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1 Introduction

This report summarizes the research results performed from July 1, 1994
through August 31, 1997 under the project entitled “Pattern Recognition
and Image Analysis Extensions to the [E2000 IPToolkit,” Grant No. F30602-
94-1-0010, funded by the United States Air Force. The research effort was
performed at the University of Vermont by Prof. Robert R. Snapp and seven
graduate students under his supervision. The work resulted in one jour-
nal publication in the Annals of Statistics, six conference papers, a 40 page
technical report, an X Windows software package, and the development of a
novel algorithm that efficiently approximates a k-nearest neighbor classifier
in low dimensional feature spaces. The quality of this work is reflected by
the high reviewing standards of the journals and conferences used to com-
municate these results, and the award of a competitive research grant from
the U. S. Army Research Office to continue this work!, and invitations to
present talks describing some of these results at colloquia at Cambridge Uni-
versity (Cambridge, England, October 1994), Concordia University (Montreal,
Canada, May 1995), Rensselaer Polytechnic Institute (Troy, NY, April 1995),
SUNY Buffalo (October 1995), and Siemens Corporate Research, (Princeton,
NJ, October 1995). These research results are described in greater detail in
the following sections, and complete copies of all publications are contained
in Section 6.

Section 2 describes the theoretical results derived, including a finite-sample
analysis of the k-nearest neighbor classifier under different metrics, analytic
support for the asymptotic optimality of a weighted Euclidean metric. Sec-
tion 3 describes two algorithms inspired by the theory: (i) a strategy for esti-
mating the Bayes risk of a practical pattern classification from a set of classi-
fied patterns; and (ii) an efficient implementation of the k-nearest neighbor
classifier, called the labeled cell classifier. Section 4 describes an X Windows
program that incorporates a graphical tool for building labeled and unlabeled
reference sets from multispectral images interactively, and includes an effi-
cient implementation of the k-nearest neighbor classifier for classifying other
pixels in the same, or related images. Section 5 identifies the students who
participated in this research, and were supported on this grant. Section 6 de-
scribes the publications that grew out of this project. Section 7 summarizes

1“Finite Sample Analyses of Nearest Neighbor Algorithms,” U. S. Army Research Office,
DAAGS55-98-1-0022




and discusses the practical relevance of our work to image exploitation.

2 Theoretical Results

The most significant results of the research were two theoretical discover-
jes related to a finite-sample analysis of the k-nearest neighbor classifier[12],
one of the most popular pattern recognition algorithms in use today. In this
context, we assume that each pattern is a vector, constructed from a finite
number of measurements, or features [10]. As a simple example, each pixel
in a multispectral image can be represented as a pattern using the intensities
of the spectral bands as features. As a more general example, each pixel can
be represented using the intensities obtained from an array of image pro-
cessing filters that are centered about that pixel (e.g., edge, texture, or shape
detectors). In this way, salient information about the values of the neigh-
boring image pixels can be incorporated within a pattern. The number of
features (e.g., the sum of the number spectral bands and the number of fil-
ters) used to represent each pattern is called the dimensionality of the feature
space. In order for this scheme to be useful, features should be selected so
that patterns originating from distinct states of nature, or classes, are more
or less distinguishable. As it is rarely possible in practice to analytically de-
scribe how patterns of a given class are generated, almost every classification
method is based on the information contained in a training set of correctly
labeled patterns, or reference sample, that is a set of feature vectors, each
labeled by its true class.

Given a reference sample (or “training set”) of m labeled (i.e., classified)
feature vectors the k nearest neighbor classifier assigns an input pattern X
to a class by identifying the subset of k feature vectors from the reference
sample that are closest to x using a predefined distance function (or metric).
The input pattern is then assigned to the class that appears most frequently
within the subset of k nearest neighbors.

Despite its simplicity, this algorithm has been shown theoretically to be
as accurate as a Bayes classifier (the most accurate pattern classifier possible)
in the limit of an infinite sample size [35]. Fortunately, this limit converges
rapidly for many practical problems, which, along with its ease of use, is why
it so popular among practitioners. In image exploitation, nearest neighbor
methods can be used to compare the accuracy of different feature repre-
sentations for a given classification problem. Because there is no extensive

4




training phase, k nearest neighbor classifiers can be quickly constructed and
put on line, as new application needs arise.

