UNITED STATES AIR FORCE RESEARCH LABORATORY

DIMENSIONALITY OF ABILITY-REQUIREMENTS FOR GENERIC JOB ACTIVITIES

Thomas E. Powell
Monterey Technologies, Inc.,
1143G Executive Circle
Cary NC 27511

J. W. Cunningham
Department of Psychology
North Carolina State University
Box 7801
Raleigh NC 27695-7801

William E. Wimpee
AIR FORCE RESEARCH LABORATORY
HUMAN EFFECTIVENESS DIRECTORATE
MISSION CRITICAL SKILLS DIVISION
7909 Lindbergh Drive
Brooks AFB, TX 78235-5352

Mark A. Wilson
Department of Psychology
North Carolina State University
Box 7801
Raleigh NC 27695-7801

Rodger D. Ballentine
Center for the Study of Work Teams
University of North Texas
P.O. Box 13587
Denton TX 76203-6587

Approved for public release; distribution unlimited.
NOTICES

This report is published in the interest of scientific and technical information exchange and does not constitute approval or disapproval of its ideas or findings.

Using Government drawings, specifications, or other data included in this document for any purpose other than Government-related procurement does not in any way obligate the US Government. The fact that the Government formulated or supplied the drawings, specifications, or other data, does not license the holder or any other person or corporation, or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

The Office of Public Affairs has reviewed this paper, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

WILLIAM E. WIMPEE, Lt Col, USAF
Project Scientist

R. BRUCE GOULD, Ph.D.
Technical Director

WILLIAM E. ALLEY, Ph.D.
Chief, Mission Critical Skills Division
Human Effectiveness Directorate
Dimensionality of Ability-Requirements for Generic Job Activities

Thomas E. Powell, J.W. Cunningham, William E. Wimpee, Mark A. Wilson, Rodger D. Ballentine

Monterey Technologies, 1143G Executive Circle, Cary, NC 27511
Psychology Dept., North Carolina State Univ., Box 7801 Psychology Dept. Raleigh, NC 27695-7801; University of North Texas, P.O. Box 13587, Denton, TX 76203-6587

Air Force Research Laboratory
Human Effectiveness Directorate
Mission Critical Skills Division
7909 Lindbergh Drive
Brooks Air Force Base TX 78235-5352

Air Force Research Laboratory Technical Monitor: Lt Col William E. Wimpee, (210) 536-4469

Approved for public release; distribution unlimited.

This study presents partial results from an ongoing research effort which is investigating the linkages between taxonomies of work and human abilities. Results are presented from a cross-system comparison of the dimensions underlying ability-requirement matrices derived from three structured job analysis questionnaires and three sets of cognitive, physical, psychomotor, and sensory abilities. Exploratory factor analyses were conducted on the intercorrelations of mean ability-requirement ratings of nonomothetic job elements. The Analyses produced a core set of human performance factors that were meaningful, replicable and similar between the three independent samples. Such factors might prove useful in condensing and organizing ability-requirements information and in comparing results across instruments. In some instances, they might serve as stable composite variables for such purposes as job ability-requirement estimation and job evaluation.

14. SUBJECT TERMS
Job Analysis; Occupational Analysis Inventory; Job Ability Requirement Estimation
Nomothetic Job Descriptors; Job Evaluation; Taxonomies of Work
Taxonomies of Human Abilities; Sensory Abilities; Job Component Analysis
Human Performance Factors; General Work Inventory

15. NUMBER OF PAGES
16

16. PRICE CODE
UL

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL
DIMENSIONALITY OF ABILITY-REQUIREMENTS FOR GENERIC JOB ELEMENTS

Psychologists have long sought dimensions which define and explain behavior as it relates to the worlds of work and human abilities (Cunningham, Tuttle, Floyd, & Bates, 1974; Drewes, 1993; Dunnette, 1976). Several research programs have been directed toward establishing dimensions of human work and human abilities. Although classification efforts in these two domains have produced promising results, they have proceeded largely independently. The result has been two differing taxonomic thrusts which have implications in the area of human performance. Several authors have called for research which explores the linkages between these two taxonomic worlds. In the present research, the job component approach proposed by McCormick (1979) was used to investigate these linkages.

The job component approach involves (a) the development of a general, universal set of job elements (components) and (b) the establishment of ability-requirement weights for those job components. The weights, which can be established using subject matter experts, represent the extent to which the abilities are required for successful performance relative to the job components. Subsequently, these ability-requirement estimates can be derived for any job that is rated or scored on the job components (e.g., Cunningham et al; 1983; McCormick, DeNisi, & Shaw, 1979; Sparrow, 1989). For research purposes, these estimates can provide a basis for investigating the linkages between the taxonomic worlds of work and human abilities (Peterson and Bownas, 1982).

The present study explored linkages between work and human ability taxonomies by investigating the dimensionality of ability-requirement matrices derived from three sets of
general job elements. For that purpose, exploratory factor analysis was regarded as an appropriate analytical tool. The hypothesis was that a given ability-requirement matrix, derived for a set of general work descriptors and a set of defined human abilities, could be reduced to a smaller set of meaningful human performance dimensions. To investigate this hypothesis in a way that would provide evidence for the convergent validity of the results, we analyzed three independently developed matrices.

