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A PARALLEL 3D EULER SOLVER FOR
UNSTEADY AERODYNAMICS

H. U. Akay, A. Uzun, and C. E. Bronnenberg

CFD Laboratory
Department of Mechanical Engineering
Indian University-Purdue University Indianapolis
Indianapolis, Indiana USA

ABSTRACT

1. Introduction

Calculations of flows around moving bodies immersed in fluids are of major interest to
aerodynamicists for determining lift and drag characteristics of flight vehicles such as
aircrafts, projectiles, etc. These calculations can also be coupled with structural dynamic
models of moving bodies for determining aeroelastic forces resulting from combined
effects of structural deformations and fluid pressures.

Flows around oscillating bodies may be solved either by using relative coordinates
attached to the bodies [1], or an Arbitrary Lagrangian-Eulerian (ALE) approach [2] on
grids deforming continuously with the movements of the bodies. The use of a relative
coordinate system eliminates the need for grid movements for single-body problems. For
multi-bodies moving independently, however, the relative coordinate approach requires
the use of a separate grid patch attached to each body. A sliding mesh technique is
typically utilized in this case for maintaining the balance of fluxes between the interfaces
of patches moving independently. Once the patches of grids are created properly in
advance, there is no need for mesh updates for up to very large movements of bodies.
With the ALE/deforming grid approach, on the other hand, both single-and multi-body
problems can be solved by using the same computational grid and coordinate system.
Although this approach is restricted to moderate movements of the bodies, large
movements can also be treated by introducing new grids at selected intervals of the
movements. '
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Because of the large-grid size and high CPU time requirements for accurate solution of
unsteady external flows, there has been a considerable interest in CFD community for
parallel solution of such problems. Our earlier work for parallel solution of these
problems was based on a domain-decomposition approach using the relative coordinate
approach and explicit time integrations [3]. More recently, we have developed an ALE
and deforming grid based domain-decomposition approach for the solution of similar
problems with implicit time integrations [4]. In this paper, we will summarize our recent
results obtained and experiences gained with this approach.

2. Present Study

Present study is based on modification of a flow code, USM3D, originally developed at
the NASA Langley Research Center [5]. The modifications are of three folds:

1. Development of a dynamically deforming grid algorithm.
2. Arbitrary partitioning of the computational grid for parallel computations.
3. Parallelization of the solver to run on network of workstations and PCs.

Conservation variable form of the compressible Euler equations is cast into a cell-
centered finite-volume formulation using tetrahedral elements on unstructured grids.
Conservation variables consisting of p, pu;,and pE are solved at the center of each finite

volume. Transient Euler equations are integrated using a backward-Euler implicit time
integration scheme.

For movements of the immersed bodies, the computational grid is deformed continuously
to conform to the instantaneous position of the boundaries at each time step using an
ALE formulation. Boundary movements are distributed to interior grid points by solving
a set of equilibrium equations of a structural network consisting of elastic springs
attached to the edges of the finite volumes.

A domain-decomposition approach consisting of subdomains with overlapped interfaces
is used for parallelization. The overlaps at the interfaces maintain time accuracy of
umplicit calculations. A general divider algorithm, based on a publicly available
computer program, METIS, is developed to prepare block and overlapped-interface data
for the parallel solver [6]. The interface communication between blocks is achieved by
means of the message-passing library PVM (Parallel Virtual Machine).

3. Test Cases

Flows around both single- and multi-body problems will be presented as test cases. More
specifically, an oscillating aircraft configuration will be presented as an example of a
single-body problem and a flapped wing configuration will be presented as an example of
a multi-body problem. Shown in Figures 1 through 4 are the sample grids and partitions
used for these configurations. Results including speedups and timings on UNIX and
LINUX operating systems will be presented at the time of the Parallel CFD Workshop.



Figure 1. Partitioned surface grid on the aircraft configuration.

Figure 2. Deformed grid on the symmetry plane at 5 degrees angle of attack.
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Figure 3. Surface grid of a partially flapped wing with partitions.
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Figure 4. Grid on the root plane of the wing with partitions.
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ABSTRACT

Unsteady incompressible viscous flow studies inevitably require the iterative solution for
the pressure equation at each time step. This constitutes the major difficulty in terms of
parallel implementation To overcome this burden, the iterative domain decomposition
techniques are extensively used. Two and three dimensional implementations: of such
study and the associated efficiency of such methods are given in [1 and 2] where, second
order accurate time discritizations is used with equal order velocity and pressure
elements. ‘

Using equal order interpolations create spurious oscillations in the presure field while
consuming most of the computer time for one time step calculations. In order to remedy
these two drawbacks, pseudo second order interpolation is implemented by subdividing a
parent pressure élement into sub-elements and defining velocity approximations on these
sub-elements. With this, for hexaheadral elements for example, the number of pressure
points are reduced approximately to one eights of its original value while the velocity
points remain the same. The detailed comparison concerning the various aspects of the
numerical results obtained with and without using the pseudo-second-order elements, is
given in [3]. '

In this study, pseudo second order finite elements are used in solving the Navier-Stokes
eqautions. This means, the momentum equation is solved with a fine mesh while the
pressure eqaution, which is a Poisson’s equation, is solved using the coarse mesh. Since
solution to the pressure equation involves much less points, the overall computational
effort is reduced drasticaly if an iterative technique is employed for the solution of the
Poisson’s equation. For an iterative method, the computational complexity is proportional
with square of the number of unknowns, i.e. if the number of unknowns is reduced to one
half] the number of computations are reuced to one quarters!

A cluster of DEC Alpha X1.266 work stations running Linux operating system,
interconnected with a 100 Mbps TCP/IP network is used for computataions. Public
version of the PVM 3.3 is used as the communication library. As the test case, Lid-
driven cubic cavity flow with a Reynolds number of 1000 is studied with the mesh shown




in Figurel. The pressure solution obtained after 1000 time steps at dimensionless time 30
is presented in Figure 2. Solutions obtained with more domains will be presented in the
full paper which will also show the efficiency and the speed-up obtained via the proposed
method.

[1] Aslan, AR, Edis, F.O., Giilgat, U., ‘Accurate incompressible N-S solution on cluster
of work stations’, Parallel Cfd 98 May 11-14, 1998, Hsinchu, Taiwan

[2] Aslan, A.R., Giilgat, U., Edis, F.O., ‘Accurate solutions of Navier-Sokes Equations
with parallel computations’, Fourth ECCOMAS Computational Fluid Dynamics
Conference, 7-11 September, 1998, Athens, Greece

[3] Edis, F.O,, Aslan, AR, ‘Efficient incompressible flow calculations using pg2ql
elements’, Communications in Numerical Methods in Engineering, Vol 14, pp 161-178,
(1998).
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Figure 1. left: grid used for pressure calculations(7x4x4, 1of 2 domains) , right: grid used
for velocity calculations(13X7X7, 1 of 2 domains)
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Figure 2. Pressure countours obtained (lid is driven in positive X direction).
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. Short Abstract

This paper will show the techniques used to parallelize a 3-D flow solver to compute Euler- and
Navier-Stokes supersonic flows around reentring space vehicles in a wide altitude-velocity range. The
target architectures for the parallelization are massively parallel computers with distributed memory.
Therefore MPI was used as message passing library. One main focus of the parallelization was to find
an efficient parallel equation solver for the Jacobi line relaxation method used in the sequential case.
The obtained performance of the parallel program is good, the scaleup is very good.

Abstract

In the URANUS (Upwind Relaxation Algorithm for Nonequilibrium Flows of the University
Stuttgart) [1,2] flow simulator the unsteady, compressible Navier-Stokes equations in the integral form
are discretized in space using the cell-centred finite volume approach. The inviscid fluxes are
formulated in the physical coordinate system and are calculated with Roe/Abgrall’s approximate
Riemann solver. Second order accuracy is achieved by a linear extrapolation of the characteristic
variables from the cell-centres to the cell faces. TVD limiter functions applied on forward, backward
and central differences for non-equidistant meshes are used to determine the corresponding slopes
inside the cells, thus characterising the direction of information propagation and preventing oscillation
at discontinuities. The viscous fluxes are discretized in the computational domain using classical
central and one-sided difference formulas of second order accuracy.

Time integration is accomplished by the Euler backward scheme and the resulting implicit system of
equations is solved iteratively by Newton's Method, which theoretically provides the possibility of
quadratic convergence for initial guesses close to the final solution. The time step is computed locally
in each cell from a given CFL number. To gain full advantage of the bebaviour of Newton's method,
the exact Jacobians of the flux terms and the source term have to be determined.

The resulting linear system of equations is iteratively solved by the Jacobi line relaxation method with
subiterations to minimize the inversion error. A simple preconditioning technique is used to improve
the condition of the linear system and to simplify the LU-decomposition of the block-tridiagonal
matrices to be solved in every line relaxation step.




The boundary conditions are formulated in a fully implicit manner to preserve the convergence
behaviour of Newton ‘s method [3].

The usage of the sequential URANUS on high-end workstations and even on today’s vector computers
shows that the computation time (turnaround time) and the memory requirements especially when
changing to real gas methods and/or using fine meshes for real world problems are too high to use
these platforms. The solution to this problem is to parallelize this code.

The requirements for the parallel code have been:

Portability

The parallel program should run on nearly all available especially parallel platforms. Therefore only a
parallel programming model which is available also on distributed memory machines could be used.
We decided to use message passing with MPI [6] to assure best possible portability, because MPI is
available on nearly all parallel platforms from workstation clusters across shared memory parallel
vector platforms to massively parallel systems with distributed memory, maybe consisting of shared
memory multiprocessor nodes.

Usability

There should be nearly no difference in the code handling between the parallel and the sequential
code. This means every engineer with some experience in using the sequential code should be able to
handle the parallel one.

