression (see Table I, row D). CIITA effectively induced class II expression, with >60% of the polyclonal population expressing MHC class II Ags. As shown in Fig. 3, polyclonal CIITA expression in Line 1 led to a small but significant decrease in the overall tumor growth rate of this tumor line. High stable expression of CIITA could lead to enhanced Ag presentation, hence increased tumor immunity. However, it was also possible that high expression of class I MHC leads to loss of surveillance by NK cells, hence hastening tumor growth. Also, high expression in the absence of costimulation may, in fact, lead to anergy, exacerbating tumor growth.

To test these possibilities, several different CIITA-transduced clones that expressed a range of MHC class II proteins were examined. MHC induction in clones tested for growth in mice ranged from 6- to 18-fold enhancement of class II expression. Based on their surface class II phenotype, these clones could be grouped into two classes: lower expressers (clones LCITTASNA5 and LCITTASND12, Table I, rows E and F, respectively); and higher expressers (clones LCITTASNH8, LCITTASNF7, and LCITTASNF6; Table I, rows G, H, and I, respectively). These clones were injected into mice, and the rate of tumor growth was monitored individually. The results of these experiments are presented in Fig. 4.

The tumors could be grouped into three categories based on their in vivo growth rates: those that grew with delayed kinetics relative to parental tumors (Fig. 4A); those that grew at approximately the same rate as parental tumors (Fig. 4B); and the one tumor that grew faster than parental Line 1 (Fig. 4C). The two tumors demonstrating the slowest growth also had the lowest expression of MHC class II (see Table I, rows E and F). All tumors that grew as fast as parental tumor had expression higher than that of the LCITTASN polyclonal cells. The clone that demonstrated faster growth than that of the parental clone (Fig. 4C) had the
highest expression level of MHC class II (see Table 1 row I). In the experiment shown in Fig. 4B, one tumor cell clone (LCITASNF6) had a significantly faster initial growth rate that leveled out in time. These data suggest that high levels of class II and/or class I has a deleterious effect on the primary growth of the Line 1 tumor.

Lack of cooperation between CIITA and CD86 in the induction of tumor immunity

The results with CD86 suggest that if CIITA and CD86 cooperate in the induction of an antitumor response, then coexpression of both proteins on the surface of cancer cells may increase the immunity against the tumor. If they did not cooperate, then no difference in overall growth should be observed. To test this hypothesis, the Line 1 polyclonal population expressing CIITA was additionally transduced with the CD86 retroviral construct (puromycin resistant). Double-resistant cells were isolated as a polyclonal population and examined by flow cytometry as shown in Table 1, row N. These polyclonal cells had lower levels of MHC class II expression than did the singly selected pools, perhaps demonstrating the loss of expression during the second selection. These polyclonal CIITA/CD86-expressing Line 1 cells were injected into mice and compared with the both the CIITA and CD86 singly transduced cells. As shown in Fig. 5, the doubly transduced pool did not have significantly changed growth kinetics from that of either the CIITA or CD86 single populations. These data suggest that CIITA and CD86 do not cooperate to protect animals from primary tumor growth.

If our hypothesis that high expression of MHC class I and/or class II in the Line 1 lung carcinoma has a deleterious effect in tumor immunity is correct, then the expression of CIITA in the context of high stable expression of CD86 should lead to an increased tumor growth rate and greater tumor incidence. To this end, we transfected the fast growing CIITA clone (LCITASNF6) (see Table 1, row I, and Fig. 4C) with CD86 and examined clones for expression of CD86 equal to that of the CD86 clone shown in Fig. 2. As shown in Table I, row J, this double clone had levels of expression of MHC class II lower than that of LCITASNF6, again perhaps reflecting loss of expression during the second transduction and selection; however, CD86 expression was equal to that of the LCD86SP10 clone. This clone (LCITASNF6/LCD86SP10) was injected into mice, and the growth rate was compared with that of parental Line 1 and both single clones. As shown in Fig. 6, this clone did not exhibit the slower growth rate of the CD86-transduced LCD86SP10 clone, but it did grow more slowly than the CIITA-transduced clone LCITASNF6. Additionally, all mice injected with the CIITA/CD86 clone grew tumors progressively, as opposed to the 50% of mice injected with the CD86 tumor that remained tumor free (Fig. 2). We interpret these data to mean that high expression of CIITA is actually deleterious and reversed the beneficial effects obtained from high stable expression of CD86 in the Line 1 tumor model system.

