
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INTRODUCTION TO HIDDEN MARKOV MODELS AND
THEIR APPLICATIONS TO CLASSIFICATION

PROBLEMS

by

Michail Zambartas

September 1999

Thesis Advisor: Monique P. Fargues
Co-Advisor: Roberto Cristi

Approved for public release; distribution is unlimited.

19991126 111

REPORT DOCUMENTATION PAGE Form Approved
I OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1999 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INTRODUCTION TO HIDDEN MARKOV MODELS AND THEIR APPLICATIONS
TO CLASSIFICATION PROBLEMS

6. AUTHOR(S)

Michail Zambartas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION REPORT

Naval Postgraduate School NUMBER
Monterey, CA 93943-5000
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /

MONITORING
AGENCY REPORT

NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION /AVAILABILITY STATEMENT [12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)
This thesis presents an introduction to Hidden Markov models (HMM) and their applications to classification

problems. HMMs have been used extensively to model the temporal structure and variability of speech and other signals

in the last decade. We selected to write our own HMM implementation in MATLAB. We tested our software on a limited
isolated 4-word recognition. We also applied our implementation to the recognition of mine-like objects buried in shallow

sand, using seismo-acoustic data obtained from an on-going project at the Naval Postgraduate School. Initial results

indicate that the HMM-based classifier can recognize the type of mine-like object, independent of the object weight with a

97% accuracy. Results also indicate that it can recognize the object type at different distances with a 100% accuracy.
However, the experiments were conducted with very few data, and further work needs to be done to confirm these initial

findings by using a larger data set. Finally, we benchmarked our results against those obtained using a back-propagation

neural network implementation, which were found to be similar, but slower than the HMM-based implementation.

14. SUBJECT TERMS 15. NUMBER
Hidden Markov models, vector quantization, speech recognition, seismo-acoustic sonar, mine detection OF PAGES

153

16. PRICE
CODE

17. SECURITY 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20.

CLASSIFICATION OF THIS PAGE ABSTRACT LIMITATION OF

REPORT Unclassified Unclassified ABSTRACT

Unclassified UL

NSN 7540-01-280-5500 StandardForm298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18-102

ii

Approved for public release; distribution is unlimited

INTRODUCTION TO HIDDEN MARKOV MODELS AND THEIR APPLICATIONS TO
CLASSIFICATION PROBLEMS

Michail Zambartas
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1990

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author: _- _

Michail Zambartas

Approved by::_ _

Monique P. Fargues, Thesis Advisor

Roberto Cristi, Co-Advisor

Jeffrey Knorr, Chairman
Department of Electrical and Computer

Engineering

iii

iv

ABSTRACT

This thesis presents an introduction to Hidden Markov models (11MM) and their

applications to classification problems. HMMs have been used extensively to model the

temporal structure and variability of speech and other signals in the last decade. We

selected to write our own HMM implementation in MATLAB. We tested our software

on a limited isolated 4-word recognition. We also applied our implementation to the

recognition of mine-like objects buried in shallow sand, using seismo-acoustic data

obtained from an on-going project at the Naval Postgraduate School. Initial results

indicate that the 1MM-based classifier can recognize the type of mine-like object,

independent of the object weight with a 97% accuracy. Results also indicate that it can

recognize the object type at different distances with a 100% accuracy. However, the

experiments were conducted with very few data, and further work needs to be done to

confirm these initial findings by using a larger data set. Finally, we benchmarked our

results against those obtained using a back-propagation neural network implementation,

which were found to be similar, but slower than the HMM-based implementation.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. INTRODUCTION TO HIDDEN MARKOV MODELS 3

A. HMM BACKGROUND .. 3

B . INTRODUCTION 4

C. DISCRETE MARKOV PROCESS .. 5

1. Exam ple 1 .. 8

2. Example 2: Browser Tracking .. 8

3. Example 3: Urn-ball Example .. 9

D. THE THREE BASIC PROBLEMS FOR H[MM'S .. 13

E. SOLUTIONS TO THE THREE HMM PROBLEMS ... 13

1. Problem 1: Evaluation of Pr(OA) .. 13

a) Forward Procedure: ... 16

b) Backward Procedure: ... 19

2. Problem 2: Optimal State Estimation .. 22

3. Problem 3: Re-estimation of Model Parameters ... 27

F . SCALIN G ... 29

G. MULTIPLE OBSERVATION SEQUENCES ... 31

III. ISOLATED WORD RECOGNITION ... 33

A. GENERAL BMM TRAINING AND TEST PROCEDURE .. 33

1. Data Creation and Preparation ... 36

2. Feature Extraction .. 36

vii

3. Vector Quantization ... 37

a) Competitive Neural Network Implementation ... 38

b) K-means Scheme ... 39

4. HMM Training .. 42

a) HMM Initial Conditions .. 42

b) Number of States N ... 42

c) HMM Re-estimation ... 43

d) Scoring .. . 44

B . C ONCLUSIONS ... 47

IV. 1MM-BASED CLASSIFICATION OF SEISMO-ACOUSTIC MINE

SIGNALS ... 49

A. BASIC EXPERIMENT INFORMATION ... 50

B. SIGNAL SELECTION ... 52

C. SIGNAL PREPARATION .. 53

D. FEATURES EXTRACTION/VECTOR QUANTIZATION .. 54

E. HMM TRAINING FOR THE MULTIPLE WEIGHTS EXPERIMENT 55

F. MULTIPLE WEIGHTS SCORING AND RESULTS ... 55

G. MULTIPLE DISTANCES EXPERIMENT ... 58

H . CONCLUSIONS ... 61

V. MINE-LIKE OBJECT RECOGNITION USING NEURAL NETWORKS 63

A. NEURAL NETWORK DESCRIPTION ... 63

B. MULTIPLE WEIGHTS SET-UP ... 64

C. MULTIPLE DISTANCES SET-UP ... 67

viii

D. CONCLUSIONS/COMPARISON WITH THE HMM-BASED CLASSIFIER 68

VI. CONCLUSIONS AND RECOMMENDATIONS .. 69

A . CONCLUSIONS ... 69

B. RECOMMENTATIONS ... 69

APPENDIX A. HIDDEN MARKOV MODEL MATLAB PROGRAMS 71

APPENDIX B. SEISMO-ACOUSTIC SONAR PROJECT INFORMATION 95

APPENDIX C. MATLAB CODE; HMM BASED CLASSIFIER FOR MINE

RECOGNITION .. 109

APPENDIX D. MATLAB CODE; NEURAL NETWORK BASED CLASSIFIER

FOR MINE RECOGNITION .. 135

LIST OF REFERENCES ... 141

INITIAL DISTRIBUTION LIST .. 143

ix

I. INTRODUCTION

This thesis presents an introduction to Hidden Markov models (HMM) and their

applications to classification problems. HMMs have been used extensively to model the

temporal structure and variability of speech and other signals in the last decade. For

example, they have become a major player in the speech area [4, 5, 9]. We selected to

write our own HMM implementation even though sophisticated HMM software is readily

available on the market to better understand the basic concepts behind the theory. Our

implementation uses MATLAB because it is a high-level language easy to work with.

As a result, the software may not be as fast as that obtained with a compiled

implementation but it is easy to understand, which was one of the main goals of the

research. We tested our software on a limited isolated 4-word recognition, and we also

applied our implementation to the recognition of mine-like objects buried in shallow

sand, using seismo-acoustic data obtained from an on-going project headed by Prof. Muir

from the Physics Department at the Naval Postgraduate School. Finally, we

benchmarked our results against those obtained using a back-propagation neural network

implementation.

Chapter II introduces the concepts of HMMs in an "engineering-oriented" simple

fashion. We illustrate the theoretical concepts with basic examples to facilitate the

understanding of this difficult topic. We cover the three specific problems which HMM

address, their solutions, emphasizing the computational savings obtained with the

forward, backward, Viterbi and Baum-Welch algorithms.

Chapter II presents the application of HMMs to a simple speech classification

problem, using four isolated three-syllable words: "Microsoft," "Statistics," "Instructor"

and "Professor." Our goal is to show how a generic classifier can be set-up through the

simple speech recognition example. We introduce the concept of vector quantization

(VQ) applied to generate discrete symbols from the speech feature vectors created with

Linear Prediction Coefficients (LPC) and energy coefficients. Two different

implementations of VQ are considered 1) a Neural Network (NN)-based VQ scheme; and

2) a K-means algorithm [9]. In addition, we point out the potential numerical difficulties

which can be encountered while setting up and implementing the HMM software.

Chapter IV considers the application of the HMM-based classifier to the

classification of two mine-like objects buried in sand; a cylinder and a powder keg with

weights ranging from 71kg to 290kg. Results show that recognition performance is good

under various conditions of weight and distance of the object.

Chapter V presents a back-propagation neural network classifier designed to

recognize the two mine-like objects discussed in Chapter IV. This implementation was

conducted on the same data to compare the performance of the two schemes. Results

show the performances to be similar (around 95%), but the 1MM-based implementation

procedure is faster than the NN-based implementation.

2

II. INTRODUCTION TO HIDDEN MARKOV MODELS

This chapter introduces the basic theory of Hidden Markov models (HMM),

which are a very powerful technique for modeling the temporal structure and variability

in speech and other applications. The understanding of HMM is very important in order

to use them properly and achieve the best results for signal classification.

A. HMM BACKGROUND

Hidden Markov Model theory was first introduced in the late 1960s and early

1970s by Baker at Carnegie-Mellon University and Jeninek and colleagues at IBM for

speech recognition [6]. Since then they have been used extensively for speech

applications, and also successfully to other tasks such as human face identification, lip

and speech-reading, optical character recognition and time DNA modeling ([6] and

references therein). The reason for this wide range of applications is the rich

mathematical structure the HMMs are built on, yielding optimal results if used properly.

A detailed overview of 1MM theory was presented by Rabiner in the late 1980s [3, 4].

There are three main reasons why we may need to model a signal. First, we apply

signal modeling to mathematically describe the signal, so that we'll be able to process it,

for example to denoise a speech signal. Models are also important because they let us

describe the signal source, which doesn't have to be directly available to the user. For

example we cannot produce real seismic waves without an earthquake, but we can create

models of such signals and then process them. Finally, the most important reason for the

widely spread use of signal models is that they perform well in practice [3].

There are two types of signal models; deterministic and statistical. Deterministic

modeling is applied when dealing with signals with known physical characteristics. For

3

example a sinewave is completely specified by its frequency, phase and amplitude.

Stochastic modeling is applied when one tries to characterize only the statistical

properties of the signal. For example, statistical modeling may include Gaussian Poisson

and Markov process to describe events. Usually, real applications use both deterministic

and stochastic modeling. In this work we focus on statistical signal modeling, using the

Hidden Markov Model (1MM).

B. INTRODUCTION

The HMM theory is based on the Markov Chain. We can define the Markov

Chain as a probabilistic description of transitions between a system's states. A state can

be a property, or generally a condition, that a system/model might have at a particular

instance. The HMM consists of an underlyining Markov chain describing the

probabilistic status between the states, as that shown in Figure 2.1, which illustrates a

three state left-right model. For example, suppose we want to model a speech signal.

First, the signal is split into T time frames. Then, a set of parameters (such as LPC

coefficients, energy, etc...) is extracted together with a set of symbols for each time

frame. The sets of symbols represent each frame characteristics, and are called

observations. As a result, the entire model is a sequence of symbols, and each symbol is

a system model depicting each segment. In most cases we choose the segment length

empirically, but sometimes adjust it so that it is large enough to contain all the

information (usually spectral) that makes it unique, by comparison with the other

segments, due to possible change in the signal behavior. Generally, we can assume that

we reach an optimal number of frames when, by decreasing the frame length, we generate

models identical to those already generated. At this point, HMMs take advantage of the

4

properties existing between adjacent segments properties by addressing the following

three problems [3]: 1) how to identify the characteristic frames; 2) how to characterize

the relation between all successive segments; and 3) what types of properties should be

extracted to model each segment.

C. DISCRETE MARKOV PROCESS

An accurate definition for the HMM according to Rabiner [3] is that "A HMM is

a doubly stochastic process that is not observable (it is hidden), but can only be observed

through another set of stochastic processes that produce the sequence of observed

symbols."

Consider a system which exists at time t in one of N possible potential states, as

illustrated in Figures 2.1 and 2.2, where N=3. Each of the three circles represents a state

of the model. At a specific discrete time instant t within frame k, the model is always at

one of those three states, and we observe the sequence Ok. Generally, given that the

system has N states S = {S1, S2 ,SN}, where sj is the jth state, at every time t=k, the

model passes through the sequences of states Q = { ql, q2,• ,qt }, where qk is the state at

time k. The model that describes all this information is called a Markov chain. As we

can see from the example in Figure 2.1,

3k:qk =qk+l (2.1)

which means that if the model at time t=k is at state, it can remain at the same state at

time t=k+l. Note that no backward transitions are allowed in Fig 2.1. As a result, this

model is called a "left-to-right" model (the model is called ergotic when backward

transitions are allowed, as illustrated in Fig 2.2).

5

We define the probability aij as the transition probability from state i to state j.

For example, a23 is the probability of going from the 2nd to the 3 rd state, and is defined as:

au = P[q, = jjqt-=i], 1 i,j5 N, (2.2)

with the following constrains:

ai 0 Vi,j,
N (2.3)auj=l Vi,

j=1

since all probabilities are positive numbers and the summation of all transition

probabilities is 1.

6

al1 a22 a33

a13

Figure 2.1 A Markov Process (Chain), left-to-right model

all1 a22

a12

3 -a21 a2

a31l a23

at33

Figure 2.2 A Markov Process (Chain), ergotic model

7

For the discrete-time case, a system governed by known or predictable dynamics

can be modeled using a Markov chain. The probability of observing the observation Ot,

given the model X at a time t, is determined by the state at the time preceding states [6]:

P(OI2)= P[q, = s, q,-1 = s, qt- 2 = S.... . (2.4)

For a first-order Markov chain, eq (2.4) can be simplified to:

P(Ot]A)= H P[sk Isk-I]" P[sO l<t<T. (2.5)
k=1

Finally, we define the initial conditions, the probabilities of starting (t=1) at the ith state si

as:

z = P[q, = s, i=1, 2, N. (2.6)

1. Example 1

Let's evaluate the probability of the observation 0 = {sI, SI, 3} for the example

shown in Figure 2.2. So, applying eqs (2.4) and (2.5) to the example shown in Figure 2.1

leads to:

Pr(PI)) = S, s311A]

Pr(0j2) = P[s3ISJiP[SsIsP[si]
Pr(01)= 7ra 23a12.

2. Example 2: Browser Tracking.

Next, let us consider the following example where a user wishes to track the

browser type used by visitors to the Web. Assume: 1) only three types of browsers are

available: Microsoft Explorer (MIE), Netscape (NET) and America Online' s browser

(AOL); 2) the specific browser type version is not taken into account.

8

Table 2.1 Browser Tracking

User # 1 2 3 4

Browser MS Explorer5.0 AOI4.0 Netscape3.0 Netscape6.1

Browser 1 2 3 3
Observation

Symbol

An observation symbol is assigned to each visitor's browser types, as illustrated in Table

2.1. Note that we assign the same symbol (3) to both versions of Netscape, as the

specific browser version in not tracked by the user. In addition we assume transition

probabilities which represent probabilities of going from one state to another, i.e.,

browser, to another are available from previous statistical studies:

F0.3 0.4 0.310.5
0.1a = 0.2 0.5 0.

LO.8 0.1 0.1-

Thus, the resulting observation sequence is O={ 1, 2, 3, 3 }. Finally, let's assume that the

probability the first user uses the explorer browser is 7rc=0.5.

Therefore:

P(O IA)= P[1, 2, 3, 312] = P[1]P[2 I l]P[312]P[313] = 7z2a21a32a33

= P(O IA) = 0.5 -0.2 .0.1 .0.1 = 0.001.

3. Example 3: Urn-ball Example

Note that the states are directly observable in the previous examples. However, in

most real world cases, the state sequence that produces a given sequence of patterns

cannot be determinated, and the model is said to be "hidden". The most common

example for this type of description is the urn-ball model, according to Fig 2.3:

9

Urn I Urn 2 Urn 3
ql q2 q3

all a a

S a12 a12,,

Figure 2.3. The classic Urn-ball example. There are three (N=3) urns that contain a large
number of color balls. The colors of the balls are red, green, and blue. The boy we assigned to
paint the balls runs out of blue paint sometime while painting and uses sky blue afterwards. Thus,
eventhough there are 4 colors, we assign the same symbol for blue and sky blue and the number of
symbols is three (M=3). Each time a person randomly selects an urn, he selects a ball, and
announces the color. The process is repeated 4 (T--4) times. Note that: 1) we don't know from
which urn the ball came from, as we only have a color sequence, and we map those colors with the
symbols according from Table, 2.2; 2) we assume that it is a left-to-right model for simplicity.

Table 2.2. Urn-ball example. T, Q, C, 0 values parameters

Clock Time T 1 2 3 4

Urn (Hidden State) Q q, q, q2 q3

Color C Red Blue Sky Blue Green

Observation Symbol Os 1 2 2 3

Table 2.2 shows that we have T=4 observations of four balls. The number of urns

is N=3 and each urn represents one of the 3 hidden states, because we don't know from

10

the specific urn number each ball comes from. Further, we consider that the sky blue

color belongs to the same class as blue, so we assign the same observation symbol (Os=2)

for both colors, and the total number of symbols is M=3. The possible observation

symbols are V={1, 2, 3}, and the states are Q = {qj, q2, q3}. We also assign values to the

transition probability matrix A= { aij 1, and initial conditions vector l={otj}:

[0.5 0.3 0.21
A={au}= 0 0.8 0.2 , 1"={}={0.9, 0.1, 0}.

Note that the specific upper triangular structure of A indicates the model considered here

is left-to-right, as we cannot go backward. In addition, we assume that the probability of

selecting the first urn is 90%. Finally, we also need the observation symbol probability

distribution at every state, to describe the model completely. This information is

presented in the matrix B, which contains the probabilities of being at the state j and

observing the symbol k, such as:

B={bjk}, 1<_ j._N, l<__k<_M, (2.7)

with the following properties (like A):

bjk 0 0 Vjk,
M (2.8)Y, bik 1 Vj.
k=1

Note that B is a NxM matrix where N represents the number of hidden states and M the

number of symbols. Matrix B isn't restricted to be square. In our example, a possible B

matrix may be defined as:

11

0.3 0.5 0.2
B = bjk = 0.4 0.4 0.2

[0.6 0.3 0.1j

The statistical model is completely described by the set of matrices A, B, and the

vector 7t and usually denoted as:

X ={A,B,n} (2.9)

Note that all rows of matrices A, B and n shown sum-up to 1, thereby providing an easy

check on the validity of the model. Extending our example to a general case, Table 2.3

lists the definition of all HMv parameters, as given by Rabiner [3], for a generic HMM

model:

Table 2.3 IMMs elements

" T: Length of the Observation Sequence (total number of clock times)

" N: Number of States in the Model

" M: Number of observation symbols

" Q={ql, q2,... , qN}: States

* V={v, V2, ... , VM}: Discrete Set of Possible Symbol Observations

" A = {aij}, aij = Pr{qj @ t+1qj @ t}: State Transition Probability
Distribution

* B = {bj(k)}, bj(k) = Pr(Ot=Vklqt=sj): Observation Symbol Probability
Distribution in State j

" n ={Itj, 7c, = Pr(qi @ t = 1): Initial State Distribution

12

D. THE THREE BASIC PROBLEMS FOR HMM'S

Three basic problems of interest must be solved in order to specify the model X =

{A, B, t}, and use it in classification applications [3]:

Problem 1: How to compute the probability of the observation sequence Pr(OIX),

for 0 = {01, 0 2, .. , OT}.

Problem 2: How to compute the most optimal state sequence I = {il, i2, .. T,

for a given observation sequence 0 = {10, 02, ... , OT} and model X.

Problem 3: How to adjust the model parameters X = {A, B, r) to maximize

Pr(OIX).

Problem 1 is an evaluation problem, because we want to evaluate the probability

Pr(OIX), for the specific model. The hidden part of the model is the state sequence I that

we attempt to find in Problem 2. Note that there are many possible state sequences, but

only one is optimal. Finally in Problem 3, we adjust the parameters A, B, and a. of the

model X, so that the probability Pr(OIX) is maximum, i.e., we attempt to optimize the

model X.

E. SOLUTIONS TO THE THREE HMM PROBLEMS

1. Problem 1: Evaluation of Pr(O JX)

Problem 1 deals with evaluating the probability of the observation sequence 0,

given the model X, i.e. Pr(OIX). Using basic probability principles, it is the summation of

the conditional probability Pr(O,IIX) over all possible state sequences I [3]:

Pr(O I2)= Y Pr(O I A,2)Pr(I 12), (2.10)
all I

13

This evaluation first requires the definition of Pr(O,IIX), the joint probability that the

observation O={O1, 02,... ,OT} and the state sequence I={i 1, i2 .. , iT} occur at the

same time, given the model X [6]. Using the Bayes' rule it is computed as:

Pr(O, 1I2)= Pr(O[I,2)Pr(112). (2.11)

Since we assume independence of the observation, we can write:

T

Pr(O II, A) = I Pr(O, I il,A) =b (OI)bi,(02)...bi, (OT), (2.12)
t=1

and

Pr(I I 2) = i'riai,iaii... aiT_, . (2.13)

Therefore, replacing eqs (2.10), and (2.13) into (2.11) leads to:

Pr(O I2)= Y_ ,b , (O1)a, 2 bi, (02 '21 bi (03).. ai TTbi T (OT). (2.14)
alli

As an example of this computation, Let' s apply the above result to the urn-ball example

considered earlier in section C and in Figure 2.3. The components of the model

X(A, B, 7T) are:

0.5 0.3 0.2 0.3 0.5 0.2
A= 0 0.8 0.2 , B= 0.4 0.4 0.21, ,={0.9,0.1,0}.