Maintainability and Extensibility

The code structure should only be changed as much as absolutely necessary to develop an efficient
parallel program. Because it should be possible for the development engineers to maintain the parallel
code. For this reason a domain decomposition method with a two-cell overlapping region at the
subdomain boundaries was used. The overlapping region guarantees that there is no communication
necessary during the set up of the equation system, even if you use the limiters for second order
accuracy.

This additionally guarantees the easy extensibility of the program, because there is nearly no change in
the program structure. You only have take care of the correct handling of the overlapping regions and
the (sub)domain boundaries. This is very important since in the future there should be only one
version of the program, the parallel, because it is nearly impossible to do a parallel development of
two codes and in addition this is really not necessary because the parallel code also runs on a single
processor with one process.

An important step was the parallelization of the Jacobi line relaxation solver. The idea we found in [7]
was the usage of an additional splitting method to reduce the coupling between the matrix parts
located on different processors. This leads to the possibility to solve these different matrix parts in
parallel with a following communication step to exchange the results between the neighbours in order
to update the right hand side for the next subiteration or iteration. Based on this idea we developed two
solvers with different communication patterns. One communicates only two times but needs about
20% more computation time, the other one communicates after every line relaxation step but needs no
additional computational effort. The second solver is used by default and shows good performance
especially on platforms with an accordingly fast network normally provided on today’s massively
parallel computers. The first solver is used if the network is not powerful enough for example in the
case of metacomputing [8]. A third method especially used for block structured meshes is currently
under development.

The resulting parallel program was tested on different hardware platforms including Cray T3E, IBM
- RS/6000 SP, Hitachi SR2201, NEC SX-4 and SGI Origin. We also do tests on a workstation cluster.

The difference between the solutions computed sequential and in parallel is negligible compared with
the small differences between computation and experiment. The numerical efficiency is nearly the
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same as in the sequential program. The speedup measured at the Cray T3E in Stuttgart was found to be
nearly 400 for 512 processors [Figure 1] and the scaleup is with more than 95% [Figure 2] very good.
So we expect to be able to use several thousand processors efficiently.
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ABSTRACT

One of the objectives of parallel computing is to solve larger and larger problems without
being penalized by the cost of communicating. This cost depends on the available
hardware and software tools as well as the computational algorithm to be utilized. In this
paper, we demostrate on several test cases, the performance of two clusters of
workstations: one with Unix workstations and the other one of NT workstations which
are connected. The communication network 1s Ethernet with different types of switches.
The test cases involve a blocked solution of the three-dimensional heat equation by an
explicit integration scheme and a three-dimensional Navier-Stokes code. The problems
are solved for different size problems and communication cost vs. computation cost is
evaluated. The evaluation of the communication cost is studied for switched ethernet
networks. The network efficiency is studied. The second part of the study involves
improvement of the algorithm for reducing the communication cost. Filtering of the
solution in time is considered for improving the efficiency of the algorithm. The
convergence rate vs. elapsed time is compared for different algorithms operating on
different networks.
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REDUCING PARALLELIZATION OVERHEADS FOR INCOMPRESSIBLE
FLOWS USING PSEUDO-SECOND-ORDER VELOCITY INTERPOLATION
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Maslak, Istanbul 80626 Turkey
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ABSTRACT

Most solution schemes for unsteady incompressible viscous flows require implicit
solution of the Poisson’s equation for pressure, which constitutes the major difficulty in
terms of parallel implementation. Iterative domain decomposition techniques are widely
used to overcome this difficulty. Efficiency of such a method is presented in [1] for an
implementation on a workstation cluster.

In Finite Element computation of incompressible flows, first-order interpolation element
both for velocity and pressure are preferred over second order velocity interpolation, due
to its computational efficiency. However equal order interpolation elements do not
satisfy the so-called Ladyzhenskaya-Babuska-Brezzi condition and often produce
spurious oscillations in the pressure field. Elements combining first-order velocity
interpolation with first-order pressure interpolation and still satisfying the LBB condition
are proposed in [2]. These elements, which can be considered as pseudo-second-order
velocity interpolation elements, satisfy the LBB condition while offering lower
computational requirements compared to equal-order interpolation elements. Pseudo-
second-order interpolation is achieved by subdividing a parent pressure element into sub-
elements and defining first-order velocity interpolations on these sub-elements. Detailed
comparison of results, obtained with quadrilateral/hexahedral (pQ2Q1) and
triangular/tetrahedral (pP2P1) shaped pseudo-second-order velocity interpolation
elements with those, obtained with corresponding equal-order interpolation elements, can
be found in [3-5].

Parallel implementation of a fractional step time discretization Finite Element scheme
- using pseudo-quadratic velocity/linear pressure interpolation tetrahedral elements is
presented in this paper. An iterative non-overlapping domain decomposition technique
[1,6] is utilized for the distributed solution of the Poisson’s equation for the pressure.
pP2P1 elements are especially attractive within this scheme as the number of pressure
elements are far less than the number of velocity elements, yielding a better efficiency
for the parallelization of the Poisson solver.

A cluster of DEC Alpha X1.266 workstations running with Linux operating system,
interconnected with a 100 Mbps TCP/IP network is used for computations. Public
version of the Parallel Virtual Machine 3.3 is used as the communication library. ‘
Lid-driven flow in a square cavity with a Reynolds number of 1000 is selected as a test
case to demonstrate the efficiency. and accuracy of the methods used. Two domain
computational mesh is presented Figure 1. Solution obtained after 3000 time steps at
dimensionless time 30 are presented as pressure iso-surfaces in Figure 2.
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Figure 1. Computational mesh used for the two subdomain parallel solution of the lid-
driven flow in a cubic cavity (left: 21x21x11 velocity, right: 11x11x6 pressure mesh).

Figure 2. Pressure iso-surfaces for the parallel solution of the lid-driven cavity flow at
Re=1000 (t=30) on hexahedral grids using pQ2Q]1 elements.

Solutions obtained on two and four subdomain configurations will be presented in the
full paper. The full paper will discuss the details of pseudo-second order velocity
interpolation and the iterative domain decomposition method used, as well as the effect
of the pseudo-biquadratic element on parallel performance. Comparisons of accuracy,
computational effort and speed-up for two and four subdomain solutions obtained with

psedo-biquadratic element and with regular bilinear hexahedral elements will be
included.
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Introduction

Fluid flow problems within the Chemical and Process industries are varied and frequently very
difficult to solve. At the very least, the flows are turbulent to enhance fluid mixing. Many of the
problems involve complex chemistry effects (such as nucleation, surface growth and coagulation)
in complex geometries. These problems push the boundaries of current knowledge and some
simplification must be made to make the problem tractable. However, many of the everyday
problems within these industries are even more complex and typically involve multiphase flows
e.g. industrial cyclones involves separation of particles transported in a fluid medium (usually a
gas). Additional complications arise when the flows are non-Newtonian. These involve complex
mixtures, such as slurries, pastes, gels and blood.

This paper will consider two problems from the Chemical and Process industries where parallel
processing has been tried. The first involves modelling of a distillation column. This requires the
solution of many Ordinary Differential Equations (ODESs). These systems are large, highly non-
linear and frequently very sparse. The second problem involves the production of a white pigment
used as an additive in many commercial products ranging from paint through to sweets. The
complete process is extremely complex but the fluid modelling concerns the gas-phase reaction
that occurs in a circular pipe. The chemistry is very complex but the geometry is very simple and
therefore allows the problem to be tractable. The modelling is very compute-intensive and the use
of parallel processing has allowed the problem to be tackled in a more routine way.

Modelling the Reactor Process

The equations governing the pigment production are represented by the incompressible Navier-
Stokes equations for a turbulent fluid. For the case in-question, the k-€ turbulence model was
used. The reactor geometry, shown here in 2-D, is illustrated in figure 1.

tetra ox
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Figure 1: Typical reactor process
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At the inlet (on the left hand side), high temperature oxygen (1500-2100 K) enters and mixes with
titanium tetrachloride, oxygen and trace additives which are critical to the reaction process, which
is highly exothermic. The process, as described by Hounslow et al. [1] and Blake and Emerson
[2], involves:

¢ a nucleation process that converts the raw feed-stocks into titanium dioxide nuclei therefore
reducing the concentrations of molecular oxygen and titanium tetrachloride and increasing the
number of particles in the smallest size class;

e particle growth through a deposition process which is very strongly influenced by trace
additives. The growth process obviously depletes the raw feed-stocks and causes particles to
jump from one size class to the next as the amount of titanjum dioxide is increased;

e particles growing through a coagulation process whose rate is dictated by the frequency of
collision and the probability of sticking. This process conserves mass within the size class
variables and is important in reducing the standard deviation of the distribution of particles;

The pigment production reaction is strongly exothermic and therefore strongly influences the
hydrodynamics through the temperature dependence of the various fluid flow properties such
viscosity, density and specific heat. The models can employ anything up to 100 class sizes for high
accuracy computations. The calculations of the various source terms describing the nucleation,
growth and coagulation are extremely time consuming as the coagulation terms fully couple all
the class size variables in each finite volume. It is obvious that three-dimensional computations for
systems with this number of class size variables would be completely impractical and uneconomic
in the absence of parallel systems.

The talk will discuss the problems of solving large ODEs found in the chemical industry and
results from modelling the titanium dioxide process. Future issues and problems will also be
presented.

[1] Hounslow, M. J., Ryall, R. L. and Marshall, V. R., (1988), A1 Che J, 34, pp. 1821-1832

[2] Blake, R. J. and Emerson, D. R., Proceedings of ECCOMAS 98, Volume 2, pp. 714-719.
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SOME DOMAIN DECOMPOSITION AND PARALLEL ALGORITHM ISSUES
FOR THE NUMERICAL SOLUTION OF A CATALYTIC REACTOR

Marc GARBEY, Lyon, FRANCE

Here, we consider the short time catalytic reactor TAP2 and the set of experiments of
Mirodatos and Yves Shuurman in the 'Institut de Recherche sur la Catalyse- Lyon'. We
will comment on the modelling of this device that is designed to realize the partial
oxydation of Methane.