Vaccination with CD86-expressing tumor induces immunity whereas CIITA expression is deleterious

All the data presented up to this point are primary tumor growth assays in which the cells are modified and injected into mice. Clinical protocols rely on the resection of primary tumor, ex vivo modification, and cellular irradiation followed by injection back into the patient. To more closely approximate this approach, cells were modified, irradiated, and injected into the mouse. This was followed by injection of unmodified cells, and tumor growth was monitored. Since Line 1 is a poorly immunogenic tumor, we could test the ability of CIITA- and/or CD86-modified tumors to stimulate an immune response to subsequent challenge with control tumor. For this experiment, we chose an injection and challenge scheme that would give ~50% tumor incidence in the group injected with vector control. This was necessary because if CIITA and/or CD86 were beneficial, fewer mice would grow tumors, but if CIITA and/or CD86 were detrimental, then more mice would develop a tumor burden.

As shown in Table II, no mice were tumor free at day 28 without injection of irradiated cells. However, 53% of the mice injected with irradiated vector control cells had no measurable tumors by day 28. On the other hand, the CIITA group had slightly fewer tumor-free individuals than did vector control (compare 53% with
Table II. Changes in immunogenicity associated with CD86 and/or CIITA polyclonal expression in Line 1 tumors*

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Cells/Mouse</th>
<th>None</th>
<th>Vector</th>
<th>CD86</th>
<th>CIITA</th>
<th>CIITA/CD86</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>0/5</td>
<td>3/5</td>
<td>4/5</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0/4</td>
<td>1/4</td>
<td>3/5</td>
<td>2/5</td>
<td>3/5</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>0/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/5</td>
<td>1/5</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>0/6</td>
<td>3/6</td>
<td>4/6</td>
<td>3/8</td>
<td>3/9</td>
</tr>
</tbody>
</table>

Total tumor free at day 28

0% 53%*b 70%*c 43% 38%*c

*a Number of mice tumor free at day 28 vs total injected.
b p < 0.05, vector compared with CD86.
c p < 0.05, CIITA/CD86 compared with CD86.

43%); however, this difference was not significantly different.
Mice injected with irradiated CD86 tumors had significantly more tumor free mice than did vector control (70% compared with 53%, respectively). Only 38% of mice injected with CIITA/CD86 co-expressing tumors were tumor free at day 28. The significant decrease in the protection afforded by CD86 indicates that CIITA expression in the Line 1 system abrogates CD86-induced immunity, resulting in an increased number of mice with tumor burden. These data demonstrate a positive role for CD86 in the induction of Line 1 immunity, while CIITA appears to have a deleterious role in tumor immunity in this model system.

Discussion

CD86 is important for the induction and maintenance of an immune response. Engagement of MHC class I and/or class II molecules without an additional costimulatory signal can lead to the induction of anergy. Mice with a genetic disruption of the CD80 costimulatory molecule retained much of their costimulatory capacity (6). It was later discovered that CD86 could provide a compensatory signal in these CD80 knockout mice, underscored the importance of the CD86 protein (6, 7). MHC proteins are expected to be critical for the ability of CD86 to induce lasting protective immunity. CIITA is a master regulatory of the MHC class II processing and presentation pathways that has been also shown to induce MHC class I in some cell lines (38, 39). The concomitant expression of class I and class II with CD86 is a likely protocol for tumor gene therapy.

In this report, we show that introduction of the gene coding for the mouse CD86 costimulatory molecule into the murine lung carcinoma, Line 1, results in a markedly decreased tumor growth rate. CD86 expression in a tumor vaccine model also exhibits some efficacy. These results are interesting since expression of CD86 without MHC molecule expression would be expected to be ineffective. However, Line 1 does express very low levels of class I, the levels of which are inducible with cytokines such as IFN-γ (38, 44). It may be possible that when cells are injected into mice, cytokine expression in the local environment leads to up-regulation of MHC class I and cooperative interaction with CD86 on engineered cells, leading to tumor rejection. These findings lend additional support for the emerging theory that CD86 can be an important costimulatory molecule to be considered for tumor immunotherapy.