2.1 Finite-Sample Analysis

The research that we performed provides a quantitative description on how
this limit is achieved, and enables an improved understanding of this clas-
sifier’s performance using finite reference samples. This work extends the
classic results of Cover and Hart [5, 4], and corrects the recent work of Fuku-
naga and Hummels [19]. Specifically, in a series of papers [28, 29, 30, 31] we
showed that for classification problems that possess a certain degree of reg-
ularity, the probability of error of the k nearest neighbor classifier Py, (error)
can be accurately estimated from an asymptotic series of the form

P (error) = co + > cym™I™, (1)
=2

Here, ¢y = P (error) denotes the expression derived by Cover and Hart [5]
for the probability of error of the k nearest neighbor classifier in the infinite
sample limit; m denotes the number of labeled patterns in the reference
sample, and n, the dimensionality of each pattern. As (1) is an asymptotic
expansion in the sense of Poincaré [11], it can be truncated at any point,
resulting in an error with magnitude of the first neglected term. We also
have obtained analytic expressions for the leading expansion coefficients, c;,
in the summation of Eqn. (1) in terms of the probability distributions that
define the pattern recognition problem, the value of k, and the metric used.
Eqn. (1) is significant for the following reasons:

o If the probability distributions that describe each pattern class are known,
an N-th order truncation of (1) can be used to predict the finite sample
accuracy of a k nearest neighbor classifiers, as values of the expansion
coefficients P, (error), ¢, €3, ... ,Cy can be evaluated numerically from
the expressions published in [31].

o If the probability distributions that describe each pattern class are not
known, as is the case in nearly every pattern recognition problem of
practical interest, then an N-th order truncation of (1) can be used to
predict the finite sample accuracy of a k nearest neighbor classifier,
as values of the expansion coefficients P, (error), c;,cs,...,Cy can be
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estimated statistically using standard resampling methods [27, 33]. In
particular, (1) can be used to estimate the practical benefit of acquir-
ing more reference data, and thus is useful for designing k nearest
neighbor classifiers. (Section 3.1 describes an extension of this idea for
estimating the Bayes risk from a labeled reference sample.)

e Eqn. (1), and the analytic form of the leading coefficients, provide use-
ful fundamental insights about this algorithm. For example, the factor
of m~2/" in the second term is an analytic validation of the curse of
dimensionality. Similarly an analysis of coefficient c;, described be-
low, demonstrates that a weighted Euclidean metric is asymptctically
optimal for the class of problems considered by this analysis.

2.2 Asymptotic optimality of the Euclidean metric

A pressing issue in the realm of applied pattern recognition is how does
one design a pattern classifier for a given problem. In the context of the
k nearest neighbor algorithm, one might ask what metric yields the most
accurate classifier. This is an open problem, and generally depends upon
specifics of the problem. Nevertheless, for the class of sufficiently smooth
problems our work demonstrates that for sufficiently large sample size, a
weighted Euclidean metric is the optimal global L, metric [30, 31].

To show this, we considered a broad class of global metrics derived from
the standard L, norm:

BlxciP+---+|xpl? ¢ ifl<p<oo,
xll, = max |x; : if p = oo,
l<i<n

and assumed the general global metric
dx,y) = JAx -yl

where A is an arbitrary nonsingular n-by-n matrix, and p is chosen from
the interval 1 < p < 0. Under these assumptions, we showed that Eqn. (1)
converges uniformly with respect to values of A and p. Since the leading
coefficient ¢, does not depend on these values, the optimal asymptotic met-
ric can be found by finding the values of A and p that minimize the next
most significant coefficient, namely c,. Surprisingly, the optimal value of p




equals 2, independent of the specifics of the pattern recognition problem. We
also obtained an expression for the optimal weight matrix A in terms of the
probability distributions that define the given pattern recognition problem.
Numerical simulations were also used to demonstrate the practical signifi-
cance of these findings [31].