We show that the distributed modeling concept is a way to tackle the complexity of the
problem.

We present some domain decomposition solvers for the direct numerical simulation of
low Mach number non reactive flow. These results are preliminary results on this
pluridisciplinary project.




Parallel Implementation of a Commonly Used Internal Combustion Engine Code
- on a Cluster of High Performance Workstations
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EXTENDED ABSTRACT

Engineering fiuid dynamics problems involving the prediction of turbulent flows with direct numer-
ical simulation (DNS) are still beyond the capability of the most state-of-the-art hardware. Large-eddy
simulation (LES) is a viable alternative to DNS in which certain portion of the detailed small-scale
information resolved in DNS is suppressed. This simplification makes the computational problem more
tractable. However, even with LES, today’s challenging problems require accurate schemes with higher
grid resolution. In addition to these, shorter turn-around time to approximate the instantaneous flow
behavior has become more important.

As part of a research effort towards the large-eddy simulation of diesel combustion engines, widely
used KIVA-3 code originally developed by Los Alamos National Laboratory [1] was re-structured for
parallel execution via message-passing on parallel computers, in particular on distributed-memory
platforms. One-dimensional domain decomposition approach initially proposed by Yasar [2] was im-
plemented in KIVA-3 code with substantial improvements (Gel [3]).

KIVA-3 is a general CFD code based on the Arbitrary Lagrangian-Eulerian (ALE) method with
enhanced features for internal combustion engine applications. The method is typically implemented
in three phases. The first phase is an explicit Lagrangian update of the equations of motion. The
second phase is an optional implicit phase that allows sound waves to move many computational
cells per time step if the material velocities are smaller than the fluid sound speed. The third and
final phase is the remap phase where the solution from the end of phase two is mapped back onto
an Eulerian grid if Eulerian approach is selected. Time advancement is similar to many codes that
utilize the LES methodology where the convective terms are advanced explicitly and the diffusion
terms can be advanced explicitly, implicitly, or semi-implicitly. The degree to which the diffusion
terms are implicitly discretized is based on a combination of stability and efficiency considerations.
Global timestep is divided into sub-time steps (referred to as sub-cycles) based on Courant condition
to advance the convective terms.

The overall parallelization task was subdivided into three phases. In the first phase, all of the
essential features of KIVA-3 excluding piston movement, chemical reactions and spray dynamics were
parallelized. Results of the first phase are presented in this study with calculated speedup for the
benchmark problem executed on an 112 processor SGI Origin 2000 system. The MPI message-passing
library was employed due to portability considerations which enabled KIVA-3/MPI to be easily ported
on to several other platforms including Cray T3E, IBM SP2 and recently on a Beowulf like cluster of
DEC Alpha systems that is being built locally in the department and running under Linux.

Several problems were selected to perform the benchmark runs for speedup and parallel efficiency
after the parallel version results were validated with the original KIVA-3 results for the same problems.
The particular problem that will be presented in this paper is the turbulent round jet problem where
a jet at a velocity of 1500.cm/s and a diameter of 10 cm enters to the three-dimensional rectangular
domain through the left wall. This problem was studied by Smith et al. [4] on single processor with
a grid of upto 500,000 vertices. The KIVA-3/MPI was used to simulate the same problem up to 32
processors with a maximum grid resolution of 4,370,000 vertices. A Smagorinsky type subgrid-scale

!Please send all future correspondance to the first author, e-mail : aike@stokes.mae.wvu.edu




' # PEs | Wall Clock (in sec.) | Speedup | Efficiency
T 1 68,675 1.00 1.00
2| 31,466 2.18 1.09
8 : 8,729 7.87 0.98

Table 1: Speedup & Efficiency for the turbulent jet problem with 160 x 80 x 80 cells

Case Grid Layout | Tot. Vertices | # PEs | Timestep | ££sec

timestep

A [208x100x100]| 2,184,840 16 1x107*| 130
B : 288x 122 x 122 | 4,370,000 32 | 5x10% 68

Table 2: Higher grid resolution simulation details

model was facilitated with a substantially improved convection scheme based on central differencing
for the convective terms in the momentum equations and Quasi-Second-order Upwind (QSOU) for the
density and energy equations. Upto 3 % grid stretching was employed in radial plane (y-z) to capture
the core flow and maintain the second order spatial accuracy as close as possible. Table 1 illustrates
the speedup and efficiency figures for the grid configuration of 1,024,000 cells.

Two preliminary large scale runs over one million vertices were performed at different grid resolutions.
Table 2 shows the grid layout, total number of vertices, total number of processors (PEs) employed
and average CPU time required per each timestep of the simulation for each case. Although the
simulation of Case A & B are not completed yet, the preliminary results indicate legitimate solutions.
In particular, the velocity contour plots from the preliminary results (at t = 0.05 sec) of the developing
jet performed on 16 processors for Case A indicate that the symmetry of the jet starts to break-up at
about four jet diameters which agrees with the experimental observations (Figures 1 and 2). Original
KIVA-3 runs at these grid resolutions that are required for the calculation of the speedup and parallel
efficiency for these cases were not performed due to very long turn-around time on single processor.
However, based on the speedup figures determined from other benchmark problems, the overall results
indicate that for the selected test cases, a speedup close to linear speedup can be achieved even with
grids larger than one million vertices. Also, a minimum parallel efficiency of 70-80% is maintained.
Although the benchmark runs were performed only on SGI Origin 2000 and not all of the features
of KIVA-3 are facilatated, these current speedup results are promising. Furthermore the maximum
grid resolution that could be achieved with KIVA-3 has been significantly improved compared to the
original version of the code on a single processor.

The implementation of the features excluded in the first phase are under progress and benchmark runs
that will incorporate these features will be conducted. Considering the fact that commodity parts based
high performance computer clusters are becoming quite popular for the researchers and institutions
with limited resources, a detailed discussion will be presented in the final paper to demonstrate the
speedup that could be achieved on a 20 node DEC Alpha based Beowulf type cluster and the experiences
acquired during the development of the cluster including the difficulties in porting a CED code onto
the cluster.

Acknowledgement: This research has been conducted under the sponsorship of U.S. Department
of Defense, Army Research Office through EPSCoR Program (Grant No: DAAH04-96-1-0196).



References

[1] Amsden, A.A., (1993) “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Ge-

ometries”,Los Alamos National Laboratory, Technical Report : LA-12503-MS, Los Alamos, NM

87545.
[2] Yasar, O., (1998), “A Scalable Model for Complex Flows”, Int. J. Computers & Mathematics with

Applications, 35:117-128.
[3] Gel, A., “Improvement of the Efficiency and Accuracy of a Navier-Stokes Solver”, Ph.D. Disserta-

11.

ginia University, May 1999.

gation of the LES Capabilities of An Arbitrary

ATAA-99-0421 pp. 1

tion, Mechanical & Aerospace Engng. Dept., West Vir
[4] Smith, J., Celik, . and Yavuz, I., (1999), “Investi

Lagrangian-Eulerian (ALE) Method”,

0.484e-1) sec
Global) : 2,184,840

t=
(

(

Sub-domain size : 13 x 100 x 100 cells ; Total # vertices

Jetinlet : 1500 cm/s ; Jet diameter: 10 cm

ps

Test Case : Turbulent Round Jet after 1000 timeste

Number of Processors : 16

100

EREIEI D B AT M B P
0 o s SR

90

/ /// //// //H/ J//%/W////////HW/ %//%/%/M///////////////////////% M
///////%% . /// | /, - //////////%//%/// _
////%W////M%%//////%// \

Figure 1: U-velocity contours on y = 0.0 cm plane at t= 0.05 sec (2.1 million vertices)




Test Case : Turbulent Round Jet after 1000 timesteps (t = 0.484e-1) sec
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Figure 2: Enlarged view of W-velocity contours on y = 0.0 cm plane at t= 0.05 sec
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Introduction

Unstructured CFD solvers, based upon Finite Element Methods, have received much attention
over the years. Recently, industrial companies have shown an increasing interest in unstructured
grids because they offer the potential of being able to generate complex meshes, such as a
complete aircraft, with relative ease. From an industrial viewpoint, this ranks very high in their list
of priorities. As computing resources have continued to increase in power, the expectations and
demand for quicker solutions have also increased. However, the move towards modelling
increasingly complex geometries, such as complete aircraft, requires very substantial computing
resources, particularly if the simulation must be carried out within a time suitable for analysis in an
industrial context. The use of parallel computers, in this context, can therefore play a crucial role
in delivering results of large-scale computations in a reasonable time. This paper will discuss the
parallel development of FLITE3D, a three-dimensional unstructured CFD solver used by British
Aerospace. A complete suite of routines is available that involves: (i) surface mesh generation; (ii)
volume (tetrahedral) mesh generation; (iii) pre-processing (which includes the coarse mesh
generation); (iv) CFD flow solver. The flow solver is based upon a Galerkin finite element
method. The work to be reported involved the parallelisation of the flow solver and substantial
additions to the pre-processor stage.

