Acid Gas Removal Characteristics of Corona Radical Shower System for A Treatment of Stationary Engine Flue Gas

Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1
Korea Institute of Machinery and Materials, Taejon 305-343, Republic of Korea

U.S. Army Laboratory, AMSRL-MT-PC, Aberdeen, Providing Ground, MD
Los Alamos National Laboratory, P-24, Los Alamos, NM

Presented at HAKONE VI International Symposium on High Pressure, Low Temperature Plasma Chemistry. No copyright is asserted in the United States under Title 17, U.S. code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Government purposes. All other rights are reserved by the copyright owner.

Approved for public release: distribution is unlimited.

Acid gas removal experiments are carried out in large bench scale corona radical shower reactor. A simulated stationary engine flue gas is air mixed with NO, SO₂ and CH₄. Optimums for acid gas removal rate have been conducted in terms of the ammonia to acid gas molar ratio, the applied voltage and the additional gas velocity. Both the removal efficiencies of NO and SO₂ increase with increasing applied voltage and decreasing initial NO concentration. It is also shown that high concentrations of CH₄ have a negative effect on NO removal, where part of the NO converted only to NO₂ but not to ammonium nitrate aerosol particles.
ACID GAS REMOVAL CHARACTERISTICS OF CORONA RADICAL SHOWER SYSTEM FOR A TREATMENT OF STATIONARY ENGINE FLUE GAS

T. Nomura\(^1,2\), S.J. Kim\(^1,3\), K. Urashima\(^1\), T. Ito\(^2\), A. Miziolek\(^4\), L.A. Rosocha\(^5\), and J.S. Chang\(^1\)

\(^1\) Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1
\(^2\) Department of Electrical and Electronics Engineering, Musashi Institute of Technology, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
\(^3\) Korea Institute of Machinery and Materials, Taejon 305-343, Republic of Korea
\(^4\) U.S. Army Laboratory, AMSRL-MT-PC, Aberdeen, Providing, Ground, MD, U.S.A.
\(^5\) Los Alamos National Laboratory, P-24, Los Alamos, NM, U.S.A.

ABSTRACT

Acid gas removal experiments are carried out in large bench scale corona radical shower reactor. A simulated stationary engine flue gas is air mixed with NO, SO\(_2\) and CH\(_4\). Optimums for acid gas removal rate have been conducted in terms of the ammonia to acid gas molar ratio, the applied voltage and the additional gas velocity. Both the removal efficiencies of NO and SO\(_2\) increase with increasing applied voltage and decreasing initial NO concentration. It is also shown that high concentrations of CH\(_4\) have a negative effect on NO removal, where part of the NO converted only to NO\(_2\) but not to ammonium nitrate aerosol particles.

INTRODUCTION

NO\(_x\) and SO\(_x\) are one of air pollutants and the major cause of acid rain. Many NO\(_x\) and SO\(_x\) conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, low NO\(_x\) burner, etc., have been used. More recently, non-thermal plasma techniques become a commercial plant, however, the energy efficiency of the non-thermal plasma reactors have not been optimum yet. For example, the electron beam, barrier discharge and pulsed corona reactors, i.e. direct plasma treatments of flue gases, may loss input energy to activate unwanted components of flue gases such as CO\(_2\), N\(_2\), etc. Hence, the corona discharge radical injection techniques have been developed. On the other hand, the treatments of an engine combustion flue gas by non-thermal plasmas have been investigated by many researchers [1–5]. In this work, an experimental investigation has been conducted to remove NO\(_x\) and SO\(_2\) from the stationary engine flue gases.

EXPERIMENTAL APPARATUS

The schematics of experimental test loop and corona radical shower electrode are shown in Fig. 1. In stationary engine flue gas treatments, the combustion flue gas was normally diluted
Fig. 1 Schematics of experimental flow loop (a) and corona radical shower electrode (b).

Fig. 2 Acid gas removal rate as a function of corona shower system applied voltage V, where bar in the each experimental points indicated minimum and maximum values. a) NO and NO\textsubscript{x} and b) SO\textsubscript{2}.

Fig. 3 Acid gas removal rate as a function of ammonia to acid gas molecule ratio MR. a) NO and NO\textsubscript{x} and b) SO\textsubscript{2}.
by the air for cooling down to room temperature. In the present simulated flue gas test, the
corcentration ratio between NO and SO₂ or CH₄ are fixed at 0.128 or 1.667, respectively, and
then NO initial concentration was studied from 30 to 100 ppm. NO, NO₂ and SO₂
concentrations were measured by the Green Line gas analyzer and the trace by-products are
determined by the Fourier Transform Infra-Red spectroscopy (FTIR). The aerosol particles
generated by the acid gases and ammonia/methane related plasma processes were collected by the
electrostatic precipitator operated at \(-19\) kV dc at the downstream of the reactor. The size of
the reactor is (10×30×100 cm) and three radical injectors are placed in series as shown in Fig. 1.
The corona radical shower electrode used was 6 mm o.d. tube equipped with 28 hollow
electrodes (1.2 mm i.d./1.5 mm o.d.) as shown in Fig. 1b. Additional gas consisting of air-NH₃
mixture was injected from these hollow electrodes to the reactor via corona discharge generated
by a positive dc high voltage at the edge of the hollow electrodes.