3 Algorithms Developed

Two promising algorithms were developed during the course of this project.
The first directly stems from the theoretical analysis described in the previ-
ous section for estimating the Bayes risk of a practical pattern recognition
problem from real data [27, 33]. The second algorithm, the labeled cell clas-
sifier, is a computationally efficient approximation to a k nearest neighbor
classifier [24]. Both algorithms are described below.

3.1 Estimating the Bayes risk

Given a pattern classification problem, a Bayes classifier is defined to be a
pattern classifier that minimizes the probability of error (or in more general
terms the statistical risk, as some misclassifications may incur a greater cost
than others). Computationally, a Bayes classifier assigns each input pattern
to the class that has the maximum posterior probability [10]. The probability
of error of such a classifier is called the Bayes risk; we shall denote its value
bY Rp.

In practice the construction of a Bayes classifier generally requires knowl-
edge of the probability distributions that define the given pattern classifica-
tion problem. Unfortunately, this information is usually not available for
problems of practical interest. Nevertheless, our research demonstrates that
accurate estimates of the Bayes risk can be obtained from a sufficiently large
reference sample of labeled feature vectors. Estimates of the Bayes risk can
facilitate the design of better classifiers. For example, since the value of Rp .
depends upon the set of features chosen to represent each pattern, one might
compare estimates of the Bayes risk for a number of different feature sets,
and then select the representation that yields the smallest value. Several '
previous efforts have utilized the k nearest neighbor classifier towards this
end [6, 20, 21, 23]. Our work reported in references [27, 33] takes advantage
of Egn. (1), the most detailed parametric model available of the accuracy of



this pattern classifier as a function of the reference sample size m. Using a

large pool of classified data, one can construct a sequence of k nearest neigh-

bor classifiers of varying sample sizes. Using standard least squares meth-

ods, one can obtain estimates for the unknown coefficients ¢, ¢z,... ,CN. Oof

greatest utility is the estimated value of ¢y which can be used to place upper

and lower bounds on the value of the Bayes risk Rp: To enable an estimate of '
Rp with precision €, choose k > 2/€?, and estimate co by the above method.

After inverting an inequality derived by Devroye [7] one obtains

Co — € < Rp < ¢o.

The practical utility of this method was demonstrated by two experi-
ments, one using synthetic data, where the true Bayes risk was known, and
the other using a pattern classification problem using imagery obtained from
the IE2000 group at Rome Laboratory (See Fig. 1).

3.2 Labeled cell classifier

Although accurate and easy to adapt to new classification problems, the time
that a k nearest neighbor classifier needs to classify an input pattern in-
creases with the size of the reference sample. Over the years, different tech-
niques have been developed to simplify the search for the k nearest neighbors
in a reference sample. (That the Sixth DIMACS Implementation Challenge for
1998 centers on this task, demonstrates that this remains a ripe problem [9].)
Most approaches fall within two broad categories: (i) exact implementations
that restrict the search for nearest neighbors, by organizing the data in a hier-
archal manner [13, 15, 17, 14], or (ii) approximate implementations that edit
the reference sample [1, 16, 36]. In our study [24], we contructed a hybrid
approach.

3.2.1 k-d trees

The labeled cell algorithm, described in Section 3.2.2, is based on the imple-
mentation of Friedman, Bentley, and Finkel{14] that organizes the reference
sample X, into an n-dimensional binary tree, such that the root node rep-
resents the entire feature space, and each node in the tree represents an
isothetic cell that contains a subset of X,,. The two descendants of each
nonterminal node divide the parent cell along one coordinate, called the key,
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Figure 1: A fourth-order (N = 4) fit of Eqn. (1) to 33 empirical estimates of R,
for a pixel classification problem obtained from a multispectral satellite im-
age. Patterns were constructed using five spectral components of each image
pixel. Using R., = 0.0758, the fourth-order fit, R, = 0.0758 + 0.124m2/> +
0.0133m~%/5, is plotted as a solid curve on a log-log scale to reveal the sig-
nificance of the j = 2 term.

such that the number of reference patterns in each child cell differs at most
by one. The key may be the coordinate of greatest variation of the refer-
ence vectors in the parent cell, and the threshold may be the median of their
projections along the chosen coordinate. Pairs of descendants are added re-
cursively until the number of vectors in a cell does not exceed a bucket size
b. Note that the nodes at a constant depth represent a partition of the fea-
ture space, as do the leaf nodes. Fig. 2 displays a k-d tree constructed from
a reference sample of 16 points in R?, with b = 2.