Governing Equations
The equations governing a compressible inviscid fluid are given by the Euler equations:

§—l£+§§=0 i=1,2,3
dt  dx

where the transpose of U is given by:

U =[p, pu, pv, pw, pe]

- and the flux vector F is defined by:
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pu pv ow
pu’ +p puy puw
CF=| puv i+ p pow
puw pow pw* +p
ulpe+p) vlpe+p) wlpe+ p)

In the foregoing notation, u, v and w are the fluid velocity components in the x, y and z directions,
and p, p and € are the pressure, density and total specific energy of the fluid, respectively. For a
perfect gas, the equation of state is given by:

p= (7—1)p(£—0.54‘;ujujj

The solution is advanced in time by a 5-stage Runga-Kutta explicit time-stepping algorithm. It is
well known that explicit schemes have poor convergence properties because they are not very
efficient at removing the low frequency errors. However, multigrid schemes can overcome this
difficulty by solving the problem on successively coarser meshes where the low frequency errors
associated with the current grid level appear as high frequency errors on the coarser mesh. These
errors are efficiently removed and the process is continued recursively down to the coarsest mesh
level. This approach considerably enhances the convergence properties of the algorithm. For this
application, an agglomeration multigrid procedure [1] is used. This method works by fusing, or
agglomerating, the control volumes in a heuristic fashion. It has been shown to be very effective
for both its convergence and its ability to handle complex meshes [2]. A difficulty associated with
multigrid on unstructured meshes is how best to generate the coarse meshes. For structured
meshes, this presents minimal difficulty. A number of approaches have been tried for unstructured
grids which include: (a) Generating an initial coarse mesh and each subsequent level is refined
based upon the original coarse grid. A number of disadvantages that arise from this approach are
that the coarsest mesh is pre-determined, the initial grid distribution may have to be quite fine to
capture important geometric details or it may not contain sufficient grid points to capture these
features. (b) Using a non-nested approach whereby each mesh level is generated independently.
The flow data can be transferred between each mesh level by using a piecewise-linear
interpolation scheme. The independent generation of grid points does present a problem as there
are not, in general, any common points between the successive meshes.

It is important for the coarsest mesh to still capture the geometric details and this becomes
particularly difficult in three-dimensions. If critical features are not captured the flow results will
clearly be affected. In both the approaches outlined above, the problems associated with the
coarsest mesh could lead to such difficulties being encountered. In order to avoid this, a
significant burden is placed upon the user. The approach used in FLITE3D, whereby the control
volumes are agglomerated together, has been shown to be an effective solution to this problem.
An illustration of its convergence properties for a wing-body configuration is shown in figure 1.
For this problem, 51737 grid points were used with 302079 tetrahedra. The Mach number was
0.8 and the angle-of attack was set to 2.0 degrees.
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Figure 1: Convergence of the flow solver using agglomeration multigrid
Domain Decomposition

A number of highly efficient packages are now available for partitioning unstructured meshes and
Metis [3] has been used for this project. The vast majority of the work has been concerned with
the pre-processor stage as a key requirement of the project was minimal intrusion into the flow
portability between various architectures, MPI was used as the message
passing standard (although an option to use PVM is also available). The target architecture for
British Aerospace was a 128 processor Silicon Graphics Origin but the code has been tested on a
range of computer platforms. Figure 2 shows the surface of a Falcon aircraft partitioned for 4

solver. To allow for

Processors:

Figure 2: A Falcon aircraft pai'titioned for 4 processors




The talk will present more in-depth results from a range of distributed memory and shared
memory machines and discuss the strategy selected for parallelising the agglomerated multigrid
procedure. Relevant industrial issues concerning the parallelisation will also be covered.

(1] M. H. Lallemand, H. Steve, and A. Dervieux, ‘Agglomeration for the Three-Dimensional
Euler Equations’, A.LLA.A.J., 33(4), 633-640, 1995.

[2} V. Venkatakrishnan and D. J. Mavriplis, ‘Unstructured Multigridding by Volume: Current
Status’, Computers Fluids, 21(3), 397-433, 1992.

[3] G. Karypis and V. Kumar, ‘A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs’, Tech. Rep. 95-035, Dept. Computer Science, University of Minnesota,
Minneapolis, MN 55455, 1995.



Efficient Parallelization of an Unstructured Grid
Solver: A Memory-Centric Approach

D. K. Kaushik* D. E. Keyes!

1 Introduction and Motivation

With teraflops-scale computational modeling expected to be routine by 2003-
04, under the terms of the Accelerated Strategic Computing Initiative (ASCI),
there is an increasing need for highly scalable solvers. Since the gap between
cpu speed and memory response time is widening further, we need to adopt a
memory-centric view of the computation. Until automated tools like parallel
compilers or source-to-source translators can discover enough of the locality (to
minimize the vertical memory hierarchy traffic) and concurrency (with as little
horizontal memory traffic as possible) latent in most scientific computations,
their manual expression is the only alternative for achieving high performance.
We present parallelization and performance tuning experiences with a three-
dimensional unstructured grid Euler code (compressible and incompressible)
from NASA, which we have parallelized in the PETSc [3] framework.

2 Memory-Centric Approach

We view a PDE computation as predominantly a mix of loads and stores with
embedded floating point operations (FLOPs). Since FLOPs are cheap, we con-
centrate on minimizing the memory references and emphasize strong sequential
performance as one of the factors needed for aggregate performance worthy of
the theoretical peak of a parallel machine. We use interlacing (creating spatial
locality for the data items needed close in time), structural blocking for a mul-
ticomponent system of PDEs (cutting the number of integer loads significantly,

*Computer Science Department, Old Dominion University, Norfolk, VA 23529-0162 and
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439-4844, kaushik@cs.odu.edu. Supported in part by Wallace Givens Fellowship from
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part by the National Science Foundation under grant ECS-9527169, by NASA under contracts
NAS1-19480 and NAS1-97046, and by the U.S. Department of Energy under ANL subcontract
982232402 and LLNL subcontract B347882




and enhancing reuse of data items in registers), and verter and edge reorderings
(increasing the level of temporal locality).

The basic philosophy of any efficient parallel computation is “owner com-
putes,” with message merging and overlapping communication with computa-
tion where possible via split transactions. Each processor “ghosts” its stencil
dependences on its neighbors’ data. Grid functions are mapped from a global
(user) ordering into contiguous local orderings (which, in unstructured cases are
designed to maximize spatial locality for cache line reuse.) Scatter/gather op-
erations created between local sequential vectors and global distributed vectors,
based on runtime-deduced connectivity patterns.

3 Parallel Newton-Krylov-Schwarz Solvers and
Software |

Our framework for an implicit PDE solution algorithm, with pseudo-timestepping
to advance towards an assumed steady state, has the form: (Zz)u’ +f(u?) =

(Klt—L)u“l, where At? — 0o as £ — oo, u represents the fully coupled vector of

unknowns, and the steady-state solution satisfies f(u) = 0.

Each member of the sequence of nonlinear problems, £ = 1,2, ..., is solved
with an inexact Newton method. The resulting Jacobian systems for the Newton
corrections are solved with a Krylov method, relying directly only on matrix-
free operations. The Krylov method needs to be preconditioned for acceptable
inner iteration convergence rates, and the preconditioning can be the “make-
or-break” feature of an implicit code. A good preconditioner saves time and
space by permitting fewer iterations in the Krylov loop and smaller storage
for the Krylov subspace. An additive Schwarz preconditioner [4] accomplishes
this in a concurrent, localized manner, with an approximate solve in each sub-
domain of a partitioning of the global PDE domain. Applying any precondi-
tioner in an additive Schwarz manner tends to increase flop rates over the same
preconditioner applied globally, sihce the smaller subdomain blocks maintain
better cache residency, even apart from concurrency considerations. Combin-
ing a Schwarz preconditioner with a Krylov iteration method inside an inexact
Newton method leads to a synergistic parallelizable nonlinear boundary value
problem solver with a classical name: Newton-Krylov-Schwarz (NKS) [6]. Com-
bined with pseudo-timestepping, we write WNKS.

We employ the PETSc package [3], which features distributed data struc-
tures -— index sets, vectors, and matrices — as fundamental objects. Iterative
linear and nonlinear solvers, implemented in as data structure-neutral a man-
ner as possible, are combinable modularly, recursively, and extensibly through
a uniform application programmer interface. Portability is achieved through
MPI, but message-passing detail is not required in user code. We use MeTiS [7]
to partition the unstructured grid.



4 Parallel Port of FUN3D

The demonstration code, FUN3D, is a tetrahedral vertex-centered unstructured
grid code developed by W. K. Anderson of the NASA Langley Research Center
for compressible and incompressible Euler and Navier-Stokes equations [2, 1].
FUN3D uses a control volume discretization with variable-order Roe schemes
for approximating the convective fluxes and and a Galerkin discretization for
the viscous terms. Our parallel experience with FUN3D is with the incompress-
ible/compressible Euler subset thus far, but nothing in the solution algorithms
or software changes with additional physical phenomenoclogy. Of course, con-
vergence rate will vary with conditioning, as determined by Mach and Reynolds
numbers and the correspondingly induced grid adaptivity. Furthermore, robust-
ness becomes more of an issue in problems admitting shocks or making use of
turbulence models. The lack of nonlinear robustness is a fact of life that is
largely outside of the domain of parallel scalability. In fact, when nonlinear ro-
bustness is restored in the usual manner, through pseudo-transient continuation,
the conditioning of the linear inner iterations is enhanced, and parallel scalabil-
ity may be improvéd. In some sense, the Euler code, with its smaller number of
flops per point per iteration and its aggressive pseudotransient buildup towards
the steady state limit may be a more, not less, severe test of scalability.

5 Results and Discussions

5.1 Sarﬂple Sequential Performance

As observed in [8] for the same unstructured flow code, data structure storage
patterns for primary and auxiliary fields should adapt to hierarchical memory
through: (1) interlacing, (2) blocking of degrees of freedom (DOFs) that are
defined at the same point in point-block operations, and (3) reordering of edges
for reuse of vertex data. For vertices we have used Reverse Cuthill McKee
(RCM) ordering [5], which is known for reducing cache misses.

Table 1 shows the effect of these techniques on one processor of SGI’s Origin
2000. The combination of the three effects can enhance overall execution time
by a factor of 5.7 (a table comparing several architectures is available in [9]).
To further understand these results, we carried out hardware counter profiling
on R10000 processor. Figure 1 shows that edge reordering reduces the TLB
misses by two orders of magnitude while secondary cache misses (which are
very expensive) are reduced by a factor of 3.5.

