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1. Introduction

Regional seismic monitoring and discrimination capabilities that are desirable under a
potential Comprehensive Test Ban Treaty (CTBT) can be improved by developing new
algorithms and procedures for distinguishing between earthquakes, nuclear explosions and
mining explosions of various kinds. Much effort in past discrimination studies has concen-
trated on extracting various features of the spectrum that are characteristic of earthquakes,

nuclear explosions or mine blasts.

One particular spectral feature that characterizes some mining explosions is a modu-
lation of the spectrum introduced by a ripple-fired explosion. A ripple-fired event usually
involves detonation of a number of explosions that are often regularly grouped in space and
time. Such explosions, known as quarry blasts, have low magnitudes that may be close to
those of nuclear explosions that one might monitor under the CTBT. As examples of these
kinds of mine blasts, we consider using array data from the Arctic Experimental Seismic
Station (ARCESS) in northern Norway, previously analyzed by Der et al (1993). The top
panel of Figure 1 shows a single channel from a typical mine blast, sampled at 40 points
per second, with four arrival phases identified. The arrival phases shown correspond to
body waves, which are subdivided into compressional P-waves, denoted here by P, and P,
and shear S-waves, denoted by S, and Ly. At regional distances, P, is usually the first
to arrive, having traveled down through the crust and then horizontally near the top of
the upper mantle. Py is a wave that comes in later than F,, and travels the path between
source and receiver wholly within the Earth’s crust. S, is a shear wave that travels a
path similar to that of P, but arrives later because shear waves propagate slower than the
P-waves that make up P,. Ly is a type of guided shear wave that has most of its energy
trapped in the Earth’s crust. In the bottom panel, we show the first arrival phase at all

five channels.

The pattern induced by the delay-firing that is characteristic of mining activity can
be represented in terms of a model that contains a signal s(¢) and its echoes, observed at

a set of time delays, say 71,72, .. -, Tn, producing a theoretical output of the form
n
z(t) = s(t) + Y 0;s(t — 1), (1)
j=1

where the initial signal s(¢) appears at the set of time delays indicated, with amplitudes
01,0, ...,0,. Identifying the length of the time delays for arrival phases as well as their
configuration will be helpful for distinguishing ripple-fired patterns from those due to path
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Extracted P, Phase (40 pts per second).




effects or local reverberations. A number of authors have examined various aspects of
this problem and have proposed techniques for analyzing these ripple-fired seismic signals.
Chapman et al (1992) show reflection patterns for a number of delay-fired configurations
and propose a cepstral deconvolution method for estimating the delays. Baumgardt and
Ziegler (1988) consider lining up the log-spectra and cepstra for an array and looking
for common reflection patterns. Alexander et al (1995) extend this analysis by adding
up or stacking the cepstra. Hedlin et al (1990) propose graphical techniques involving
threshold modifications of the time varying log-spectra and cepstra. During the course of
this project, we have developed three different approaches based on two different signal

and noise models. They are:

(i) deconvolution of a common signal on an array (see Shumway and Der, 1985, Der
et al, 1987, 1992, 1993), assuming an additive noise model, followed by a cepstral

analysis of the deconvolved signal,

(ii) a search through Box-Jenkins seasonal autoregressive moving average (ARMA)
models with parameters equal to the duration and time delays in a multiplicative

signal and noise model

and

(iii) a nonlinear cepstral F-statistic (see Shumway et al, 1997) based on a frequency
domain multiplicative model for the signals and noises. The approach formalizes
ideas of Alexander et al (1995) and Baumgardt and Ziegler (1988) that are based
on the premise that a common reflection pattern should appear at each channel

on the array.

The deconvolution approach in (i) uses an additive linear model for the observed series
at the jth sensor in an array, say y;(t),j = 1,2,..., N that takes the form

y;(t) = a;(t) ® z(t) + n;(?), | (2)

where the notation ® denotes convolution and the impulse-response functions a;(t) are used
“to denote the path and receiver effects that distinguish the jth element of the array from
others. It will be assumed that these functions have relatively smooth Fourier transforms so
that they can be estimated from the spectra of the observed series. We assume throughout
that the signal and noise are stationary and independent of each other. Given reasonable
estimators for the path and receiver transforms, the multiple deconvolution procedure of
Shumway and Der (1985) is used to develop the deconvolution estimator for the common
function z(t). Then, because of (1), we may use the cepstral analysis procedure of Bogert,
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Healy and Tukey (1962), denoted by BHT in the sequel, to estimate the time delays for
the ripple firing. Section 2 gives details.