Early reports suggest that CD86 expression was ineffective in primary tumor therapy model systems. When direct comparisons were made between CD80 and CD86, CD80 was found to be the most effective (9–12). Furthermore, CD86 was totally ineffective in other tumor systems (13). To some degree, the ineffectiveness of CD86 therapy was believed to be due to the propensity of CD80 to stimulate a Th1 T cell response, while CD86 was thought to induce a Th2 phenotype (45). Although CD86 was shown to be effective in the reduction of primary tumor growth in the CMT93 tumor, this expression actually led to a loss of immunogenic potential (46). These observations have undoubtedly deterred some researchers from pursuing the use of CD86 as a potential immunotherapeutic in their tumor systems. Interestingly, however, reports are showing that CD86 has marked effectiveness in several model systems. CD86 has been shown to induce T cell proliferation in a MLR and can effectively generate CTL (47). This suggests that CD86 can induce a CTL response against cancerous cells expressing CD86. It is also possible that a Th2-mediated Ab response can be protective in tumor immunity, since Abs have been shown to be efficacious in some cancers (48, 49). Several other tumor model systems have tested the effectiveness of CD86 therapy. CD86 expression in a vaccinia delivery system leads to protective tumor immunity (14). Other reports demonstrate the tumor model specificity of the CD86-mediated immunity (15, 16). In one study, expression of CD86 was clearly superior to that of CD80 in adenocarcinoma and melanoma systems (17). These reports and the data presented here show that the potential for immune recognition via the CD86 molecule varies according to the system being used. In human tumor systems it is possible that a means for testing the potential of tumor immunity via CD86 (such as in vitro T cell stimulation) can be used to determine in advance whether a given costimulatory molecule will be advantageous in human immunotherapy.

CIITA expression in the Line 1 system leads to increased survival in primary tumor challenge when the expression levels of CIITA are low (as measured by surface class II expression) (Figs. 3 and 4A). However, when expression levels of CIITA are high, the cells lose their slow growth phenotype (Fig. 4B), and in certain situations, the cells can even grow faster than unmodified tumor (Fig. 4C). Furthermore, when CIITA-modified cells are used in a tumor vaccine setting, there is no protection from subsequent control tumor challenge (see Table II). Indeed, even more mice succumb to their tumors when injected with vector control tumor. Mice injected with CIITA expressing tumor (either polyclonal or various clones) did not have increased CTL activity against Line 1 as measured using T cells obtained from tumor-infiltrating lymphocytes or from splenic lymphocytes (data not shown). These data indicate a negative role for CIITA expression in the absence of costimulatory molecules, perhaps through tolerance induction.

There are several possible explanations for the ineffectiveness of CIITA immunotherapy. In instances where we have used clones, it is possible that simple clonal variation may play a factor; however, the data using polyclonal pools agree with the findings with clones, suggesting that clonal variation contributes minimally. There may also be nonimmune factors at work, such as the ability or inability to vascularize, but no other data in the literature indicate that CIITA and/or CD86 affects these processes. Finally, the changes in growth of the transductants may reflect differences in host immunity to those cells. This is the hypothesis that will be discussed in detail.

Part of the central tenet of MHC class I and class II presentation is that efficient induction of a T cell response must involve at least two signals. If there is MHC-peptide recognition in the absence of costimulation, an anergic response or the deletion of those reactive T cells may result (2, 3). In the situation where CIITA-expressing cells are presenting tumor Ag to T lymphocytes, the lack of a costimulatory signal on the tumor cell may lead to one of these events. We have also demonstrated that the coexpression of CIITA and CD86 does not lead to enhanced tumor immunity as measured by either primary tumor growth or tumor vaccination. Indeed, in
the case of the fast growing LCITASNF6 clone, coexpression of CD86 leads to an intermediate phenotype of growth faster than that of cells expressing B7-2 alone. In tumor challenge assays, coexpression of CIITA and B7-2 abrogated the protective effect of CD86 alone. These data show that CIITA is ineffective in this model system and in some cases represents a negative factor. However, the combination of CIITA and CD86 may be effective in other tumors. These results bring into question the prudence of beginning human CIITA tumor vaccine trials without being able to ascertain whether CIITA could lead to the induction of tolerance to the tumor that is being treated in proposed CIITA human trials.