5.2 Parallel Scalability Studies

Parallel scalability of PETSc-FUN3D is shown in Figure 2 for a tetrahedral
grid with 2.8 million vertices running on up to 1024 Cray T3E processors. We
see that the implementation efficiency of parallelization is 82% in going from
128 to 1024 processors. Also the Mflop/s per processor are close to flat over
this range. This further emphasizes the fact that good serial performance is




Table 1: Flow over M6 wing; fixed-size grid of 22,677 vertices (90,708 DOFs
incompressible; 113,385 DOFs compressible}; MIPS R10000, 250MHz, cache:
32KB data / 32KB instr / 4MB L2. Activation of a layout enhancement is indi-
cated by a “x” in the corresponding column. Improvement ratios are averages
over the entire code; different subroutines benefit to different degrees.

Enhancements Results
Field Structural Edge Incompressible Compressible

Interlacing | Blocking | Reordering || Time/Step | Ratio || Time/Step | Ratio
83.6s — 140.0s —

X - 36.1s | 2.31 57.5s | 2.44

X X 29.0s | 2.88 43.1s | 3.25

X 20.2s | 2.86 59.1s | 2.37

X X 23.4s | 3.57 35.7s | 3.92

X X X 16.9s | 4.96 24.5s | 5.71

Figure 1: TLB and secondary cache misses corresponding to the data in Table 1.
“NOER” denotes no edge ordering, otherwise edges are reordered by default.
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necessary for good parallel performance. Observe, as well, that the number
of nonlinear iterations varies only from 37 to 42 over an 8-fold increase in the
number of processors. This is much less serious degradation than predicted by
the linear elliptic theory, see [10]).

6 Conclusions and Future Work

Unstructured implicit CFD solvers are amenable to scalable implementation,
but careful tuning is needed to obtain the best product of per-processor effi-
ciency and paralle] efficiency. We [9] and others have solved problems of mil-
lions of vertices on hundreds of processors at rates approaching hundreds of
gigaflop/s, and we believe such performance is extensible, with further effort,
to the teraflop/s regime. In the future, we hope to enhance per-processor per-



Figure 2: Parallel performance for a fixed size grid of 2.8 million vertices run
on upto 1024 Cray T3E 600 MHz processors
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formance through improved spatial and temporal locality and the exploitation
of “processors in memory” {PIM). We also hope to enhance parallel efficiency
through algorithms that synchronize less frequently, and through multiobjec-
tive partitioning, which equidistributes communication (surface) work as well
as computational (volume) work.
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ABSTRACT

Introduction

Effectiveness of a parallel algorithm is usually assessed via studying speedup, efficiency,
and communication versus computation times. The most commonly used assessment
criterion among these is the speedup curve, which represents the elapsed time spent for
execution of a program using various number of processors that are normalized with
respect to the time elapsed to run with one processor. Here, the elapsed time is the total
time spent for execution of a program, which is summation of computation and
communication times. Computation time is related to CPU speed of a processor and
communication time is related to message passing speed between processors. Therefore,
the speedup computations of parallel algorithms are dependent on not only to algorithms
but also the platforms which they are tested on. To make a realistic assessment of a
parallel algorithm or to compare different algorithms, the properties of the platforms that
are used must also be taken into consideration. Here, it should be.noted that a parallel
. algorithm’s computation versus communication load is the key, which makes either the
CPU or the message passing speed of a platform dominant for elapsed time. For example,
to compare speedups of two parallel algorithms with considerable communication load,
where one algorithm is.tested on a platform with 100Mb ethernet and another platform
with 10Mb ethernet, is not realistic. Since the message passing rates are very different, the
effect of communication speed might be considerable in communication bound algorithms.
Currently, there are various workstation architectures with different operating systems
(e.g., UNIX, LINUX, WINDOWS/NT), message passing software (e.g., PVM, MPI), and
message passing interfaces (e.g., ethernet, fast ethernet). Due to the variety of
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architectures available, a parallel algorithm’s efficiency may strongly depend upon the
properties of the workstation it is tested on.

Present Study

In order to investigate the effect of platforms on efficiency of parallel algorithms, we tested
a substructuring (Schur complement) based finite element parallel algorithm (e.g., Farhat
and Wilson [1]) on different platforms. We used our previously developed finite element
computer program for solving Poisson equations as test cases [2]. A Gausssian elimination
based direct equation solver is used. A given computational domain is partitioned into
subdomains using a greedy-based grid-partitioning algorithm. Since in this algorithm the
interface equations are inherently implicit, it is more computationally dominant than the
explicit domain-decomposition algorithms. Message passing becomes dominant only after
large number of processors are used.

Results to be Presented

The communication and computation timing results obtained on different platforms will be
presented at the time of the PCFD Workshop. Platforms to be tested will include
workstations and PCs with Unix, Linux and Windows/NT operating systems and different
network characteristics.
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APPLICATION OF EVOLUTIONARY ALGORITHMS TO AIRFOIL
DESIGN

M. Meinke, A. Meijering, S. Mihlmann

Aerodynamisches Institut, WiillnerstraBe zw. 5 und 7, 52062 Aachen, Germany
Tel.: +49-241-804821, E-mail: meinke@aia.rwth-aachen.de

One of the classical goals in airplane development is the minimization of the aerodynamic
drag. One possible way to decrease the drag is to delay the transition to the turbulent bound-
ary layer, i.e. to move the transition point as far downstream as possible. This can be achieved
with an appropriate profile shape. The basic numerical methods to determine such profile shapes
are presented and their application on parallel computers is demonstrated in this paper. The
optimization algorithm applied is an evolutionary strategy [1], which can be implemented easily
with a high paralle] efficiency on parallel computers. This method is robust and well suited also
for the detection of global minimums, but requires a large number of evaluations of the quality
function. The determination of the transition point and profile drag is therefore carried out here
with a computationally cheap Euler-boundary layer solution (MSES, [2]). The characteristics
of the resulting optimized shapes are checked with the help of a solution of the Navier-Stokes
equations and a transition prediction based on a e®-method. An example for an airfoil optimiza-
tion is shown in Fig. 1 for a NLF-0416 profile, which shows the pressure distribution and the
predicted transition point for the initial and optimized airfoil shape. The parameter for which
the optimization was carried out is a combination of the transition point location and the length
of the laminar separation bubble. For a Mach number of May, = 0.4 and a Reynolds number of
Reo = 1.66-106 the transition point could be shifted from 42% cord length to 62%. The drag co-
efficient was reduced by about 14% compared to that of the original profile. Such an optimization
typically requires 60-100 generations with a population size of 20 individuals. This optimization
was run on a Hitachi SR2201 with 20 processors within less than 2-3 hours computing time.

Currently, these investigations are extended to transonic and off-design flow conditions. In
addition, experiments are carried out with a wind tunnel model with a flexible upper surface to
confirm the results obtained with the numerical methods.
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Figure 1: Shape and the corresponding pressure distribution for the NLF-0416 profile and the
optimized profile shape. Triangles indicate the transition point location.
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PARALLELIZED MULTIGRID ACCELERATED SOLUTION SCHEMES
FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS
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Parallelized solution methods for the Navier-Stokes equations for compressible and incom-
pressible flows are discussed. The main focus is on explicit multigrid accelerated schemes. The
implementation and performance of such algorithms are discussed and compared to those of
implicit methods. Results of several recent applications are presented, which were obtained on
high-performance vector-parallel architectures e.g. Nec-SX4-32 or SNI/Fujitsu VPP300-8 and also
on workstation and PC-clusters running Linux.

Different parallelized algorithms for the simulation of incompressible flow are compared: an
explicit and implicit scheme both based on pressure correction methods and an implicit scheme
based on the concept of artificial compressibility. Within the implicit schemes a dual-time step-
ping technique is used, so that the time accuracy can simply be chosen by a backward difference
approximation. The solution of the linear systems of equations, is carried out with a locally pre-
conditioned (ILU) Bi-CGStab method and, alternatively, with a block Gau-Seidel line-relaxation
scheme. All methods are formulated for node-centered non-staggered grids. The momentum in-
terpolation of Rhie and Chow is used to avoid an odd-even decoupling of the pressure field in case
of the pressure corrections methods. Parallelization is achieved with a message passing library
(PVM, MPI). The parallel efficiency of the solver for the linear system of equations is shown in
Fig. 1 for constant local and constant global problem size and one iteration step. The efficiency
remains almost constant if more than eight processors are used, which indicates that the algo-
rithm is applicable also on massively parallel systems. The efficiency for constant global problem
size decreases especially fast on vector parallel machines, since the arithmetic speed is reduced
considerably with decreasing vector length. In Fig. 2 the convergence history for the solution of
a linear system of equation, which is very asymmetric and not well conditioned, is shown for an
increasing number of processors. The influence of the local preconditioning can be recognized
clearly. For 64 processors about two times the iterations are required to reach the same residual
drop compared to the single processor calculation. Since the linear equation considered here is
one of the worst cases for the solver, the overall solution scheme still has an acceptable efficiency.
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Figure 1: Efﬁciehcy of the parallelized, preconditioned BI-CGStab solver for a constant global
problem size of 33x33x 17 grid points {left) and a constant local problem size of 33x33x(5 x #
processors) grid points.