[0 0 1 [0.6 0.3 0.11

The observation sequence is:

0=(1, 2,2,3],

14

with the number of states N=3, clock times T=4, and the symbol dimension M=3. Recall

that we don't know the state sequence, i.e., we cannot identify which specific urn, the

color balls came from. Using eq (2.14) we can find the hidden state sequence I, by

picking that which leads to the highest probability Pr(O,IIX). For example, possible state

sequence that we can use are I={ 1,1,1,1 } (which means that all balls come from the first

urn), or I={ 1,1,1,21. Note that this model is a left-to-right model, as the state sequence

doesn't go backwards, thus, for instance the state sequence I={ 1,3,2,2} is not valid as we

can't go from the 3rd to the 2nd state. Therefore:

for I =1, 1, 1, 2]: (first 3 balls from 1V' urn,
last one from 2 d urn)

7iibi,(O1)aii2bi2(O2)aii3bi,(O3) ... aiT - ,iTbiT(OT)

= Zcilbii(1)aiuibi2(2)aii3bi(2)... aiT - Iibir(3)

= 7rb 1jailb12aj1b12a12b23

= 0.9 0.3- 0.5- 05.5.0.5- 03.0.2
= 0.0010125

for I =[3, 3, 3, 3]: (all balls from 3rd urn)

7rllbi,(OI)aii2bi2(02)aiiibi3(03) ... a,- - irbit(OT)

= 7rilbiz(1)aii2bi2(2)ai7i3bi3(2)... ai, -,ibn(3)

= 7rlb 31a 33b32a 33b32 a33b33

= 0.9- 0.6.1- 0.3-1.0.3-1.0.1

= 0.00486

As we can see, the number of combinations of all possible sequences is very

large, even though the number of the observations T is relatively small. In this problem

(T=4), the direct computation of Pr(OIX) requires (2T-1)NT multiplications and NT-1

additions, which is too expensive for real applications. For instance, the number of

15

computations is (2*100-1)31°°+31°°-1 when T=100 and N=3. Therefore, the more

efficient forward-backward procedure was introduced to solve this problem [3, 6].

a) Forward Procedure:

We define the forward variable, at(i), as the probability of the partial

observation sequence {01, 02,... ,Ot}, until time t and state qi at time t, given the model

X, such as:

a,(i)=Pr(Op1 O 2 O,,i, = qj2). (2.15)

The forward algorithm defined below is used to evaluate all possible %(i) variables:

Initialization:

(i) = 7rib1(O) 1:< i5 <N (2.16)

Recursion:

N

a,+1(j)= [Xa(i)aij]bj(O,,) fort =1, 2, ... ,T-1, 1< j < N (2.17)
i=1

Termination:
Pr(O A) (2.18)

Eq (2.18) is also know as the Baum-Welch probability. As we can see

from the recursion, the forward procedure gets its name from the fact that at+, is evaluated

using the previous value of the forward variable a4. Computing Pr(O?,) using this

procedure requires only N 2T calculations instead of the 2TNT-1 required by the direct

definition [3]. For example direct computation requires 2TNT=7.4.1016 computations,

while the forward procedure requires N2T=1920 for N=8 and T=30.

16

ti t2 t3 t4

$ 1
Si.

is

Clock Time

O Current position (State, Time). Total number of positions=N*T

:Possible movement

/ Most likely path

Figure 2.4a Trellis Diagram for T=4, and N=3, ergotic model

17

tl t2 t3 t4

$1 A

S2 Q \ " \$3 0o >0-. >'

Clock Time
.l.°..°..............°°°.e............o....o..........-.oo...

Q Current position (State, Time). Total number of positions=NoT

: Possible movement (for the left-right model they are less)

/:Most likely path

Figure2.4b Trellis Diagram for T=4, and N=3, left-to-right
model as used for example in Figure 2.3. Fewer possible paths
than in ergotic model are allowed.

The computational savings obtained in the forward procedure are

illustrated in Figure 2.4a and 2.4b which present all possible combinations of state

18

sequences from clock time tl to t4 in a trellis diagram. Figure 2.4a presents the trellis

diagram for an ergotic model, and T=4, N=3. Each calculation of at(i) with the forward

procedure only requires the computation of the values -1(j), for 1 j:!N. Note that the

procedure discards the routes less likely to occur, so that the probabilities through the

previously discarded routes do not get reevaluated at the next iteration time.

Finally, the probability Pr(OIX) is obtained by the summation in eq (2.18).

b) Backward Procedure:

Similarly, we define the backward variable Ot(i) as the probability of the

partial observation sequence from t+1 to the end, given qi at time t and the model X [3],

where:

fi(i)= Pr(Ot+l, Ot+2, ... OrTir =qi, 2). (2.19)

O3t(i) is computed recursively from t=T down to t=l as follows:

Initialization:

8T(i) = 1, 1: <i N (2.20)

Recursion:

N

I3t(i)= aijbj(O+l)fl,+l(i), t=T-1, T-2, . . ., 1 1 i5 <N. (2.21)
j=1

Note that the backward variable is issued to re-estimate the model X (Problem 3), and that

the number of computations is decreased to N2T.

Therefore, using the definitions of the forward and backward variables,

and according to [6]:

N

Pr(012) = at(i)3t(i), t=1,.". ,T. (2.22)
i=1

19

Urn-Ball Example:

Forward and backward variables are evaluated for the urn-ball example

considered earlier. Recall for this example:

[0.5 0.3 0.2] 0.3 0.5 0.21
A = 0 0.8 0.2 B= 0.4 0.4 0.2, t = {0.9, 0.1, 0},

0 0 1 0.6 0.3 0.11

0 = [1, 2, 2,3].

Thus, using eq (2.16) leads to:

a,(1) = 7rcb(O) = 0.9. b,(1) = 0.9 0.3 = 0.27

a,(2) = Z 2b2(OI) =0.1 b2(1) = 0.1 0.4 = 0.04

al(3) = 3b3(0 1) =O b3(1) = .

Next, using the recursion formula (2.17) leads to the following values for

the forward variable at(i) for t=1, 2,... , T-1 and 1<i hN. For example,

N

a 2(1) = (a X (i)aij)" bl (0 2)

N

N(Xa, (i)a) b, (2)

= (1 (1)- a,, + a1 (2)- a21 + a (3)-a 3I).0.5

= (0.27"0.5 + 0.04-0 + 0)'0.5

= 0.0675

20

a2(2) a, (c(i)aj) -b2 (0 2)

N

a, (c(i)ai2) .b2(2)

= (a, (1) -a1 2 +a1 (2)-a22. +a,(3). a32).0.4

= (0.27 *0.3 + 0.04 -0.8 + 0).0.4

= 0.0452

a 2 (3) = acz(i)aj) -b3 (02)

N

a, (a(i)ai3).-b3(2)

=(a, (1).-a 3 +a1 (2)-a 23 + +a,(3). a33).0.3

=(0.27 -0.2 + 0.04-0.2 + 0) *0.3

= 0.0186.

All values of the forward variable are shown below in the matrix Af':

[0.27 0.04 0
0.067 0.024 0.0134

A.= 0.0687 0.04252 0.01864

0.0016875 .0.00462274 0.00202298j

which is of dimension: 4x3 (TxN). Similarly, we compute the backward variable,

according to eqs (2.20) & (2.21) starting from t=T. Recall from eq (2.20) that:

fl4i) 1, Vi =1,2,3.

Next, using the recursion formula given in eq (2.21) to compute f30() leads to:

21

N

,83 (1) = Y ajbj(O,+1)/P,+3(i)
j=1

N

= Xajb(O4)3 4(1)
j=1

N

= Najbj(3)84(1)

j=1

= [a,, .b, (3) + a,,2. b, (3) + a'13. b3 (3)]- 14(1)

= (0.5.0.2 + 0.3.0.2 + 0.2 • 0.1). 1

=0.18,

All values for the backward variable PIt(i) are shown below in the matrix Bbw as:

0.027582 0.022152 0.0091
0.0726 0.0636 0.03

Bbw 0.18 0.18 0.1

1 1 1j

Note, that the values in the last row are always 1, according to eq (2.20). At this point,

we can evaluate Pr(OIX), using the forward variable, according to eq (2.18), which leads

to:

Pr(O I A) = II a(i) = yI a4(i) = a4 (1) + a4 (2) + a4 (3) + a4 (4)

= 0.0016875 + 0.00462274 + 0.00202298

= 0.00833322000000.

2. Problem 2: Optimal State Estimation

Problem 2 deals with finding the optimal state sequence I for a given observation

sequence 0. One possible solution to this problem is to maximize the expected number

of correct individual states by choosing the states it that are more likely to occur [3]. This

computation uses the variable yt(i), defined as the probability of being in state qi at time t,

given the observation 0 and the model X [3]:

y,(i) = Pr(i, = q 10, A). (2.23)

22

yt(i) can be expressed as:

W'i =- rarOA1) (2.24)

where ct(t), Jt(t) are the forward and backward variables, defined earlier. Replacing eq

(2.23) into eq (2.14) leads to:

y,(j)= a WA Y) (2.25)

i--1

Note that the normalization factor Pr(OX) in the denominator of eq (2.24) is needed to

make t(i) a conditional probability, which leads to the following constrain being

satisfied:

y, W= (2.26)

Finally, the optimal state sequence ii can be obtained by:

i, = arg maxy, (i)], 1t<T. (2.27)

A more efficient approach to compute the optimal state sequence uses a decoding based

on dynamic programming called Viterbi algorithm and shown in Table 2.4. The Viterbi

algorithm is designed to find the best path (sequence) which maximizes the probability

Pr(O, IIX) [3].

23

Table 2.4 Viterbi Algorithm

Initialization:

8,(i)=zjbi(O), l<i<_N

ViWi)=O0

Recursion:

J,(j)=max[8-1 (i)aJjbj(Ot), for2<t<_T, 1<j<N

Vt (j) = arg max[Si_ (i)ai]

Termination:

p* = max[St (i)1

°T = arg max[St (i)]

Path (State Sequence) backtracking:

it = (Ot+l (t*+,) For t = T, 1,T - 2,...,l

Application:

As an application, let's go back to example 3 defined earlier in section 3 to find

the optimal sequence it, given the model X and the observation 0. Recall that, for the

given model:[0.5 0.3 0.21 0.3 0.5 0.21
A={aji}= 0 0.8 0.2 B =b= 0.4 0.4 0.2, [0={O.9,0.1,0}, 0={1,2,2,3}

0 0 1j 0.6 0.3 0.11

Thus, according to Table 2.4, we get:

24

6 1(i) = 7rib(O), 1 i < N

61 (1) = 7rb 1O) = 0.9 .0.3 = 0.27

6, (2) =C2b2(0 1) =0.1.0.4 = 0.04

61 (3)= 7r3b3(OI) =0

(o(i) =0
45 (j)= max[6,t1 (i)aij j(O'), 1< j5 N,so:

2 ()= max[61 (i)ai, Ij (02)

52 (1)= max[61 (i)aj1]b1 (02) = max[b1 (1)a11,61 (2)a21,6, (3)a31]b1

Similarly, after computing all 8 values, we define the matrix A, such as:

0.04 0]

A = IS (A): 0.0675 0.0324 0.0162
0.016875 0.010368 0.00486/

0.0016875 0.00165888 0.000486

Then, we compute the (p variable, defined in Table 2.3 as:

(, (j) = arg max[8,_, (i)ai j.

For example, (02(1) is defined as:

(2 (1) = arg max[51 (i)aI = arg max[61 (1)a11,6 (2)a 21,-, (3)a 31]

= arg max [0.27 -0.5,0.04 -0,0]= 1.

Similarly, we compute all other (pt(j) variable, and define the 4D matrix:

I(P (A =o 1j} 1 1 .
1 2 3

1 2 3

Next, we find the last state at time T=4 defined as:

i = arg max[1-t (/0],

which leads to:

25

i4 = arg max[5 4 (i)] = arg max[63 (1), 83(2), 83(3)]

= arg max[53 (1), 53(2),83(3)]= arg max[.0016875 0.0016588 0.000486]

-'1.

Finally, the other state sequence are defined using the backtracking method of the Viterbi

algorithm given in Table 2.4, which leads to:

"*='P+ (it*+,), for t =3,2, 1.

13 = (040i4)= (04 (1)=: 1

i2 = 93 0(P;=3 (1)=

1 " -'9 2 0 2 . = 9 2 1 = 1

Therefore, the optimal state sequence for this model and observation sequence is given by

it={ 1,1,1,1}, which shows that all balls come from the first urn. Note that repeating the

same experiment with the observation sequence, O={1,2,3,31, results in ijt={1,2,2,2).

Further, note that we always expect a forward moving state sequence, since our model is

a left-right model. In addition, we can also use the variable t(j) to evaluate Pr(OIX), and

thus we introduce the Viterbi probability Pry, such as:

Pr, = ma{YT (i)}. (2.28)

Using eq (2.28) leads to:

Pr, = max{84 (i)}= max{84 (1), 84(2), 84 (3)}

=max{O.0016875 0.00165888 0.000486}

= 0.0016875,

which is consistent (meaning in the same range) to the value 0.00833 found earlier using

the Baum-Welch probability eq (2.18). Note that we can't expect to find the same exact

value (since theoretically is not the same), but we can use both probabilities to reconfirm

the decision.

26

3. Problem 3: Re-estimation of Model Parameters

The last problem deals with adjusting the model parameters (A, B, t), so that

probability Pr(OIX) is maximum. To that end, we define the variable t(ij) as the

probability of a path being in state qi at time t and making a transition to state qi at time

t+l, given the observation sequence and the model, such as [3]:

0, A = a, (i)aijb(O,+)fl,+, (j) (2.29)
Pr(O I A)

Recalling the definition of yt(i) given earlier in eq (2.25) as the the probability of being in

state qi at time t, given the observation 0 and the model X, and using eqs (2.23) and

(2.24), we can relate yt(i) to t(i), by summing 4t(i) over all states j, which leads to:

y (i)= 0(, Ai). (2.30)
j=1

Similarly, summing yt(i) and 4t(i) for all t's, leads to the following result[3]:

Ty, (i) = Expected number of transitions made fromstateqi, (2.31)
t--1

and:

Z-1X (ij) = Expected number oftransitions made from state q, to state qj. (2.32)

Finally, using eqs (2.31), (2.32) and the definitions of the model parameters, we can

reestimate the model, according to the Baum-Welch formulas:

7(2.33)

27

T-I1(u

2.a = t=1
i T- (2.34)

y£ (i)t=

TYt (i)

3. Tj(k)= o,=k (2.35)
TE Y,(i)
t=l

We then continue reestimating our model (applying the new model to the variables y and

), with the re-estimations formulas defined above, until we reach convergence, i.e., so

that:

,w = old.

Application: Urn-ball example.

Next, we apply the re-estimation formulas to our urn-ball model described earlier:

Recall:

0.3 0.2 o.3 0.5 0.2
A ={ai}= 0 0.8 0.2, B = {bik}= 0.4 0.4 0.2, ;r = {7rj}= 10.9, 0.1, 01.

0 0 1 0.6 0.3 0.11

For the observation: 0 = [1, 2, 2, 3], and a single iteration we get:

0.2945 0.00791 [0.4362 0.4649 0.09881
A = {aij}= 0 0.8984 0.1015, B={bjk}= 0.0712 0.5573 0.37141,

0 1 0 1 0 0.4697 0.5302]

lI ={}={0.8936, 0.1063 0}.

28

Note that, 1) the summation all rows of the matrixes A, B and vector Tr remains equal to

1, and 2) A is still an upper triangular matrix, since our model is let-right. Re-estimating

the model for 10 iterations leads to:

10 1 0 1 1 0 01
A= 0 0.3341 0.6658, B = 0.1 0

0 10.3325 0.6674
17 = {1, 0, 0}.

As we can see from the above results, the matrix A still remains an upper

triangular, which means that the model is still a left-right model. Examining the B matrix,

we conclude that, if we are in the first state, we will observe only the 1st symbol (1st row,

[St column =1), etc. Finally, the r matrix, shows that procedure starts from the first state.

F. SCALING

Numerical implementations of the forward-backward, Baum-Welch or Viterbi

algorithm may lead to underflow problems due to the small numbers involved in the

required computations. In addition, the problem may become worse, as the matrix

dimensions involved in the computations increase. As a result, scaling is required to

avoid such mathematical problems [4]. The basic idea behind the scaling procedure is to

multiply the forward and backward variables at(i) and P3t(i) by a coefficient so that the

scaled 6, (i) and /A (i) are kept within the dynamic range of the computer.

Note that we can rewrite the reestimation formula eq (2.34), in terms of the the

forward and backward variables, as [4]:

T-1I a(i)aijbj(O+) +(j)

- T N (2.36)
1 , 2 (i)aibj(0,,,),8,,, (j)
t=l j=l

29

Consider the forward algorithm used to compute of the forward variable %(i), discussed

earlier. %(i) is multiplied by the "scaling" factor ct defined as:

1
c, (2.37)

a, (i)

leading to the scaled forward variable defined as:

a, Wi)= ca,(U). (2.38)

The scaled coefficient 6, (i) can be shown to be equal to [4, pg. 272]:

N161-1 (j a, bj(o,)
a, () - j= (2.39)jj&,_j(j)ajbj(o,)

i=1 j=1

We also define a modified forward variable, as:

N

a,= &,_(j)ajbj (0t,). (2.40)
j=1

By induction &,_ (j) can be written in terms of at, (j) as:

t" -1)

at-l = C , (2.41)

Thus:

Ya-,(J ic r bj(O,)
, W = j=, IN . (2.42)

N N ^ f-I
, (j4f CT (0, , U)

i=1 j=1 } l=1

The scaled backward variable j3t (i) is defined as:

,W (i)= ct, W(i). (2.43)

30

At this point, we can rewrite the reestimation formula given in eq (2.36), using the scaled

forward variable such as:

T-1Y, i%(i)aijbj (0,l)A,,+(J)

ai= T" N (2.44)Y, Y, d, (ajj 01)W
t=l j=1

Similarly the re-estimation formula for bj(k) eq (2.35) becomes:

T-1

bj (k) 0,=k (2.45)T-1

t=l

Finally, it can be proved that the probability Pr(OIX,) and the Viterbi probability Pr, can

be computed using the scaling factor [4],which leads to:

Pr(01)= T (2.46)

Hct
t=1

or,

log[Pr(O 12)] = -1log ct (2.47)
t=1

log(Pry)- 1mTN[(i)]. (2.48)

G. MULTIPLE OBSERVATION SEQUENCES

In real word applications we need to train the 1MM using multiple trials, to

ensure robustness in the recognition/classification process. Each training trial signal

produces an observation sequence. Assume that there are K trials, i.e., K observation

sequences. We denote the set of observation sequences 0 such as:

31

0(= O),O(2), ... (k) (2.49)

where:
O(k) = {ok),O(k),... O(k) (2.50)

fol ~ 2 1 -" Tk 1

is the kt observation sequence. Provided that each observation sequence is independent

of each other and identically distributed, we want to find the model which maximizes the

probability:

Pr(O ,)= H Pr(O(k)12)= II Pk. (2.51)
k=1 k=1

Therefore, the multiple observation reestimation formulas using the scaled variables are:

K 1 T-1(
Y,- Y,&tk(iaijbj tO ~+1) t+1 (j)

k=1/PkIt=1 (2.52)
K I T T-1
I -__ I &,k(i)Akt Wi

k=1 k t=1

K 1 Tk-1

- k (i)ftk (j)
k=1 k 1=1b,: = °k-- v (2.53)

ii K 1 Tk -1

I_ I- 1atk (i)ftk (i)
k=l Ptk t=1

Note that we don't reestimate , so we keep it unchanged through the iterations.

32

III. ISOLATED WORD RECOGNITION

This section presents the application of HMMs to speech recognition.

Specifically, we show how the model parameters have to be selected and adjusted using a

limited 4-word recognition example. Our goal is to show how a more generic classifier

can be set-up through the speech recognition example. In addition, we point out the

potential difficulties one may encounter while setting up and implementing the software

for such an application, due to computer numerical precision limitations.