The second possibility for failure of CIITA therapies involves NK cells. NK cells are lymphocytes that survey cells for those that have aberrant expression of MHC class I. Much progress has recently been made on the identification of NK cell receptors that are responsible for this surveillance (reviewed in Refs. 40 and 41). Line 1 has very low to nondetectable expression of MHC class I, making it a potential NK cell target (43). As we have shown previously, CIITA expression in the Line 1 system leads to up-regulation of transcription and surface expression of MHC class I (38). The Line 1 clones that have the highest MHC class II expression also have the highest MHC class I expression (data not shown). This suggests that cells with high CIITA-mediated MHC class I expression may not be susceptible to NK cell killing. This would be expected to lead to faster initial growth as is seen with the LCITASNF6 clone. We believe that the most likely reason CIITA expression abrogates CD86 protection is the lack of NK cell surveillance in the coexpressing CIITA/CD86 transfectant. This hypothesis would be best tested in NK-deficient mice. However, the beige strain is not on the H-2background; therefore, experiments conducted in nude mice are the only viable option by which to elucidate the mechanism of this effect.

A final reason that CIITA expression alone may be ineffective in this model system is the incomplete reconstitution of the class II processing and presentation pathway. An early report by Siegrist et al. (36) demonstrated that a human melanoma cell line engineered to express CIITA had induced surface expression of MHC class II but was unable to properly process and/or present exogenous Ag. Surface loading of MHC class II with free peptide was possible and led to the induction of an immune response. This was the first suggestion that CIITA alone did not reproduce the entire class II pathway. A subsequent report showed that the molecule missing in this cell line was the serine protease, cathepsin S (37). The gene for this molecule was not inducible by CIITA in this cell line. We and others have shown that in several other cell systems CIITA expression alone can reconstitute class II processing and presentation (33–35). CIITA expression induces only the heavy chain, not accessory proteins (38, 39). This indicates that CIITA enhancement of class I presentation is limited to cells in which there are sufficient accessory proteins to support an increased level of heavy chain product. These reports suggest once again that the ability of CIITA to fully reconstitute class I Ag presentation may be cell type dependent.

One of the earliest papers dealing with CIITA and Ag presentation suggested the benefit of CIITA in immunotherapy, either with or without costimulation (36). Our results with the Sarcoma model system (33) and now with the Line 1 system suggest that by itself, CIITA expression may have little benefit. In a worst case scenario, CIITA may be a negative factor in vaccination strategies. Even combination gene therapy with CD86 and CIITA lacked efficacy in our model system. This report indicates that the use of CIITA in clinical protocols without additional costimulation or without first defining the costimulatory capacity of the tumor being treated should be approached with extreme caution. On the other hand, CIITA therapy with other costimulatory molecules such as CD40 ligand, CD80, and ICAM-1 should be tested to assess what contribution they might have for CIITA tumor immunotherapy.

Acknowledgments

We thank Dr. John C. Olsen for the retroviral vectors, Dr. Peter Linsley for the CD86 cDNA, Dr. Jeffrey Frelinger for the gift of Abs, and members of the Ting Laboratory for their helpful discussions.

References

in MHC and TAP-1 expression in cervical cancer lymph node metastases as compared with the primary tumours. Br. J. Cancer 69:1176.

THE CANCER PROCESS AS A TYPE OF IMMUNOCOMPLEX HYPERSENSIBILITY INVOLVING C3b, NATURAL KILLER CYTOTOXICITY AND ANTI-BODY-DEPENDENT CELL CYTOTOXICITY: PROPOSALS FOR TUMOUR IMMUNOTHERAPY AND VACCINE

