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Abstract

The goal of high-level parallel programming models or languages is to facilitate the writing of
well-structured, simple and portable code. However, the performance of a program written using
a high-level language may vary significantly, depending on the implementation of the underlying
system.

This dissertation presents two asynchronous scheduling algorithms that provide worst-case up-
per bounds on the space and time requirements of high-level, nested-parallel programs on shared
memory machines. In particular, for a program with D depth and a serial space requirement of
51, both algorithms guarantee a space bound of S; + O(K - p - D) on p processors. Here, K is a
user-controllable runtime parameter, which specifies the amount of memory a thread may allocate
before being preempted by the scheduler. Typically, in practice, K is fixed to be a few thousand
bytes. Most parallel programs have a small depth D. For such programs, the above space bound is
lower than the space bound provided by any previously implemented system.

The first of the two scheduling algorithms presented in this dissertation, algorithm AsyncDF,
prioritizes threads at runtime by their serial, depth-first execution order, and preempts threads
before they allocate too much memory. This ensures that the parallel execution does not require
too much more memory than the serial execution. The second scheduling algorithm, DFDeques,
enhances algorithm AsyncDF by adding ideas from work stealing. It replaces the single, flat
priority queue of AsyncDF with ordered, per-processor queues of ready threads, and allows some
deviation from the depth-first priorities while scheduling threads. Consequently, it results in lower
scheduling overheads and better locality than AsyncDF for finer-grained threads, at the cost of a
slight increase in memory requirement. To ensure scalability with the number of processors, I also
describe and analyze fully parallelized versions of the schedulers for both the algorithms.

To verify that the theoretically-efficient scheduling algorithms are also practical, I have im-
plemented them in the context of two multithreaded runtime systems, including a commercial
Pthreads package. Parallel benchmarks used to evaluate the schedulers include numerical codes,
physical simulations and a data classifier. Experimental results indicate that my algorithms effec-
tively reduce memory usage compared to previous techniques, without compromising time per-
formance. In particular, my schedulers allow simple, high-level, fine-grained benchmarks to run
as efficiently as their more complex, hand-partitioned, coarse-grained counterparts. As expected,
DFDeques achieves better speedups than AsyncDF for finer-grained threads. It requires more
memory than AsyncDF, but less memory compared to previous schedulers. The scheduling algo-
rithms were extended to support the full Pthreads interface, making them available to a large class
of applications with irregular and dynamic parallelism. Both the AsyncDF and DFDeques algo-
rithms provide a user-adjustable trade-off between running time and memory requirement, which
I analyze and experimentally demonstrate.
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These are things which he has thought about as a child. But my intellectual
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space and time only when I had already grown up.”

—Albert Einstein
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Chapter 1

Introduction

Parallel machines are fast becoming affordable; in fact, low-end symmetric multiprocessors (SMPs)
are even appearing on people’s desktops today. However, the inherent complexity of writing par-
allel programs makes the costs of generating parallel software for these machines prohibitive.
Consequently, the SMPs sold today are often restricted to running independent, short jobs on indi-
vidual processors (e.g., database transactions or web searches), rather than a large parallel job that
can make effective use of multiple processors. If parallel programming is to become more preva-
lent in the future, it is critical to allow parallelism to be expressed in a simple, well-structured,
and portable manner. Many of today’s high-level parallel programming languages attempt to meet
these goals by providing constructs to express dynamic, fine-grained parallelism. Such languages
include data-parallel languages such as NESL [17] and HPF [60], as well as control-parallel lan-
guages such as ID [5], Cool [36], Cilk [25], CC++ [37], Sisal [59], Multilisp [77], Proteus [109],
and C or C++ with lightweight thread libraries [15, 113, 129].