A. GENERAL HMM TRAINING AND TEST PROCEDURE

This section describes the application of HMMs to classification in the context of

speech recognition. The overall procedure is illustrated in Figure 3.1. First, labeled data is

used to train the model. These specific training signals may be multiple trials of the same

type of signal, i.e., belong to the same class, or belong to different classes. For example,

multiple trials of the same word may belong to the same signal class in speech

recognition applications. In such a case, all words used in the recognition set-up

constitute the dictionary. Next, information uniquely characterizing each class needs to

be extracted from the signal classes. Thus, each signal is split into T segments, and some

useful features extracted from each. Feature vectors may include LCP or cepstral

coefficients, energy, etc... Thus, the initial signals are converted into a set of continued-

valued vectors. Next, this set gets converted into a sequence of discrete vectors using

vector quantization (VQ) [4,5], which will be described further in Section 2. The set of

M discrete symbols forms the codebook. For example, assume we have a speech signal

divided into 4 segments (i.e., T=4), and that the set of symbols representing one signal

segment is a number ranging from 1 to 8. Thus, a possible observation sequence of the

33

k h signal may be given as Ok= {7, 3, 4, 81. At this point, we can check whether the

features extraction method and dimension of the codebook M makes sense by comparing

the observation sequences obtained for the signals of the same class, as it is reasonable to

expect some similarity between the resulting sequences.

Recall that the set of observations derived from each class of training signals is

the only information used to train a class-specific model X{A, B, t}. First, an initial

estimate of the model is required to apply the Baum-Welch algorithm, as described

earlier in Section II. Initial values may be set randomly so that they satisfy the model

constraints and converge to the correct type of model, i.e., the initial matrix A is to be

selected as upper triangular for left-to-right models so that it converges to an upper

triangular matrix. The Baum-Welch algorithm iteratively estimates the model and stops

when there is no significant model parameter changes between two successive iterations.

34

Training .I................. Initial M odel Conditions
Signals - ,_.... (initial model X)

I..
Model ReestimationV

E
F C
E T
A 0 No
T R
U

R Q
E U

A
A N
N T
A I Final Models X(k)
A I I

L Z
Y A
S Tx2 3
I I
S 0

N 0 Pr-bw(O ,k), Prv(OIXk)
~Computation

Selection of Max Pr or Pr v

Testing Testing Signal Recognition
S ign al

Figure 3.1 H{MM General Training and Testing Procedure

35

Unlabeled signals are used during the testing phase to identify which class they belong to.

First, testing data are pre-processed to generate the codebook vectors and corresponding

observation sequences, following the same process as that used during the training phase.

Next, the set of the probabilities observing the tested signal 0, given the kt model,

Pr(OIX(k)) is computed using either the Baum-Welsh or the Viterbi algorithm for all kth

models, as discussed earlier in Section II. Finally, the model type is selected by choosing

that with the highest probability, Pr(OIX°Pt).

Next, we describe a simple 4-word recognizer designed to recognize the words:

Statistics, Microsoft, Instructor, and Professor. Three trial words are used for training and

one word is use for testing for each class.

1. Data Creation and Preparation

All data were recorded on the same machine running Windows-98 Sound

Recorder with a sampling rate of 8000Hz sampling and 8bit mono encoding. One male

speaker was used. However, note that there are some variations between the trials so that

no word is pronounced twice exactly the same way. An energy detector was applied to

remove silence before and after each word, resulting in word of about 9000 points. Next,

each signal was interpolated to 10000 points to obtain trials with the same length. Finally,

each data was sent through a pre-emphasis filter with transfer function H(z)=l-az "1 with

a=0.98, to emphasize the relative energy of the high-frequency spectrum which contain

useful information. The MATLAB software implementation is presented Appendix A.3.

2. Feature Extraction

We varied the length and number of segments (time frame), and the specific type of

feature parameters until we obtained a combination which lead to correct classification.

36

The final set of parameters was derived by each word into T=7 segments using a

rectangular window, with an overlap of 10%, where the time length of each trial was

about Isec. The following eight parameters were extracted for later use in VQ from each

segment: LPC coefficients from a 7
th order filter derived with the covariance method [1],

and the energy of the section. Finally, we normalize the value of the energy dividing all

values by the max energy.

3. Vector Quantization

Vector quantization (VQ) is a scheme, which maps a sequence of continuous-

valued vectors into a sequence with a given number of discrete vectors, called the

codebook [7]. Therefore VQ can be viewed as some type of encoding scheme, where the

encoder y assigns a channel symbol 'y(x) from an ensemble of M symbols to each input

vector x={xo, xl,..., Xk-1} [7]. Note that there is no need to define a decoder, as the

discrete sets of parameters never get translated back into the original vector.

Basically, VQ partitions the set of coefficients into M disjoint sets. Each set is

represented by a single vector { vm}l< mM, which is a centroid of the vectors in the

coefficient set assigned to the m h region [4].

Note that there is a distortion penalty associated with VQ, as all feature vectors

are represented using a set of M codebook vectors. The larger the dimension of the

codebook, the smaller is the overall distortion between original feature vectors x and

codebook vectors Xr. The distortion measure d(x,xr) resulting from the codebook selection

process can be represented using the Euclidean norm as [7]:

d(x,xr)=lX-xr_1 2 . (3.1)

37

For our purpose two schemes were applied to derive the codebook vectors: 1) a

competitive Neural Networks implementation, and 2) a K-means (or LGB algorithm)

algorithm [7, 8].

a) Competitive Neural Network Implementation

Input Competitive Layer

p n H n

SxR

R S

Figure 3.2 Competitive Neural Network

A competitive unsupervised neural network (NN) implementation was

selected to compute the codebook, as shown in Figure 3.2 [2]. Basically, this NN can be

viewed as a clustering scheme, where weights associated to each neuron are used to

assign a symbol M to each word segment. The software implementation is presented in

Appendix A. 1.

38

Vector1, Class=2 Vector2, Class=4 Vector3, Class=4
1.5 1 1 5

0.5 * 0.5

* 5* -0.5- -0.5

0 -1- -1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Vector4, Class=3 Vector5, Class=3 Vector6, Class.31 1[1,

0.5 0.5 0.5-

01 **

-0.5 - -0.5L 0 ,. i

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Vector7, Class=3 Euclidean Distance oiginaVquantized vectors

1 1 .5 Word: Stalislics
W4, T=7

0. 1 OdgnazCefVc-'to
00.5 1

0 a-
0 2 4 6 8 0 2 4 6 8

Figure 3.3 Diagram of coefficient vectors and VQ vectors, Euclidean distance for the
word "statistics", using a competitive neural network

Figure 3.3 shows seven original feature vectors, and the corresponding

quantized vectors obtained with the competitive NN. Training took about 2000 epochs

and 50mn with a Pentium-II 450M7Hz. Each initial feature vector is mapped into one of

the M=4 quantized vectors. For example, vectors 2 and 3 get mapped to the same fourth

class due to their consistency. Similarly, vectors 5, 6, and 7 get mapped to the 3rd class of

the quantized vectors.

b) K-means Scheme

The second method considered is the K-means algorithm, also called the

Lloyd or Linde-Buzo-Gray (LBG) algorithm [9]. The software implementation is given

39

in Appendices A.13 and A.14 [8]. Basically, the K-means algorithm is a clustering

scheme, which iteratively finds a set of k, quantized vectors into which all training

vectors get mapped to with minimum distortion. The number of clusters increases

iteratively by splitting the existing quantized vectors obtained at each iteration, until a

desired number of quantized vectors or distortion levels is obtained [9]. Thus, the size of

the codebook is a power of two, i.e., 2, 4, 8, 16, etc... The LGB algorithm is illustrated

for the word "Microsoft" in Figures 3.3 and 3.4 for codebook sizes equal to 4 and 32

respectively.

40

Vector1, Class=3 Vector2, Class=1 VectorS, Class=2
1.5- 0.5- 0.4-

1~ ~ 0.2
1'40

0. J -.5
0 -1 -0.4-

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Vector4, Class=4 Vector5, Class=4 Vector6, Class=4

0.5 0.C- 1-

0.5

* -0I 1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Vector7, Class=4 Euclidean Distance original/quantized Vectors

0.5~ 0.4-
M=32

0.3 Word: 'Microsoft'
0 [__._ 0.2I

' Oroginal Coefficients

0 Quantized Vectors..

0.1

0 2 4 6 8 0 2 4 6 8

Figure 3.4 Diagram of coefficient vectors and VQ vectors, Euclidean Distance for word
"Microsoft," using the K-means (LGB) algorithm and M=32.

Note the distortions are much smaller when M=32 than when M=4. This

is to be expected as a larger codebook size allows more flexibility. However, a large

codebook may not be always desirable as it may lead problems in evaluating and

comparing the resulting probabilities Pr(OIX), as we will see later. The K-means

implementation is a little faster than the NN technique, however it is restricted to

codebook sizes which are powers of two. No such restriction is needed for the NN

implementation.

Note that an initial selection of the number of segments T and the size of

the codebook M may be made by observing a small selection of the resulting quantized

41

vectors. The basic idea is to select a combination of parameters, which lead to some type

of consistency in the resulting quantized vectors in a given class.

4. HMM Training

This section describes the application of the HMM training theory presented in

Section II to the speech recognition example. The HMM implementation uses MATLAB

5.3, and is presented in Appendix A. MATLAB may not be the most desirable software

language as it is relatively slow, however it was selected for ease of implementation to

test the concepts.

a) HMM Initial Conditions

Usually, a left-to-right model is preferred over the more general ergodic

one in speech applications because model states can be associated with time in a

straightforward manner [4]. Thus, we selected a left-to-right model, where the matrix A

is upper triangular. In addition, we also prefer the model to start from an early state so

that it can pass from all possible states. As a result, we didn't use random values for the

vector r, but instead we initialized the first coordinate to be quite large, the second one

smaller, and so on, and applied the constrain that the summation of all values in irt is

equal to one. We use random values satisfying the appropriate constraint for the matrix

B.

b) Number of States N

HMM states are called "hidden" because all information about the state

sequence is not accessible directly, since the only information available is given by the

observations. According to Rabiner [4], there are two schools of thought for the physical

meaning of the number of states; the first one states that it represents the number of

42

sounds (i.e., phonemes) for each word, which is usually a number between 2 and 10. The

second interpretation is that it represents the average number of observations in a spoken

version of the word. Basically, we can assume that the number of states represents the

number of distinct sounds (e.g., phonemes or syllables) of the word. In our case a

number of states N equal to 4 was deemed appropriate, since our vocabulary contains

only 4 words.

Further investigations may be required when applying HMMs to other

types of signals if we cannot relate the number of states to some physical meaning behind

the data. At worse, the number of states can be selected by trial and error at that leading

to the highest recognition results. Note that selecting too small a number of states may

prevent from differentiating between classes. Simulations showed that selecting too large

a number of states may result in overly long training time and numerical instability in the

implementation which cannot be controlled with scaling.

c) HMM Re-estimation

The HMM re-estimation iterative scheme implemented uses the multiple

observation sequence technique described earlier in Section 2. The MATLAB software

implementation is given in Appendix A.7 to A.9. First, we re-estimate the model

parameters for every different trial, and then we apply these results in the re-estimation

formula in eqs (2.52) and (2.53).

The 1MM re-estimation step uses the scaled forward and backward

variables to avoid numerical instabilities, and its implementation is given in Appendix

A.6. In addition, we ran all MATLAB files using a scaled fixed point format with 15

digits (format long). Since, some computations still resulted in "divided by zero" errors

43

after applying these corrective measures. We forced the denominator quantities to be

equal to the smallest floating point number whenever there were found to be smaller.

We used multiple iterations for each single observation HMM re-

estimation step until convergence was reached. We noticed that the model doesn't

necessarily converge to the same parameters for the same observation, when repeating

the re-estimation procedure with random initial conditions. However, correct decision is

still achieved.

d) Scoring

The system is ready to test any word and categorize it as one the four class

types after the four models X0k, k= { 1,2,3,4) derived separately for each word (Microsoft,

Statistics, Instructor and Professor) are identified. We repeat the same feature extraction

scheme for the testing words, using either the neural network or the codebook derived in

the K-means algorithm during the training process. Let's assume that the observation of

the testing word is 0. During testing, we evaluated the probability Prbw(OlXk)) for

k=l,... 4, using either the Baum-Welch or the Viterbi algorithm, and selected the model

which gives the highest probability Pr(Ol,0) (Appendix A. 10, A. 11).

44

Classification of testing words using all models with parameters:

model: M=4, N=8, T=7
"0I I II I

-R 1------ L 2-------L----
-- --- - - ---

-2000 -1500 -1000 -500 0 -3000 -2500 -2000 -1500 -1000 -500 0

-2'14H r r 4 r r.....

/ 3 4 I I - - I I I

II I I I I

-2000-800 - 500 -400 -200 0 -258 -00 - 50 -00 -0 0

• ,,')'(3) = 31- t 3 -. - (

1 - -

-1200 -1000 -800 -600 -400 -200 0 -250 -200 -150 -100 -50 0

F 4 - S n o l 4 ti r (1 Mcsf 2: Sit 3I(4) = 3 - -.- -- ----

_1 -- -72 - ,- IIINE

-1200 -Q00 -800 -600O -400 -200 0 -250 -200 -150 -100 -50 0
PBW

[dB]
Pviterbi[dB]

Tested words: 1: Microsoft, 2: Statistics, 3: Instructor, 4: Professor
Class models: X(l): Microsoft, X(2): Statistics, X(3): Instructor, X(4):Professor
PBw[dB]: 101ogI0Prbw(OIX,)
Pvitrbi[dB]: 101og,.01Pr-(O1X)

l:Correct Decision (100% success)

Figure 3.5 Scoring of all 4 testing words (1: M icrosoft, 2: Statistics, 3: Instructor, 4:

Professor) given each model X(k). Parameters: M=4, N=2, T=7. This system
performed 100% successful decisions.

Figure 3.5 presents the results obtained when the number of segments T is

equal to 4, the number of symbols M is equal to 4 (computed with the LGB algorithm),

and the number of states N is equal to 8. The four horizontal bars contained in each word

represent the probabilities 10log 10(P(OI (k))), k=l 4. Thus, the highest probability is

that closer to the 0dB point, which represents the point of probability 1. The left column

plots represent the results obtained with the Baum-Welsh algorithm while the right colum

plots represent those obtained with the Viterbi algorithm. Recall that the four models

45

(1), (2), X(3), and X(4) were trained with three trials for every class. The software

implementation for this testing step is given in Appendix A. 11. Results show that correct

classification is obtained in all 32 cases, as shown in Figure 3.5.

Classification of all testing words using all models with
model: parameters: M=4, N=2 (inappropriate), T=7

X(1) 4"a, 3----- L i "0 3 -----

-200 -150 -100 -50 0 -200 -150 -100 -50 0

"2 I t J a "2

4 -- - -- 0 4 - -_-_-_-_ _ __-__X (2)~~. . r0 : 3 - - - - I

CD 2 -- , --(

-100 -80 -60 -40 -20 0 -100 -80 -60 -40 -20 0

3 -- -r - -r - -r - - -7 - - - - -r 4 - - - - - - - - - -X 3--- - .-.-.--...-.... .-- "

2 - - -L - !- - -I 2 2 -- - -L- -- - -

-1200 -1000 -800 -600 -400 . -200 0 -200 -150 -100 -50

.° 2-

0I B EI III~~~
-1200 -1000 -800 -600 -400 -200 0 -200 -150 -100 -50 0

PBW[dB
] PviteUdB]

Tested words: 1: Microsoft, 2: Statistics, 3: Instructor, 4: Professor
Class models: X(1): Microsoft, X(2): Statistics, X(3): Instructor, X(4):Professor

PBw[dB]: l0OlgOPrbw(O1X)
Pvieobi[dB]: 101ogloPrv(O)

K : Correct Decision

S: Wrong Decision

Figure 3.6 Scoring obtained for all four testing words (1: Microsoft, 2: Statistics, 3:
Instructor, 4: Professor) given each model X(k). Model Parameters selected: M=4,
N=2, T=7. This 1MM has too few states (N=2) and cannot classify the word
'instructor' correctly.

46

Figure 3.6 presents the results obtained when selecting too small a number

of states (N=2). All other parameters are kept the same as those in Figure 3.6. Note that

the algorithm reaches the wrong decision for the word "instructor" which was found to be

"professor."

B. CONCLUSIONS

This section presented an HMM-based classifier applied to a simple 4-word

recognition problem. We implemented and tested the classifier using MATLAB, and

described how we selected the various parameters which need to be selected to set-up the

classifier. Next Chapter considers the application of the HMM-based classifier to

seismo-acoustic signals to differentiate between two types of mine-like objects buried in

shallow sand.

47

48

IV. HMM-BASED CLASSIFICATION OF SEISMO-ACOUSTIC MINE

SIGNALS

HMMs can be applied to various types of classification problems. This Section

presents the results obtained for the classification of mine-like objects buried in sand. The

mine data was obtained from Prof. Muir who heads a buried mine detection project

started in November 1996 at the Naval Postgraduate School. Initial results obtained are

described in Gagham [10], Fitzpatrick [11], and Hall [12].

The NPS mine project is a continuation of work started at the Applied Research

Laboratory of the University of Texas at Austin, and is sponsored by the Office of Naval

Research. The main goal of the project is to study the development of a seismo-acoustic

sonar for the detection of buried ordnance using guided, seismic interface waves. Earlier

ARL and NPS results showed that seismic interface (Rayleigh) waves can be used to

detect mine-like objects buried in sand [10-12]. The goal of the current NPS program is

to develop an improved seismic source to evaluate the feasibility of using a seismo-

acoustic sonar to detect buried ordnance in the beach and surf zones. The seismic waves

were generated by two actuators, and were measured by two three-axis sensors-

geophones. Buried, mine-like objects, ranging from 71kg to 290kg, and at ranges of up

to 5 meters were echo-located by applying a basic polarization filtering signal processing

scheme.

This section applies the HMIM concepts derived earlier to distinguish between two

types of mine-like objects. Two types of experiments were conducted: 1) classification of

two different mine-like objects at the same range with multiple weights for each mine

49

type; and 2) classification of two different mine-like objects at 3 different ranges with the

same weight for each mine type.

A. BASIC EXPERIMENT INFORMATION

This section does not present any theoretical, physical or experimental details for

this project, as they may be found in in [10-12]. However, we do provide some basic

information regarding the physical nature of the signals under study.

The beach site used for collecting the data is a stretch of U.S. Navy-owned beach

directly seaward of NPS, Monterey, CA, and shown in Appendix B.2. This area

measured roughly 150 feet in length running parallel to the waterline and varied from 20

to 50 feet from the high-to-low water mark. Generally, the sand conditions varied due to

the different waterline distance, resulting in changes on some of the sand characteristics,

such as density and moisture in multiple depth layers.

The equipment configuration for the mine detection is illustrated in Appendix

B.6. Basically, two actuators produce the Rayleigh waves described in [11]. Rayleigh

waves have distinctive features that make them identifiable in a complex seismo-acoustic

wavefield. The most important property of Rayleigh waves is the elliptical particle

motion produced by their passage. Their unique characteristic is the 900 phase shift

between their horizontal and vertical components, which results in elliptical motion, as

illustrated in Appendix B.7. Thus, the placement and operation of the actuators, as

illustrated in Figure 4.1, can be categorized into two different configurations: 1) actuators

operated horizontally; and 2) actuators operated vertically, with a 90' relative phase

difference between their drive signals [11].

50

Figure 4.1 Actuator placement for Rayleigh waves generation [11].

The generated seismo-acoustic wave travels through the geophones and meets the

target, as illustrated in Appendices B.6 and B.8. Next, the reflected wave passes through

the geophones again, and the received signal is used to detect the target presence. The

signal is collected, as described in [12], and the signals for the relative x, y, and z-motion

are shown in Appendix B.5.

Note that the target reflection is not visible from the raw signals. Thus, vector

polarization (VP) [12] was used to extract the Rayleigh waves from the raw information.

The VP step takes advantage of the 900 phase shift between vertical and radial

components to pull the target information out. This is accomplished by applying the

Hilbert Transform to the radial-vertical signal pair [11], the complex crossed-power is

computed such as [12]:

P, rhilben X Vhilben (4.1)

the imaginary component of Pr, is essentially proportional to the intensity of the seismic

wave due to the 900 phase shift between vertical and radial components [12]. The

polarity of the imaginary power is associated with the rotation of the elliptical motion of

the wave (e.g., a negative value corresponds to an anticlock-wise motion). Real and

51

imaginary components of the cross-power P, are illustrated in Appendix B.9. Appendix

B.8 shows the incident wave passing the geophone at 10ft. The reflected target signal

strength is quite small, and we need to expand the scale to see it, as explained further

later.

Two mine-like objects were used: 1) a cylinder weighing 1501b (68kg), 5ft long,

8in (20cm) in diameter, with a /4-in (0.6cm) wall thickness; and 2) a U.S. Navy power

can or "power keg" with the shape of a cylindrical sheet metal can l8in (46cm) high and

24in (61cm) in diameter, weighing 161b (7kg). These objects are shown in Appendix

B.3. Additional weights were used to vary the objects total weight. These additional

weights made the maximum weight of the cylinder and the keg equal to 6181b (280kg),

and 6401b (290kg) respectively. The cylinder was always buried on its side with the

cylindrical axis horizontal and in the direction of the wave propagation. The powder keg

was always buried upright, with the cylindrical axis vertical to the direction of the wave

propagation. Further details are given in Appendix B.4.