After the tree is completed, the k feature vectors in the tree that are near-
est to a given input pattern X can be identified. A priority queue is used to
maintain the k feature vectors encountered so far that are closest to x. Be-
ginning with the root, nodes in the tree are examined recursively until it is
certain that the k nearest neighbors have been found. If the current node
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Figure 2: (a) A k-d tree of depth three is constructed from this set of sixteen
feature vectors in R? that forms the root of the tree. (b) The set is bisected
into left and right portions, forming the two descendent nodes of the root,
as the largest variation appears along the horizontal coordinate. (c) Each re-
sulting subset is further divided into two equal partitions along the vertical
coordinate, forming the four nodes at depth two in the tree. (d) Each result-
ing subset is then divided along the coordinate of greatest variation. Each
resulting cell, labeled with a greek letter, contains two feature vectors, and
forms a leaf node of the k-d tree (e).

is a leaf node, then the priority queue is updated after examining its b or
fewer feature vectors. Otherwise the key i and threshold value t of the node
are examined, and the recursive procedure is applied first to the descendant
that falls on the same side of t as x;, and then to its sibling. For efficiency,
nodes are only examined if their cell boundaries are closer to x than the k-th
nearest neighbor found so far (the bounds-overlap-ball test); and the search
is stopped as soon as the k-th nearest neighbor is closer to x than the bound-
aries of every unexamined cell (the ball-within-bounds test).

3.2.2 Labeling the cells

The labeled cell algorithm is designed to reduce the number of feature vec-
tors examined during each classification. As in the previous implementation,
the reference sample is organized into a multidimensional binary search tree
using the coordinates of the feature vectors as keys. An integer k' = k and
a fraction & > O are selected. A central test vector from each leaf cell is
then classified with an exact k’-nearest-neighbor classifier (e.g., the previous
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implementation). This test vector could be the centroid of the leaf cell (as-
suming it is compact), or the sample mean of its reference vectors. If the
number of k'-nearest-neighbors that belong to the most frequent class ex-
ceeds | ok’ |, then the leaf cell is given the label of that class.? (Otherwise,
it remains unlabeled.) Nonterminal nodes are examined recursively: if two
siblings share a common class label, then their parent is assigned the same
label.

Input patterns are classified by the k-d tree algorithm, with one important
exception: if an input pattern belongs to a cell that is labeled, then it is
immediately assigned to the indicated class. Thus no reference vectors are
examined if an input falls within a labeled cell. For different values of «,
k', and k, the labeled cell algorithm implements a variety of classifiers: ot =
1 yields an exact k-nearest neighbor classifier, and o« < 1/C, a pure cell
classifier.

Since the classes assigned to patterns that fall within the labeled cells
may differ occasionally from the results of the k-nearest neighbor algorithm.
Thus, like Hart’s condensed nearest neighbor rule [16], the labeled cell clas-
sifier only approximates the classic algorithm. However, computer experi-
ments suggest that if a classification needs to be performed in a fixed amount
of time, then the new algorithm may attain greater accuracy than other im-
plementations of the k-nearest-neighbor classifier, as the computation saved
in the labeled cells allows this new algorithm to process a larger reference
sample.

3.2.3 Experimental results

Two problems illustrate the differences in performance and accuracy be-
tween labeled cell and exact k-d tree implementations of the k-nearest neigh-
bor classifier. The first, assumes two equally probable, normally distributed
classes in R3. Thus the class-conditional probability densities are

== =G+ (-2 +x3+x3) 1202

for £ € {1,2}. The classification accuracy (i.e., the expected probability of
error), and the expected number of operations per classification are empiri-