Languages with constructs for dynamic, fine-grained parallelism are particularly useful for ex-
pressing applications with irregular, data-dependent parallelism. Such applications include phys-
ical simulations on non-uniform inputs, data classifiers, sparse-matrix operations, computational
geometry codes, and a large number of divide-and-conquer algorithms with irregular, data-depen-
dent recursion trees. The user simply exposes all the parallelism in the application, which is
typically of a much higher degree than the number of processors. The language implementa-
tion is responsible for scheduling this parallelism onto the processors. Because static, compile-
time partitioning of such programs is generally not possible, the parallel tasks are scheduled
onto the processors at runtime. Consequently, the performance of a program depends signifi-
cantly on the implementation of the runtime system. A number of previous implementations have
focused on efficiently balancing the load and providing good data locality in such runtime sys-
tems [36, 39, 62, 70, 81, 83, 115, 134, 136]. However, in addition to good time performance, the
memory requirements of the parallel computation must be taken into consideration. In particular,
unless the scheduler is carefully implemented, a fine-grained parallel program can end up creating
excessive amounts of active parallelism, leading to a huge space requirement [26, 48, 77, 114, 138].
The price of the memory is a significant portion of the price of a parallel computer, and parallel
computers are typically used to run big problem sizes. Therefore, reducing the memory usage of a
parallel program, that is, making the execution space efficient, is often as important as reducing the
running time. In fact, making a program more space-efficient often also improves its performance
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due to fewer page or TLB misses and fewer memory-related system calls.
This dissertation focuses on space- and time-efficient implementations of languages with dy-
namic, fine-grained parallelism. My thesis statement can be summarized as follows.

By utilizing provably-efficient, asynchronous scheduling techniques, it is pos-
sible to obtain good space and time performance in both theory and practice for
high-level, nested parallel programs. These scheduling techniques can, in prac-
tice, be extended to general purpose multithreading systems like Pthreads, bene-
fiting a large class of applications with irregular and dynamic parallelism.

To validate the thesis, I present two asynchronous scheduling algorithms, AsyncDF and DFD-
eques, that guarantee worst-case bounds on the space and time required to execute a parallel pro-
gram. Low space bounds are achieved by prioritizing parallel tasks by their serial execution order,
and preempting or delaying tasks that allocate too much memory. In addition to theoretically an-
alyzing the scheduling algorithms, I have implemented them in the context of multithreading run-
time systems (including a commercial Pthreads [88] package) to schedule lightweight threads. Ex-
perimental results for a variety of parallel benchmarks indicate that the algorithms are effective in
reducing space requirements compared to previous scheduling techniques, while maintaining good
time performance. In fact, the use of these space-efficient schedulers allows simpler codes with
fine-grained threads to achieve performance comparable to their coarse-grained, hand-partitioned
counterparts.

This remainder of this chapter is organized as follows. It first presents two simple examples
to demonstrate the impact a scheduler can have on the space requirement of a parallel program.
The chapter then provides a synopsis of this dissertation, followed by a list of its limitations. It
concludes by describing the organization of the remainder of this dissertation.

An example

Consider a very simple dense matrix multiplication program involving the creation of a large num-
ber of lightweight threads. The two input matrices, A and B, are multiplied using the divide-and-
conquer algorithm shown in Figure 1.1. A new, lightweight child thread is forked to execute each
recursive call; the eight recursive calls can execute in parallel!. Temporary storage T is allocated
to store the results of each recursive call. At the end of the eight recursive calls (after all eight child
threads have terminated), the intermediate results in T are added to the result matrix C, and T is
deallocated.

This program was implemented using the native Pthreads library on Solaris 2.5; a new, user-
level pthread was forked for each recursive call. The existing Solaris Pthreads package uses a
simple FIFO (first-in-first-out) queue to store ready threads. I replaced the existing scheduler with
my space-efficient scheduler; this modified implementation of the Pthreads library can be used
by any existing Pthreads-based program?. Figure 1.2 shows the resulting space and time perfor-
mance on an 8-processor Enterprise 5000 SMP using both the original FIFO scheduler, and the

IThe child threads, in turn, fork their own child threads at the next level of recursion.
21 simply modified the implementation of SCHED_OTHER, which, according to the Pthreads standard [88], can be
a system-dependent scheduling policy; FIFO and round robin are the other (fixed) policies in the Pthreads standard.