It is also possible to consider a multiplicative noise model of the form
y5(t) = a;(t) ® z(t) ® n;(t) (3)

as an alternate representation, leading to procedures (ii) and (iii) mentioned above. A
simplification of (3) with equal receiver effects and delays 7; = jd,j5=1,2,...,n propor-
tional to some underlying delay d allows recasting (3) as a seasonal autoregressive model
of the form considered in the classic work of Box and Jenkins (see Box, Jenkins and Rein-
sel, 1994 for expository material). The delays are the seasonal periods and the duration
or number of reflections corresponds to the order of the seasonal moving average term.
A low-order autoregressive component models the combined effects of source, path and
instrument response. Seasonal ARMA models are searched over a number of plausible
delays and duration, with the best value of a Bayesian information criterion (BIC) due to
Schwarz (1978) used to select the best model. This approach is covered in Section 3.

Finally, the Fourier decomposition of the observed spectrum in the multiplicative
model (3) suggests Method (iii) above. In this approach, the observed spectrum is ex-
pressed as a product of signal and noise spectra and Fourier transforms. Taking loga-
rithms yields an additive model in the logarithms of the squared Fourier transforms that
we can use as a model for detecting a common set of periodic components on an array of
suitably detrended log-spectra. In our approach, assuming a multiplicative noise model,
detrended log-spectra are derived as realizations of stationary processes whose periodic
signal components are frequencies, with periods proportional to delay time differences.
Using an approach proposed by Shumway (1971) for detecting a common signal in a col-
lection of stationarily correlated series, an F-Statistic is derived that is proportional to the
stacked cepstrum and the spectrum of the stacked log-spectra. Advantages of this cepstral
F-Statistic stem from its superior resolving power and the fact that statistical significance
can now be asserted for selected delay peaks.

Simulated array data and data involving four phases extracted from ten Kola, mining
explosions, measured at ARCESS in Scandinavia, are used to compare the time and fre-
quency domain approaches. We cover the three methodologies in Sections 2, 3 and 4 and
the data analysis in Section 5.




2. Multiple Deconvolution

The primary aim of the multiple deconvolution procedure is to isolate a rea.sonable estima-
tor for the unobserved stationary process z(¢) in the additive model (2). This problem is
somewhat different than single channel deconvolution, where there is only one realization
for the signal z(¢). In what follows, we suppose that the spectra of the signal and noise
processes are denoted by P,(v) and P,(v) respectively with v, —1/2 < v < 1/2 defined
as frequency in cycles per point. We assume the signal to noise ratio to be known, so
there are no parameters to be estimated by maximum likelihood (see, for example, Han-
nan and Thomson, 1974 and Shumway, 1988 for approaches that develop parametric and
non-parametric estimators for the signal and noise spectra). In the present case, it is pos-

sible to show (see Shumway, 1988) that the optimal deconvolution estimator for z(t) is of

the form

N
3(6) = Y by (1) © 350 @

where h;(t) are filters applied at each sensor, with frequency response functions determined

as
A7)

S 4w+ 82(v)

where 62(v) = P,(v)/P:(v) and A;(v) is the Fourier transform of a;(t). Since the signal
and noise spectra are somewhat complicated, as shown in the next paragraph, we use a
small ridge correction 62(v) = ¢2, assumed to be constant over frequency, with the constant
taking the role of the usual regularization parameter used to stabilize solutions to poorly
conditioned inverse problems. The resulting estimator, Z(t), should consist of the common
components of all array elements and should be free of the effects of the path and receiver.
Note that we still must know values for the frequency response functions A;(v); we discuss