G. MANZO
IPSIA Maglie (Le) Italy

ABSTRACT - I have previously assumed that stem tumour cells are "para-embryonal cells" (PECs) poor or missing in major histocompatibility complex (MHC) antigens and rich in heat shock proteins (HSPs). PECs might induce adjuvant differentiated hyperplastic cells to also express tumoral phenotype and properties, thus transforming them into 'differentiated para-embryonal cells' (DPECs), MHC-endowed. In such a way, PECs, MHC-lacking, would be automatically surrounded by DPECs, MHC-endowed: this tumour organization was experimentally found by Cordon-Cardo et al in a variety of cancers. Now, I suggest that such a tumour histology might preferentially induce an anti-DPEC T cell immune response which, sparing PECs, might release increasing amounts of DPEC antigens in the peritumour site. DPEC antigens might increase synthesis of specific antibodies and subsequent immunocomplex formation at the peritumour site. Here, abundant immunocomplexes might react through their Fc parts with CD16 receptors of ADCC-endowed immune cells. These cells would thus be stimulated to secrete their lytic factors before and without their coming into contact with target tumour cells. On the other hand, abundant immunocomplexes at the peritumour site might massivly activate the complement system, thus generating large amounts of C3b. C3b might react with CD11b receptors of natural killer (NK) cells, stimulating them to also secrete their lytic factors in an extracrine way at the peritumour site, thus impaireing NK cytotoxicity. In such a way, in the absence of ADCC and NK cytotoxicity, a tumour cell enhancement might easily occur. In the light of these ideas, a strategy for antitumour immunotherapy is then proposed, aimed at avoiding interference phenomena between humoral factors and NK cytotoxicity or ADCC, and at gradually removing tumour histologic organization that impairs and upsets the immune response. Moreover, a strategy for antitumour vaccine is proposed, in which only association between pre-sensitized B cells and ADCC-endowed cells might give simultaneously specificity and immunological memory in the immune surveillance against newly arising MHC-lacking HSP-rich stem tumour cells (PECs).

Tolerance induction by way of gene therapy.

Marco Melo, Yubin Kang, Moustapha El-amine and David Scott.
Holland Laboratory, American Red Cross, Rockville, MD, 20855

Efficient methods for gene transfer into hematopoietic cells may enable the expression of antigens involved in autoimmune processes for the induction of tolerance. We have developed a retroviral construct which displays antigens at the N-terminus of an IgH heavy chain, and expressed this in bone marrow progenitor cells and in peripheral B cells for tolerance induction in mice. We also used transgenic mice that express a foreign antigen constitutively in B cells. While resting B cells had no effect on an ongoing immune response in vivo, LPS-stimulated B-cell blasts from the transgenic mice induced tolerance in already primed BALB/c mice. Since LPS and CD40L upregulate B7.2 expression, the tolerogenicity of activated B cells can not be explained by the lack of costimulatory ligands. Interestingly, even activated transgenic B cells failed to present the endogenous produced protein to a specific T cell clone, although we know that they secrete nanomolar amounts of fusion protein. Nonetheless, these cells were competent to present the exogenous protein to a specific T cell clone; therefore, there is no general defect in APC capacity of these transgenic B cells. (Supported by NIH grant 1KO8 AI01509-01)

Novel Cancer Therapy Utilizing Tumor-Specific Dendritic Cell Immune Responses

Brian K. Martin, Gene H. MacDonald, Robert E. Johnston, and Jenny P.-Y. Ting.
Lineberger Comp. Cancer Ctr. and Dept. Micro/Immunology, U. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.

Dendritic cells have been the focus of intense interest in recent years given their ability to mediate tumor rejection. A difficulty with this strategy is the time consuming ex vivo manipulations that are required to generate effector cells. We have used two approaches to specifically target an immune response via dendritic cells in vivo. First, we used a virus that specifically infects dendritic cells at the inoculation site. Injection of mice with this vector coding a gene for a model tumor antigen renders the host immune to subsequent tumor challenge. Viral injection leads to both antibody and CTL responses against the model tumor antigen. Of the mice that survive tumor challenge, 50% are also immune to wild type challenge, suggesting epitope spreading. Our second approach has been to modify tumor cells to express the complement component C3a, a chemotactic factor for granulocytes, macrophages and dendritic cells. We show that tumor cells expressing C3a induce dendritic cell chemotaxis. Mice injected with C3a tumors grow these tumors for a short time, then spontaneously reject the tumor. Survivors are immune to subsequent wild type challenge. These studies suggest that dendritic cell immunotherapy can be accomplished without ex vivo modification. Supported by U.S. Army Breast Cancer Grant #DAMD1-97-1-7142 to BKMc and NIH-AI-29564 and NCI-48185 to JPYT.