begin Matrix_Mult(A, B, C, n)
if (n < Leaf _Size)
serial mult(A, B, C, n);
else
T := mem_alloc(n x n);
initialize smaller matrices as quadrants of A, B, C, and T;
fork Matrix Mult(A11, B11, C11, n/2);
fork Matrix_Mult(A11, B12, C12, n/2);
fork Matrix Mult(A21, B12, C22, n/2);
fork Matrix_ Mult(A21, B11, C21, n/2);
fork Matrix_Mult(A12, B21, T11, n/2);
fork Matrix_ Mult(A12, B22, T12, n/2);
fork Matrix_Mult(A22, B22, T22, n/2);
fork Matrix_Mult(A22, B21, T21, n/2);
. join with all forked child threads;
Matrix_Add(T, C);
mem _free(T);
end Matrix_Mult

Temporary
Matrix A Matrix B Matrix C Storage T
A11]|A12 X B11|B12 C11{C12 T11|T12
A21|A22 B21| B22 c21|C22 T21|T22

Figure 1.1: Pseudocode to multiply two n x n matrices A and B and storing the final result in C using a
divide-and-conquer algorithm. The Matrix_Add function is implemented similarly using a parallel divide-

s and-conquer algorithm. The constant Leaf_Size to check for the base condition of the recursion is set to 64
on a 167 MHz UltraSPARC.
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Figure 1.2: Space and time performance for the matrix multiply code shown in Figure 1.1. The Pthreads-
based program was executed using both the original Pthreads implementation, and the modified implemen-
tation that uses my space-efficient scheduler. (a) The high-water mark of heap memory allocation. The input
size is the size of the three matrices A, B, and C; the remaining memory allocated is the temporary storage.
(b) The speedups with respect to a serial, C version of the program.

new, space-efficient scheduler’. The space-efficient scheduler used in this example is described
in Chapter 3. Further details on the experiment, along with results for other, more complex and
irregular applications, are presented in Chapter 5. The results in Figure 1.2 indicate that both the
space and time performance is heavily dependent on the underlying thread scheduler. Unlike the
space-efficient scheduler, the original LIFO queue results in excessive memory allocation (includ-
ing both heap and stack space). This significantly reduces the speedup, due to high contention in
system calls related to memory allocation (see Section 5.2). Even with a better, highly concur-
rent kernel implementation, space-inefficiency will limit the largest problem size can be run on a
machine without paging. Thus, a space-efficient scheduler is required to get good performance in
both space and time.

Another example

I now explain how the space-efficient scheduling techniques presented in this dissertation effec-
tively reduce the high-water mark of memory requirement of the program, in comparison to pre-
vious schedulers. Consider the example code in Figure 1.3(a). The code has two levels of paral-
lelism: the i-loop at the outer level and the j-loop at the inner level. In general, the number of
iterations in each loop may not be known at compile time. Space for an array B is allocated at the
start of each i-iteration, and is freed at the end of the iteration. Assuming that F (B, i,7) does
not allocate any space, the most natural serial execution requires O(n) space, since the space for
array B is reused for each i-iteration. Figure 1.3(b) shows the corresponding computation graph
for this example code; each node in the graph represents an instruction, while each edge represents

3The results for the space-efficient scheduler also include an optimization that caches a small number of thread
stacks in the library, yielding an additional 13% speedup.



a dependence between two instructions. The serial execution of the code now corresponds to a
depth-first execution of the computation graph.

alloc(n)

In parallel for i = 1 to n
Temporary B[n]
In parallel for j =1 ton
F(B,1,3) :
Free B

@® J_ (b)

Figure 1.3: (a) The pseudocode for a simple program with dynamic parallelism and dynamic memory
allocation. (b) The computation graph that represents this program. For brevity, the curved lines are used to
represent the multiple (D) instructions executed serially within each call to F () ; the shaded nodes denote
the memory allocations (black) and deallocations (grey).

Now consider the parallel implementation of this function on p processors, where p < n. If
we use a simple FIFO queue to schedule parallel tasks (loop iterations in this case), all the i-
iterations would first begin execution and allocate n space each, followed by the execution of their
j-iterations. Thus, as much as O(n?) space would be allocated at some time during the execution;
this space requirement is significantly higher than the serial space requirement of O(n). Such
a parallel schedule corresponds to a breadth-first execution of the computation graph. Several
thread packages, such as the standard Pthreads [88] library, make use of such FIFO schedulers. A
simple alternative for limiting the excess parallelism is to schedule the outer level of parallelism
first, and create only as much parallelism as is required to keep processors busy. This results in
each of the p processors executing one i-iteration at any time (the processor executes the inner
j-loop serially), and hence the total space allocated is O(p - n). Several previous scheduling
systems [26, 30, 41, 70, 77, 83, 143], which include both heuristic-based and provably space-
efficient techniques, adopt such an approach. '