B. SIGNAL SELECTION

Recall that the target signal is visible after processing the raw information using

VP. Thus, we use the signals obtained from the imaginary portion of the cross power for

our application only. We also focus on the experiments conducted on the 6 t and 10th of

November 1998, were the cylinder and the keg targets were used, as shown in Appendix

B.6. Two parameters were varied during these two days in addition to the sea conditions:

target weights and distances from the geophones. Ten trials were conducted for each

experiment. The distances between the different pieces of the equipment (actuators,

geophones, target) were set as shown in Appendix B.6. As a result, the actuator-

52

geophone distance was set at 10ft, the actuator-target distance: 16ft, and the actuator-

target-geophone (reflected) was 22ft for both targets (cylinder and keg). Appendix B.8

shows the average imaginary cross power obtained for all trials associated with a specific

target and weight, scaled near the distance of 22ft. Appendix B.9 shows that the reflected

target signal becomes stronger as the target mass increases. Appendices B. 10 and B. 11

plot the imaginary cross-power signals obtained from the cylinder and the keg targets

respectively. We used the signal from the 2nd geophone for the cylinder case, as it is the

strongest of the two, and the signal from the 1 st geophone for the powder keg, as the 2nd

geophone doesn't show any received signal. However, the signal measured at the 2 nd

geophone for the keg experiment is used as an example of background noise (no target)

signal. This background noise is used as part of the testing data, as described later.

C. SIGNAL PREPARATION

Plots contained in Appendix B.10 and B.11 show there is some consistency

between the signals obtained from multiple weights of the same target. Thus, we elected

to consider all signals associated with a given target to the same class, independent of the

weight. Five trials were used for training, and the 6 h trial was used for testing. The

following weights were used for the keg target: 1) 2241b; 2) 4321b; and 3) 5361b.

Similarly, the following weights were used for the cylinder target: 1) 3641b; 2) 4681b 3)

5721b. Next, we assumed that we detected the presence of a non-background signal

using some type of threshold detector, and truncated the signals used for the HMM set-up

around the position of the target location. Signals used for the HMMs training and

classification are shown in Figure 4.2. Note that it would be useless to include the

incident signal received at a geophone from the actuators, as it doesn't contain any

53

information about the target, and is much stronger than the signal reflected from the

target. Each signal is 400 data points long. Two classes (keg and cylinder) are

generated. At this point, the goal is to recognize the shape of the target, and each class

needs to be characterized by a set of features, as explained next.

Powder Keg 2241b Cylinder 3641b
0.02 0.01

0.01 0.005

-0.01 -0.005 -,

-0.02 -0.01
0 100 200 300 400 0 100 200 300 400

Powder Keg 4321b Cylirder 468b
0.04 00

0.02 0.01

-.02 - 001
0 100 200 300 400 0 100 200 300 400

Powder Keg 5361b Cylinder5721:

-0.01

0 100 200 300 400 0 100 200 300 400
Data Points Data Points

Figure 4.2 Imaginary component cross-power for the keg and cylinder targets for 3
different weights, truncated near the target location. Each plot illustrates 6 different trials
(for the same target, and weight)

D. FEATURES EXTRACTION/VECTOR QUANTIZATION

Note in Figure 4.2 that the signals contain little spectral information. The

frequency of the Rayleigh waves obtained during the November 6th and 10th experiments

was 80Hz. As a result, the signals contain very little useful spectral information. We

tried to apply LPC feature extraction, and other similar spectral coefficients, but we

found little or no consistency between the trials of a given class. Therefore, we simply

used the time-domain information directly. We segmented the signals into two segments

54

(T=2), and decimated each frame by a factor of 20:1, resulting in 10 data points over each

segment, as shown in Appendix C.4. Finally, we normalized those points to compensate

for the differences in signal strength coming from different weights, by dividing every

value with the maximum one.

We applied the LGB algorithm at the VQ stage and selected M=8 symbols. The

code implementation is given in Appendix C.3.

E. HMM TRAINING FOR THE MULTIPLE WEIGHTS EXPERIMENT

HMMs need data to be trained. However, in practice the availability of data may

be seriously limited for various reasons and cross-validation needs to be used [13].

This study has only a limited number of trials available: six trials for every type of

mine-like object. Thus, we used cross-validation by successively selecting five trials for

training and the last one for testing. The procedure was repeated six times rotating the

testing signal each time. The code implementation is given in Appendices C.5 and C.6.

We found that the best performance is achieved with the number of HMM states N equal

to four.

We created two ergodic 1MM models: one for the keg class and one for the

cylinder. Thus, we used a total number of 5(trials)x3(types of weight)=15 signals for the

HNM training for every class (i.e., model). We selected an ergodic model as it

performed better than the left-to-right model for the data.

F. MULTIPLE WEIGHTS SCORING AND RESULTS

The MATLAB file sequence.m given in Appendix C.6 performs all IIMM

training and scoring. Note that the testing signal is rotated each time, and the results

55

plotted, as shown in Figure 4.3a (cylinder training case) and in Figure 4.3b (keg training

case).

PrfOjamda(cyfrner)] - 1 :keg2 41 b' 2:keg43 1b.3:keg5361 4:cybrde 3 64Ib, S:Cqiridr 4eWb,6:cynder72,, 7:bacIkgroiiid, W=8, N-4. T=2

- - - -' - 4

50 -40 -30 -20 -10 0 ~ S -4
0 -30 -20 1 0

.---------- --

f~o -4 -30 -0 -10 -40 -30 -20 -10 0

- ------------------------------ ----- --

0 -40 -30 -20 -10 0 -0 40 -30 -20 -10 0

0 - 3 20 10 0 150 -40 -30 -20 -1 -i0

-50 -40 -30 -20 -10 0 -50 -40 -30 -20 -10 0
PBW,[dB] Pv.[dB]

PBw[dB]: 1OlogloPrbw(OjX)

Pvjt~tjdB]: 1OlogloPrJ(OfX)

Correct Decision
Wrong Decision

Figure 4.3a HIVM testing results for the cylinder model (multiple weights).
Prbw(OXcyinder) and Prv(OXcyinder) for all testing signals and all rotations (every row). The
model Xcylinder is created by training all cylinder signals (5x3=15). The decision is correct
whenever the tested signals (4,5,6) have a higher Probability (ie., closer to 0 on a dB
scale) than 1, 2, 3, or 7 (keg signals and background). Each row represents one of the six
iterations of the rotation between testing and training signals.

56

Prf0pamda(keg)] - 1:keg2 41b, 2:keg32b, U eg36 b, 4:qytnder3641b, S:qyinder 4Wj, 6:cylinderS721b. 7:backgruund, M=8, N_-4, T-2

~0 -0 -30 -20 -10 0 f-0 "-40 -30 -20 -10 0

.~~550j -4 -3 - -_____________

________50-40 -30 -2010 04 0 -10 0

50 -40 -30 -20 -10 0 50 -40 -30 -20 -10 0

0 -40 -30 -20 -10 0 550 -.40 -30 -20 -10 0

550 -40 -30 20 -10 0 550 -40 -30 -20 -10 0

P,,[dB] Pvjter[dB]

PBW[dBI: 10O0,gloPrbW(OjX)

Correct Decision
<2 Wrongr Decision

Figure 4.3b HMM testing results for the keg model (multiple weights).
Prbw(OXkeg) and Prv(OXkeg.) for all testing signals and all rotations (every row). The
model Xkeg is created by training all keg signals (5x3=15). The decision is correct
whenever the tested signals (1, 2, 3) have a higher probability (i.e., closer to 0 on a
dB scale) than 4, 5, 6, or 7 (cylinder signals and background). Each row represents
one of the six iterations of the rotation between testing and training signals.

We used as background (non target) signals, the six trials obtained from the 2nd

geophone during the keg experiment which didn't track any target signal. Figures 4.3a

and 4.3b show that an decision error for one case only. The signal considered in that set-

up is the 4tb tested signal, i.e., the cylinder with weight of 3681bs. Figure 4.2 shows that it

is the weakest signal of all the mine signals. The total number of testing data is

57

2(mines)x3(weights)x6(rotations)=36, thus the overall classification performance of the

system is (36-1)/36 =97.2%.

G. MULTIPLE DISTANCES EXPERIMENT

Up to this point we showed that we can recognize the shape of the mine-like

objects for a fixed distance. Next, we apply the 1MM-based classifier to recognize these

objects located at three different distances from the actuator, as we need to be able to

detect and recognize a mine independent of the distance from the sonar equipment for a

more realistic set-up. Experiments conducted on the 6th and the 10"' of November 1998

provide the following data by moving the location of the geophones between the actuator

and the target which stays fixed at 16ft, as illustrated in Appendix B.6. Thus, the

following three set-ups are available:

* Distance between actuator and geophone equal to 6ft, resulting in the total
distance (actuator-geophone-target-geophone) equal to 26ft,

* Distance between actuator and geophone equal to 8ft, resulting in the total
distance (actuator-geophone-target-geophone) equal to 24ft.

* Distance between actuator and geophone equal to 10ft, resulting in the total
distance (actuator-geophone-target-geophone) equal to 22ft.

Note that the reflected signals obtained for the cylinder for total distances equal to 22ft

and 24ft were very weak (in fact, same range as that of the background noise). Thus, we

used this data for the powder keg case only.

We created two classes again. The first class contains the keg data with weight

2241bs obtained for the 6ft, 8ft, and 10ft experimental set-ups, and 6 trials at each

distance. The second class is composed of the cylinder data with weight 3641bs for the

experimental set-up of 10ft. Six trials are also available for the experimental set-up. All

signals were segmented again around the target location, as done before, resulting in

58

signals with length equal to 400 points, as shown in Figure 4.4. Again, Figure 4.4 shows

that there is also a viewable consistency for the mine-like keg object. No conclusion can

be drawn for the cylinder, as the signal was too weak to be usable.

We used the same feature extraction as that considered earlier for the multiple

weight experiment (2 segments, decimation, VQ, number of symbols M=8), and the

implementation is presented in Appendix C.9. The model selected is ergodic with four

states (N=4). Cross-validation was used again due to the limited amount of data

available. Scoring results obtained for the keg class model and the cylinder class model

are presented in Figures 4.5a and 4.5b respectively. The MATLAB files implementations

for the 1MM training/testing using multiple distances case are presented in Appendices

C.10, C.11, and C.12.

0.01 Powder Kea 6ff (total:26)t

-0.01

-0.02 5
0 50 100 150 200 250 300 350 4000.01 Powdei-r K~nc ftt)P~

-O.o l

0
0. 0 50 100 15 0200 2 0 300 350 400

-0.01 ...

0 50 100 150 200 250 300 350 4000.01

•-0.01 "

0 50 10O0 150 200 250 300 350 400
Data Points

Figure 4.4 Imaginary component of the cross-power for 3 different distances for the keg
target and one distance for the cylinder. Each plot illustrates 6 different trials (for the
same target, and distance).

59

Pr(Opamdakeg) - 1 :keg 6ft, 2:keg, 3:keglx, 4:cyinderlot, 5:background, M=8, N=4, T=2
55__ _ _ _ _ _ _ _

4 4

-2-2--v---- ------

- 0 -40 -30 -20 -10 0 0 -40 -30 -20 -10 0

4 1 1 3- " -'I <- - - - - -r I

3 - **-*l 2 - - - - - --

-5 -- 30--20 -10 0 - 50 -40 -30 -20 -10 0

3 -- - --- 3 - . . .- ,-
... ,- - -2 2 . .- - ... - ... - mF 1--------------------------

1-

- 0 -40 -30 -20 -10 0 0 -40 -30 -20 -10 0

4 = i

.--- - - , -

- 0 -40 -30 -20 -10 0 -0 -40 -30 -20 -10 0

3 1 - _ - -- -- --- NNE

-o -40 -30 -20 -10 0 0 -40 -30 -20 -10 0

' , -2 - - - -
1

-50 -40 -30 -20 -10 0 -50 -40 -30 -20 -10 0
PBW[dB] Pjt.U[dB]

PBw[dB]: 10log10OPrb(OIX)

PViterbi[dB]: 101ogl0Pr-,(OlX)

--- : Correct Decision

Figure 4.5a Prbw(O Xkeg) and Pr(OlXkg) for all testing signals and all rotations
(every row). The model Xkeg is created by training all keg signals (5x3=15). The decision
is correct whenever the tested signals (1, 2, 3) have a higher probability (i.e., closer to 0
on a dB scale) than 4, or 5 (cylinder signals and background). Each row represents one of
the six iterations of the rotation between testing and training signals.

60

5 Pr(Opamdacylinder) - 1 :keg6ft, 2:keg8 ft, 3:kegloft, 4:cylinderlot, 5:background, M=8, N=4, T=2

4S -4 -3 -2 -1 0 -S 4 -30 - 20 -1 0
3 __3_2-- 2

1 1I
-50 -40 -30 -20 -10 0 -50 -40 -30 -20 -10 0

- - I

3 .31

-0 -4 0 -2 -1 0 0 -40o 3 .20o 10

"0 -40 -30 -20 -10 0 0 -40 -30 -20 -10 0

4 - - - - -

3.3.2__ 2,
S""'1

-0 -40 -30 -20 -10 0 .50 -40 -30 -20 -10 0

- - - I----7 -- - 4<
2!1 2

- 0 -40 -30 -20 -10 0 50 40 -30 -20 -10 0

-50 -40 -30 -20 -10 0 -50 -40 -30 -20 -10 0
PBW[dB]

PViterbU[dB]

PBw[dB]: lOlogoPrbw(OIJX)

Pvi,rbi[dB]: 101ogloPrv(ODX)

<-: Correct Decision

Figure 4.5b Prbw(OJXcynnder) and Prv(OJXcyider) for all testing signals and all
rotations (every row). The model Xcylinder is created by training all cylinder signals
(5x1=5). The decision is correct whenever the tested signals (4) have a higher probability
(i.e., closer to 0 on a dB scale) than 1, 2, 3, or 5 (keg signals and background). Each row
represents one of the six iterations of the rotation between testing and training signals.

Figures 4.5a and 4.5b show that the system performs 100% correct detection,

which seems to indicates that the HINiMs took advantage of the consistency of the signals

at different distances. However, additional data is needed to make further conclusions.

H. CONCLUSIONS

This section described a 1MM-based mine-like object classification system using

the seismo-acoustic waves provided by the NPS project [10-12]. Initial results indicate

that the HIM-based classifier can recognize the type of mine-like object, independent of

61

the object weight with a 97% accuracy. Results also indicate that it can recognize the

object type at different distances with a 100% accuracy. However, the experiments were

conducted with very few data, and further work needs to be done to confirm these initial

findings by using a larger data set.

62

V. MINE-LIKE OBJECT RECOGNITION USING NEURAL NETWORKS

This chapter considers the application of a back-propagation neural network

classifier to the same data as that considered earlier with the HMM-based classifier. The

goal of this chapter is to compare the resulting performances obtained with the two

different implementations.

A. NEURAL NETWORK DESCRIPTION

NN input feature vectors are those obtained after the VQ step described earlier in

Chapter II. Thus, we have two signal classes again: the keg and the cylinder class. We

select a back-propagation feed-forward NN (BPNN) with one hidden layer and two

outputs (one for each class of mine-like objects). Note we do not specific a target output

for the background signal as: 1) there is no consistency between the different background

signals available, and 2) we do not use this classification technique to confirm a target

existence.

The network specific structure is described in Figure 5.1. BPNNs use the steepest

descent algorithm, or variants of it, to find the weights which minimize the squared error

between target and network outputs [2,14]. BPNN may use one or more hidden layers of

sigmoid neurons, and one output layer of linear neurons[14].

63

Input Hidden Layer Output Layer

2xl n] n h .2, n2

p l ab

Sx hS~x Iso.

2
S.xl a2

Sh: # neurons in the hidden layer (in our case Sh=60)
So: # neurons in the output layer (in our case, So=l)
al=logsig(W,lp'+b1)
a2=purelin(W 2,1 a1+b2)

Figure 5.1 Hidden and output layer of neurons of a backpropagation feedforward
neural network.

B. MULTIPLE WEIGHTS SET-UP

We used the observations from the 3 different weights for each mine-like object

(keg and cylinder), 5 trial each, as input vectors p to train the neural network. We used

the numbers "1" and "2" as targets for the neural network, such as "1" for the keg class,

and "2" for the cylinder class (see Appendix D.1 for the MATLAB code). Finally, we

tested the 6th trial of each signal by computing its output value to the trained NN. The

test signal is recognized as a "keg" signal when the output is close to 1, and it is

recognized at a "cylinder" signal when it is close to 2. Note that the NN output is not

binary, so we set a range around output values 1 and 2, around which the data is said to

belong to one class or the other. The specific range is set at 3% above or below the target

64

output values 1 and 2. The data is considered as not belonging to either class (other)

when the NN output value is outside that range.

We also tested the background signal defined for the 1MM-based classifier. We

rotated training and testing observations six times, as done with the HMvM-based

classifier. Results for the multiple-weights case are given in Table 5.1. Note that the

system recognizes all testing signals, except the first background signal, which is detected

as a cylinder-class signal because the associated NN was equal to 1.999 (within the ±3%

range of the target output value 2 associated to the cylinder-class). Thus, the overall

recognition performance is 97%, as the total number of testing signals is 42 (7signals x 6

rotations).

65

Table 5.1 Multiple weights NN outputs/decisions

Testing Signal

Rotation Keg2241b Keg4321b Keg5361b CY13641b CY14681b CY15721b Backgr

1 0.9999 0.9999 0.9999 1.9999 1.9999 1.9999 1.9999

- X (Cyl)

2 0.9831 0.9958 0.9958 1.9962 1.9780 1.9780 1.1827

3 1.0043 0.9993 0.9993 1.9962 1.9962 1.9962 1.3478

4 1.0001 0.9999 0.9999 1.9962 1.9996 1.9996 0.7544

5 0.9999 1.0000 1.0000 1.9999 1.9999 1.9996 2.4937

6 1.0117 0.9993 0.9993 1.9977 2.0053 2.0053 0.2342

N: Correct Decision
X: Wrong Decision

66

C. MULTIPLE DISTANCES SET-UP

Similarly, the NN is used for the multiple distance set-up, as considered earlier in

Section IV. Results are presented in Table 5.2, and the code is given in Appendix D.2.

Table 5.2 Multiple distances NN outputs/decisions

Testing Signal

Rotation Keg6f, Kegsft Keg51 oft Cyl 1 oft Backgr

1 0.9966 1.3831 1.001 1.9705 1.0014

4 X(back) 4 4 X (Cyl)

2 0.9942 0.9924 1.012 2.012 2.3552

3 1.023 1.042 0.9923 1.999 1.3245

4 1.034 1.045 0.9943 0.9938 1.5423

5 1.003 1.000 0.9945 1.9936 1.5945

6 1.010 0.9995 0.9991 1.9994 0.2342

4: Correct Decision
X: Wrong Decision

67

Table 5.2 shows that all decisions are correct, except in two cases:

1) the first trial of the keg data at 8ft gets detected as background,

2) the first trial of the background signal gets detected as cylinder-class data.

Thus, the overall classifier performance is 93% for this set-up.

D. CONCLUSIONS/COMPARISON WITH THE HMM-BASED CLASSIFIER

These results show that the two classifiers performed in a similar manner. The

overall performance was 97% for the multiple weights set-up, while the HMM-based

classifier performance was 100%, and the NN 93% for the multiple distance set-up. Note

that no background signal was used during the NN training, and that we assigned as

background data which NN output didn't fall into the prescribed range.

Finally, we measure the speed of the execution of the MATLAB file for the

evaluation of all the results for the multiple distances case. Thus, in a Pentium III

450MiHz, 128MB Ram, the execution time for the HMMs was 5s, and for the NN was

15s, thus the HMMv was 3 times faster that the NN (training and testing).

68

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This study presented an introduction to HMMs and their applications to

classification problems. HMMs require the selection of consistent characteristics between

the classes to perform well. In addition, many other parameters have to be carefully

selected to set-up the HMM to have it perform successfully. We implemented the 11MM

using MATLAB and tested it on a simple four isolated word recognition problem.

The HMM-based classifier implemented in this study performed very well on the

limited (two classes) mine-like object recognition experiment. Results also show that its

performance is similar to that obtained with a BPNN. However, the classifier needs to be

run using larger data sets to confirm the present findings.

B. RECOMMENDATIONS

The reflected signals from the targets were quite weak, especially when the target

distance was large, and the mine weight low. Furthermore, the received reflected signals

from the two geophones sometimes had different strengths, (see Appendix B.10), or

weren't received by both geophones, (see Appendix B. 11). Thus, additional data is

required to further the classification/recognition process, and data collection is in

progress, as of September 1999 [15]. Finally, a more complicated HMM-based set-up

would probably be needed, if we want to train the classifier with different types of mines,

possibly using a higher number of segments (T), and/or symbols (M), and/or states (N).

69

70

APPENDIX A. HIDDEN MARKOV MODEL MATLAB PROGRAMS

This appendix contains the various MATLAB programs used for the HMM-based

classification of isolated words.