H;(v) = (5)

this problem later.
Now, from (1), the spectrum of z(t) is given by

P.(v) = 0) PPy (v) ©)
with o
6()|? = Z Z 60k cos[2mv(T; — Ti)], ‘ (7)
=0 k=0

(6o = 1) which is the component introduced by the possible ripple firing. BHT(1962) noted
that the squared transfer function (7) will be periodic, with components proportional to
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the time delay differences. For multiplicative models like (6), BHT proposed an additive
model, obtained by transforming to logarithms. For a sample series z(t),t=0,1,...,T-1
and discrete frequencies of the form v, = £/T,¢ = 0,1,.. ., T/2, the log spectrum can be
written as

log Py (vg) = log|0(ve)[* + log Ps(ve). (8)

BHT noted that the first component will be periodic, with frequencies proportional to
T/(t5—m),4,k=1,...,n and proposed computing the spectrum of (8), called the cepstrum
which should exhibit the periodicities in (8) as cepstral peaks.

The results given above suggest deconvolving on the array to get the estimator for Z(¢)
and then computing the cepstrum of the deconvolved series to isolate the periodicities. As
mentioned before, the success of the procedure will depend on finding reasonable estimators
for the receiver response functions A;(v). To do this, we note that the spectrum of the
received signal in (3) will be

Py; (v) = |A;(0)|*Po(v) + Pa(v). (9)

We suppose, furthermore, that the noise spectrum can be neglected in (9) and that the
function A;(v) is reasonably smooth over frequency. Consider the cubic spline approxima-
tion

log |Aj(1/g)l2 +log Pp(v) = ajo + ajive + angt? + &jgvg + dja(ve — Vf)f’,_, (10)

where v is the knot location and (v—vy)3 for £ =0, 1,...,T/2. The spline approximation
with one knot should be smooth enough so that the residuals from the fitted spline will
still retain the periodic components in |§(v)|? that correspond to the ripple fired signal.
The resulting approximation (10) for the smooth part of log |A;(v)|2 can be exponentiated
and the positive square root of the result used as the frequency response function A;(v).

To illustrate some of the above ideas, consider the simulated ensemble of signals shown
in the top panel of Figure 2. We generated different second-order autoregressive processes
with a frequency content comparable to the seismic waveform in Figure 1 and modulated
them with a fixed exponentially decaying function that emulates a transient signal. The
results were added together at time delays 79 = 0,7, = 8,75 = 15,73 = 23,74 = 31 with
amplitudes 6y = 1,6; = .9,02 = .9,03 = .6,04 = .7 to simulate a typical realization,
according to (1). The five resulting series, shown in Figure 2, all contain the slightly
different signals, at the same set of delays and we can argue that the model given by (1)
and (2) is plausible and that any method based on the model should work reasonably well..
A typical observed spectrum is shown in the bottom panel of Figure 2 and we note that

6
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Figure 2: A Contrived Array With Delay Firing (d=8,15,23,30) and the Associated
Detrended Log Spline Spectra.
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it appears to be the sum of a smooth trend component, log|A;(v)|?, fitted as a cubic spline
with a single knot at 0.25 cycles per point, and a periodic component, corresponding to
log [0(v)[.

Figure 3 shows the bank of deconvolution filters h;(t),j = 1,...,5 in the left panel
and the resulting deconvolved signal Z(t) in (4). To find the cepstrum of the deconvolved

signal, take the discrete Fourier transform

T-1
X)) =172 2(t) exp{—2mitt/T} (11)

Ct=0
of the deconvolved series and compute the spectrum of the log periodogram as

T/2-1
C(d)=T""2 > log|X () exp{2mitd/T}, (12)
£=0
expressed as a function of delay, d, in points. The cepstrum of the deconvolution, shown in
the bottom right panel of Figure 3, isolates delays at 7 = 7, 8,15, 23, and 29 points. From
the nature of the contrived data, we expect delays at 7,8,15,16,23, and 31 points with

potentially the strongest components corresponding to time delays of 7 or 8, appearing
four times, 15 or 16, which appear three times, 23 points which appears twice and 31

points which appears once.