This dissertation claims that even a linear expansion of space with processors (i.e., p times the
serial space requirement) is not always necessary to enable an efficient parallel execution. For
example, the AsyncDF (“asynchronous, depth-first”) algorithm presented in this dissertation also
starts by scheduling the outer parallelism, but stalls big allocations of space. Moreover, it prior-
itizes operations by their serial (depth-first) execution order. As a result, the processors suspend
the execution of their respective i-iterations before they allocate O(n) space each, and execute
j-iterations belonging to the first i-iteration instead. Thus, if each i-iteration has sufficient paral-
lelism to keep the processors busy, our technique schedules iterations of a single i-loop at a time.
This parallel execution order is closer to the serial, depth-first execution order of the computation
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graph. In general, our scheduler allows this parallel computation to run in just O(n + p- D) space*,
where D is the depth (critical path length) of the function F. For programs with a large degree of
parallelism, the depth D is typically very small. (Computation graphs, their depth, and depth-first
schedules are formally defined in Chapter 2.)

The AsyncDF algorithm presented in this dissertation often preferentially schedules inner par-
allelism (which is finer grained). Consequently, when the threads in the program are very fine
grained, it can cause large scheduling overheads and poor locality compared to algorithms that
schedule the outer parallelism. We therefore have to manually group fine-grained iterations of in-
nermost loops into chunks to get good performance with AsyncDF. However, the second schedul-
ing algorithm presented in this dissertation, DFDeques, automatically and dynamically achieves
this coarsening by scheduling multiple threads close in the computation graph on the same proces-
SOr.

1.1 Synopsis of the Dissertation

This dissertation presents two asynchronous, provably space-efficient scheduling algorithms, and
describes their implementations in the contexts of two multithreading runtime systems. Here, I first
describe the programming model assumed in this dissertation, followed by an overview of each of
the scheduling algorithms and the runtime systems.

1.1.1 Programming model

This dissertation assumes a shared memory programming model. All the experiments were con-
ducted on shared-memory, symmetric multiprocessors (SMPs). Because of their favorable price-
to-performance ratios, such machines are common today as both desktops and high-end servers.
The underlying architecture may differ from machine to machine, but I assume that it provides
a fast, hardware-coherent shared memory. The programmer views this memory as uniformly ac-
cessible, with little control on the explicit placement of data in processor caches. The analysis of
the space requirements in this dissertation includes memory allocated both on the stack(s) and the
shared heap; the model allows individual instructions to allocate and deallocate arbitrary amounts
of memory.

The scheduling algorithms have been analyzed for purely nested parallel programs; these in-
clude programs with nested parallel loops or nested forks and joins. For instance, the programming
examples in Figures 1.1 and 1.3 are nested parallel. The nested parallel model is described in more
detail in Chapter 2. Although the theoretical analysis is restricted to nested parallel programs, the
experiments with Pthreads described in Chapters 5 and 7 indicate that the scheduling algorithms
can effectively execute more general styles of parallel programs, such as programs with mutexes
and condition variables. This is the first space-efficient system that supports an interface as general
as that of Pthreads.

In the remainder of this dissertation, we refer to any independent flow of control within a pro-
gram as a thread, irrespective of its duration. Then fine-grained parallelism in high-level languages

“The additional O(p - D) memory is required due to the O(p - D) instructions that may execute “out of order” with
respect to the serial execution order for this code.
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can be viewed in terms of such threads. Not all parallel languages that support fine-grained par-
allelism provide constructs to explicitly create threads in the traditional sense. For example, in
High Performance Fortran (HPF), fine-grained parallelism can be exploited across elements of an
array through high-level array operations. Similarly, NESL provides constructs to exploit paral-
lelism over elements of a vector. Nonetheless, we view each independent flow of control in such
languages as a separate thread, even if it is very fine grained. For example, consider an HPF state-
ment such as C = A + B that performs as element-wise addition of two arrays A and B of the
same size, and stores the result in C. This statement can be viewed as one that forks (creates),
and subsequently joins (synchronizes) and terminates n fine-grained, parallel threads (where n is
the size of arrays A and B); each thread simply adds the corresponding elements of arrays A and
B. Similarly, each i-iteration and each j-iteration in Figure 1.3(a) is considered to be a separate
thread. The underlying implementation of such threads may never create separate execution stacks
or program counters to represent their states. This dissertation uses threads as a more abstract,
high-level concept independent of the implementation strategy.