71

APPENDIX Al. FEATURES EXTRACTION/VECTOR QUANTIZATION USING
NEURAL NETWORKS

% Filename: training.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Features Analysis (LPC & Energy) of 4 words (Statistics,
Microsoft, Instructor,

% and Professor), 3 trials each + 1 test word, vector
quantization using a competitive layer neural network

% for HMM classification use.

clear
% M: dimension of codebook, N: number of states
M=4;N\=8;
rand ('seed', 1);
% the mat files contain the word signals
%load stat.mat;load micro.mat;load instrprof.mat;
load words.mat;
% signals interpolation
% coeff is the fuction that gives back the LCP + energy coefficients.
% T is the number of segments
fcstal,TJ=coeff(stal); [csta2,T]=coeff(sta2); [csta3,TJ=coeff(sta3); [csta
4,T]=coeff(sta4);
[cmicrol,T]=coeff(microl); [cmicro2,T)=coeff(micro2);
(cmicro3,T]=coeff(micro3); [cmicro4,T]=coeff(micro4);
[cinstrl,T)=coeff(instrl); [cinstr2,T]=coeff(instr2);
[cinstr3,T)=coeff(instr3); [cinstrtest,T)=coeff(instrtest);
[cprofl,T]=coeff(profl); [cprof2,T)=coeff(prof2);
[cprof3,TJ=coeff~prof3); [cproftest,TJ=coeff(proftest);

n=1:100;
% we convert the results by a constant, because the NN works better
convert=2000;
cstal=cstal*convert;csta2=csta2*convert;csta3=csta3*convert;csta4=csta4
* convert;
cmicrol=cmicrol*convert; cmicro2=cmicro2*convert; cmicro3=cmicro3 *convert
cmicro4=cmicro4*convert;
cinstrl=cinstrl*convert;cinstr2=cinstr2*convert;cinstr3=cinstr3*convert
cinstrtest=cinstrtest*convert;

cprofl=cprofl*convert; cprof2=cprof2*convert; cprof3=cprof3*convert; cprof
test=cproftest*convert;

% vector quantization with NN
p1= [cstal; csta2 ;csta3;
cmicrol;cmicro2;cmicro3;cinstrl;cinstr2;cinstr3]';
prl=mirmax(pl);.

net=newc(prl,M,l);
net. trainParam. epochs=l000;
net. trainParam. show=l00;
net=train(net,pl);
w=net. IW{l};

72

ys=sim(net,cstal');
% classsta is the observations vector 0 for the first trial of the word
'Statistics'.
classsta=vec2ind~ys);
ys2=sim(net,csta2');
classsta2=vec2ind (ys2);
ys3=sim (net, csta3');
classsta3=vec2ind(ys3);
ys4=sim(net, csta4');
classstatest=vec2ind (ys4);
ym--sim(net,cmicrol');
classmicro=vec2ind (yin);
ym2=sim(net, cmicro2 1;
classmicro2=vec2ind (ym2);
ym3=sim (net, ciicro3');
classmicro3=vec2ind (ym3);
ym4=sim(net, cmicro4');
classmicrotest=vec2ind (ym4');

yi=sim(net,cinstrl');
classinstr=vec2ind(yi);
yi2=sim(net,cinstr2');
classinstr2=vec2ind (yi2);
yi3=sim(net, cinstr3');
classinstr3=vec2ind (yi3);
yi4=sim(net,cinstrtest');
classinstrtest=vec2ind(yi4);
yp=sim(net,cprof 1');
classprof=vec2ind(yp);
yp2=sim(net, cprof2');
classprof2=vec2ind (yp2);
yp3=sim(net, cprof3');
classprof3=vec2ind (yp3);
yp4=siin(net,cproftest');
classproftest=vec2ind Cyp4);

% we divide by the constant multiplied before
cstal=cstal/convert;csta2=csta2/convert;csta3=csta3/convert;csta4=csta4
/convert;w=w/convert;
cmicrol=cmicrol/convert; cmicro2=cinicro2/convert; cmicro3=cmicro3/convert
cmicro4=cmicro4/convert;

cinstrl=cinstrl/convert; cinstr2=cinstr2 /convert; cinstr3=cinstr3 /convert
cinstrtest=cinstrtest/convert;

cprofl=cprofl/convert; cprof2=cprof2/convert; cprof3=cprof3/convert; cprof
test~cproftest/convert;

% Test of vector quantization
figure(l)

ctorl,Class=' nuin2str(classsta~l)) I M=' nuin2str(M) J)

ctor2,Class=' nuin2str(classsta(2))])

ctbo,Clas=')nuot(classta(3)),1118wcast():)tte[v

ctor4,Class=' nuan2str(classsta(4))])

73

ctor5,Class=' nuin2str(classsta(5)f)

ctor6.tClass=' nuon(strcassta(6,), J) ~ lsst(),),ite[v

ctor7..Class=' num2str(classsta(7))])

ctor8,Class=' num2str(classsta(8))])
figure (2)

['vectorl,Class=' nuin2str(classmicro(l)) I M=I nurn2str(M)])

['vector2,Class=' num2str(classinicro(2))])
subplot(4,2,3);plot(1:8,cmicrol(3,:),'*',1:8,w(classmicro(3),:)),title(
['vector3,Class=' nurn2str(classmicro(3))])

suvectr4,Class=' nuxn8,cstrlssico))])18wclsmco4):)tte

['vector5,Class=' num2str(classrnicro(5)f)

E'vecotr6,Class='ot n :8nstrlsico()) 18wcasir():)tte

['vector7,Class=' num2str(classmicro(7))J)

['vector8,Class=' num2str~classmicro(8))])

%qa(1:T, :)=w(classmicro(1:T), :);
%qa(l:T, :)=w(classsta(1:T), :);
for n=1:T

distances(n)= dist(cstal(n, :),w(classsta(n), :) ');
distancein(n)= dist(cmicrol~n, :),w(classmicro(n),:) ');

end
figure (3)
stem(distances) ,title('Euclidean Distance original/quantized vectors')
figure (4)
stem(distancem) ,title('Euclidean Distance original/quantized vectors')

74

APPENDIX A2. FEATURES EXTRACTION/VECTOR QUANTIZATION USING
K-MEANS

% Filename: trainingl.m
% Written by: M., Zambartas
% Date Last Modified 10 August 1999
% Purpose: Features Analysis (LPC & Energy) of 4 words (Statistics,
Microsoft, Instructor,

% and Professor), 3 trials each + 1 test word, vector
quantization using k-means

% for HYMh classification use.

clear
M=4;N=8;
n-it=20;
rand('seed',l);

%load stat.mat;load micro.mat;load instrprof.mat;
load words.rnat;
% signals interpolation
% T is the number of segments
% sstal,ssta2 ... coefficients of each trial
[cstal,TJ=coeff(stal); [csta2,T)=coeff(sta2); [csta3,TJ=coeff(sta3); [csta
4,T]=coeff~sta4);
[cmicrol,T]=coeff(microl); [cmicro2,T)=coeff(micro2);
[cmicro3,T]=coeff(micro3); [cmicro4,T]=coeff(micro4);
[cinstrl,TJ=coeff(instrl); Ecinstr2,TJ=coeff(instr2);
[cinstr3,T]=coeff(instr3); [cinstrtest,TJ=coeff(instrtest);
[cprofl,T]=coeff(profl); [cprof2,TJ=coeff~prof2);
[cprof3,T) =coeff Cprof3); Lcproftest,TI =coeff(proftest);

% vector quantization
p1= [cstal; csta2 ;csta3;
cmicrol;cmicro2;cmicro3 ;cinstrl;cinstr2;cinstr3);
% CodeBook creation:
[CODE, label, dist) = svq(pl, M, njit);
% Vector quantization
(w classsta, dist] = vq(cstal, CODE, njit);
[w2, classsta2, dist) vq(csta2, CODE, n-it);
[w3 classsta3, distl vq(csta3, CODE, njit);
[wt, classstatest, distl = vq(csta4, CODE, njit);
[w classmicro, distl vq(cmicrol, CODE, njit);
Ew classmicro2, distl vq(crnicro2, CODE, n-it);
[w classmicro3, distl vq(cmicro3, CODE, njit);
[w classmicrotest, distl = vq(cinicro4, CODE, njit);
Lw classinstr, distl vq(cinstrl, CODE, njit);
[w classinstr2, distl vq(cinstr2, CODE, n~it);
Lw classinstr3, distl vq(cinstr3, CODE, n~it);
[w classinstrtest, distl = vq(cinstrtest, CODE, njit);
[w classprof, distl vq(cprofl, CODE, njit);
Lw classprof2, distl vq(cprof2, CODE, n-it);
[w classprof3, distl vq(cprof3, CODE, njit);
[w classproftest, distl vq(cproftest, CODE, nit);

75

% Test of vector quantization
figure(l)

Inuin2str(classsta(l)) I M=' nuxn2str(MMl

tupl t(classsplt(1:,sa())]),:8w2)til('eto2Ca

Inuxn2str~classsta(2))])

uplt(classsplt())])(3:,*,:8w3)til('eto3Ca

Inum2str(classsta(3)))

uplot(classsplt())])(4:,*,:8w4)til('eto4Ca

Inuxn2str(classsta(4))])

Inuin2str(classsta(8))])

['vectrl,Class=' num:8stlssmicro(1) ' M= nuxnite(M)]) o6,la

IE'vectrclass=' umst(casrncr(2))

supo(,,)Po(:,sa(,)'118w7)tte['vector,Class='nm trc ssir())

I['vectrclasss'nuasr(7 asmcr(4))

['po(,,)po(18ctl8:,*,18w8)tte[vector,Class=' u~t~lsiir()l

IE'vectrclass=' umst(casrncr(6l)

[.vector7,Class=' nuxn2str(classrnicro(7))]) M'nm~t().

['vector8,Class=' num2str(classnicro(8)))

%qaclTor, :wClass u stclsmicro(1:T) ,
%qa(1:t(, 4)w lsst(1:T,mco(,:);,:,~lsmcr():)tte
for to4Cls= nl:Trcasmco()]

displtancesn)=dit(:,cstl 5,:n, :) ,ww (, :) ');:))til

displtancemn)= dit(8cmicrol(, :) , *'clasmic ssin), :) ');tle

(Iend rls= u~trcasir ()]
fiurelo() ,)po (:,mcol7 :,*,:,~ lssir ():)tt
stecito7as tle 'Eustcldan istncr oiinl/untze ecor'

stmdistancem)= tit('clidn,Dilstaceornal/uatiedvetos'

disanemn) dstcmcrl~n:)w~lasmcr~n,76)

APPENDIX A3. FEATURES EXTRACTION (LPC + ENERGY) FUNCTION

% Filename: coeff.m
% Written by: M. Zainbartas
% Date Last modified 10 August 1999
% Purpose: fuction that computes the LPC coefficients and the energy of
each segment
% T: total number of segments
% c: Coefficients vector

function [c,T)=coeff(word);
% signals interpolation
%word=word-mean (word);
1=length (word);
% interpolation of word, so every word has 10000 data points
int=interpl(l:1,word,1:1/l0000:10000);
% Pre-emphasis filtering:
pre=filter([l,-.98),l,int);

start=l;
step=1200;
1=10000-step;
% Overlaping of segments:
overlap=round((10/100) *step);
%# of Observations T:
T=l1/ step;
T=floor(T);
for n=1:T

c(n,l:8)=ar-covar(pre(start:start+step-l+overlap) ,7);
start=start+step;
x=xcorr (pre (start: start+step-1+overlap));
lx=length(x);
center=find(x==max(x));
c (n,1) =x (center);

end

77

APPENDIX A4. FORWARD VARIABLE ALGORITHM IMPLEMENTATION

% Filename: forward.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Implements the forward algorithm (Rabiner 1986 pg9)

function afw=forward(a,b,pi,O,N,T)
% 0: the observation sequence
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

% initial values:
afw=zeros(T,N);
afw(l,l:N)=pi(l:N).*b(l:N,0(1))';
% recursion:
% we are using eps (for zero results) to avoid divided by zero problems
if norm(afw(l,:))<eps

afw(l,:)=eps;
end

% FW algorithm:
for t=l:T-i

for j=l:N

S=0;
for i=l:N
% summation S:
S=S+afw(t,i)*a(ij);

end
%logafw=loglO(S)+loglO(b(j,O(t+l)));

afw(t+l,j)=S*b(j,O(t+l));
if norm(afw(t+l,j))<eps
afw(t+l,j)=eps;

end

%afw(t+l,j)=10^logafw;
end

end

78

APPENDIX A5. BACKWARD VARIABLE ALGORITHM IMPLEMENTATION

% Filename: backward.m
% Written by: M. Zambartas
% Date Last Modified 20 August 1999
% Purpose: Implements backward algorithm (Rabiner 1986 pg9)

function bbw=backward(a,b,pi,O,N,T)

% 0: the observation sequence
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

% BW Algorithm:
% Initial Values:

bbw=zeros(T,N);
bbw(T,1:N)=l;
% recursion:
% we are using eps (for zero results) to avoid divided by zero problems
if norm(bbw(T,:))<eps

bbw(T,:)=eps;
end

for t=T-l:-l:l
for i=l:N

S=0;
for j=l:N

S=S+a(i,j)*b(j,O(t+l))*bbw(t+l,j);
end
bbw(t,i)=S;
if S<eps

bbw(t,i)=eps;
end

end
end

79

APPENDIX A6. FW/BW VARIABLES SCALING

% Filename: scale.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Implements scaling of FW and BW variables, according to
Rabiner(1989 pg 272)
% We perform scaling to avoid exceeding the precision range of the
computer
% 0: the observation sequence
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of

codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

function [afwl,bbwl,c]=scale(a,b,pi,O);

N=length(a);
s=size(O);
T=s(2);
afw=forward(a,b,pi,0,N,T);
bbw=backward(a,b,pi,O,N,T);
afw2=zeros(T,N);
afw2(l,:)=afw(l,:);

c(1)=i/sum(afw(l,:));
afwl(l,l:N)=c(l)*afw(l,l:N);

for t=2:T
for i=l:N

S=0;
for j=l:N
% summation S:
S=S+afwl (t-!, j) *a(j, i) ;

end
afw2(ti)=S*b(i,O(t));

end
su=sum(afw2(t,:));
if su==0

su=eps;
end
c(t)=l/su;
afwl (t, :) =c (t) *afw2 (t, :);
end

bbwl=zeros(T,N);
bbwl(T,:)=c(T);

for t=T-l:-l:l
for i=l:N
5=0;

80

for j1l:N
S=S+a(i,j) *b(j,O(t+1))*bbwl(t+1,j);

end
bbwl(t,i)=S*c(t);
end

end

81

APPENDIX A7. MULTIPLE OBSERVATION SEQUENCE

% Filename: newmodel.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Builds the 0_multi matrix, which contains all trials
obsrvations and
% calls trainmulti.m function
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)

% models re-estimation

% initial conditions:

O_multi=[classmicro;classmicro2;classmicro3;
%0_multi=[classsta;classsta2;classsta3];
%0_multi=[classinstr;classinstr2;classinstr3];
%0_multi=[classprof;classprof2;classprof3];

(a,b,pi] = trainmulti(O-multi,N,T,M);

82

APPENDIX A8. BAUM-WELCH ALGORITHM (MODEL REESTIMATION)

% Filename: trainmodel.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: this function implements the Baum-Welch reetimation
algorithm as discribed
% in Rabiner (1986) pg 11
% Ot the observation sequence
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)
% afwl: Scaled forward variable (N x T)
% bbwl: Scaled backward variable (N x T)

function [a,b,pi,P] = trainmodel(O,N,T,M)
% if the model is ergotic keep a=rand(N). If left-right then
a=triu(a), because it has
% to be upper triangular, in order to converge to an upper triangular
matrix

% Initial estimation of model lamda=(a,b,pi):
%a=rand(N);
b=rand(N,M);
a=triu(a);
% we need the summation or all rows of a and b to be 1 , so:
b = b./((sum(b.')).'*ones(l,M));
a = a./((sum(a.')).'*ones(l,N));

for j=l:N;
pi(j)=l/(50*j);

end

% we need the summation of pi to be 1:
pi=pi./sum(pi);
for times=l:20

afw=forward(a,b,pi,0,N,T);
bbw=backward(a,b,pi,0,N,T);
% Scaling: (Rabiner 89 pg272)
% afw scaling:
a_old=a;
b_old=b;
pi-old=pi;

afw2=zeros(T,N);
afw2 (1, :) =afw(l, :);

c (1) =i/sum(afw(1, :));
afwl(1,1:N)=c(i)*afw(i,1:N);

83

for t=2:T
for i=1:N

S=0;
for j=1:N
% summation S:

end
afw2(t,i)=S*b(iO(t));

end
su=suin(afw2 (t, :));
% to avoid 'divided by zero' errors:
if su==O

su=eps;
end
c (t) =l/su;
afwl (t :)=c (t) *afw2 Ct.:);

end
% bbw scaling:
bbwl=zeros(T,N);
bbwlCT,:)=c (T);

for t=T-l:-l:l
for i1l:N
S=0;
for j=l:N

S=S+a(i,j) *b(j ,O~t+l))*bbwl(t+l,j);
end
bbwl(t,i)=S*c(t);
end

end

% a reestimation
for i=l:N

S2=[];
for t1l:T-l

S1=1J;
for j=l:N

S1=[Sl; afwl(t,i)*a(i,j)*bbwl(t+l,j)*b(j,O(t+l)) ;
end

S2=[S2 sum(Sl)J;
end
dena(i)=sum(sun(S2));

end

for i=l:N
for j1l:N

Sl=O;S2=0;
for t=l:T-l

end
nuxna(i,j)=sun(Sl);
if dena(i)==O

dena Ci) =eps;
end
a(i,j)=nuna(i,j) /dena~i);

84

end
end
if norm(a-aold)<.Ol

a=a-old;
end

% b reestimation
for j1l:N

for kl:M
S10O;S2=O;
for t=1:T

S1=Sl+afwl~t,j)*bbwl(t,j)*(O(t)==k);;
S2=S2+afwl(t,j)*bbwl(t,j);
if S2==O

S2=eps;
end
b(j ,k)=S1/S2;

end
end

end
if norm(b-b-old)<.O1

bbold;
end

% P-bw(Ojlamda) probability
logP=-sum(loglO (c));.
P=lOAlogP;
pi (:) =(afwl (1,:).*bbw~l,:)Ic (1)) /p;
%logpi= (loglO (afwl (1,i))+loglO (bbw(1, i))-logl (c (1))) -logp;
%pi (i) =lOAlogpi;
if norin(pi-piold)<.Ol

pi=pi-old;
end
%fprintf('%g %g %g \n' ,norm(a-aold)',norm(b-b old) ,norn(pi-pi old))
if norm((a-a~old)==O)&(nori(b-bOld)==O)&(norm(pi-pi-old)==o)

break
end
end

85

APPENDIX A9. BAUM-WELCH ALGORITHM (MODEL REESTIMATION)
WITH MULTIPLE OBSERVATIONS

% Filename: trainmulti.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: this function (re)estimates the model (a,b,lamda) for
multiple Observation
% sequence according to Rabiner (89) pg 273
% Each row of O_multi is each Observation 0, where:
% 0: the observation sequence
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

function [a,b,piJ = trainmulti(Omulti,N,T,M)
% s=size(O-multi);
trials=s(l);
afwl_multi=[];bbwl_multi=[];
% Computing P(O,lamda) & scaled fw and bw probabilities for each Obs
(trial)
for k=1:trials

[a,b,pi,P] = trainmodel(Omulti(k,:),N,T,M);
P_multi(k)=P;
[afwl,bbwl,c]=scale(a,b,pi,O multi(k,:));
afwl_multi=[afwl_multi afwl];
bbwl_multi=[bbwlmulti bbwl);

end
% Model's re-estimation using an alternative formula:
%P_multi(1)=l;
%aold=a;
% for i=l:N
% for j=l:N
% Slk=[];S2k=[];
% for k=l:trials
% SI=[];S2=[];
% for t=l:T-i
% Sl=[Sl afwl_multi(t,i+(k-
l)*N)*a-old(i,j)*b(j,O_multi(k,t+l))*bbwl_mnulti(t+l,j+(k-l)*N)];
% S2=[S2 afwl-multi(t,i+(k-l)*N)*bbwl-jmulti(t,i+(k-l)*N)];

% end
% Sl=sum(Sl) /Pjmulti (k);
% S2=sum(S2)/Pmulti(k);
% Slk=[Slk Sl];
% S2k=[S2k S2];
% end
% Slk=sum(Slk);S2k=sum(S2k);
% a(i,j)=Slk/S2k;
% end

86

%end

% a denominator evaluation:

for i=l:N'

for k1l:trials
S2=[];

for t1l:T-l
S1=[J;
for j1l:N

1) *N) *b(j ,O multi (k, t+l)));
end

S2=[S2 sum(Sl));
end
Sk= [Sk S2/P multi (k));

end
dena (i) =sum(Sk);
end

% a final Re-estimation
for i1l:N

for j=l:N

for k=l:trials

for t=l:T-l

l)*N)*b(j,Omulti(k,t+l))];

end
Sk= (Sk suni(Sl) /P-multi (k)];

end
a(i,j)=sun(Sk) /dena(i);
end*

end
% b reestimation:
for j=1:N

for 1=1:M
Slk=[] ;S2k=[]i;
for k1l:trials
S1=[] ;S2=fl;
for t1I:T

Sl=ESl afwl-multi(t~j+Ck-l)*N)*bbwl-multi(t,j+(k-
1) *N) *(Omulti Ck.t) ==l)1;

end
S1=suin(Sl) /P-multi(k) ;S2=sum(S2) /Pmjulti(k);
Slk=[Slk Slh;S2k=[S2k S21;
end