2For simplicity, we assume a zero-one loss matrix, so cells are labeled if their local
estimate of the conditional risk is less than 1 — «. It is straightforward to generalize the
algorithm to a asymmetric, multiclass, risk function.
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Figure 3: A semilogarithmic plot obtained from a classification problem with
two normally distributed classes in R3. The circular, triangular, and square
markers describe the average performance of hundreds of labeled cell clas-
sifiers with & equal to 0.9, 0.7, and 0.5 (a pure cell classifier) respectively. In
all cases k = k' = 11. The five-pointed stars describe the performance of an
k-d tree implementation of an 11-nearest-neighbor classifier. Vertical error
bars all lie within each marker.

cally estimated from a sequence of independent trials. For each trial a ran-
dom reference sample of m = 10,000 patterns is used to classify several
thousand independent input vectors. The number of operations is estimated
heuristically: each comparison and addition count as one operation, and each
multiplication as two. (Qualitatively similar results are obtained with a vari-
ety of weighting factors.) Results for k = 11, a Euclidean metric, and eight
values of 2u/ o are displayed in Fig. 3. In this example, the greatest absolute
deviation in accuracy between two implementations occurs at 2 p/o =6and
o = 0.5, where the labeled cell classifier misclassifies 0.1 5% of the indepen-
dent test patterns, and the k-d tree implementation misclassifies 0.14%. Note
in particular, how the recursive labeling scheme accelerates the performance
as the class separation is increased, with little degradation in accuracy.

The second problem, uses data extracted froma seven-band digital image.
We let each pixel define an independent pattern. The first band is quantized
about the median to obtain a binary class label. A six-dimensional feature
vector is formed with the remaining spectral bands. Reference and test pat-
terns are selected independently from the image. Fig. 4 displays the trade-off
between the classification accuracy and the computational cost for four dif-
ferent reference sample sizes as well as four different values of . These
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Figure 4: Results of the second experiment in which six-dimensional pixels,
belonging to two different classes were classified by three different labeled
cell classifiers (k" = k = 7), and a k-d tree implementation of a 7-nearest-
neighbor classifier. The reference sample size appears to the right of each
marker in thousands. The horizontal axis is logarithmic.

results suggest that the recursive labeling scheme accelerates classification
with only a small reduction in accuracy. Note that by increasing the size of
the reference sample, it is possible to obtain a labeled cell classifier that is
both significantly faster and more accurate than a k-d tree classifier. Thus the
new algorithm may be useful for real-time applications that provide an abun-
dant supply of classified data. The estimates, redisplayed in Fig. 5, validate
that the average classification time of labeled cell classifiers is also O (log m),
but with smaller constants of proportionality B. Preliminary comparative ex-
periments suggest that the labeled cell classifier is competitive with other
approximations of the k nearest neighbor algorithm. Moreover, recursive la-
beling can be combined with early truncation (Arya and Mount [1]) to yield
even faster implementations. '

These simulations suggest that the labeled cell classifier is most useful
for problems that provide an abundant supply of classified patterns, are de-
scribed by smooth probability distributions, and have a small Bayes risk (e.g.,
pixel classification of satellite images).
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Figure 5: Empirical estimates of the average number of operations required
for each classification as a function of the sample size m for the second exper-
iment. The linear graphs represent least-square fits of the form Blog,om+Y.
(Note that the horizontal axis is logarithmic.)

4 Software Production

The most successful software to emerge from this project is a stand-alone
X Windows application called pstool that enables a user to interactively con-
struct a labeled reference sample from a multispectral digital image (in either
LANDSAT-TM or TIFF format) and classify other regions of the image using a
k-nearest neighbor classifier. This application was brought to Rome Labs for
a demo in August 1995, and a revised version was placed on an FTP server
in the Spring of 1996. The program was also used by an image processing
group at Rensselaer Polytechnic Institute in Troy, New York. The program
was written in C in a modular fashion, using updated IPToolkit modules.

The program proved to be useful for our following experimental research
in Bayes risk estimation, and in designing faster implementations of k nearest
neighbor classifiers.

Several graduate students also contributed software to the project, includ-
ing a C++ class library of three different neural network training algorithms,
an implementation of the time-difference reinforcement learning algorithm,
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and algorithms for detecting roads in digital images.