Experimental autoimmune encephalomyelitis induced in B6.C-H-2bm12 mice by oligodendrocyte glycophorin: Effect of MHC class II mutation on immunodominant epitope selection and fine epitope specificity of encephalitogenic T cells

Izhak Mendel, Hanan Gur, Nicole Kerlero de Rosbo and Avraham Ben-Nun.
Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, ISRAEL.

The bm12 mutation in the MHC class II I-A^b molecule can profoundly influence experimental autoimmune diseases. We have studied the effect of this mutation on experimental autoimmune encephalomyelitis (EAE), induced in H-²b mice by myelin oligodendrocyte glycoprotein (MOG). MOG 35-55 peptide (pMOG 35-55), representing the immunodominant encephalitogenic region for H-²b mice, is also a strong encephalitogen for H-²bm12 mice. Although the differences in fine epitope specificity and TCR V gene usage between encephalitogenic T cells from H-²b and H-²bm12 mice were subtle, H-²b and H-²bm12 antigen presenting failed to effectively cross-present pMOG 35-55 non-syngeneically to I-A^b/I-A^{bm12}/pMOG 35-55-specific T cells. In contrast to pMOG 35-55-induced EAE, the incidence and clinical severity of the disease induced by recombinant human MOG (a.a. 1-121) (rhMOG) in H-²bm12 mice were considerably reduced, as compared to those in H-²b mice. The primary response to rhMOG was associated in H-²b mice with a dominant response to pMOG 35-55, while in H-²bm12 mice a co-dominant response to pMOG 35-55 and pMOG 94-116 was observed. pMOG 94-116 is a cryptic epitope in H-²b mice, as specific T-cells selected from mice immunized with pMOG 94-116 did not react to rhMOG in contrast to I-A^{bm12}/pMOG 94-116-specific T-cells. pMOG 94-116 was not encephalitogenic for H-²b or H-²bm12 mice, and the reduction in clinical incidence and severity of rhMOG-induced EAE in H-²bm12 mice may be related to regulation by pMOG 94-116-reactive T-cells in these mice.
ROLE OF RECOMBINANT INTERFERON-ALPHA IN AN EFFECTIVE MURINE EL-4 TUMOR IMMUNOTHERAPY.
Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.

We have investigated whether murine recombinant interferon-alpha (IFN-alpha) could replace interferon in a murine tumor immunotherapy. The therapy is administered as follows: EL-4 tumor bearing BALB/c mice are treated at day 4 following tumor injection with 10 mg/kg 1-3-B (2-chlorotimidyl)-1-α-3-α-D-ribose (BCN) followed at day 6 with a 1 x 10⁶ plaque-forming units of reovirus type 3, 61-69% of the therapy were cures, whereas 0% and 20% of tumor-bearing mice cured were treated with reovirus or BCN alone, respectively. Administration of IFN-alpha could replace reovirus in the therapy when doses as small as 500 units/ml produced survival levels equivalent to reovirus. Although IFN-alpha treatment could produce high levels of natural killer activity, cyclosporine could abrogate the effects of the therapy without affecting natural killer cell activity, suggesting that normal killer cells did not play a significant role in eliminating tumor in our system. IFN-alpha was found to inhibit the growth of EL-4 tumor in cell culture, suggesting that inhibition of tumor growth may be one mechanism whereby IFN-alpha may aid in the eradication of tumor. Currently we are quantifying the amount of IFN-alpha that is produced in response to virus. In addition, we are investigating whether anti-IFN antibodies can abolish the effect of the reovirus therapy.

1625

Subtractive cloning of a novel GAS gene family member associated with the lymphoid lineage and B lymphomagenesis. C.-X. Wang, B.C. Fisk, Y.-K. Chou, J. Braun, Dept. of Pathology, UCLA School of Medicine Los Angeles, CA 90095-1122.