3. Seasonal Multiplicative ARMA Models for Arrays

There is a form of (3) that fits into the multiplicative seasonal ARMA developed by
Box and Jenkins (see Box, Jenkins and Reinsel, 1994). For this case we let z(t) in (1)
be defined for time delays 7, = kd,k = 1,2,...,n that are multiples of some underlying
assumed firing delay d, so that one might envision a multiplicative model, driven by white
noise processes w;(t), of the form

e(B9)
y;(t) = ij(t) (13)
for the output, where B denotes the delay operator, i.e. B¥z(t) = z(t — k), so that the n
reflections at multiples of d are expressed by the polynomial operator

o(B%) = zn: 6, B*? (14)
k=0
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with 6 = 1. The autoregressive operator of order p,
P
$(B) = _ ¢xBF, (15)
k=1

defines the input signal. Dargahi-Noubary (1995) has argued that many seismic source
function models can be regarded as having been generated by the one-parameter third-
order autoregressive model (p=3), with

$(B) = (1 - e *B)? (16)

where ko is an unknown parameter. Combining (13) and (16) leads to a seasonal ARMA
with a third order autoregressive component and a d** order moving average component
with period n that can be written as

n
Y5 (t) — 3e ™ 0y;(t — 1) + 3e7 2oy, (t — 2) — e~ %oy, (£ — 3) = w;(t) + Z Orw;(t — kd). (17)
k=1

In the above model, the delay d corresponds to the spacing of the charges in the ripple fired
event and the number of pulses n might be proportional to the number of shots. Hence, the
model selected will depend on both d and n, whereas the parameters estimated under each
model are kg, 04,05, ...,0, and the variance of w;(t), say 02, assuming a common variance
for the stochastic inputs generating the signal. The underlying time domain model is more
specific in specifying the duration or seasonal increment and in assuming that the smooth
component of the spectrum is generated by a single-parameter third-order autoregressive
model. Note that the general third-order model has also been proposed by Tjgstheim
(1975) as a model for short period seismic data.

Minimizing the sum of squared errors.for specified values of n and d leads to the
objective function

=1 t=nd

A N T
SSE(k0,91,92,...,0n) = Z Z 'wf-(t), (18)
j
which maximizes the log likelihood, and we may estimate o2 as

6= o ST a0), )

where the nonlinear optimization only involves NT' = N(T — nd + 1) residuals. In order
to select a model, we choose n and d as the joint minimizers of the Bayesian Information
Criterion (BIC) of Schwarz, 1978, say

BIC(n,d) = logs? + (0 lx;%(N T, | (20)
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The Schwarz criterion is consistent, i.e., the probability of fitting the wrong order model
converges to zero, whereas procedures based on Akaike’s Information Theory Criterion
(AIC) (Akaike, 1973), are not and lead to overfitting in some cases. If one has the idea
that there exists a true model of some order and the sample is quite large, as in the present
situation,l it is more reasonable to use the Schwarz criterion. If one is inclined to think
of finding the best approximation to some unknown model of possibly infinite order, the
various AIC measures are asymptotically efficient (Shibata, 1980) whereas BIC is not. For
a summary of the nonlinear Gauss-Newton estimation procedure applied to the repeated
measures ARMA model, see Shumway(1988).

To give an example, consider searching the contrived data in Figure 2 for the best
fitting seasonal ARMA process. It is convenient to limit the number of reflections to the
possible range 1 < n < 6 and the delays to the range 4 < d < 13. We begin with d = 4, so as
not to confuse the delays with the first three lags of the autoregressive part. Figure 4 shows
the resulting values of BIC and we note that there are a number of local minima, mostly
occurring at d = 8. The global minimum, however, is attained for n = 4,d = 4, and would
lead to values that differ from the correct values n = 4,d = 8. The estimates éj, j=14in
this latter case were —.47, .58, —.60, .16 and the alternating signs are not reasonable for the
application. The most reasonable model, for n = 3,d = 8 had the third smallest BIC and
gave positive estimates (.83, .41, .15) for the parameters and ko = .98. The ambiguity in the
multiple local minima, largely due to the difficulty of estimating the number of reflections
n, suggests looking at values of BIC averaged over n, shown in the lower panel of Figure
4. The consistency of the minima for d = 8 suggests taking this value, which turns out to
be reasonable from the individual time delays, placed at 71 = 8,72 = 15,73 = 23,74 = 31
points respectively with weights 6; = .9,62 = .9,0; = .6,04 = .7. In summary, there are
more possible interpretations for the ultimate model implied by the time domain analysis
and few approximate statistical significance tests are available for the number of reflections.
One might consider testing against a model with n = 0, but we did not do so because of

the number of possible alternatives.
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Stacked Plot of BIC for Simulated Data