5 Students Supervised

This grant help further the education and professional training of seven grad-
uate students at the University of Vermont, four of whom received Master of
Science degrees, and one received a Ph.D. Students benefited from research
assistantships awarded during the summer and for Mr. Yong Feng, during
the academic year. Their names are listed below, along with the degrees they
received.

e Mr. Tong Xu, M.S. in Electrical Engineering, 1995.

e Dr. Alessandro Palau, Ph.D. in Electrical Engineering, 1997.

Mr. Xianguan Li, M.S. in Electrical Engineering, 1997.

Mr. Yong Feng, M.S. in Computer Science, 1997.

Mr. Chaoyu Jin, M.S. in Electrical Engineering, 1997.

¢ Mr. Qing Ye, graduate student in Computer Science

Mr. Shawn Ma, graduate student in Computer Science

6 List of Publications

The most significant results of this research project appear in seven papers:
six were accepted by peer reviewed conferences, and one, by the Annals of
Statistics, the flagship and stringently reviewed journal of the Institute of
Mathematical Statistics. Copies of these papers appear in the Appendix of
this report. An eighth paper, with Alessandro M. Palau on the labeled cell
classifier, is in progress.
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6.2 Manuscripts

(i) A. M. Palau and R. R. Snapp, “The labeled cell classifier,” (in progress,
to be submitted to IEEE Trans. Pattern Anal. and Mach. Intell.).

7 Summary and Practical Consequences

For the image analyst, and indeed any practitioner of pattern recognition,
the art of pattern recognition has been, and continues to be, an empirical sci-
ence. Algorithms are evaluated on their efficiency and accuracy when applied
to the problems of interest. Because of the diverse structure of practical clas-
sification problems, even in the context of image analysis, it seems unlikely
that their exists a unique optimal classification algorithm [8]. However, for
many applications the k nearest neighbor algorithm serves as a nearly opti-
mal practical pattern classifier. For example, it is the most popular classifica-
tion algorithm in handwritten document analysis [25, 34], and a competitive
benchmark in general [3].

The results of this study should help practitioners in every field, includ-
ing image analysis, make better use of the k nearest neighbor classifier. First
of all, the asymptotic analysis described by Eqn. (1) (see also [31, 32]), pro-
vides a parametric model of the accuracy of this classifier in terms of the
reference sample size. In two conference articles [27, 33] (see Figure 1) we
demonstrated that this model is valid in the context of pixel classification
in multispectral images. Thus, the practitioner can use Egn. (1), with the
least squares technique described in [27, 33], to predict the accuracy of the
k nearest neighbor classifier for a range of sample sizes. This information
should help answer the question, “How large a reference sample should I use
to obtain a pattern classifier that is accurate to within x% of the asymptotic
limit?”

Our study also demonstrates analytically how the accuracy of the k near-
est neighbor classifier can be enhanced by the selection of an appropriate
metric, or distance function. We have shown that for a large class of prob-
lems, the choice of a weighted Euclidean metric is the optimal global L,
metric. Future research based upon on this work, may yield methods for
discovering the optimal local metric directly from the reference data. This
will allow practitioners to design more accurate nonparametric pattern clas-
sifiers for practical problems. The benefits of this line of research should
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be most pronounced for classification problems in high dimensional feature
spaces [22], such as those encountered in the contexts of multispectral and
hyperspectral image analysis.

The main intent of [27, 33] was to demonstrated how this model can be
inverted to obtain a estimates of the accuracy of the Bayes classifier for prac-
tical pattern classification problems. This knowledge allows the practitioner
to compare the intrinsic accuracy of competing representations of a given
classification problem. The question “Which spectral bands and image pro-
cessing filters should I use to represent patterns for identifying objects of
class x in environment y?” is an instance of the problem of feature selection,
which remains the most important (and perhaps the most difficult) unsolved
problem in the field of pattern recognition.

The labeled cell classifier, described above, provides an accurate approx-
imation to the k nearest neighbor classifier in applications where the classi-
fication time is critical. As such situations seem likely to occur in defense
applications, this algorithm should be of interest to the Air Force.

Finally, the software extensions that we have developed, have provided a
useful bridge between our theoretical and empirical investigations, allowing
us to efficiently construct labeled reference samples pixel based patterns
from multispectral and TIFF images.
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