EXPERIMENTAL RESULTS

NO, NO_x and SO₂ removal rate as a function of applied voltage, ammonia-to-acid gas
molecule ratio MR, additional gas superficial velocity and NO initial concentration are shown in
Figs. 2, 3, 4 and 5, respectively, where the bar for each experimental point shows minimum and
maximum value observed during the time transient tests. NO, NO_x and SO₂ removal rate
increases with increasing NO initial concentration in flue gases as shown in Figs. 2 and 5,
respectively, as expected from radical chemistry and heterogeneous reactions [5]. However, acid
gas removal rate has an optimum values in terms of MR and corona radical shower system
additional gas velocity as shown in Figs. 3 and 4, respectively, where NO and NO_x removal rate
is maximum near molecule ratio between 1 to 1.5 and additional gas velocity near 8 m/s. Based
on analyses of Ohkubo et al [6], the effect of additional gas velocity can be explained by the better
mixing of ammonia radicals to react with acid gases in lower velocity regions, where the mixing
effect increases with increasing additional gas flow rates. For higher additional gas velocities, the
ammonia radicals ejected from the hollow electrode may have shorter residence time in the reactor
and only generate narrow flow channels to reduce reactions. Hence, the optimum additional gas
flow velocity exists for the present range of flue gas flow rate (6 Nm³/h or reactor superficial
velocity of 0.33 m/s).

Based on corona discharge gas phase and heterogeneous reactions with ammonia [5], the
SO₂ removal rate increases with increasing MR as shown in Fig. 3. However, if we examined
discharge by-products, ammonia and methane relative concentrations (\(\propto\) absorbance of IR) as
shown in Fig. 6, CH₄ and N₂O concentration become minimum at molecule ratio near 1
to 1.5 where NH₃, H₂O and \(\phi\)-CHO were determined by the IR absorptions at the wave length
Fig. 4 Acid gas removal rate as a function of corona shower system hollow electrode additional gas flow velocity V_{add}: a) NO and NO$_x$ and b) SO$_2$.

Fig. 5 Acid gas removal rate as a function of NO initial concentration in flue gases $[\text{NO}]_0$: a) NO and NO$_x$ and b) SO$_2$.

Fig. 6 Relative concentration (\approx IR absorbance) of a) NH$_3$ and CH$_4$ and b) N$_2$O, H$_2$O and ϕ-CHO (aldehyde) as a function of ammonia to acid gas molecule ratio at flue gas flow rate $Q_f = 6 \text{Nm}^3/\text{h} (100 \text{ L/min})$, $V = 23 \text{kV}$, $[\text{NO}]_0 = 100 \text{ppm}$ and $V_{\text{add}} = 5 \text{ m/s}$.
For the molecule ratio below 1, NO and NO\textsubscript{x} are removed by a reduction reaction of methane and ammonia radicals, hence, removal rate of NO, NO\textsubscript{x}, N\textsubscript{2}O and CH\textsubscript{4} increase with increasing molecule ratio. However, for the molecule ratio larger than 1, ammonia and their radicals may be mainly consumed for SO\textsubscript{2} removal and \phi-CHO formations hence NO, NO\textsubscript{x}, N\textsubscript{2}O and CH\textsubscript{4} removals may be reduced.

By comparison with combustion generated flue gas (without large methane concentration), the removal rate of NO\textsubscript{x} is much lower as has been observed for the other engine generated flue gas plasma treatments [1-4] in spite of effective NO oxidations. The role played by the hydrocarbon under the non-thermal plasma should be investigated in detail.

CONCLUDING REMARKS

An experimental investigation has been conducted to remove acid gases from the stationary engine flue gas and the following concluding remarks are obtained: 1) NO, NO\textsubscript{x} and SO\textsubscript{2} removal rates increase with increasing applied voltage and decrease with increasing NO initial concentration in the flue gases; (2) NO, NO\textsubscript{x} and SO\textsubscript{2} removal rates non-monotonically depend on corona shower system additional gas flow velocity due to the mixing effects where the maximum removal rates are observed near 8 m/s; (3) SO\textsubscript{2} removal rate increases with increasing ammonia to acid gas molecule ratio while NO and NO\textsubscript{x} non-monotonically depend on molecule ratio; (4) Ammonia and methane slips non-monotonically depend on ammonia to acid gas molecule ratio; (5) Trace unwanted discharge by-products significantly depend on ammonia to acid gas molecule ratio and only N\textsubscript{2}O and \phi-CHO (aldehydes) are observed; and (6) Significant amount of aerosol particles are formed during the acid gas removal processes.

ACKNOWLEDGEMENT

This work is partly supported by the U.S. DOD-SERDP program.

REFERENCES