In Fig. 2 a comparison of the performance of the three different schemes is shown. It indicates
that in this case the implicit schemes are much more efficient than the explicit scheme, since the
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Figure 2: Residual of the iterative solution of one equation system with the Bi-CGStab method
for different numbers of processors on the GC Power Plus (right). Relative error in the drag
coefficient for a impulsively started flow around a circular cylinder at a Reynolds number of 40
as a function of the computing time (based on the time used by the explicit scheme) for three
different physical time levels and increasing number of iterations n;; in the implicit scheme. o:
explicit pressure correction scheme, —: implicit pressure correction scheme, - - -: implicit artificial
compressibility scheme. : :

time step can be chosen much larger than in the explicit scheme (Atimpiicit/ Atezpuc,-t=104). In
addition the implicit pressure correction scheme seems to provide a better accuracy at the same
computational cost than the implicit scheme based on the artificial compressibility concept.

T=6165

Figure 3: Visualization of vortex breakdown in water flow for Re = 4200 (left), streaklines taken
from [1]. Visualization of the numerical solution of vortex breakdown for Re=3220 (right): vortex
lines and pressure distribution in grey scales.

The solution schemes for incompressible flow were applied to the simulation of vortex dom-
inated flows. Examples presented include the interaction of vortex rings and the simulation of
vortex breakdown in a slightly diverging pipe as shown in comparison to experimental flow visu-
alization of Faler [1], in Fig. 3.

The simulation of compressible flows is carried out with an implicit dual-time stepping method
and an explicit Runge-Kutta scheme. For the solution of the linear system of equations in the
implicit scheme an explicit multigrid accelerated scheme was used. In addition a scheme similar
to the previously described methods for incompressible flows was applied. The performance of
the multigrid accelerated scheme is shown in Fig. 4. The high performance on vector machines
was achieved by formulating long vector loops which operate on all grid points within one grid
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Figure 4: Performance of the explicit scheme for different hardware platforms. Parallel efficiency
of the multigrid accelerated scheme for two different parallel computers.

block and grid level.

In addition a hybrid scheme will be presented, which is advantageous for unsteady flows. The
explicit scheme is used in the major part of the domain of integration, except where the stability
restriction requires a time step which is smaller than the desired resolution. In these regions,
usually near rigid walls, an implicit solution used. Tests have shown that this scheme can be
more than two times faster than the pure implicit scheme.

The solution schemes for compressible flows were applied to various flow problems like the
simulation of the external flow around the model of a space transportation system with external
combustion. In this case the flow is assumed to be in chemical equilibrium, so that a single
mixture fraction variable is sufficient for the description of the chemical reactions.

Figure 5: Vortex structures during the intake and compression stroke in a 4-valve IC engine.
Surface of constant pressure at a crank angle of 60° (left), selected vortex lines at a crank angle
of 180° (right).

An application on moving grids is shown in Fig. 5. The flow in a realistic piston engine is
simulated on a grid, which is refined and coarsened during the intake and compression stroke.
This simulation enabled the determination of the main vortex structures, which develop in the
unsteady flow field.

The last applications presented are.the simulation of turbulent flows with the help of LES.
For this purpose a purely explicit scheme is used with a modified AUSM method which exhibits a
low level of numerical dissipation. In Fig. 6 a round jet issuing in a still fluid is presented. In this
case a turbulent pipe flow is simulated in parallel to the jet flow computation in order to provide
turbulent inflow conditions at each time level. More details will be presented on the Workshop.
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Figure 6: LES of a turbulent round jet at a Reynolds number of 5000. Surface of constant vorticity
of the instantaneous flow field. Grey scales denote streamwise velocity. Decay of the centerline
velocity for Re=5000 and Re=27000 in comparison to experimental data from (8, 10} and others.
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ABSTRACT

PARALLEL COMPUTATION OF
THERMOCAPILLARY BUBBLE AND DROP MIGRATION
IN ZERO GRAVITY

Assistant Prof. Dr. Selman Nas
Istanbul Technical University,
Faculty of Aeronautics and Astronautics,
Department of Space Engineering,
80626 Maslak Istanbul TURKEY
E-mail: nas@itu.edu.tr

The thermocapillary migration of many bubbles and drops in zero gravity is studied in
two and three dimensions. The full Navier-Stokes equations and the energy equation for
the temperature, are solved for the fluid inside and outside of the bubbles and drops by a
front tracking/finite difference method. It is found that two bubbles, initially oriented
arbitrarily with respect to the temperature gradient, tend to line up, side by side,
perpendicular to the temperature gradient in both two and three dimensions.In the low Re
and Ma number region drops behave like the bubbles but when both the Re and Ma are
high, they tend to line up in tandem. Numerical simulation of a large mono-dispersed
bubble system show that the bubbles form horizontal layers. Three-dimensional
simulations confirm this tendency to form layers while the simulations of bubbles in
polydispersed systems show the same behavior. Unlike two dimensional simulations,
three dimensional simulation of a poly dispersed system shows that different sizes of
bubbles form different layers. In three dimensional computations, an IBM SP2 parallel
computer having 32 nodes is used to achieve the solution by using domain decomposition
method.




A HIGH-ORDER ACCURATE, THREE-DIMENSIONAL
EULER SOLVER ON DISTRIBUTED COMPUTERS

Yusuf Ozyorik*
Department of Aeronautical Engineering
Middle East Technical University, 06531 Ankara, Turkey

Summary

In this paper, the porting of an originally data parallel, high-order accurate, three-dimensional (3D)
Euler solver onto distributed memory computing platforms is described. This code was originally devel-
oped for predicting ducted fan noise on massively parallel computers (e.g. Connection Machine CM-5)
using the single-instruction, multiple-data paradigm (SIMD). The ported code is intended to handle 3D
wing geometries with appropriate modifications. In the SIMD approach there is a single domain mesh
and an instruction is carried out for all data segments (i.e. on all processors), whereas in the present
approach the domain is decomposed into smaller parts and the computational work is distributed over
more than one processor to be performed simultaneously. The essential element of parallel processing
is data communication among the processors and this is realized through the Message Passing Interface
(MPI) standard in the present work. The distributed-memory parallel code has been tested on various
platforms including a cluster of Pentium processors that are on a local area ethernet network.

1 Introduction

With the emergence of high-speed massively parallel computers and high-speed networking [1], great
advances have been achieved in computational sciences. Among these are computational fluid dynamics
(CFD) and computational aeroacoustics (CAA) that have found extensive application in aerospace engi-
neering. However, owning and housing such high-technology tools is very costly and therefore, among the
scientists there has been a growing trend to advocate more cost-effective parallel computing [2]. One way
of accomplishing this is to utilize off-the-shelf computers, such as Pentium processors [3] or workstations
that are readily available in a university environment or a company.

One application of parallel processing in CFD is the computation of highly vortical tip flowfields of
helicopter blades [4]. Accurate simulations of such flowfields are important for accurate predictions of
blade-vortex interaction phenomena, and consequently the unsteady blade loadings {5] and their resultant
noise [6].

The present work attempts to carry out numerical simulations of 3D, fixed-wing flowfields using a high-
order CFD algorithm with parallel processing. High-order algorithms are less dissipative and therefore
more appropriate for calculating tip-vortex evolutions both in time and space. It is useful to assess the
capabilities of a numerical algorithm against predicting fixed-wing tip-vortex flowfields (e.g. Ref. [7])
before it could be extended to more complicated cases, such as of a rotating blade {8].

For this purpose, a spatially and temporally fourth-order accurate algorithm that had been originally
written for predicting turbofan inlet noise was modified to handle 3D wing geometries. Capabilities for
parallel processing in distributed computing environments were also included in this code. This algorithm
and the parallel processing approach are briefly described below. Then some preliminary results are
presented, which is followed by some conclusions.
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2 Numerical Algorithm

In this section, the features of the algorithm that pertain to 3D wing aerodynamics problems are de-
scribed briefly. The ducted fan noise code [9, 10] was first modified to handle 3D wing geometries using
the structured H-H mesh topology with appropriate boundary conditions implementations. The time-
dependent Euler equations are solved in a body conforming curvilinear coordinate system. A fourth-order
accurate central difference scheme is employed for spatial discretization and a four-stage Runge-Kutta
time discretization is used to integrate the semi-discrete fluid equations in time. The scheme is augmented
with artificial dissipation to suppress high-frequency spurious oscillations. Jameson type adaptive dissi-
pation [11] is used for this purpose. At the artificial boundaries of the domain (i.e. far-field) characteristic
based boundary conditions are used. For rapid steady-state calculations a multigrid convergence accel-
eration technique is employed with a 3-stage sawtooth cycle [12].

3 Domain Decomposition Strategy

A domain decomposition algorithm automatically decomposes the lower and upper blocks of the H-H
mesh into as many subdomains as desired. This decomposition is performed in an (3, j, k)-ordered fashion
with NT; subdomains in the i-direction, N7} subdomains in the j-direction, and N7} subdomains in
the k-direction, respectively, totalling to a number of NT = NT; * NT; * NT; subdomains. This 3D
decomposition approach is preferred because it minimizes the ratio of the number of surface cells to
the number of volume cells, reducing the communication overhead for the subdomain boundary data
compared to the volume work (floating point operations). The computational grid and work for each
subdomain is then assigned to its respective processor according to the following scheme:

do taskid=0,NT -1
taskg = taskid/(NT;* NT;) + 1
task; = (taskid — (taskx — 1) * NT; * NT;)/NT; + 1
task; = taskid — (task; — 1) *x NT; — (tasky — 1) * NT; * NT; + 1
taskidijx (task;, task;, tasky) = taskid
enddo

where taskid indicates the processor identification number for the processor which is responsible for the
(task;, task;, taskg) subdomain work.

The computational mesh is divided equally so that a load balance is achieved to prevent some of the
processors from idling while the others are still working to finish their part. If the computational mesh
is not equally divisible, then the best effort for this is made and the remaining grid points are included
in the subdomains in which the least boundary work exists. This way an indirect load balancing is tried
1o be achieved.