Slk=suxn(Slk) ;S2k=sumCS2k);
b(j, 1)=Slk/S2k;
end

end

87

APPENDIX A10. VITERBI ALGORITHM

% Filename: viterbi.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: function that implements the Viterbi algorithm as discribed
in
% Rabiner (1986) pg 11
% 0: the observation sequence of testing word
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

function [fi,mi,s-seq]=viterbi(a,b,pi,O,N,T)
% Viterbi algorithm:
% initial value fil(i)=pi(i)*bi(Ol)
fi=zeros(T,N);
fi(l,l:N)=pi(l:N).*b(l:N,O(1) ';

% backtracking pointer mi:
mi=zeros(l,N);
for t=2:T

for j=l:N
M= 1];

for i=l:N
M=[M fi(t-l,i)*a(i,j];

end
ArgMax=find(M==max(M));
fi(t,j)=max(M).*b(j,0(t));
mi(t,j)=ArgMax(1);

end
end
% Path (state sequence) backtracking:
s-seq=zeros(l,T);
% final state @ T time:
u=find(fi(T,:)==max(fi(T,:)));
s-seq(T)=u(l);
for t=T-l:-l:l

s-seq(t)=mi(t+l,sseq(t+l));
end

88

APPENDIX All. SCORING (CLASSIFICATION)

% Filename: score.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Evaluates P-bw(OIlamda) and Pviterbi(Ollamda)
% 0: the observation sequence of tested word
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

function [P bw,P-v]=score(a,b,pi,O)
% Scoring of an Observation
N=length(a);
s=size(b);
T=length(O);
% Viterbi probability:
[fi,mi,s-seq]=viterbi(a,b,pi,O,N,T);
P_v=max(fi(T,:));

% Baum-Welch probability:
afw=forward(a,b,pi,O,N,T);
bbw=backward(a,b,pi,O,N,T);
[afwl,bbwl,c]=scale(a,b,pi,O);
% Rabiner 89 pg 273 P(o,lamda)=l/prod(c)
sc=-sum(loglO(c));
P_bw=i/prod(c);
if P_bw==NaN

P_bw=0;
end

89

APPENDIX A12. CLASSIFICATION RESULTS PLOTS

% Filename: scoretest.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Plots classification results for all words, evaluates
P-bw(Ollamda) and Pviterbi(Ollamda)
% for every model
% 0: the observation sequence of tested word
% T: total number of segments
% a: the state transition probabilities (N x N)
% b: observation probability distribution (N x M)
% pi: initial state distribution (N x 1)
% N: total number of states
% M: total number of possible observation symbols (dimension of
codebook)
% afw: the forward variable (N x T)
% bbw the backward variable (N x T)

O=classstatest;
'test: statistics'
[P-bwl,P-vl]=score(a,b,pi,0)
if (P-bwl==0)

P_bwl=eps;
end
if (P-vl==0)

P_vl=eps;
end

O=classmicrotest;
'test: microsoft'
[Pbw2,P-v2]=score(ab,pi,0)
if (Pbw2==0)

P_bw2=eps;
end
if (P-v2==0)

P_v2=eps;
end

O=classinstrtest;
'test: instructor'

[P-bw3,P-v31=score(a,b,pi,O)
if (P-bw3==0)

.P_bw3=eps;
end
if (P-v3==0)

P_v3=eps;
end

O=classproftest;
'test: professor'
[P-bw4, Pv4]=score (a,b,pi,0)
if (P-bw4==0)

P_bw4=eps;
end

90

if (P-v4==O)
P-v4=eps;

end

subplot(2,l,1), barh(1O*loglO([Pbjwl P -bw2 P-_bw3 P_bw4J));
title([E'Baum-Welch Probability - l:Statistics, 2 :Microsoft,
3:Instructor 4:Professor, M=' nuxn2str(M) ', N=' nuin2str(N)J),
xlabel('PBWdB]'), ylabel('tested word')
grid
subplot(2,l,2), barh(10*loglO([P__ v P_v2 P-v3 P...v4))M
title(['Viterbi Probability - :Statistics, 2:Microsoft, 3:Instructor
4:Professor, M=' num2str(M) ',N=' nuxn2str(N)J),
xlabel('P..y -i-t-e r-b-i~dB)'), ylabel('tested word')
grid

91

APPENDIX A13. VECTOR QUANTIZATION ALGORITHM

function [CODE, label, dist] = svq(X, 1ev, n-it);

%svq Vector quantization using successive binary splitting steps.
% Use: [CODE,label,dist) = svq(X,lev,njit).
% The final codebook dimension 1ev should be a power of two. dist
% returns the distorsion values at the end of intermediate step.
% n_it is the number of iterations performed in each step.

% Version 1.3
% Olivier Cappi, 28/09/94 - 04/03/97
% ENST Dpt. Signal / CNRS URA 820, Paris

% Needed functions
if (exist('vq') -2)

error('Function vq is missing.');
end;
% Turn verbose mode off
QUIET =1;
% Input agruxnents
error(nargchk(3, 3, nargin));
% Dimension of imput data
[n,p) = sizeCx);
% Number of spliting steps
nbs = round(log2(lev));
1ev = 2Anbs;
% Fixed perturbation
perturb = 0.01;

% Initialize first centroid with global mean
CODE =zeros(lev, p);
CODE_- zeros(lev, p);
CODE (1,:) = mean W)
label = ones(n,l);

for i=l:nbs
% 1. Codebook splitting
for j~l:(2A(i-1))
CODE_ (2*j-l,:) = (1-Iperturb) * CODE(j,:);
CQDE-(2*j,:) = (1-perturb) * CODE(j,:);

end;
% 2. K-means optimization
[CODE(1:2Ai,:),label,vdist] = vq(X,CODE_(1:2Ai,:),njit,QUIET);
dist(i) = vdist(njit);
fprintf(l, 'Codebook size %d:\t%.3f\n',2'^i,dist(i));

end;

92

APPENDIX A14. VECTOR QUANTIZATION USING LGB ALGORITHM

function [CODE-n, label, dist] = vq(X, CODE, n-it, QUIET);

%vq Vector quantization using the K-means (or LBG) algorithm.
%Use: [CODE-n,label,dist] = vq(X,CODE,njit)

% Performs n -it iterations of the K-means algorithm on X, using
% CODE as initial codebook.

% Version 1.3
% Olivier Cappt, 28/09/94 - 16/07/97
% ENST Dpt. Signal / CNRS URA 820, Paris

error(nargchk(3, 4, nargin));
if (nargin < 4)
QUIET = 0;

end;

% Dimensions of X
[n,pJ = size(X);
% Codebook size
m = length(CODE(:,l));
% Initialialize label array
label =zeros(l,n);
% As well as distortion values
dist = zeros(l,njit);

% main loop
CODE-n = CODE;
for iter= l:n-it
% 1. Find nearest neighbor for the squared distortion
DIST = zeros(m,n);
if (p > 1)

for i = 1:m
DIST(i,:) =sum(((X - ones(n,1)*CODE~n(i,:))I).^2);

end;
else

% Beware of sum when p = 1C)
DIST = (ones~m,l)*Xl CODE-n*ones(1,n)) A 2;

end;
[vm,label] = min(DIST);
% Mean distortion
dist(iter) = mean~vm);
% 2. Update the codebook
n-out = 0;
for i = 1:m

ind = (1:n);
ind = ind((label i)=
if (length(ind) ==0)
% Isolated centroid are not modified
n_out = n-out + 1;

elseif (length(ind) == 1)
% When there is only one nearest neighbor for a given codebook

entry
CODE-n(i,:) = X(ind,:);

else

93

CODE-n~i,:) =mean(X(ind,:));
end;

end;
% Affichage
if (-QUIET)
% fprintf(1, 'Iteration %d:\t%.3f\n',iter,dist(iter));
end;
if (n-out > 0)
% fprintf(1,' Warning %.Of isolated centroids\n',nout);
end;

end;

94

APPENDIX B. SEISMO-ACOUSTIC SONAR PROJECT INFORMATION

This appendix contains some basic information regarding the NPS seismo-

acoustic sonar project. Further details may be found in [10, 11, 12].

95

APPENDIX B1. SEISMIC WAVE ACTUATOR

Actuator with waterproof case and coupling device [12]

96

APPENDIX B2. BEACH TEST SITE

Beach test site with data collection equipment [12]

97

APPENDIX B3. MINE-LIKE OBJECTS

Powder keg target with lid open to show access [12]

Gas cylinder target [12]

98

APPENDIX B4. BURIED MINE-LIKE OBJECTS

Buried powder keg target with top removed [12]

Buried cylinder with end cap removed [12]

99

APPENDIX B5. 8-CHANNEL DATA PLOT [12]

Channell Channel2

-------------------------------------- 105-------------

< 0L :< G :10 Fites i
0 10 ChannT63 30 0 1 Car6 30

E 0.--- --- . -- --r - -- -4- -

< <

0 1 0 ChanrT64 30 0 j()ChanrT1b7 30

E 0. . - -I-- -E 0. - - - - - -r-- --- --

0 10 Chann~b5 30 0 10 Chanrrt8 30

0 10 20 30 0 10 20 30
Rang e[ft] Rangeift]

8-Channel data plot of the received signals. Channels 1 and 2 come from the
accelerator meters. Channels 3, 4, 5 represent the x, y, z motion of the 1" geophone,

and channels 6, 7, 8 the x, y, z motion of the 2nd geophone.

100

APPENDIX B6. TEST SETUP FOR HELIUM GAS TANK AND GUNPOWDER
KEG TARGET TESTS (INCREASING MASS) [12]

This appendix contains the experimental setup for target detection with increasing

mass tests conducted on November 6, 1998 and November 10, 1998.

Source #1 Source #2
Orientation: Vertical Orientation: Vertical
Voltage: 10V (20Vpk-pk) Voltage: 10V (20Vpk-pk)
Frequency: 80Hz Frequency: 80Hz
Cycles: 1 Cycles: 1
Geophone #1 Geophone #2
Filter: High Pass 40Hz Filter: High Pass 40Hz
Gain: 40db Gain: 40db

Comments: Overcast, med-high tide, 4-5ft waves.

Helium Tank (Nov 6 h)

Gunpowder Keg (Nov 10 th)

S1 G1

FO*
18

F 0*
S2 G2

10'

,4 16'

101

APPENDIX B7. Rayleigh wave [11]

(a) +awy)P-oveS-Wove R-Wave

-Minor Tremor 3--Major Tremor

Particle Motion
(c) U

Direction of Wove Propagation

w

Seismiic wavetrain resulting from a single vertical impulse source [11] .

102

APPENDIX B8. GEOPHONE [11]

Triaxial geophone seismic sensor [11].

103

APPENDIX B9. CROSS POWER [12]

Gec #1 Real Power --> tgt4ibsum Geo #2 Real Power

I I I- -.l -- -.-- -1.5 ------ ----"
I II I I
t III I I

E I

E E< <
42 I

-0.5 -- -I - I --- I - -0.5 - --1 - 1- -- - -
* I !
t I l I l I I

0 5 10 15 20 0 5 10 15 20

Imaginary Power Imaginary Power
i i i i i i i i

I I I I I I I I

I I I I I I I I
I I I I I I I I

0)I I I I I I I I
-oI I I I - I I I I

I I •* I I I I I I

'= 0 " , -- 1- -" 0 L- -. -
E E- I III II

42I I I I I I
I I I I I I I I

-0.5 I I 05 I II I I I I I I I-- - -- -------------- - ,
I I I I I I I

0 5 10 15 20 0 5 10 15 20
Range [Ift] Range [ft]

Real and imaginary cross power components of the received signal for both
geophones. Target located at 22 feet.

104

APPENDIX B10. TARGETS STRENTH

Target Strength Vs Target Mass

0-
I 200 400 60PC-5

10-- 11.65

-15 . 6.42

S-20 I -20.4

-25

Total Cylinder Mass in Ibs

Target strength vs. target mass for cylinder target [12]

Target Strength Vs Target Mass

0 1 1

$ -2) 200 400 600 800

-4

' -6

5 -8

~14 41 3.41-14 - -
-16

Total Powder Keg Mass in Ibs

Target strength vs. target mass for powder keg target [12].

105

APPENDIX B10. IMAGINARY CROSS POWER SIGNAL FOR THE CYLINDER
TARGET

Vector Polarization Filter (Geophone #1)

0.02 iS0ibs
0.1---- L --------------------- - 2541bs

I- 358ibs
0 -- 462ibs

K 566lbs< -0.01 41-

-0.02 ------- ---------- ---------sI----

20 21 22 23 ,24 '25 26 27

Vector Polarizato a (Geophone#2 ffl

0.02------- ------ ------ ---- ~ .. - 24b

- 3581bs
0 :, ~, - - - 566lbs

-0.01 --------------.- -------

-0.02 ------------------------- -------------------

20 21 22 23 24. 25 26 27
Range [t]1

Imaginary power plot for cylinder, November 6th experiment, 5 weight types [12].

106

APPENDIX B11. IMAGINARY CROSS POWER SIGNAL FOR THE POWDER
KEG TARGET

Vector Polarization Filter (Geophone #1

........i .. 1 281bs
-0.02 ---- ,- - - ---------- 22Olbs

0 02 - - - - - - - I I -. - -

210------- 2-3---2----------------28 291b 31

I I - 201bs

P -- 432lbs
E 536lbs

-O02-------------- ------------ ----- Ir 640lbs

-0.04
21 22 23 24 25 26 27 28 29 30

Imaginary power plot for powder keg, November 10O1h experiment, six data plots.
Note that the 2 d geophone did not receive the target [12].

107

108

APPENDIX C. MATLAB CODE; HMM BASED CLASSIFIER FOR MINE
RECOGNITION

This Appendix contains the various MATLAB files used for recognizing the

mine-like objects using HMMs. MATLAB files written in [11] used for preprocessing

the data are also included for completeness.

109

APPENDIX C1. COMPUTATION OF THLE CROSS POWER SIGNAL FROM
RAW SIGNAL; 8 CHANNEL; SIGNAL. CODE WRITTEN BY M.

FITZPATRICK [12]

% Name: Present3.m
% Author: LT Mike Fitzpatrick
% Updated: 9/31/98
% Description: This program conducts a Hilbert analysis

%%%Input Parameters%%%
Range=1; %Turns-on plotting with range axis
wavespd=295; %Wavespeed [ft/s]
t-start=O.050; %Set start time [s)
t-stop=O.150; %Set stop time (s]
r-start=18; %Set start range [ft]
r...stop=28; %Set stop range [ft]
scale=O.0230; %Set axis scaling (Set to 0 turns-off scaling)
georange=10; %Enter range to geophone (ft]

%%Date, Directory, & File%%%
date='Nov6';
directory='Target3';
cd (date),cd (directory)

COUNT=O; %Set start count
while~i)

clc,disp('***Hilbert Analysis Subroutine***') ,dir *.mat;
COUNT=COUNT+ 1
if COUNT==1,load tgt~lbsum, end
if COUNT==2,load tgt4lbsum, end
if COUNT==3,load tgt8lbsui, end
if COUNT==4,1oad tgtl2lbsun, end
if COUNT==5,load tgtl6lbsun, end
if COUNT==6,break,end
[M,IN=size(channel);
transform=hilbert (channel);
Pwr(:,1,COUNT)=conj(transform(:,3)).*transform(:,5);
Pwr(:,2,COUNT)=conj(transform(:,6)).*transform(:,8);

end
end

%%%Set Axes%%%
if Range==l

[maxi, indexi) =max (abs (channel (:, 1)));
[max2,index2]=max(abs(channel(:,2)));
index=round((indexl+index2) /2);
start=round(((indexl+index2) /2) +(r-start! (dt*wavespd)));
stop=round(((indexl+index2) /2) +(r-stop/ (dt*wavespd)));
range=wavespd* (t(start:stop)-t(index));
%start=round(delay+ (r-start/ (dt*wavespd)));
%stop=round(delay+ (r-stop/ (dt*wavespd)));
%range=wavespd* (t (start:stop) -t (delay));

else
start=round((tstart/dt) +1);
stop=round((tstop/dt)+l);

110

end

if scale==O
Realmax=l.1*max(max(abs(real(Pwr(start:stop, :)))));
Imagmax=1.l*max(rnax(abs(imag(Pwr(start:stop,:)))));

else
Realmax=scale; Imagmax=scale;

end

for n=l:COUNT-l
Pwrl(: ,n)=irag(Pwr(start:stop,l,n));
Pwr2 (:,n)=imag(Pwr(start:stop,2,n));

end

%%%Plotting%%%
figure, orient portrait
if Range==

subplot(2,l,l)
plot(range,Pwrl(:,l),'c','Linewidth',1),hold
plot(range,Pwrl(:,2),'m','LineWidth',2)
plot(range,Pwrl(:,3),'g','LineWidth',3)
plot (range, Pwrl (:,4), 'b', 'LineWidth' ,4)
plot (range, Pwrl (: ,5), 'r', 'LineWidth' .5)
axis ([mm (range) max (range) -Imagmax Imagmax]) ,hold
title('Vector Polarization Filter (Geophone #1)')
xlabel('Range [ft] '),ylabel('Amplitude') ,grid
legend('156lbs','lG01bs','364lbs','468lbs','572lbs')

subplot (2,1,2)
plot(range,Pwr2(:,l),'c','LineWidth',l),hold
plot(range,Pwr2(:,2), 'm','LineWidth',2)
plot (range, Pwr2 (: ,3), 'g', 'LineWidth' ,3)
plot(range,Pwr2(:,4),'b','LineWidth',4)
plot(range,Pwr2(:,5),'r','LineWidth',5)
axis ([mm (range) max (range) -Imagmax Imagmax]) ,hold
title('Vector Polarization Filter (Geophone #2)')
xlabel('Range [ft] '),ylabelC'Ainplitude') ,grid
legend('1561bs','l6Olbs','3641bs','468lbs','5721bs')

end
cd
cd.

APPENDIX C2. DATA SELECTION USED FOR TIHE MULTIPLE WEIGHT
SIGNAL EXPERIMENT SET-UP. DATA USED FORH1MM TRAINING

% Filename: kegcyl.m
% Written by: M. Zainbartas
% Date Last Modified 10 August 1999
% Purpose: Generates and plots the signals for the multiple weight HMMs
training
% kegmat.mat: imaginary cross power of the keg signal
% cylmat.mat: imaginary cross power of the cylinder signal
% back.mat: imaginary cross power of a non target signal

load keginat
load cylmat
load back;
range=linspace(l,60,3000);
% interpolation to 3000 points of all vectors, in order all signals to
have the same
% length

keg432lb(2277,:)=[J;keg536lb(2277,:)=[];cyl5721b(2277,:)=J;
sk=size(keg224lb) ;scsize(cy13641b) ;sb=size (back);
kegint=zeros(3000,6);cyllint=zeros(3000,6);backint=zeros(3000,6);
% 6 trials per signal:
for n=1:6

keg224lbint(:,n)=(interpl(l:sk(l),keg224lb(:,n),l:sk(l)/3001:sk()))';

keg432lbint(:,n)=(interpl(l:sk(l),keg432lb(:,n),l:sk(l)/3001:sk(1))) ';

keg536lbint(:,n)=(interpl(l:sk(l),keg536lb(:,n),l:sk(l)/3001:sk(l)))';

cyl3641bint(:,n)=Cinterpl(l:sc(l),cyl364lb(:,n),l:sc(l)/3001:sc(l)))' ;

cyl468lbint(:,n)=(interpl(l:sc(l),cy1468lb(:,n),l:sc(l)/3001:sc(l)))' ;

cyl5721bint(:,n)=(interpl(l:sc(l),cy1572lb(:,n),l:sc(l)/3001:sc(l)))' ;

backint(:,n)=(interpl(l:sb(l),back(:,n),l:sb(l)/3001:sb(l)))';
end

% plot of all signals
subplot (3 ,2, 1)

plot(range,keg224lbint(:,l), 'c', 'LineWidth',l),hold
plot(range,keg224lbint(:,2) ,'n', 'LineWidth',l)
plot (range, keg2.24lbint (:,3), 'g', 'LineWidth' .1)
plot (range, keg224lbint (: ,4),'b', 'LineWidth' .1)
plot (range,keg2241bint(:,5),'k', 'LineWidth' ,l)
plot(range,keg224lbint(:,6),'r', 'LineWidth',l)
hold
title('Powder Keg 2241b '

axis([0 60 -0.03 0.03)),grid;
subplot(3,2,3)