METHOD

Instruments and Raters

The study involved three structured job analysis questionnaires and three sets of defined human abilities. The job analysis questionnaires included the General Work Inventory (GWI; Cunningham, Wimpee, & Ballentine, 1990), the Occupation Analysis Inventory (OAI; Cunningham, Boese, Neeb, & Pass, 1983), and the Position Analysis Questionnaire (PAQ; McCormick, Jeanneret, & Mecham, 1972). Each of 217 GWI job elements was rated by job analysts, personnel specialists, and/or graduate students on 54 ability definitions in the Manual for Ability Requirement Scales (MARS; Fleishman, 1975, 1990; Fleishman & Quaintance, 1984). Each of 545 OAI job elements was rated on 36 ability definitions in the Attribute Requirement Inventory (ARI; Neeb, Cunningham, & Tuttle, 1970; Cunningham, et al, 1983). Each of 182 PAQ job elements was rated on 49 ability definitions compiled by McCormick and his associates (Mecham, 1968; Marquardt & McCormick, 1972).
Procedures

A job element's estimated requirement for a particular ability was derived by computing a mean from several judges' ratings. This produced from each of the three rating sets a job element-by-ability matrix of ability-requirement weights. The ability-requirement matrix for the GWI data is represented in Figure 1.

<table>
<thead>
<tr>
<th>Human Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Job</td>
</tr>
<tr>
<td>Components</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>q</td>
</tr>
</tbody>
</table>

Figure 1. Requirement weights of q job components on k human attributes.

Reliability estimates for the ratings were determined by an analysis of variance (ANOVA) procedure for estimating inter-judge agreement (Winer, 1971). A repeated-measures ANOVA
procedure was performed separately for each of the abilities, with raters as the treatment variable and the job element items as the cases on which repeated measures were taken. Using this procedure, an inter-class coefficient of reliability was computed for each ability. The inter-class coefficient can be interpreted as an estimated correlation between the mean ability-requirement rating profile of the job elements and a hypothetical mean profile derived from a new sample of raters drawn randomly from the same population.

Separate factor analyses were performed on complete GWI, OAI and PAQ ability requirement matrices. All abilities within each matrix were inter-correlated based on their job element weights (217 GWI job elements, 545 OAI job elements and 182 PAQ job elements), and the resultant correlations were subjected to principal axes factor analysis using R-squares as communality estimates, followed by varimax rotation. In order to determine the number of factors to be rotated the scree test was applied and eigenvalue plots were examined for breaks or discontinuities. Following factor rotation, coefficients of congruence (Gorsuch, 1974) were computed as indices of factor replication between factors that were judgmentally matched between the three solutions. In addition, for the GWI data, the total sample of raters was divided into two comparable subsamples, and subsample data were subjected independently to the previously described analysis. Coefficients of congruence were then computed between factors across subsamples as indices of factor stability.

A second set of analyses involved only matching abilities. That is, the procedure described above was carried out on those abilities which the data sets had in common. Factor interrelationships between data sets were then estimated via coefficients of congruence.
RESULTS

An estimated reliability was computed for the mean ratings of the job elements on each ability. In general, the ability-requirement ratings showed substantial reliability with more than 90% percent of the abilities across the three data sets obtaining an estimated interrater reliability of .80 or higher. Based on these results it was concluded that the ability-requirement estimates were sufficiently stable for research purposes.

The results from the first set of factor analyses provided a basis for judgmental comparison across the three data sets. Using the previously mentioned criteria 10 factors were rotated in the GWI and OAI analyses and eight factors were rotated in the PAQ analysis. The factor titles and the percent of variance accounted for are listed in Table 1. Table 1 also presents the coefficients of congruence calculated from the GWI subsample analyses.

Six apparent common factors were identified between the three solutions. The titles of these factors were: Strength and Stamina, Equipment-Control Sensory and Motor Abilities, Manual Abilities, Reasoning and Problem Solving, Numerical Abilities, and Visual Field Perception. Two dimensions, Verbal Abilities and Auditory Abilities, emerged from the GWI and OAI data sets, but not from the PAQ data. Four additional factors, though meaningful, were unique to one
solution: Written Comprehension and Closure (from the GWI analysis), Aesthetic Abilities (from the OAI analysis), and Taste-related Abilities (from the PAQ analysis).