Advantages of fine-grained, dynamic threads

Despite the involved complexity, shared memory parallel programs today are often written in a
coarse-grained style with a small number of threads, typically one per processor. In contrast, a
fine-grained program expresses a large number of threads, where the number grows with the prob-
lem size, rather than the number of processors. In the extreme case, as in Figure 1.3(a), a separate
thread may be created for each function call or each iteration of a parallel loop. Note that the use of
the term “fine-grained” in this dissertation does not refer exclusively to this extreme case. For ex-
ample, in Chapter 5, the term is used in the context of a general Posix threads (Pthreads) package
which explicitly allocates resources such as a stack and register state for each thread expressed.
Hence basic operations on these threads (such as thread creation or termination) are significantly
more expensive than function calls. Therefore, using them in the extremely fine-grained style is
impractical; however, they can be fine-grained enough to allow the creation of a large number of
threads, such that each thread performs (on average) sufficient work to amortize its costs. For ex-
ample, if the j-iterations in Figure 1.3(a) are of extremely short duration, a fine-grained, Pthreads
version of the program would require each Pthread to execute multiple J-iterations.

The advantages of fine-grained threads are summarized below.

o Simplicity. The programmer can create a new thread for each parallel task (or each small
set of parallel tasks), without explicitly mapping the threads to processors. This results in a
simpler, more natural programming style, particularly for programs with irregular and dy-
namic parallelism. The implicit parallelism in functional languages, or the loop parallelism
extracted by parallelizing compilers is fine grained, and can be more naturally expressed as
lightweight threads.

o Architecture independence. The resulting program is architecture independent, since the
parallelism is not statically mapped to a fixed number of processors. This is particularly
useful in a multiprogramming environment, where the number of processors available to the
computation may vary over the course of its execution [3, 156].

e Load balance. Since the number of threads expressed is much larger than the number of
processors, the load can be transparently and effectively balanced by the implementation.
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The programmer does not need to implement a load balancing strategy for every application
that cannot be statically partitioned.

o Flexibility. Lightweight threads in a language or thread library are typically implemented at
the user level. Therefore, the implementation can provide a number of alternate scheduling
techniques, independent of the kernel scheduler. Modifying the execution order of individual
parallel tasks in a fine-grained program may then simply involve modifying user-assigned
priorities or switching between schedulers for the corresponding threads. In contrast, since
the execution order of tasks is explicitly coded in a coarse-grained program, changing it may
involve extensive modification to the program itself.

1.1.2 Space-efficient scheduling algorithms

Although the fine-grained threads model simplifies the task of the programmer, he or she relies
heavily on the underlying thread implementation to deliver good performance. In particular, the
implementation must use an efficient scheduler to map threads to processors at runtime. This dis-
sertation presents an two dynamic, asynchronous scheduling algorithms, AsyncDF and DFDeques,
that are provably efficient in terms of both space and time.

Algorithm AsyncDF is an asynchronous and practical variant of the synchronous scheduling
algorithm proposed in previous work [21]. The main goal in the design of algorithm AsyncDF
was to maintain space-efficiency while allowing threads to execute non-preemptively and asyn-
chronously, leading to good locality and low scheduling overheads. The algorithm maintains the
threads in a shared work queue; threads in the queue are prioritized by their serial, depth-first
execution order. Further, threads that perform large allocations are stalled to allow higher priority
threads to execute instead. Each thread is assigned a fixed-size memory quota of K™ units (which we
call the memory threshold) every time it is scheduled. The thread is preempted when it exhausts
its memory quota and reaches an instruction requiring more memory. These basic ideas ensure that
the execution order of threads, and hence also the memory requirement of the parallel program,
are sufficiently close to the execution order and memory requirements, respectively, of the serial,
depth-first schedule. In particular, algorithm AsyncDF guarantees that a parallel computation with
a serial, depth-first space requirement of .S; and depth D can be executed on p processors using
S1+ O(K - p- D) space. Most parallel programs have a small depth, since they have a high de-
gree of parallelism. For example, a simple algorithm to multiply two n x n matrices has depth
D = O(log n) and serial space requirement .S5; = ©(n?). Further, in practice, the memory thresh-
old K is fixed to be a small constant amount of memory. Therefore, the space bound provided by
algorithm AsyncDF is asymptotically lower than the space bound of p - S; guaranteed by previous
asynchronous, space-efficient schedulers [24, 26, 30, 143].