112

plot(range,keg432lbint(:,l),'c', 'LineWidth',l),hold
plot (range, keg432lbint (:,2),Im', 'LineWidth' .1)
plot(range,keg432lbint(:,3),'g', 'LineWidth',l)
plot(range,keg432lbint(:,4),'b', 'LineWidth',1)
plot(range,keg4321bint(:,5),'k','LineWidth',l)
plot(range,keg432lbint(:,6), 'r','LineWidth',l)
axis([0 60 -0.03 0.03]),grid;
title('Powder Keg 4321b '

hold
subplot(3,2,5)

plot(range,keg5361bint(:,l),'c','LineWidth',l),hold
plot (range, keg536lbint C:, 2),'in', 'LineWidth' .1)
plot(range,keg536lbint(:,3),'g', 'LineWidth',l)
plot(range,keg536lbint(:,4),'b', 'LineWidth',l)
plot(range,keg536lbintC:,5),'k', 'LineWidth',l)
plot(range,keg5361bintC:,6),'r','LineWidth',1)
axis([0 60 -0.03 0.03]),grid;
title('Powder Keg 5361b '

hold
subplot(3,2,2)

plot(range,cyl364lbint(:,l), 'c','LineWidth',l),hold
plot(range,cyl364lbint(:,2),Im', 'LineWidth',l)
plot(range,cyl364lbint(:,3), 'g','LineWidth',l)
plot(range,cyl364lbint(:,4),'b', 'LineWidth',l)
plot(range,cyl364lbint(:,5),'k','LineWidth',l)
plot (range, cyl364lbint (:,6),'r', 'LineWidth' .1)

axisU0O 60 -0.02 0.0211),grid;.
title('Cylinder 3641b ')

hold
subplot(C3, 2 ,4)
plot(range,cyl4681bint(:,l),'c','Linewidth',l),hold
plot (range, cyl468lbint C.2) , in', 'LineWidth' ,l)
plot(range,cyl468lbintC:,3),'g', 'LineWidth',l)
plot (range, cyl468lbintC:, 4), 'b', 'LineWidth', 1)
plot(range,cyl468lbint(:,5),'k', 'LineWidth',l)
plot(range,cyl4G8lbintC:,6),'r', 'Linewidth',l)

axis([O 60 -0.02 0.02]),grid;
title('Cylinder 4681b '

hold
subplot (3,2,6)
plot(range,cyl572lbint(:,l),'c','LineWidth',l),hold
plot(range,cyl5721bint(:,2),In', 'LineWidth',l)
plot(range,cyl5721bint(:,3),'g','LineWidth',l)
plot(range,cyl572lbint(:,4), 'b','LineWidth',l)
plot(range,cyl572lbint(:,5),'k', 'LineWidth',l)
plot(range,cyl572lbint(:,6), 'r','LineWidth',l)

axisU0O 60 -0.02 0.021),grid;
title('Cylinder 5721b '

hold
% target location:
for n=1:6

ik224 (n) zfind
(keg224lbint(1000:l800,n)==max(keg224lbint(1000:l800,n)));

ik432 (n) =find
(keg432lbint(l000:1800,n)==max(keg4321bint(1OOO:l800,n)));

113

ik536 (n) =find
(keg5361bint(1000:1800,n)==max(keg5361bint(1000:1800,n)));

ik224 (n)=ik224 (n) +1000-100;
ik432 (n) =ik432 (n) +1000-100;
ik536 (n)=ik536 (n) +1000-100;

end
ik224=ik224(l) ;ik432=ik432 (1);ik536=ik536(1);
for n=1:6

ic364 (n) =find
(cyl364lbint(l000:1800,n)==max(cyl3641bint(1OOO:1800,n)));

ic364 (n) =ic364 (n) +1000-100;
ic468 (n) =find

(cyl468lbint(l000:1800,n)==max(cyl4681bint(1000:1800,n)));
ic468 (n) =ic468 (n) +1000-100;

ic572 (n) =find
(cyl572lbint(1000:1800,n)==max(cyl5721bint(1000:1800,n)));

ic572 (n) =ic572 (n) +1000-100;

end
ic364=ic364(1) ;ic468=ic468(1) ;ic572=ic572(6);

% so now we know where the target is located, we can build the signal
file
% signal (data,inine, trial)
% mine(1-3) is for the keg (6,8,10 ft)' s target, mine(4) is for the
cylinder' s target
% and mine(5-10) background and other non target data
signalmulti=zeros (400,10,6);
for trials=l:6

signalmulti(:,l,trials)=keg224lbint(ik224:ik224+399,trials);
signalmulti(:,2,trials)=keg432lbint(ik432:ik432+399,trials);
signalmulti(:,3,trials) =keg536lbint(ik536:ik536+399,trials);
signalmultiC ,4,trials)=cyl3641bint(ic364:ic364+399,trials);

signalmulti(:,5,trials)=cyl468lbint(ic468:ic468+399,trials);
signalmultiC: ,6,trials)=cyl572lbint(ic572:ic572+399,trials);

signalmultiC: ,7,trials)=backint(ic364:ic364+399,trials);
signalmulti (: ,8, trials) =backint (ik536:ik536+399, trials);
signalmulti(:,9,trials)=backint(2001:2400,trials);
signalmulti(:,l0,trials)=backint(1500:1899,trials);
signaliulti(:,ll,trials)=backint(800:800+399,trials);
signalmulti(:,12,trials)=backint(2500:2899,trials);

end
%signalmulti C: 3,:) =signalmulti (:,3,:) /2;
for mn=1:4
for n=1:6

signalmultiC: ,m,n) =signalinultiC: ,m,n) -mean(signalmulti (:,mn
end
end
cd
save signalrnulti signalmulti
cd data
figure (2)
range=1:40*0;
%range=linspace (21, 29, 400);

114

subplot (3, 2, 1)
plot(range,signalinulti(:,l,l),'c','LineWidth',l),hold
plot (range, signalinultiC: ,l,2), 'in, 'LineWidth' .1)
plot(range,signalnulti(:,l,3), 'g','LineWidth',l)
plot (range, signalinultiC: ,l,4), 'b', 'LineWidth' .1)
plot(range,signalrnulti(:,1,5),'k','LileWidth',l)
plot (range, signalmnulti (: ,,6),'r', 'LineWidth' .1)
title('Powder Keg 2241b ')

hold
subplot(3,2,3)

plot(range,signalinulti(:,2,1),'c','LifleWidth',l),hold
plot(range,signalinulti(:,2,2),'in,'LineWidth',l)
plot(range,signalinulti(:,2,3), 'g', 'LineWidth',1)
plot(range,signalinulti(:,2,4), 'b', 'LineWidth',1)
plot (range, signalinultiC: ,2,5), 'k', 'LineWidth' ,l)

plot(range,signalinulti(:,2,6), 'r', 'LineWidth',1)
title('Powder Keg 4321b ')

hold
subplot(3,2,5)

plot (range,signalinulti(: ,3;1) , 'c', 'LineWidth' ,1),hold
plot (range, signalinultiC: ,3,2),in', 'LineWidth' .1)
plot(range,signalinulti(:,3,3),'g','LineWidth',l)
plot (range, signalinulti(C: ,3,4), 'b', 'LineWidth' ,l)
plot (range, signalinultiC: ,3,5), 'k', 'LineWidth' ,l)

plot (range, signalinultiC: ,3,6), 'r', 'LineWidth' ,l)
title('Powder Keg 5361b ')

%axis([O 400 -0.02 0.02])
xlabel ('Data Points')

hold
subplot(3,2,2)

plot(range,signalxnultiC:,4,1), 'c', 'LineWidth',1) ,hold

plot(range,signalnulti(:,4,2),in', 'LineWidth',l)
plot(range,signalnulti(:,4,3), 'g', 'LineWidth',1)
plot (range, signalinultiC: ,4,4), 'b', 'LineWidth' ,l)

plot (range, signalinultiC: ,4,5), 'k', 'LineWidth' ,l)
plot(range,signalinultiC:,4,6), 'r', 'LineWidth',1)
title('Cylinder 3641b '

hold
subplot (3,2,4)
plot (range, signalinultiC: ,5,l), 'c', 'LineWidth' 1) ,hold
plot(range,signalinulti(:,5,2),'in', 'LineWidth',l)
plot(range,signalrnulti(:,5,3), 'g', 'LineWidth',1)
plot (range, signalmultiC: ,5,4), 'b', 'LineWidth' ,1)
plot (range, signalinultiC: ,5,5), 'k', 'LineWidth' ,1)
plot(range,signalinulti(:,5,6),'r','LineWidth',l)

title('Cylinder 4681b '

hold
subplot (3,2,6)

plot(range,signalinulti(:,6,l),'c','LineWidth',l),hold
plot(range,signalinulti(:,6,2),in', 'LineWidth',1)
plot(range,signalmulti(:,6,3),'g','LineWidth',l)
plot(range,signalinulti(:,6,4), 'b', 'LineWidth',1)
plot (range, signa 'liultiC: ,6,5), 'k', 'LineWidth' .1)
plot (range, signalinultiC: ,6,6), 'r' ,'LineWidth' .1)
title('Cylinder 5721b '

115

xlabel ('Data Points')
hold
cd

save signal signalmulti
cd dat

116

APPENDIX C3. FEATURE ANALYSIS FOR MINE LIKE OBJECT SIGNALS;
MULTIPLE WEIGHTS EXPERIMENT SET-UP

% Filename: trainingkegcyl.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999

% Purpose: Features Analysis for mine-like object signals with
multiple weights
% (3 sets of weights for the keg and the cylinder - 6 trials
each, and 7 background signals), for
% HMM recognition use. We will create two classes, one for
every mine-like object.
% Vector quantization using k-means
% M: # of symbols
% N: # of states
% mines: # total # of mines
% c: # coefficients matrix for all mines
% w: # VQ coeff matrix

% vector quantization with multiple lb (keg,cylinder,background)
clear

load signal
signal=signalmulti;
clear signalmulti;
M=8;N=4;
rand('seed',l);
n_it=20;
%segs=4;
mines=12;

s=size(signal);sl=s(1);

%seg=fix(sl/segs);

%Coefficients evaluation
%c=zeros(T,4,8,segs,6);
for mine=1:mines
for trial=l:6

[c(:,:,mine,trial),T)=coeffinterp(signal(:,mine,trial));

end
end

% vector quantization
p1=[1;

117

for mine=l:mines
for trial=l:6

end l;(::mn~til]
end

[CODE, label, dist) = svq(pl, M, njit);

class=zeros (T,rnines, 5);
w=zeros(T,8,mines,5);
for inine=l:mines
for trial=l:6

[w class(:,rnine,trial), dist)=vq(c(:,:,rnine,trial) ,CODE,n it);
end

end

% Test of vector quantization
%figure (1)

e(['vectorl,Class=' nuxn2str(class(l,l,l)) ' M=' nuin2str(M)J)

e(['vector2,Class=' numn2str(class(l,l,l)) ' M=' nuxn2str(M)J)
%qa(1:T, :)=w(classmicro(l:T), :);
%qa(l:T, :)=w(classsta(l:T), :);
distances= [];
%for n=l:segs
% for trial=l:5
% distances= [distances

dist(c(:,:,n,trial),w~class(:,n,trial),:,n,trial)')J;
%end

%end
%figure (3)
%stem(distances) ,title('Euclidean Distance original/quantized vectors')

118

APPENDIX C4. SIGNAL DECIMATION

% Filename: coeffinterp.m
% Written by: M. Zarnbartas
% Date Last Modified 10 August 1999
% Purpose: fuction that performs a decimation of segment and normalizes
it.
% T: total number of segments
% c: Coefficients vector

function [c,T]=coeffinterp(word);
word=word-mean (word);

%int=interpl(1:1,word,1:1/10000:10000);

%pre=filter([l,-.98J,1,word);
pre=word;
% harming filter:
%han=hanning(3);
%pre=conv(han, pre);
l=length(word);

%start~l;
step=l/2;
%1=2000;
% 0% overlap
overlap=round((0/100) *step);
%of Observations T:

T=l/step+ (l*overlap/stepA 2);
T=floor(T);
for n=l:T
c(n,l:l0)=interpl(1:step,pre(l+step* (n-l) -overlap* (n-l) :step*n-

end
%c(,l)c(,l) /max(c(:,l))

% normalization:
for n~l:T

c(n, :)=c(n, :) ./max(abs(c(n, :)));
end

119

APPENDIX C5. HMM TRAINING AND SCORING FOR MULTIPLE
WEIGHTS MINE LIKE SIGNAL DATA

% Filename: sequence.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Performs all the sequence of HMM training and scoring the
signals from multiple lbs mines
% rotating every time the tested signalkegmat.mat: imaginary
cross power of the keg signal

% cylmat.mat: imaginary cross power of the cylinder signal
% back.mat: imaginary cross power of a non target signal

% testing sequence
seq=[2 3 4 5 6

13456
12456
1 2 3 5 6
12346
1 2 3 4 52;

for test=l:6;
ts=seq(test,:);
% newmodelkegcyl trains the HMM using the seq sequence of signals
newmodelkegcyl
% scretestkegcyl scores the HMM for every testing signals
scoretestkegcyl
P_bkeg224(test)=P_bwk224;
P.vkeg224(test)=P_vk224;
P_bkeg432(test)=P-bwk432;
P_vkeg432(test)=P-vk432;
P_bkeg536(test)=Pjbwk536;
P-vkeg536(test)=P-vk536;
P-bcy1364(test)=P-bwc364;
P-vcy1364(test)=P-vc364;
P_bcy1468(test)=Pbwc468;
Pvcy1468(test)=Pjvc468;
P_bcy1572(test)=P-bwc572;
P-vcy1572(test)=Pvc572;
P_bback(test)=P-bwb;
P_vback(test)=P-vb;

end

120

APPENDIX C6. GENERATION OF 11MM OBSERVATION SEQUENCE FOR
MULTIPLE WEIGHTS MINE LIKE SIGNAL DATA

% Filename: newmodelkegcyl.m
% Written by: MA. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Creates the multiple observation matrix 0_multi for multiple
observations

% HMyf training of multi lbs testing
% ts: traininf sequence, assigned at sequence.m file.
% training sequence:

% keg (224,432,5361b):
%Omulti=[class(:,l,ts(l))';class(:,l,ts(2))';class(:,l,ts(3))';class(:
,1,ts(4))';class(:,1,ts(5))';class(:,2,ts(lfl'I;class(:,2,ts(2))';class(
:,2,ts(3))';class(:,2,ts(4))';class(:,2,ts(5))';class(:,3,ts(l))';class
(:,3,ts(2))';class(:,3,ts(3))';class(:,3,ts(4))';class(:,3,ts(5))'J;
% cylinder (364,468,5721b)I
0_-multi=[class(:,4,ts(l)) ';class(:,4,ts(2)) ';class(:,4,ts(3)) ';class(:,
4,ts(4))';class(:,4,ts(5))';class(:,5,ts(l))';class(:,5,ts(2))';class(:
,5,ts(3))';class(:,5,ts(4))';class(:,5,ts(5))';class(:,6,ts(l))';class(
:,6,ts(2))';class(:,6,ts(3))';classC:,6,tsC4))';class(:,6,ts(5))'J;

fa,b,pi] trainmulti(Omjulti,N,T,M);

121

APPENDIX C7. SCORING FOR THE MULTIPLE WEIGHT MINE LIKE
SIGNAL SET-UP

% Filename: scorekegcyl .m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Scoring of all testing mine-like signals-multiple lbs case

,test: keg224lb'

O=class (: ,l, test);
[Pbwk224,P -vk224=score(a,b,pi,O')
if (P-bwk224==0)

P..bwk224=eps;
end
if (P-vk224==0)

P_vk224=eps;
end
'test: keg432lb'
O=class(:,2,test);
[Pb_]wk432,Pvk432J =score(a,b,pi,O')
if (P-bwk432==0)

P-.bwk432=eps;
end
if (P -vk432==0)

P-vk432=e-ps;
end
'test: keg536lb'
O=class(:,3,test);
[P-bwk536,P -vk536=score~a,b,pi,O')
if (P-bwk536==0)

P-bwk536=eps;
end
if (Pvk536==0)

P_vk536=eps;
end

'test: cylinder364lb'
O=class(:,4,test);
(P_bwc364,Pvc364] =score (a,b,pi,O')
if (P-bwc364==0)

P-bwc364=eps;
end
if (P-vc364==0)

P_vc364=eps;
end

'test: cylinder468lb'
O=class (: ,5, test);
[P-bwc468,P-vc468) =score~a,b,pi,O')
if (P-bwc468==0)

P-bwc468=eps;
end
if (P-vc468==0)

122

P_vc468=eps;
end

'test: cylinder5721b'
O=c lass(: ,6, test);
[Pbwc572, P vc572] =score (a,b,pi, 0')
if (P-bwc572==O)

P_bwc572=eps;
end
if (P_vc572==O)

P-vc572=eps;
end

test: background'
0=classC: ,l1, test);
[P-bwb,P-vb=score~a,b,pi,0')
if (P_bwb==O)

Pbwb=eps;
end
if (P-vb==O)

Pvb=eps;
end

%figure
subplot(6,2,test*2-1l), barh(lO*loglO([P-bwk224 P-bwk432 P-bwk536
P-bwc364 P-bwc468 P_bwc572 PbwbJ));
if test==l
title([' Pr[Ollamda(cylinder)) - 1:keg2_2_4_b,

2:keg4_32j_b, 3:keg5-3-61_b, 4:cylinder-3-----,
5:cylinder_4 46-8_1_b, 6:cylinder_5_72-1jb, 7:background, M='
num2str(M) ', N=' nuxn2str(N)I)
end
axis([-50 0 1 7J);
if test==6

xlabel('P V-i-t-e-r-b i[dBJ')
end
if test==6

xl abe 1 'PB-W [dB]'I
end
if test==3
ylabel(C tested segment')
end

if test==3
Iylabel(C tested segment')

end

grid
hold
subplot(6,2,test*2), barh(1O*log10([P_vk224 P-vk432 P__vk536 P_vc364
P_vc468 P_vc572 P_vb)));
%titleC['Viterbi Probability - 1:keg-2241b, 2:keg_4321b, 3:keg_536lb,
4:cylinder_3641b, 5:cylinder_468lb, 6:cylinder_5721b, 7:background, M='
nuin2str(M) ', N=' num2str(N)]), xlabel(PV-ite~rb_i[dB'),
ylabel('tested segment')

123

axis([-50 0 1 7]);
grid
if test==6

xlabel('PVi-t-e-r b-i [d1B]
end
if test ==3

ylabel(C tested segment')
end
hold

124

APPENDIX C8. DATA SELECTION FOR THE MULTIPLE DISTANCE SIGNAL
EXPERIMENT SETUP. DATA USED FOR 11MM TRAINING

% Filename: multift.m
% Written by: M. Zambartas
% Date Last modified 10 August 1999
% Purpose: Generates and plots the signals for the multiple FT HM~Ms
training
% kegmat.mat: imaginary cross power of the keg signal
% cylmat.mat: imaginary cross power of the cylinder signal
% back.mat: imaginary cross power of a non target signal

load multiftkeg
load cyl6noe
load back;
range=linspace (1, 60, 3000);
keg6ft(2276, :)[] ;keglOftC2276, :)=E];
sk=size(keg6ft) ;scsize~cyl6noe) ;sb=size (back);
kegint~zeros(3000,6);cyllint=zeros(3000,6);backintzeros(300o,6);

% interpolation to 3000 points
for n=1:6

keg6ftint(:,n)=Cinterpl(l:sk(l),keg6ft(:,n),l:sk(l)/3001:sk(1)))';
keg8ftint(:,n)=Cinterpl(1:sk(l),keg8ft(:,n),l:sk(1)/3001:sk(l)))';
kegl~ftint(:,n)=Cinterpl(l:sk(l),keglOft(:,n),l:sk(l)/3001:sk()))';

cyl6noeintC:,n)=(interpl(l:sc(l),cyl6noe(:,ri),l:sc(l)/3001:sc(l)fl';
backint(:,n)=(interpl(l:sb(l),back(:,n),l:sb(l)/3001:sb(1)))';

end

subplot (4,1,1)
plot(range,keg6ftintC:,l),'c','LineWidth',l),hold
plot(range,keg6ftint(:,2),'m','LineWidth',l)
plot(range,keg6ftint(:,3),'g','LineWidth',l)
plot (range,keg6ftint(: ,4), 'b',,'LineWidth' ,l)
plot (range,keg6ftint (: ,5) , k',,'LineWidth' .1)
plot (range, keg6ftint (: ,6),'r', 'LineWidth' .1)
hold
title('Powder Keg 6ft (total:24ft) ')

axis([0 60 -0.02 0.021),grid;
subplot(4,1,2)

plot(range,keg8ftint(:,l),'c','LineWidth',l),hold
plot (range,keg8ftint (:,2),'in', 'LineWidth' ,l)
plot(range,keg8ftint(: ,3), 'g', 'LineWidth' ,1)
plot(range,keg8ftint(:,4),'b',,'LineWidth' ,l)
plot(range,keg8ftint(:,5),'k','LineWidth',l)
plot (range,kegsftintC: ,6), 'r', 'LineWidth' .1)
axis(E0 60 -0.02 0.02D),grid;
title('Powder Keg 8ft (total:22ft)')

hold
subplot(4,1,3)

125

plot(range,kegl~ftint(:,1), 'c', 'LineWidth',l),hold
plot (range,keglOftint(:,2),'in', 'LineWidth' ,l)
plot(range,keglOftint(:,3),'g','LineWidth',l)
plot (range, keglOftint (:,4), 'b',,'LineWidth' .1)
plot (range, keglOftint (: ,5),'k',,'LineWidth', 1)
plot~range,kegl~ftint(:,6), 'r', 'LineWidth',l)
axis([O 60 -0.02 0.02]),grid;
title('Powder Keg l0ft (total:2Oft)')

hold
range=1 :3000;
subplot (4,1,4)

plot(range,cyl6noeint(:,l),'c','LineWidth',l),hold
plot(range,cyl6noeint(:,2), 'i', 'LineWidth',l)
plot(range,cyl6noeint(:,3),'g','LineWidth',l)
plot(range,cyl6noeint(:,4),'b','LineWidth',1)
plot(range,cyl6noeint(:,5),'k','LineWidth',l)
plot(range,cyl6noeint(:,6) ,'r','LineWidth',l)

axis([0 3000 -0.02 0.02]),grid;
title('Cylinder l0ft (total:2Oft) ')

hold
for n=1:6

ik6(n)=find (keg6ftint(l000:1800,n)==inax(keg6ftint(l000:1800,n)));
ik8(n)=find (keg8ftint(l000:1800,n)==max(keg8ftint(l000:1800,n)));
iklO (n) =find