We have previously established a murine model of B cell lymphomagenesis, using pre-established lymphoma lines (BDCs) which are tumorigenic only in immunodeficient mice, and malignant progression in the absence of accessory cells (MV). We have found that BDCs are tumorigenic in wildtype mice. This study was designed to identify the differentially expressed genes in BDCs versus MV. BDCs were screened by dual array expression analysis and DNA sequencing, revealing 106 differentially expressed genes in four functional gene families. Interestingly, most differences involved expression loss in the MV cells. A novel gene, identified in this screen was GAS-24, which is highly expressed in MV cells but not GAS-24 is a member of the GAS (growth arrest-specific) gene family, the first associated with the lymphoid lineage. Members of this gene family encode a putative surface glycoprotein with four transmembrane domains. GAS-24 is expressed in normal B cells and is selectively lost in fully malignant B cells, cells and cells. GAS genes have been previously isolated in the neuronal, epithelial, and mesenchymal cell lineages, and play roles in growth regulatory signaling and intercellular junction formation. The normal developmental pattern of GAS-24 expression, and gene transfer of wild-type and dominant-negative GAS-24 on host-tumor interaction will be presented. Supported by NIH AI21500, the Lymphoma Research Foundation, and the Jonsson Comprehensive Cancer Center.

1626

Previous work has shown that the Linel murine lung carcinoma model, transduction of the MHC class II transactivator (CITA) results in the induction of MHC class I as well as class II expression. These studies suggested that tumors expressing both MHC class I and II induced by CITA may be less tumorigenic and more immunogenic. In the current study, we demonstrate that mice harboring CITA expressing Linel tumors have a modest increase in mean survival time as compared to mice with control tumors. Similarly, BT-2 expressing Linel tumors have a delayed growth pattern. However, tumors expressing both CITA and BT-2 show no cooperative decrease in tumorigenicity. The continuous line BT-2 had no effect on tumor growth, either alone or in combination with CITA. Preliminary studies on the immunogenicity of CITA expressing Linel tumors show that CITA expressing tumors induce a protective immune response that results in a low number of mice surviving wildtype challenge relative to mice injected with control tumor. Further, tumors expressing both CITA and BT-2 or BT-2 alone showed enhanced immunogenicity such that fewer than half of the mice grew tumors. These studies show that CITA may have an impact in human tumor immunotherapy. These studies were supported by NIH grants AI25904 and AI26185 to J.P.-Y.T. and US Army Breast Cancer Fellowship DAMD-17-97-1-7112 to R.K.M.

1627

gp96 Engineered for Secretion of Tumor Peptides and for Vaccination against Cancer. K. Yanaihara, J. Spall, G. Stroili, J. Kuco, and P.R. Podack. Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101.

Mouse gp96 can induce specific immunity to the tumor from which it is isolated and may have great practical importance for vaccination and immunotherapy against cancer. In this study, we developed a generic vector expressing human gp96, by deleting the endoplasmic reticulum retention signal, KDEL, and adding the CR2 and CR3 domain of murine IgG1 in order to facilitate detection by ELISA and purification by affinity chromatography. After transferring a 346 bp insert was created in the cDNA for EL, EG2, EG4 transfected with ovumllin, LLC, P815, MC57, B10F10 and SCCL (small cell lung cancer) cells by ELISA. SDS PAGE of the purified product reveals 3-4 closely spaced 18kD bands. EG7 gp96 9kDa and EG7 were rejected in C57BL/6 mice, while E7 developed tumor after subcutaneous injection. After two vaccinations of live EG7 gp96, rechallenged E7 was rejected. However, all mice initially vaccinated with gp96 IgG, vaccinated could not reject E7 rechallenged. These results suggest that gp96 secreted from E7-gp96, gp96 IgG and murine tumor immunity against E7. These factors also suggest that ovumllin peptides are not so potent in inducing immunity as the mixed peptides produced by ovumllin transfected E4.

1628

Pmel 17, self melanoma-antigen, is a member of melanosomal proteins shown to be a potential candidate for the development of tumor vaccine for the treatment of melanoma. Pmel17 vaccination, however, showed less than satisfactory results in treating murine and human melanoma. We have hypothesized that the high affinity CTLs, that are capable of rejecting melanoma have been deleted in the normal mice. To test this hypothesis, we have generated Pmel 17 KO mice and studied the immune response to Pmel 17 vaccination. Mice in each group (Pmel 17+, Pmel 17- and Pmel 17+/+) were immunized either with rVv-3-gal or rVv-mpe17. After three weeks of immunization, all mice were challenged with B16 melanoma cells subcutaneously. Only Pmel 17 KO mice, which were vaccinated with rVv-mpe17, rejected B16 melanoma completely. Melanoma was developed in the mice of all other groups. These results demonstrate that the immune responses that are properly directed to Pmel 17 can eradicate melanoma. The National Institutes of Health and American Heart Association supported this study.