Although algorithm AsyncDF provides non-blocking access to the shared queue of ready
threads, the queue can become a bottleneck if the threads are very fine grained. Further, even
though a single thread may execute on the same processor for a long period of time, fine-grained
threads close together in the computation graph may get executed on different processors. Such
threads often access the same data, and therefore, should ideally be executed in quick succession
on the same processor to obtain good data locality. Therefore, fine-grained threads in AsyncDF
have to be manually chunked to get good time performance®. The second scheduling algorithm,

3 Alternatively, compiler support or a dynamic chunking scheme [84, 128, 158] would be required.
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DFDeques, was designed to overcome this drawback of AsyncDF.

Algorithm DFDeques uses a hybrid approach that combines ideas from AsyncDF with ideas
from work stealing [24, 31, 77, 92, 95, 137]. The aim in designing DFDeques was to allow dynamic
clustering of fine-grained threads close together in the computation graph into a single scheduling
unit that is executed on one processor. This clustering is achieved by storing threads in a queue
of subqueues (deques); each processor owns a unique subqueue at any given time. Similar to
AsyncDF, the subqueues are prioritized by the serial execution orders of their threads, and a pro-
cessor gives up its subqueue when it exhausts its memory quota. However, unlike in AsyncDF,
the memory quota can be used for multiple threads close together in the computation, leading to
better locality. When a processor finds its subqueue of ready threads empty (or when it gives up
its subqueue), it obtains new work by selecting a subqueue at random from a set of high-priority
subqueues. It steals the lowest priority thread from the selected subqueue, which is typically of
the coarsest granularity. Common operations such as thread creation and finding a ready thread
typically involve access to the processor’s own subqueue, resulting in lower scheduling overheads.
Algorithm DFDeques guarantees the same space bound of .S; +O( K -p- D) as algorithm AsyncDF,
but, in practice, results in a slightly higher space requirement compared to AsyncDF.

- 1.1.3 Multithreaded runtime systems

Besides presenting space-efficient scheduling algorithms, this dissertation describes efficient im-
plementations of runtime systems that use the algorithms to schedule parallel threads. I have im-
plemented a lightweight, multithreaded runtime system on the SGI Power Challenge, specifically
to evaluate algorithm AsyncDF. I present the results of executing a set of parallel benchmarks on
this system, and compare their space and time requirements with previous space-efficient systems
such as Cilk [25]. The results indicate that algorithm AsyncDF provides equivalent time perfor-
mance as previous systems. However, as shown in Figure 1.4, algorithm AsyncDF is effective in
lowering the space requirements of the benchmarks in comparison to previous schedulers.