4 Data Communication

Since the fourth-order spatial discretization scheme requires a five-point stencil at each grid point to
evaluate a spatial derivative, information is needed from two adjacent cells to a subdomain interface. This
is realized by use of two ghost cells in each direction at the boundaries of a subdomain. Data are then
communicated between two neighboring subdomains launching library calls from the MPI standard [13].
Specifically blocking send and receive calls are used to exchange data between two processors.

The code has been written in Fortran 90 which makes it convenient to send and receive multi-dimensional
array segments in this process and therefore, there is no need to pack data into 1D arrays unlike some of
the other communication libraries (e.g. Parallel Virtual Machine, PVM) require.

A master processor is chosen initially and all input/output (IO) is done over this processor. The flow and
case control parameters are read in by this processor and this information is broadcast to all processors.
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The same processor reads the grid data (and the solution from a previous run if restart) and broadcasts
each processor’s share according to the decomposition information. Similarly information on the residual,
its maximum value and location is sent from each processor to the master and the master compares these
and calculates the global L norm of the residual and prints all this information as the solution progresses.

5 Results

This code was run on two different parallel computing platforms first, namely the SGI Power Challenge
and IMB SP2, at the Pennsylvania State University. Later with some further modifications it was run
successfully on a cluster of Pentium II processors (350 MHz, 128 MB of Ram on each) housed in the
Department of Aeronautical Engineering at the Middle East Technical University. These Pentiums run
a Linux operating system and are connected with a 10 MBit/s network (ethernet). We employ the
LAM (Local Area Multicomputer {14]) implementation of the MPI communication standard for parallel
processing on this system. The LAM provides an MPI programming environment for heterogenous
computers on a network in general.

Figure 1 illustrates the lower block of a 3D H-H mesh around a rectangular wing made up of NACA 0012
sections. This mesh was decomposed into a total of 8 subdomains, 2 in each direction. Care is taken in
general in the decomposition of the computational mesh for load balancing. Figure 2 shows the resultant
pressure contours for a flow speed of M, = 0.117 and angle of attack of @ = 5°. It is clear that the
pressure contours are very smooth in the domain indicating that the data was communicated correctly
among the processors, which is extremely crucial for accurate simulations. These results were obtained
running the code on an 8-processor SGI Power Challenge. The identical results were obtained on IBM
SP2.

Figuré 1: Lower block of the H-H mesh decomposed into 4 subdomains.

As mentioned above this code was also run on a cluster of Pentium IT's. Figure 3 indicates the convergence
speed-up via parallel processing on these Pentiums for attaining a 2D flowfield around the NACA 0012
airfoil at Mo = 0.5 and a = 0° conditions. It is evident from the figure that doubling the number of
processors has resulted in a reduction the CPU time by a factor of almost 2, indicating a linear speed-up.
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Figure 3: Convergence speed-up on Pentium II processors.

6 Concluding Remarks

A spatially and temporally fourth order CAA code has been modified for parallel computations of 3D
flowfields of fixed wings. A domain decomposition approach is employed for distributed computing using
the MPI standard. This code has been tested on various platforms, including a cluster of Pentium II
processors. The preliminary results indicate that the parallel code is able to use Pentiums effectively.
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PARALLEL COMPUTATION OF MULTI-PASSAGE CASCADE FLOWS
WITH OVERSET GRIDS

Ismail H.Tuncer*
Middle East Technical University
06531 Ankara, TURKEY

INTRODUCTION

n Computational Fluid Dynamics applications,

multiple workstations on a local network may be
combined into a parallel computer, and this virtual
parallel computer may be used to solve a single flow
problem. Such a parallel processing environment is
an attractive alternative to a supercomputer or to a
dedicated computer with multi-processors. It also im-
proves the productivity of otherwise idle workstations.
Furthermore, multiple-grid systems used in CFD pro-
vide an easily exploited parallel solution algorithm by
solving the equations on each grid independently on a
separate workstation, with boundary information ex-
changed on inter-grid interface surfaces.

The current trends in gas turbine design towards
higher aerodynamic blade loading and slender blades
demand an accurate and detailed study of aercelastic
behavior of compressor and turbine blades. Consider-
able experimental and computational efforts are cur-
rently being made to predict unsteady cascade flows
and blade flutter in turbomachinery. It is, therefore,
of great interest to develop solution methods to com-
pute dynamic response of blades with an acceptable
level of accuracy and speed.

Unsteady cascade flows as the blades undergo in and
out-of-phase vibrations are currently being computed
by solving the Euler and Navier-Stokes equations. In
the computation of out-of-phase cascade flows, the pe-
riodic boundary conditions are implemented either by
discretizing the multi-passage domain based on the
Inter-Blade Phase Angle (IBPA) or by imposing tem-
poral periodicity in a single passage domain. The lat-
ter method is known as direct store[1]. Although the
direct store method reduces the computational do-
main to a single blade passage, it in fact linearizes
the periodic boundary condition in time. In addition,
a periodic convergence may take a large number of pe-
riods to be computed on a single passage domain, and
a large storage may be required to store the periodic
boundary information in time[2].

*Assoc. Prof., Dept. of Aeronautical Engineering,
Tel: (90-312) 210-4289, Fax: (90-312) 210-1272,
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Fig. 1 Overset grid system for a four-passage
compressor cascade. (STC No. 4 configuration)
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SUMMARY AND RESULTS

In this study, a Navier-Stokes solver is modified to
compute multi-passage cascade flows on overset grids
in a parallel processing environment. The multi-
passage flow domain is discretized with a rectangu-
lar background grid and viscous grids around each
blade which are overset onto the background grid.
The background grid covers the whole multi-passage
domain. Figure 1 shows a discretized four-passage
flow domain over the turbine cascade, STC No. 4,
which has been investigated experimentally and ex-
tensive data are available[3]. The blade grids are free
to move with respect to the background grid, and
a periodic plunging motion of blades with a phase
shift is imposed independently. The main advantage
of this approach lies in its versatility to resolve the
multi-passage computational domain with high qual-
ity, mostly orthogonal subgrids, and in the application
of simple periodic boundary conditions. Furthermore,
it imposes almost no restriction on the plunging mo-
tion of the blades. The implicit solution on the back-
ground grid also improves the time accuracy of the
solution. '

We have already computed unsteady flows over the
multi-passage compressor cascade, Fourth Standard
Configuration, STC No. 4 [7], as the blades undergo
periodic plunge oscillations. The plunge oscillations
are defined as

ho(t) = Asin[2nft + (n—1) ¢

where A is the amplitude of the plunging motion, and
¢ is the phase shift between blades. For a four-passage
cascade flow, ¢ = +90. n is the blade index, where
n = 1 refers to the bottom blade. The blade grids are
of 266 x 25 size, and the background grid is of 91 x 226
size.

Figure 2 shows the steady state Mach number con-
tours computed at oy = 50.0°, Py = 219600 Pa,
To = 329.68°K, and Pey;; = 91400 Pa. As shown, the
overset grid solution is continuous across the subgrids.
The shock is also resolved across the inter-grid bound-
aries. The computed steady pressure distribution on
blade 1 agrees well with the experimental data and
SAFE1[8] solution. SAFE1 Navier-Stokes solver em-
ploys a single passage domain on a single O-type grid
with the direct store interblade boundary conditions.
In the coarse grid solution, the size of the blade grids
is reduced to 134 x 25.

Next, unsteady flow at ¢ = -90°, f = 150Hz,
A = 0.0030c¢ is computed for more than three peri-
ods of the periodic plunging motion. Figure 4 shows
the first harmonic, and the phase shift of the unsteady
surface pressure distribution on blade 1. The present
solution and the SAFE1 predictions are again in good
agreement.

EXTENDED ABSTRACT

MACH NUMBER

Fig. 2 Steady state solution
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Fig. 4 First harmonic and phase shift of the
unsteady pressure distribution on blade 1

As a continuation of this study, the present solver
is parallelized using the PVM library routines in a
master-worker paradigm. In addition to distributing
the solution on each blade grid to a worker processor,
the master processor also applies the inter-grid bound-
ary conditions. The parallel processing environment
consists of Pentium-II workstations, which are con-
nected over a local Ethernet network using TCP/IP
protocol, and run Linux operating system.

EXTENDED ABSTRACT

In the final paper, multi-passage cascade flows will
be computed in parallel and the computed solutions
will be compared with the serial solutions already ob-
tained on a single processor. The efficiency and scala-
bility of the parallel computations, load balancing be-
tween processors, latency in message and data passing
will be investigated in detail. Retarded application of
the inter-grid boundary conditions, and its sensitivity
to the retardation steps will also be studied.
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" technique [2] is used. This means that one global

What about load imbalance?

R.L. Verweij ! , A. Twerda, T.W.J. Peeters
Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Nether-
lands.

1 Introduction

In parallelisation of CFD codes one usually assumes that if the number of operations per PE is the same for
all PE’s then the computing time per PE is also similar. However, the paper reports on our observation
that load imbalance is only partly caused by the amount of work per PE. We show that other effects
contribute to the load imbalance and should be taken into account.

The case under consideration is the numerical simulation of turbulent reacting flows in industrial glass-
melting furnaces. These simulations require advanced models of turbulence, combustion and radiation in
conjunction with sufficiently fine numerical grids to resolve important small scale interactions. Currently,
many of the numerical simulation have to be performed with relatively simple models due to the fact
that they are very CPU- and memory-demanding, hampering an accurate prediction. Parallel processing
is regarded nowadays as the promising route by which to achieve desired accuracy with acceptable turn-
around time.

2 Description of the physics and numerics

The simulation of turbulent combustion involves
the solving of the 3D incompressible (variable den-
sity) stationary conservation laws for mass, momen-
tum, energy and species, together with the hydrody-

[ Turbulent flow

.

namic and caloric equations of state. Models for tur- Combus:ion

bulence, combustion and radiation are applied. A de-

tailed description of turbulent combustion modelling // \\

for furnaces can be found in [1, 4]. _ SN
The modelled equations are discretised using the [soot formation Radiation

Finite Volume Method on a colocated, Cartesian grid
[3]. The linearised systems are solved using the SIP-
algorithm. Full multi-grid [3] is used to improve the
convergence behaviour of the multi-block code.