Figure 4: BIC Contours for Seasonal ARMA Search Using Contrived Data. The i
darkest value corresponds to the minimum. The bottom panel averages BIC over the
number of reflections and shows a consistent delay at d = 8 points.
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4. The Nonlinear Cepstral F Detector

We may also take a nonlinear approach based on the multiplicative model (2). Note that
the spectrum of the observed series y;(t) in this case has the representation

Py, (v) = |4;(v)|* Po(v) P, (v)
= |4;()P10(v) PP (v) Pn, (v),
using (6). Then, taking logarithms yields the additive decomposition
log Py, (v) = log | 4;(v)[? + log |0(»)[? + log P(v) + log Pr, ()

To follow up on the suggestion in Section 2, based on the additive decomposition above,
we consider computing the logarithm of the spectral estimator at each channel. Defining
the discrete Fourier transform of y;(t) as Yj(£) (see (11)) at frequencies v, = £/T,£ =
0,1,...,7/2 — 1, we have the representation

log |Y;(£)|* = log Ps(ve) + log |43 (ve) | +log |6(we)|” + log |N; (&), (21)

where |N;(£))? is the periodogram, known to have approximately a chi-squared distribution
with 2 degrees of freedom when the noise n;(t), for example, is a linear process (see
Hannan, 1971, p. 249). Subject to regularity conditions on the linear process, the variance
is proportional to to the square of the spectrum, with an error term that is O(T~1).
Furthermore, for two frequencies separated by multiples of 1/T" , the correlation is of the
same order. Since the variance is proportional to the square of the mean, we may expect the
logarithm to have an approximately constant variance. If one smoothes the periodogram at
all, say over L adjacent frequencies (L=3 for the examples in this paper), the distribution
of the logarithm of the smoothed spectrum will be close to a normal distribution. This
suggests that, as an approximation, the error series in (21) could be regarded as stationary

normal processes.

BHT (1962) also suggested that, in the case of a single series, the log spectrum, as a
function of frequency, might be regarded as a pseudo-time series and that the cepstrum be
used to identify the periodicities (time delay differences) in the same way that the spectrum
does for conventional time series. In accordance with previous arguments, it is clear that
|6(v¢)|? will have periods equal to T'/(7; — 7%) and so the logarithm of the periodogram will
tend to a general shape having peaks at (75 —7)/T, 4,k = 1,...,n. Overall, it is clear that
the logarithm of the periodogram of the observed series in (21) will still be nonstationary
because of the likelihood that the component log|A;(vg)|*> will vary substantially over
frequency and in a manner that changes for different recording instruments.
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Since the raw series is also expected to have a nonstationary mean component, one
could detrend, subtracting a reasonable estimate of the smooth function upon which the
approximately stationary series rides. Any relatively smooth detrending will work; the
method used here was to fit a cubic spline with a single knot in the middle of the record
under the assumption that the underlying nonstationary component of the spectrum is
very smooth with a slight inflection point about half way through the record. Moving
average smoothing, called liftering by BHT, will also work but the length required subjects
the series to serious end effects. Once the detrending has been done, we work with the
resulting series and do not make further use of the functional form of the spline. Here, we
envision the component log|A4;(v)|? + log P(v) as a relatively smooth function that can
be approximated by a cubic spline with one knot as in (10). We estimate the parameters
and consider the detrended log-periodogram model

Y;(0)1

PP 8Pl e IN AP, 22)

The detrended log-periodogram is expressed in terms of a common signal log |6(v,)|? and
a noise term log | N;(€)|? which differs from site to site and represents local site effects.