Posix standard threads or Pthreads [88] have become a popular standard for shared memory
parallel programming. However, despite providing lightweight thread operations, existing Pthread
implementations do not handle fine-grained, dynamic parallelism efficiently. In particular, current
Pthread schedulers are not space-efficient due to their use of FIFO scheduling queues. Conse-
quently, they result in poor space and time performance for programs with a large number of
fine-grained threads. Therefore, I added both my scheduling algorithms, AsyncDF and DFDe-
ques, to a popular, commercial Pthreads package, and evaluated the performance using a set of
parallel benchmarks. The benchmarks include a variety of numerical codes, physical simulations,
and a data classifier. Figure 1.5 highlights some of the results of implementing AsyncDF in the
context of the Pthreads package; it shows the speedups for fine-grained and coarse-grained ver-
sions of a subset of the Pthreads benchmarks. The results indicate that the use of lightweight
Pthreads can allow moderately fine-grained programs with simpler code to perform as well as their
hand-partitioned, coarse-grained counterparts, provided a space-efficient scheduler is utilized. The
results of using algorithm DFDeques for finer-grained Pthreads benchmarks are summarized in
Figure 1.6. Unlike AsyncDF, algorithm DFDeques maintains high performance and good locality
even when the granularity of the threads is reduced further (i.e., when the threads are made more
fine grained). As shown in the figure, the performance of the original FIFO scheduler deterio-
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Figure 1.4: High-water mark of memory allocation for two multithreaded parallel benchmarks on a 16-
processor SGI Power Challenge. The memory usage shown for one processor is the memory requirement
of the serial C version of the program. “Other systems” is an estimate of the memory required by the
benchmark on previous systems that schedule the outer parallelism with higher priority (e.g., [41, 83]).
“Cilk” is the memory requirement using the space-efficient system Cilk [25], and “ADF” is the memory
requirement using algorithm AsyncDF. Results for other benchmarks can be found in Chapter 5.

rates significantly as the thread granularity is reduced. Both the space-efficient schedulers create
fewer simultaneously active threads compared to the FIFO scheduler, thereby conserving expen-
sive resources such as thread stacks. The benchmark inputs and thread granularities used in these
experiments, along with other experimental results, are described in detail in Chapters 5 and 7.

Space-Time tradeoff

Recall that both the scheduling algorithms, AsyncDF and DFDeques, utilize a memory threshold
K, so that threads can be preempted before they allocate too much (i.e., more that K) space. This
parameter is designed to be specified by the user at the command line. A bigger value of K leads
to a lower running time in practice because it allows threads to run longer without preemption and
reduces scheduling costs. However, a larger value of A" results in a higher space bound. Therefore,
adjusting the value of the memory threshold A" provides a trade-off between the running time
and the memory requirement of a parallel computation. For example, Figure 1.7 experimentally
demonstrates this trade-off for a parallel benchmark using algorithm AsyncDF to schedule threads
on the SGI Power Challenge.

In DFDeques, increasing the memory threshold K™ also allows more threads close together in
the computation graph to execute consecutively on the same processor, leading to lower scheduling
overheads and better locality. We will refer to the number of threads executed on a processor from
its local subqueue (without accessing the global queue of subqueues) as the scheduling granularity;
a higher scheduling granularity typically results in better locality and lower scheduling overheads.
As shown in figure 1.8, adjusting the value of the memory threshold K" in DFDeques provides a
trade-off between the memory requirement and scheduling granularity (and running time).
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Figure 1.5: Speedups on 8 processors of an Enterprise 5000 SMP for 5 Pthreads-based applications. The
speedup for each benchmark is with respect to its serial, C counterpart. The coarse-grained version is the
original, unmodified benchmark, run with one thread per processor. The fine-grained version was rewritten
to dynamically create and destroy large numbers of lightweight Pthreads. This version was executed using
both the Pthread implementation’s original FIFO scheduler, and the new AsyncDF scheduling algorithm.
See Chapter 5 for further details, along with other experimental results.

Benchmark Max threads L2 Cache miss rate 8 processor speedup
FIFO | ADF | DFD || FIFO | ADF | DFD || FIFO | ADF | DFD
Vol. Rend. 436 36 37 42 3.0 1.8 539 | 599 | 6.96
Dense MM 3752 | 55 77 24.0 13 8.7 022 | 3.78 | 5.82
Sparse MVM || 173 | 51 49 13.8 | 13.7 | 13.7 || 3.59 | 5.04 | 6.29
FFTW 510 30 33 146 | 164 | 144 || 6.02 | 596 | 6.38
FMM 2030 | 50 54 140 | 2.1 1.0 1.64 | 7.03 | 747
Barnes Hut 3570 | 42 120 19.0 | 39 2.9 064 | 626 | 697
Decision Tr. 194 | 138 | 189 5.8 49 4.6 4.83 | 4.85 | 5.39