The results from the factor analyses on matching abilities provided a basis for empirical comparison between the three solutions. Table 2 presents the factors derived from the GWI and OAI matching abilities. Tables 3 and 4 present the results from the GWI-PAQ and OAI-PAQ analyses.
Table 1. Human Performance Dimensions Derived from GWI, OAI, and PAQ Ability Requirement Data

<table>
<thead>
<tr>
<th>GWI</th>
<th>% Var.</th>
<th>OAI</th>
<th>% Var.</th>
<th>PAQ</th>
<th>% Var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS: Strength and Stamina (.98)</td>
<td>19.73</td>
<td>SS: Strength and Stamina</td>
<td>8.42</td>
<td>SS: Strength and Stamina</td>
<td>27.24</td>
</tr>
<tr>
<td>EC: Equipment-Control Sensory and Motor Abilities (.97)</td>
<td>13.70</td>
<td>EC: Equipment-Control Sensory and Motor Abilities</td>
<td>8.11</td>
<td>EC: Equipment-Control Sensory and Motor Abilities</td>
<td>3.76</td>
</tr>
<tr>
<td>RP: Reasoning/Problem Solving (.87)</td>
<td>8.23</td>
<td>RP: Reasoning/Problem Solving</td>
<td>7.81</td>
<td>RP: Reasoning/Problem Solving</td>
<td>21.78</td>
</tr>
<tr>
<td>Nm: Numerical Abilities (.92)</td>
<td>5.17</td>
<td>Nm: Numerical Abilities</td>
<td>4.23</td>
<td>Nm: Numerical Abilities</td>
<td>3.04</td>
</tr>
<tr>
<td>Vb: Verbal Abilities (.92)</td>
<td>12.32</td>
<td>Vb: Verbal Abilities</td>
<td>8.68</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ad: Auditory Abilities (.96)</td>
<td>7.99</td>
<td>SH: Speech Hearing</td>
<td>3.48</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>WC: Written Comprehension</td>
<td>2.66</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Cl: Closure</td>
<td>2.62</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>As: Aesthetic Abilities</td>
<td>3.32</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>BE: Body Equilibrium</td>
<td>1.88</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Mc: Mechanical Ability</td>
<td>2.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Ts: Taste-related Abilities</td>
<td>3.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The coefficients of congruence were based on GWI sub-sample analyses.
Table 2. Coefficients Of Congruence Between GWI And OAI Based Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>SS</th>
<th>EC</th>
<th>RP</th>
<th>Mn</th>
<th>Nm</th>
<th>VP</th>
<th>Vb</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>.29</td>
<td>.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>-.33</td>
<td>-.20</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>.43</td>
<td>.51</td>
<td>-.35</td>
<td>.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm</td>
<td>-.27</td>
<td>-.19</td>
<td>-.04</td>
<td>.02</td>
<td>.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>-.02</td>
<td>.09</td>
<td>.10</td>
<td>.21</td>
<td>.10</td>
<td>.87</td>
<td></td>
</tr>
<tr>
<td>Vb</td>
<td>-.40</td>
<td>-.40</td>
<td>.74</td>
<td>-.37</td>
<td>.18</td>
<td>-.22</td>
<td>.85</td>
</tr>
</tbody>
</table>

SS=Strength and Stamina; EC=Equipment Control-Sensory and Motor Abilities; RP=Reasoning/Problem Solving; Mn=Manual Abilities; Nm=Numerical Abilities; VP=Visual Field Perception; Vb=Verbal Abilities.

Table 3. Coefficients Of Congruence Between GWI And PAQ Based Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>SS</th>
<th>EC</th>
<th>RP</th>
<th>Mn</th>
<th>Nm</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>.61</td>
<td>.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>-.15</td>
<td>.23</td>
<td>.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>.62</td>
<td>.41</td>
<td>-.30</td>
<td>.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm</td>
<td>-.39</td>
<td>-.21</td>
<td>.40</td>
<td>-.08</td>
<td>.94</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>-.01</td>
<td>-.13</td>
<td>-.10</td>
<td>.26</td>
<td>.20</td>
<td>.64</td>
</tr>
<tr>
<td>Vb</td>
<td>-.43</td>
<td>-.52</td>
<td>.75</td>
<td>-.37</td>
<td>.22</td>
<td>-.44</td>
</tr>
</tbody>
</table>
DISCUSSION

The main purpose of this study was to investigate the factors underlying ability-requirement matrices derived from mean ability ratings of general job elements. The factors that emerged from the overall analyses were meaningful and similar between three independent data sets based on different instruments. This suggests some redundancy in the ratings of job elements on large numbers of abilities. It also suggests the job component approach is a viable approach to investigating the linkages between taxonomies of work and human abilities.

The coefficients of congruence for matched factors on the main diagonals of Tables 2-4 are substantially larger than the off-diagonal coefficients for non-matching dimensions. These
results were obtained using different job analysis instruments and different samples of raters. This evidence suggests that the factors are replicable. As further evidence of factor replicability, coefficients of congruence for GWI sub-sample data (Table 1) were all acceptably large.

Factors such as those derived in this study might prove useful in condensing and organizing ability-requirement information and in comparing results across instruments. In some instances, they might serve as stable composite variables for such purposes as job ability-requirement estimation and job evaluation. Research currently under way will derive factors from jobs' ability-requirement estimates based on job component methodology, and from direct MARS ratings of Air Force enlisted occupations. Future research might apply confirmatory factor analyses to ability-requirement data in order to further support the hypothesized structure.
REFERENCES

Note: The views expressed herein represent the authors' and do not necessarily reflect the views of the U.S. Air Force, other services, or the U.S. Department of Defense.