To illustrate some of the above ideas, consider again the simulated ensemble of signals
shown in the top panel of Figure 2. The five resulting series, shown in Figure 2, all
contain slightly different signals at the same set of delays and we can argue that the model
given above is plausible and that any method based on the model should work feasonably
well. A typical observed spectrum is shown in the bottom panel of Figure 2 and we note
that it appears to be the sum of a smooth trend component, log |[A;(v)[? + log Ps(v),
shown as a solid line, a periodic component, corresponding to log |6(v)|? and a departure
from the periodic component corresponding to log ]N}u)]z. The observed log spectrum
is nonstationary because of the smooth component and, as suggested earlier, it would
be natural to detrend the log spectrum to eliminate the effect of the smooth function
log|A;(v)|? + log Ps(v). The left panel of Figure 5 shows the result of this adjustment
at each channel as dotted lines and it is clear that one might regard the detrended result
as the sum of a periodic function and noise, as in the periodogram model given above.
Furthermore, the average of the log spectra might be regarded as an estimator for log |8(v)]?
and we show the average in Figure 5 as a solid line superimposed on the five separate
detrended log spectra. The average seems to enhance the underlying periodic signal and
we suggest later that the deviation from these overall means are basically estimators for
the log spectra of the noise processes, log f(v). The result of detrending with a cubic
spline, as depicted in the lower panel of Figure 2, has the appearance of a stationary signal
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Figure 5: Bank of Detrended Log Spectra (Right) and the Cepstral F-Statistic Show-
ing Peaks at 8, 16, 23 and 30 points.
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with several periodic components corresponding to the time delay differences previously
mentioned. Here, we might expect periodicities at T — Tx = 7,8,15,16,23, 31, with po-
tentially the strongest components corresponding to time delays of 7 or 8 points, which
appear four times, time delays of 15 or 16 points, which appear three times, a time delay
of 23 points, which appears twice and a time delay of 31 points, which appears once.

This example and model (22) above motivates an approach to detecting a common
signal on an array that is similar to that given in Shumway (1971), where the discrete
Fourier transform, say

T/2-1

N e1/2 Y5 (0))? o o
Q;(d) =T ; tog lAj(VZ)Izps(Ve)e p{2nitd/T}

is regarded as behaving like the transform of a stationary process in the delay d =
0,1,...,T/4 at each channel so that one may write the signal plus noise model

Q;(d) = §(d) + V;(d), (23)

where the right hand side contains the transforms of the right hand side of (22). Here,
the signal transform S(d) is fixed and unknown and the noise V;(d) has approximately a
complex Gaussian distribution with mean 0 and variance o2 (d) at delay d. The Fourier
transform of such a process will be in the form of a sum of constants multiplied by adjacent
values of the approximately normally distributed log periodogram or smoothed spectra.
The linear combination will be approximately normal, since the components are approx-
imately normal, and will tend toward normality by central limit arguments even when
the components are not that close to normality. The noises are assumed uncorrelated for
different j and have identical cepstra, 02(d), at each channel. This was checked for several
events and found to be reasonable.

Then, motivated by the classical approach to detecting a signal in N stationarily
correlated time series, we note that testing the hypothesis S(d) = 0 leads to an F-Statistic
involving the total stacked cepstra (SCT)

N
SCT(d) = 1Q;(d)’ (29)
=1
and the spectrum of the stacked log spectra or mean stacked cepstra (SCM), say

SCM(d) = N|Q(d)P?, (25)
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where

N
Qd)=N"1Y_"Q;(d) (26)
Jj=1

is the mean Fourier transform of the array log-spectra. Figure 5 shows the original de-
trended log-spectra with the mean of the array log-spectra superimposed on each series and
we note that the common periodicities are enhanced in the stack. An important quantity
involved in the optimal detection statistic is the error cepstrum (SCE), defined as

N
SCE(d) =Y 1Q;(d) - Q(d)I?

j=1

— SCT(d) — SCM(d), (27)

which is a measure of the extent to which the individual channel transforms differ from the
mean transform. It can be interpreted as the cepstral noise component. The F-Statistic
resulting from the signal detection hypothesis is given by

Fraov-n(@ = (V- DEE0) (28)
and can also be interpreted as a cepstral Signal to noise ratio. The subscripts refer to an
F distribution with 2 and 2(V — 1) degrees of freedom. Note that the total cepstrum (24)
is exactly the sum-stack proposed by Alexander et al (1995), computed by adding up the
separate cepstra. Alexander et al have also considered the product-stack which does not
appear to have any identifiable statistical properties and we do not analyze it here. It is
clear that the sum-stack will not reflect the common signal components as well as either

the cepstral component due to the signal or the F-Statistic (28).