(keglOftint(1000:1800,n)==inax(kegl~ftint(l000:1800,n)));
ik6 (n) =ik6 (n) +1000-100;
ik8 (n) =ik8 (n) +1000-100;
iklO(n)=iklO (n)+l000-100;

end

for n=1:6
iclO (n) =find

(cyl6noeint(1000:1800,n)==mnax(cyl6noeint(1000:1800,n)));
iclO (n) =iclO (n)±l000-l00;

end
iclO=iclO Cl) -100;
% so now we know where the target is located, we can build the signal
file
% signal (data,inine, trial)
% mine(1-3) is for the keg (6,8,10 ft)' s target, mine(4) is for the
cylinder, s target
% and mine(5-l0) background and other non target data
signalmulti=zeros (400, 10, 6);
for trials=l:6

signalmulti (: ,1,trials) =keg6ftint (ik6 :ik6+399, trials);
signalmulti(:,2,trials)=keg8ftint(ik8:ik8+399,trials);
signalmulti(:,3,trials)=keglOftint(iklO:iklO+399,trials);
signalmulti(:,4,trials)=cyl6noeint(iclO:iclO+399,trials);
signalmulti : ,5,trials)=backint(iclO:iclO+399,trials);
signalmulti(:, 6,trials)=backint(iklO:iklO+399,trials);
signaliulti(:,7,trials)=backint(2001:2400,trials);
signalmulti(:,8,trials)=backint(1500:1899,trials);
signalmulti(: ,9, trials) =backint (800 :800+399,trials);
signaliulti(:,10,trials)=backint(2500:2899,trials);

end

126

signalmulti (:,3, :) =signalmulti C: 3, :) /3;
for m=1:4
for n=1:6

signalmultiC: ,m, n) =signalmulti (:,m, n) -mean (signalmulti (:,m, n));
end
end
cd
save signalmulti signalmulti
cd data
figure(2)
range=1 :400;
subplot (4,1,1)

plot(range,signalmulti(:,1,1),'C','LineWidth',1),hold
plot (range, signalmulti (:,1,2), in', 'LineWidth', 1)
plot (range, signalmulti (:,1,3), 'g', 'LineWidth' ,1)
plot(range,signalmulti(:,1,4), 'b', 'LineWidth' ,1)
plot(range,signalmulti(:,1,5),'k','LineWidth',1)
plot(range, signalmulti (:,l,6), 'r', 'LineWidth' .1)
hold

subplot (4,1,2)
plot(range,signalmulti(:,2,1), 'c', 'LineWidth',l),hold
plot(range,signalmulti(:,2,2),Im', 'LineWidth',1)
plot(range,signalinulti(:,2,3),'g','LineWidth',l)
plot (range, signalmulti (:12,4), 'b', 'LineWidth' .1)
plot(range,signalinulti(:,2,5),'k','LineWidth',1)
plot(range,signalrnulti(:,2,6),'r','LineWidth',1)
hold

subplot (4, 1,3)
plot (range, signalinulti (:13,1),'c', 'LineWidth' ,1),hold
plot(range,signalmulti(:,3,2), 'i', 'LineWidth',l)
plot(range,signalinulti(:,3,3),'g','LineWidth',1)
plot (range, signalinulti (: ,3,4), 'b', 'LineWidth' 11)
plot (range, signalinulti (: ,3,5), 'k', 'LineWidth', 1)
plot(range,signalinulti(:,3,6),'r','LineWidth',1)
hold

subpl1o t (4, 1, 4)
plot (range,signalinulti(:,4,l), 'c', 'LineWidth' ,1),hold
plot (range, signalmulti (:14,2),'in', 'LineWidth' ,1)
plot (range, signalmulti (:,4,3), 'g', 'LineWidth' ,1)
plot (range, signalinulti (: 4,4), 'b', 'LineWidth' ,i)
plot (range, signalmulti (:,4,5), 'k', 'LineWidth' ,i)
plot (range, signalinulti (:14,6),'r', 'LineWidth' ,1)
hold

127

APPENDIX C9. FEATURE ANALYSIS FOR MINE LIKE OBJECT SIGNALS;
MULTIPLE DISTANCES EXPERIMENT SET-UP

% Filename: trainingkmmulti.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999

% Purpose: Features Analysis for mine-like object signals with
multiple ft
% (3 sets of ft for the keg and one for the cylinder - 6
trials each, and 6 trials of background signals), for
% HMM recognition use. We will create two classes, one for
every mine-like object.
% Vector quantization using k-means
% M: # of symbols
% N: # of states
% mines: # total # of mines
% c: # coefficients matrix for all mines
% w: # VQ coeff matrix

clear
load signalmulti
signal=signalmulti;
clear signalmulti;
M=8;N=4;
rand('seed',l);
n-it=20;
%segs=4;
mines=10;

s=size(signal);sl=s(1);

%seg=fix(sl/segs);

%Coefficients evaluation
%c=zeros(T,4,8,segs,6);
for mine=l:mines
for trial=l:6

[c(:,:,mine,trial),T]=coeffinterp(signal(:,mine,trial));

end
end

% vector quantization
pl=[];
for mine=l:mines
for trial=l:6
pl=[pl ;c(:,:,mine,trial)];

end
end

128

[CODE, label, dist] = svq~pl, M, n-it);

class=zeros (T,mines, 5);
w=zeros(T,8,inines,5) ;
for mine=l:mines
for trial=l:6

[w class(:,mine,trial), distj=vq~c(:,:,inine,trial),CODE,n-it);
end

end

% Test of vector quantization
%figure (1)

e(['vectorl,Class=' num2str(class(1,l,l)) ' M=' nuin2str(M)J)

e(['vector2,Class=' num2str(class(l,l,l)) ' M=' num2str(M)J)
%qa(l:T, :)=w(classrnicro(l:T), :);
%qa(l:T, :)=w(classsta(l:T), :);
distances= [];
%for n=l:segs
% for trial=l:5
% distances= [distances

dist(c(:,:,n,trial),w(class(:,n,trial),:,n,trial)')J;
%end

%end
%figure (3)
%stem~distances) ,title('Euclidean Distance original/quantized vectors')

129

APPENDIX CIO. HMM TRAINING AND SCORING FOR MULTIPLE
DISTANCE SIGNAL MINE LIKE SIGNAL DATA

% Filename: sequencemulti.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Performs all the sequence of HMM training and scoring the
signals from multiple ft mines
% rotating every time the tested signalkegmat.mat: imaginary
cross power of the keg signal
% cylmat.mat: imaginary cross power of the cylinder signal
% back.mat: imaginary cross power of a non target signal

% testing sequence for multi target distance
% rotation of the testing signal:
seq=[2 3 4 5 6

13456
12456
12356
12346
1 2 3 4 5];

for test=l:6;
ts=seq(test,:);
newmodelmulti
scoretestmulti
P_bkeg6ft(test)=P-bwk6;
P_vkeg6ft(test)=P-vk6;
P_bkeg8ft(test)=P-bwk8;
P_vkeg8ft(test)=P-vk8;
P_bkegl0ft(test)=PjbwklO;
P_vkeglOft(test)=PvklO;
P_bcyll0ft(test)=P-bwc;
P_vcyll0ft(test)=P-vc;
P_bback(test)=P-bwb;
P_vback(test)=P-vb;

end

130

APPENDIX C11. GENERATION OF 11MM OBSERVATION SEQUENCE FOR
MULTIPLE DISTANCES MINE LIKE SIGNAL DATA

% Filename: newmodelmulti.m
% Written by: M. Zarnbartas
% Date Last Modified 10 August 1999
% Purpose: Creates the multiple observation matrix 0_multi for multiple
observation

% HMM training of multi ft testing
% ts: traininf sequence, assigned at sequence.m file
% training sequence:

% initial conditions:
% cla ss (coefficient(l-T) ,segment(l-4) ,mine,mass)
% keg (6,8,l0ft):
o~multi=[class(:,l,ts(l)) ';class(:,1,ts(2)) ';class(:,1,ts(3)) ';class(:,
l,ts(4))';class(:,l,ts(5))';class(:,2,ts(l))';class(:,2,ts(2))';class(:
,2,ts(3))';class(:,2,ts(4))';class(:,2,ts(5))';class(:,3,ts(l))';class(
:,3,ts(2))';class(:,3,ts(3))';class(:,3,ts(4))';class(:,3,ts(5))'J;
% cylinder (single 10 ft)
%0_multi=[class(:,4,ts(l)) ';class(:,4,ts(2)) ';class(:,4,ts(3)) ';class(:
4, ts(4)) ';class(: ,4, ts (5)) ']

[a,b,pi) trainxnulti(0-.multi,N,T,M);

131

APPENDIX C12. TESTING DATA; SCORING FOR THE MULTIPLE
DISTANCES MINE LIKE SIGNAL SET-UP

% Filename: scoretestmulti.m
% Written by: M. Zambartas
% Date Last modified 10 August 1999
% Purpose: Scoring of all testing mine-like signals-multiple ft case

'test: keg6ft'
O=classC:,l,test);
[P-bwk6,P-vk6=score(a,b,pi,O')
if (Pbwk6==0)

P_bwk6=eps;
end
if (Pjvk6==0)

P-vk6=eps;
end
'test: keg8ft'

[Pbwk8, Pvk8]=score(a,b,pi,O')
if (Pbwk8==0)

P_bwk8=eps;
end
if (P -vk8==0)

P-.vk8=eps;
end
'test: keglOft'
O=class(:,3,test);
(PbwklO,P vkl)=score(a,b,pi,O')
if (PbwklO==0)

P__.bwkl0=eps;
end
if (P..vklO==0)

P_vklO=eps;
end

'test: cylinder'
O=classC: ,4. test);
[P-bwc,P-vc=score(a,b,pi,O')
if (P-bwc==0)

P_bwc=eps;
end
if (P--vc==0)

P--vc=eps;
end

'test: background'
O=class (:,8. test);
[Pbwb,Pvb=score(a,b,pi,O')
if (Pbwb==0)

P-bwb.=eps;
end
if (P -vb==0)

P_vb=eps;
end

132

subplot(6,2,test*2-1l), barh(1O*loglO([P-bwk6 P_bwk8 P_bwklO P_bwc
P _bwbj);
if test==l

title(PE PrCOladakeg) - :keg_6ft,
2:keg-8ft, 3:keg-lOft, 4:cylinder, test:background, M=' nuxn2str(M) ',

N=' nuin2str(N),', T=2 'D)

end
if test==6

xlabel ('PBW~dB]')
end
if test==3
ylabel(C tested signal')
end

axis([-50 0 1 5));
grid
subplot(6,2,test*2), barh(1Q*loglOHP-vk6 P--vk8 P-vklO P -vc P-vbl));
%titleU',Viterbi Probability - l:keg_6ft, 2:keg_8ft, 3:keg_10ft,
4:cylinder, test:background, M=' num2str(M) ',N=' num2str(N)J)
if test==6

xlabel(P i-terb i[dBl')
end
if test==3

ylabel C tested signal')
end

axis([-50 0 1 5]);
grid
hold

133

134

APPENDIX D. MATLAB CODE; NEURAL NETWORK BASED CLASSIFIER
FOR MINE RECOGNITION

This Appendix contains MATLAB files used to recognize mine like objects using

a supervised backpropagation feedforward neural network.

135

APPENDIX Dl. NN TRAINING AND TESTING FOR MULTIPLE WEIGHTS
SIGNAL MINE LIKE SIGNAL DATA

% Filename: nnlbs.m
% Written by: M. Zambartas
% Date Last Modified 10 August 1999
% Purpose: Performs mine like object signal classification - multiple
weights set-up

% using a supervised backpropagat ion. feedforward neural
network
% ts: testing sequence used for the testing/training rotation
% 0_multi-keg: multiple observation of keg signals
% 0_multicyl: multiple observation of cylinder signals
% p: input vectors
% t: target vector; 1 for keg, 2 for cylinder
% sc: output matrix

seq=[2 3 4 5 6;1 3 4 5 6;1 2 4 5 6;1 2 3 5 6;1 2 3 4 6;1 2 3 4 5];

sc= H;

for test=l:6;

ts=seq(test, :);

o__multi_keg=[class(:,l,ts(l)) ';class(:,l,ts(2))';class(:,l,ts(3)) ;clas
s(:,l,ts(4))';class(:,l,tsCS))';class(:,2,ts(l))';class(:,2,ts(2))';cla
ss(: ,2,ts(3))';class(:,2,ts(4))';class(:,2,ts(5))';class(:,3,ts(l))';cl
ass (: 3, ts (2)) ';class(: 3, ts (3))';class (:,3, ts (4)) ';class (:,3, ts (5)) 'J

0 _multi_cyl=[class(:,4,ts~l))';class(:,4,ts(2))';class(:,4,ts(3))';clas
s(:,4,ts(4))';class(:,4,ts(5))';class(:,5,ts(l))';class(:,5,ts(2))';cla
ss(:,5,ts(3))';class(:,5,ts(4))';class(:,5,ts(5))';class(:,6,ts(l))';cl
ass(:,6,tsC2))';class(:,6,ts(3))';class(:,6,ts(4))';class(:,6,ts(5))']I

% generation of input vectors (matrix) p:
p=[Cjnulti-keg 0_multi-cyl];

t=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2];
% # of hidden layers:60. # of output layers:l Functions used: logsing,
purelin for hidden
% and output layer relatively
net=newff([l 8; 1 8],[60 lJ,{'logsig' 'purelin'},'trainlm');
figure (1)
net .performFcn= 'sse';
net. trainParam.min-grad=le-20
net. trainParam. goal=0.0l;
net. trainParam. show=l0;
net. trainParam. epochs=3 00;
[net,tr)=train(net,p,t);
01=class (: 1, test);
keg224=sim (net,01)
02=class (: ,2, test);
keg432=sim(net, 02)

136

03=class (:,3,test);
keg536=simn(net, 03)
04=class(:,4,test);
cyl364=sim(net, 04)
05=class (:,5, test);
cy1468=siin(net, 05)
06=class (: ,6, test);
cyl572=sim(net, 06)
07=class (:,7, test);
back~sim(net, 07)
sc=[sc;

keg224, keg432, keg536, cy1364, cyl468, cy1572, back];
figure (2)
%subplot(7,1,test), stem(1:7,sc), axisC[l 7 1 2.5J),hold
end
% NN output plot:
subplot(3,3,1), plot(1:6, sc(:,1)), axisC[l 6 0 4)),title
(['keg224lbs'j),grid
subplot(3,3,2), plot(1:6, sc(:,2)), axis([l 6 0 4J),title
(['keg432lbs')),grid
subplotC3,3,3), plot(1:6, sc(:,3)), axisC(I 6 0 4]),title
(f'keg536lbs'l),grid
subplot(3,3,4), plot(1:6, sc(:,4)), axis([l 6 0 4J),title
(['cyl364lbs']) ,grid
subplot(3,3,5), plot(1:6, sc(:,5)), axis([l 6 0 4)),title
(['cyl46Blbs']) ,grid
subplotC3,3,6), plot(1:6, sc(:,6)), axis([1 6 0 4J),title
(['cyl572lbs'l),grid
subplot(3,3,7), plot(1:6, sc(:,7)), axis([l 6 0 4)),title
(['background']),grid'

137

APPENDIX D2. NN TRAINING AND TESTING FOR MULTIPLE DISTANCES
SIGNAL MINE LIKE SIGNAL DATA

% Filename: nnft.m
% Written by: M. Zambartas
% Date Last modified 10 August 1999
% Purpose: Performs mine like object signal classification - multiple
distances set-up

% using a supervised backpropagation feedforward neural
network
% ts: testing sequence used for the testing/training rotation
% 0_multi-keg: multiple observation of keg signals
% 0_-multt..cyl: multiple observation of cylinder signals
% p: input vectors
% t: target vector; 1 for keg, 2 for cylinder
% Sc: output matrix

seq=[2 3 4 5 6;1 3 4 5 6;1 2 4 5 6;1 2 3 5 6;1 2 3 4 6;1 2 3 4 5J;
sc=[jJ;
for test=l:6;
ts=seq(test,:);

o _multi-keg=[class(:,l,ts(l)) ';class(:,l,ts(2)) ';class(:,1,ts(3)) ';clas
s(:,l,ts(4))';class(:,l,ts(5))';class(:,2,ts(l))';class(:,2,ts(2))'.;cla
ss(:,2,ts(3))';class(:,2,ts(4))';class(:,2,ts(5))';class(:,3,ts(l))';cl
ass(:,3,ts(2))';class(:,3,ts(3))';class(:,3,ts(4))';class(:,3,ts(5))'J'

o-multi-cyl=[class(:,4,ts(l)) ';class(:,4,ts(2)) ';class(:,4,ts(3)) ';clas
s(:,4,ts(4))';class(:,4,ts(5))']';
% generation of input vectors (matrix) p:
p=[Omultikeg 0_multi_cyll;

t=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2J;
% # of hidden layers:60. # of output layers:l Functions used: logsing,
purelin for hidden
% and output layer relatively
net=newff([l 8; 1 8], [60 lj,{'logsig' 'purelin'),'trainlm');
figuredl)
net.performFcn='sse';
net. trainParam.min-grad=le-20
net.trainParam.goal=0 .001;
net. trainParam. show= 10;
net. trainParam. epochs=3 00;
[net,tr]=train(net,p,t);
Ol=class (:,1, test);
keg6ft=sim(net, 01)
02=class (:,2, test);
keg8ft=sim(net,02)
03=class (:,3, test);
keglOft=sim(net, 03)
04=class C: ,4, test);
cylloft=sim(net, 04)
05=classC: , 5, test);
back=sim(net, 05)
sc= [sc;

keg6ft, keg8ft, keglOft, cylloft,back];

138

f igure (2)

end
subplot(3,3,1), plot(1:6, sc(:,1),'o'), axis([1 6 0 4J),tit2.e
(['keg6ft']) ,grid
subplot(3,3,2), plot(1:6, sc(:,2)), axis([l 6 0 4]Ltitle
(E'keg8ft']) ,grid
subplot(3,3,3), plot(1:6, sc(:,3)), axis([l 6 0 4J),title
(['keglOft']),grid
subplot(3,3,4), plot(1:6, sc(:,4)), axis(El 6 0 4]),title
(['cyll~ft'l) ,grid
subplotC3,3,5), plot(1:6, sc(:,5)), axis([l 6 0 4J),title
(['background']) ,grid

139

140

LIST OF REFERENCES

[1] C. W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1992.

[2] M. T. Hagan, Howard B. Demuth, and Mark Beale, Neural Network Design, PWS
Publishing Co., MA, 1996.

[3] L.R. Rabiner and B.H. Juang, "An Introduction to Hidden Markov Models," IEEE
ASSP magazine, Vol.3, No.1, pp. 4-16, 1986.

[4] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition," Vol. 77, No. 2, pp. 257-284, 1989.

[5] S. K. Riis, "Hidden Markov Models and Neural Networks for Speech Recognition,"
http://eivind.imm.dtu.dk/staff/riis/iis.html, November 1998.

[6] D. H. Kil and F. B. Shin, Pattern Recognition and Prediction with Applications to

Signal Characterization, American Institute of Physics, Woodbury, NY, 1996.

[7] R. M. Gray, "Vector Quantization," Vol. 1, No. 2, pp. 1-29, 1986.

[8] 0. Cappe, Vector Quantization MATLAB files vq.mat, svq.mat,
http://sig.enst.fr/-cappe/docs/hmmbib.html, November 1998.

[9] J. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing of Speech
Signals, Macmillan Publishing Company, NY, 1993.

[10] F. E. Gagham, Discrete-Mode Source Development and Testing for New Seismo-
Accoustic Sonar, Master's Thesis, Naval Postgraduate School, Monterey, CA, March
1998.

[11] S. M. Fitzpatrick, Source Development for a Seismo-Acoustic Sonar, Master'sThesis, Naval Postgraduate School, Monterey, CA, December 1998.

[12] P. W. Hall, Detection and Target-Strength Measurements of Buried Objects Using a
Seismo-Acoustic Sonar, Master's Thesis, Naval Postgraduate School, Monterey, CA,
December 1998.

[13] C.M. Bishop, Neural networks for pattern recognition, Clarendon Press, 1997.

[14] Matlab Version 5.3.0.10183 (Neural Networks Toolbox), January 1999, The
Mathworks Inc., Natick, MA.

[15] Prof. Muir, personal communication, September 1999.

141

142

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center ... 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir VA 22060-6218

2. Engineering and Technology Curriculum Office, Code 34 1
Naval Postgraduate School
Monterey, CA 93943-5109

3. D udley Knox Library ... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey CA 93943-5101

4. Chairm an, Code EC .. 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Prof. Monique Fargues, CodeEC/Fa .. 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Prof. Roberto Cristi, Code EC/Cx .. 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

7. Professor Thomas G. Muir, Code PH/Mt ... 2
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5117

8. LT M ichail Zam bartas 3
Amasias 18, Pagrati
Athens- 11634
Greece

143