For the domain decomposition the grid-embedding

NOx formation

Figure 1: Complexity of the simulations

(coarse) grid is defined, and the domains are defined as (refined) subdomains of this coarse grid.
3 Description of parallel strategy and brief description of the
architecture, parallel tools and environments used.

Static load balancing is performed; every domain contains (approximately) the same amount of grid-points
and the amount of work per grid point was constant for all points. Exactly one domain is computed per
processor, so that the sequential single-block program could easily be used for multi-block computatlons
The spPMD (Single Program, Multiple data) programming model was used.

To maintain a portable code a flexible change from one message passing library to another was
considered compulsory. This was achieved by using generic subroutines for all communication and parallel
statements. Five subroutines were written which contain all communication-library-specific statements:
parstart and parstop, to start and stop” a parallel program respectively, and check whether machine
settings are consistent ; parsend and parrecv for point-to-point communication, and parglobal for all
global communication (global sums, global maxima, barriers, broadcasts and gathers are used currently).

1 Corresponding author. R.Verveij@tn.tudelft.nl




MPI was used as a communication protocol. However, during the development, PVM and MPI were
adopted on clustered workstations and the IBM SP2 and the (machine specific) message passing tool
SHMEM on the CRAY T3E. All computations performed in this paper were performed on a CRAY T3E
A(C80-128, using the 600 MFL DecAlpha, available at the Delft University.

4 Results

Before discussing the load imbalance in these domain-decomposition based codes figure 2 shows the
speedup of 2D and a 3D fixed-size problem on several gridsizes. The code scales better for finer grids, as
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Figure 2: Measured speedup for several gridsizes. left: 3D right: 2D

is expected. The super-linear speedup of the 2D version can be explained by assuming better cache-use,
because of the two dimensionality of the arrays.

At first glance the speedup seems completely predictable. The single PE performance for the code
was approximately 100 MFLOPS, although the cache-use was quite modest (less than 1 operation per
load). A detailed analysis on subroutine level has been given in table 1 for the very fine grid simulation
on 64 blocks (decomposed in 4 X 4 X 4 domains). Two things are noteworhty. First the amount of time

Table 1: Percentage of total CPU time spent in different code parts for a particular block in the very fine
grid turbulent combustion simulation

Function Tot. time % tot 7 calls
MATRIX COEFFICIENTS 692.907  23.2 6000
MATRIX SOLVER 607.905 19.9 6750
BARRIER WAITING TIME 587.952 19.3 64218
SOURCE TERMS 561.929  18.4 6000
RADIATION MODEL 147.714 4.8 155
BND. COND. EXTERN 60.837 2.0 752
BND. COND. INTERN 34.465 1.1 9754
PT2PT COMMUNICATIONS 18.740 0.6 117024
GLOBAL COMMUNICATIONS 3.671 0.1 2853

spent in communication is completely negligible. In total less than 1% of the total time is spent in actual
communication. This involves all hardware issues and message passing library depending stuff. It can
hence be concluded that on a CRAY T3E with very fast network and large bandwidth it is completely
superfluous to search for the fastest protocol available. This was indeed confirmed by using the SHMEM
message passing subroutines, which did not yield any improvement over the MPI calls. But second, the
total barrier waiting time (the percentage of idle time for this block) is almost 20%.

Analysis showed that this large percentage stems from the fact that in our study the complex geometry
is modelled with the porosity method, which marks the cells that lie outside the fluid domain. In figure

-



- 3 we plotted the relative idle time of all PE’s n the 64-block run together with the number of cells in

that block that lie outside the furnace (’closed’ cells). The blocks which contain many closed cell are
obviously quicker than other blocks, and hence this causes significant load imbalance. The best thing to
do is rearrange the blocks such that every block has the same amount of *not-closed’ cells, but this would
involve quite complicated block decomposition and has therefor not yet been tried.

Apart from this there is still an average load im-
balance of approximately 7%. This has to be con-
tributed to the fact that even if blocks have the same
amount of points, still the total amount of work dif-
fers. -

A first reason for this is that some blocks have
more neighbours than others, which implies that some
blocks will updating more boundaries than others.
To test this assumption 200 iterations were done on
a coarse (16 x 24 x 20) grid. This grid was split into
four blocks in two different configurations, 2 x 2 x 1
and 4 x 1 x 1. In the first decomposition all blocks
have exactly two neighbours (the rectangular decom-
position), in the second one the middle two blocks
have two neighbours (the sliced decomposition), and
the outer blocks one. Every block contains the same 0.0 A
amount of points. Both decompositions lead to ex-
actly the same converged solution, but the timings
are quite different, as shown in table 2. The rectan- Figure 3: Idle time for every processor in the very
gular decomposition yields much better timing results fine grid simulation (solid line). Number of closed
than the sliced decomposition. This confirms the as- cells (dotted line).
sumption that in the sliced decomposition, the two
middle blocks have much more communications to do, creating an huge load-imbalance in that part of
the code. This effect becomes smaller if the number of points per blocks becomes bigger. Note that
the total communication time is approximately equal in both cases, and is small compared to the entire
program time. The smaller parallel working time in the rectangular decomposition is because of better
cache use.
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Table 2: Load imbalance for complete problem

Time needed (s) | sliced decomp. rectangular decomp.
Total program time 2150 1700

Parallel working time 1140  (63%) 1241 (73%)
Total barrier waiting time | 606 (28%) 106 (6%)
Total communication time 85 (4%) 7 (5%)

Still the 6% load imbalance is found, even for the *perfect’ decomposition. This remaining 6% should
be contributed to other effects, like different cahce-behaviour on different PE’s. Of course these effects
are small, but if thousands of iterations are performed, which is not uncommeon in turbulent combustion
simulations, this effect might be severe.

5 Conclusions indicating results to be presented in the full pa-
per.

Parallelisation by domain decomposition'is a straightforward and efficient way to parallelise combustion
codes. However, load imbalance is a underestimated problem in most CFD applications as it arises in
several ways. The speedup itself is not a good indicator for load imbalance, as load imbalance depends
on the fastest PE, whereas speedup is determined by the slowest PE’s. We hope to be able to analyse
the remaining reasons for load imbalance in June.
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ABSTRACT

Parallel Adaptive Flow Solution on Unstructured Mesh
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Introduction

Computing power of present days are challenging with not only massively parallel
machine architecture but also clusters of heterogeneous computer networks. In addition to
machine power, computing algorithms bring efficient use of these resources.

In this study, implementation of an Euler flow solver has been done on a parallel
machine, IBM-SP2. Validation of the flow solver has been presented in previous works [1,2].
It has been shown that very complex flow fields can be covered. This paper gives an idea
about how solution adaptive re-meshing can be achieved on parallel environment. The flow
field is a high pressure jet flow coupled with high speed external freestream. In such field
there are strong gradient regions where adaptation efficiency can easily be monitored.
Solution is started with a mesh having smooth distribution of spacing. Then, three adaptation
sequences are applied. After final adaptation, solver runs for fully converged solution.
Computation efficiency is compared with that on a single machine.

Flow Solution

Governing flow equations are compressible Euler equations. Finite volume technique
is used to discretize flow equations written for a control volume. Unstructured triangular
grids are used to define flow domain in space. Edge based connectivity is used to store grids.
Artificial dissipation terms are used to damp oscillations due to numerical solution technique
and to capture shock waves. Residual averaging technique is employed to accelerate
numerical solution. Direct multi-step time stepping is used to advance solution in time
domain. It is similar to Runge-Kutta time stepping algorithm. Euler equations in conservative
form are given as

g JudQ + §(Fdy-Gdx) + « [HdQ= 0
at Q S Q
where U is unknown vector for density, velocity and energy, F and G are convective fluxes, H
is source term for axisymmetric flow and « 1s a flag to turn on source term.
Adaptation
The grid points are usually desired to be dense in regions where there will be large gradients,
such as near shock waves and leading edge of an airfoil, and relatively sparse in regions

where the solution is expected to vary -slowly. This leads to the adaptive grid generation
procedure in which the grid generator and flow solver interacts. By using flow solution sensor



values are obtained for all grid point through which new spacing of the previous grids are
found. In this paper, gradients of mach number is used to find sensor values After that using
new grid spacing values, grid generator 1s activated to find new grid. Three adaptation

sequences are used with just two hundreds time stepping in flow solver. Then using final
adapted mesh almost three thousands of time stepping are achieved.

Parallel Solution

In unstructured mesh, there are several partitioning techniques which give minimal
communication overhead. In this work efficient partitioning is not point of interest since
parallel adaptation is aimed. Therefore a very simple method of partitioning is used. At
interface of each mesh block overlapping of boundary is used. By this way no averaging is
performed, instead the values of unknown vector is imported from its neighbors. Test case is a
high pressure jet with supersonic external flow. The detail of this case study can be found in
ref. [2,3]. Mesh of the flow field is given in figure-1. Initial mesh with four partition is
presented in figure-2. It has 3217 number of points with almost smooth distribution from wall

and symmetry axis to external boundary. Figure-3 and 4 give adapted mesh and mach contour
in final adaptation.
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Figure-1 : initial single block mes
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Figure-2 : initial mesh with 4 partitioning
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USAGE OF THE NEW OPENMP STANDARD IN PARALLELIZATION

Igor Zacharov
Senior HPC Technical Specialist
Silicon Graphics European Headquarters
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OpenMP is the industry standard for parallel processing on Shared Memory Machines.
This report contrasts OpenMP to the previous attempts to agree on a common
parallelization paradigms, including message passing tools. A practical usage of the
OpenMP is discussed for recent parallelization projects.