To illustrate, we return again to the contrived data shown in Figure 2 which contains
signals with a known configuration of delays. The average of the log spectra, shown in
the left panel of Figure 5, is an approximately unbiased estimator of log|0(v,)|? in (22);
its transform estimates S(d) in (23). Figure 5 shows the F-Statistic corresponding to the
contrived data shown in Figure 2. Note the strong components appearing at delays of 8,
15, 23, 30, and 36 points that may be compared with the known true delays 8, 15, 23, and
31 points. Note that the true time delays would imply frequencies of the form 7, 8, 15,
16, 23, and 31 points respectively. The cepstral F-Statistic, shown in the right panel of
Figure 5, provides a statistical level of significance for the various peaks and we note that
the significant peaks are 8, 16, 23, and 30 points so that the smallest of the larger peaks at
d=36 in the stacked cepstrum is not significant. All peaks are significant at a false alarm
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rate of .001. In general, since there are often a large number of delays of interest, one
should insist on at least .01 as a level of significance.

5. Analysis of Kola Mining Explosions

For testing on actual data, we focussed on the deonvolution and cepstral F methodologies.
The parametric seasonal ARMA models of Section 3 were often unstable and it was difficult
to obtain reasonable estimators for the Weights 01,0, ...,0, for the simulated data. In
addition, the estimation procedure seemed to be unduly sensitive to restricting time delays
to be constant multiples of some underlying delay d. In contrast, the nonparametric
deconvolution and cepstral F methods concentrated on isolating only time delay differences
on the theory that a consistent set of time delay differences will produce a strong peak in
the cepstrum of the deconvolved signal or in the cepstral F-Statistic. This was more in
line with the idea that time delays induced in ripple-firing may be somewhat irregular. For
the simulated data, both frequency domain methods isolated the predictable time delay
differences.

Data used for testing the frequency domain methodology were from mining explosions
in the Kola Peninsula, situated in the Russian Arctic. Ten mining explosions at the HD9
quarry were observed at 5 channels of the ARCESS Array in northern Norway (see Der
et al, 1987). Figure 1 shows at typical mine blast (110), sampled at .025 seconds, and we
note that the four phases Py, Py, S,, and L, are fairly obvious. This is typical of the other
events (054, 066, 138, 147, 182, 219, 246, 282, and 285) and it was fairly easy to construct
four files containing the separate phases for each of the 10 events. Figure 1 shows in the
bottom panel, the five series used for the P, phase of event 110.

The quantities of interest will be the cepstrum of the deconvolved signal Z(t), given
by (11) and (12) for method (i), and the cepstral F-Statistic (28) for method (iii). Figures
A1-A20 show plots of the two statistics for each of the 10 events (four phases per plot).
We used 256 point samples for all phases except Ly, which had 512 points. Ripple-firing
may be indicated best by a consistent pattern of strong peaks, with delay time differences
within the time intervals that might be plausible for delays or their aliases. Sampling is
40 points per second and the delays are given in points. To convert to milliseconds (ms)
multiply by 25. For example, Figure Al shows peaks at 4, 10-11, 16, 21, and 26, which
might imply a ripple delay of 5-6 points or of 125-150 ms. Unfortunately, Figure A2,
which plots the F-Statistic does not confirm a consistent delay in that range. Note that
the significance values for the F-Statistic at the levels .001, .01, and .05 for 2 and 8 degrees
. of freedom are 18.5, 8.7, and 4.5, respectively.
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Table 1: Delays (in pts.) for Deconvolved Cepstra and Cepstral F Statistics

Event Phase
P, P, Sn L,
Deconvolutions
054 4,14,21,29 5,12,21,26 4,11,16,21,26 5,15,28
066 2,10,23,29 3,10,17,22 8,14,20,28 4,14
110 2,23 7,17 8,14,21,29 3,9,18,25
138 3,9,14,23 4,10,22,28 4,11,31 6,18,24,30
147  3,8,14,20,24,29 6,17,21,26 6,11,16,31  3,7,11,15,20,29
182 4,14,21 5,10 7,19,26 5,13,19,25
219 3,9,15,28 2,8,11,15,22 6,11,19 3,7,11,15,23
246 3,8,13,18,27 5,10,17,26 3,7,11,20 4,11,18,24
282 6,12,22 2,15,20,25 3,9,15,19,26 2,11,16,26
Cepstral F
.5in
054 4,21 2,11,20 2,12,21 3
066 11,23 11,15,22,30 2,12
110 7,14,24 8,25 12 2,9,21,25
138 2,8,18,31 11,22,30 2,12,19,26 2,10,18,24
147 7,20 7,31 2,7,14,21,28 2,7,15,24
182 4,21 3,17,30 8,13,20,28 8,13,18,22,25
219 4,15,20,25,30 6,15,26 10,19,25 8,11,16,23
246 12,23 6,10,24,30 7,13 10,19,22
282 11,21,25,31 14,22,29 12,19,24,30 3,11,16
285 3,11,17,22,26 3,11,17,26 5,13,18,27 7,18

We went through all the plots and extracted what appeared to be the most significant
peaks in the time delays for both the cepstra of the deconvolved series and the cepstral
F-Statistic. That information is given in Table 1. The results overall are somewhat dis-
appointing. There is less consistency between the two measures than one would have
expected, with the F-Statistic generally yielding fewer significant peaks. For example, Fig-
ure A8, for Event 138, shows evidence of weak rippling (.01 and .05 levels) in the P, and S,
and Ly phases but not in Py. Figure A7 from the same event shows rippling in the P, and
S, phases but not really in the other two phases. One might possibly identify consistent
rippling at time delays from 6-10 points, i.e. 150-250 ms for this particular event. Other

19




events are roughly similar, with the evidence of delay firing often indicated weakly in the
range 125-250 ms.

It is clear from Table 1 that all phases tend to show evidence of delays for various
events but that there are no clear indications that the same patterns for all phases and both
statistics hold for any event in this data set. Given the successes enjoyed by both methods
on simulated data, one would have to say that the evidence for consistent ripple firing over
all phases in the Kola mining data is rather weak. In addition, there is not a single phase
that seems to do well for all events. Of course, a larger array, say of 30-40 elements, could
be helpful for greater enhancement of the common pattern and cancellation of patterns
that are due to local reverberations.
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6. Discussion

In this project, we have developed and tested three methods for detecting ripple-firing on
arrays. In simulations, it is clear that the two methods based on the cepstrum, i.e., cepstral
analysis of the deconvolved signal and the cepstral F-Statistic offer the most promise. We
prefer the cepstral F-Statistic for the following reasons.

1. The two quantities involved in the cepstral F are comparable to those appearing in
the cepstral stack proposed by Alexander et al (1995) for the purpose of estimating
P-pP reflection delays. Hence, the computed statistic is a function of quantities

that are accepted as meaningful in the seismic literature.

9. The statistic has a convenient interpretation as a signal to noise ratio and a
known statistical distribution under the hypothesis of no delay firing. Hence, we
can set a specific level for false alarms. These statistical properties distinguish its
performance from that of the simple stacked spectra of Alexander et al (1995).

3. Since the underlying model is for the squared periodogram, it is not critical to
line the signals up on the array. That is, the form is related to incoherent beam

forming.

It would be remiss not to mention that Alexander et al (1995) primarily apply their
methods to the problem of determining source depth. This is functionally related to
the distance between the primary P wave and the single reflection pP. This problem is
somewhat easier since there is conceptually only one reflection and we would have n =1
in (7), i.e. | '

0(v)|? = 1+ 62 + 26, cos(2nvd)

with only a single frequency to detect. Hence, it would be interesting to apply the cepstral
F-Statistic to the depth determination problem as an alternative to the simple sum and
product stacks employed by Alexander et al (1995). ‘
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Appendix A:

Cepstral Analyses of Kola Peninsula Events
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