Figure 1.6 : Summary of results for Pthreads benchmarks when the thread granularities are further reduced
(i.e., when the threads are made more fine grained) compared to the fine-grained version in Figure 1.5. The
thread granularities are adjusted to be the finest granularities for which the basic thread overheads (such as
creation and synchronization) are within 5% of the running time. For each scheduling technique, we show
the maximum number of simultaneously active threads (each of which requires a min. 8KB stack) created
by the scheduler, the L2 cache misses rates (%), and the speedups on an 8-processor Enterprise 5000 SMP.
“FIFO” is the original Pthreads scheduler that uses a FIFO queue, “ADF” algorithm AsyncDF, and “DFD”
is algorithm DFDeques. Further details can be found in Chapter 7.
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Figure 1.7: The variation of running time and memory usage with the memory threshold K (in bytes) in
AsyncDF, for multiplying two 1024 x 1024 matrices using blocked recursive matrix multiplication on 8
processors of a Power Challenge. K=500-2000 bytes results in both good performance and low memory

usage.
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Figure 1.8: The variation of running time, scheduling granularity and memory usage with the memory
threshold K (in bytes) for matrix multiplication using DFDeques on 8 processors of an Enterprise 5000.
The units for the three quantities are shown in separate graphs in Chapter 5, along with similar results for

synthetic benchmarks.
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1.2 Limitations of the Dissertation
The limiting aspects of this dissertation are listed below.

(a) Machine model. The scheduling algorithms presented in this dissertation are designed for
shared memory machines. I demonstrate their effectiveness in practice only on single SMPs. Un-
like distributed memory machines, such machines have per-processor caches of limited size, and
share common main memory modules. Provided a thread runs on a processor long enough to make
good use of its cache, which processor it gets scheduled on has limited impact on performance. In
contrast, in distributed machines, each processor has its own sizable memory module, and the local
memory bus typically has higher bandwidth that the processor interconnects. On such machines,
scheduling a thread that accesses data resident in a processor’s memory module on that processor
becomes more important. In Chapter 8, I speculate on how my scheduling algorithms may be
extended to clusters of SMPs.

(b) Programming model. The programming model assumed by the scheduling algorithms is
pure nested parallelism; we define it formally in Chapter 2. Parallel languages that provide nested
parallelism include data-parallel languages such as NESL [17] and HPF [60], as well as control-
parallel languages such as Cilk [25] and Proteus [109]. Elsewhere, we have extended our space-
efficient scheduler to the more general model of synchronization variables [19]; a description of
those results is beyond the scope of this dissertation. In practice, the schedulers presented in this
dissertation can be easily extended to execute programs with arbitrary, blocking synchronizations
(see Chapters 5 and 7). Chapter 8 briefly speculates on how space bounds for more general pro-
gramming models could also be analyzed in theory.

() Analysis. I analyze the running time and space requirement for parallel programs assuming a

constant-time fetch-and-add instruction; the analysis does not reflect the effects of processors con-
tending on synchronizations or memory accesses. Also, I do not analyze the total communication
(in the form of cache misses) for the programs.

(d) Scalability of implementations. My implementations and experiments were carried out on
single bus-based SMPs, with up to 16 processors. Each of my implementations therefore used
a serialized scheduler, which does not appear to be a major bottleneck for up to 16 processors.
I describe and analyze parallelized versions of the schedulers, which I expect would be more
effective on a machine with a larger number of processors. However, mainly due to the lack of
convenient access to such a machine, I do not experimentally validate this claim.

(e) Benchmarks. Since the algorithms are targeted towards nested parallel programs, the bench-
marks I use to evaluate them predominantly use nested parallelism. The multithreaded runtime
system on the Power Challenge handles multi-way forks that are common in data parallelism.
However, the Pthreads interface allows only a binary fork, and all the Pthreads benchmarks are
written using nested fork-join constructs. Some of the benchmarks also make limited use of
Pthread mutexes. However, the Pthreads library itself makes extensive use of the mutexes and con-
dition variables provided by the Pthreads API. The set of benchmarks includes compute-intensive
and memory-intensive codes, but no I/O-intensive applications.
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1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 begins by presenting an overview of previous work on representing computations
with graphs. I then motivate and explain the dynamic dags model used throughout this disserta-
tion. I also formally define important properties of parallel programs and their parallel executions,
such as space requirement, in terms of the dags. The chapter then differentiates between different
models of parallelism, including nested parallelism, and ends with an overview of related work on
dynamic scheduling techniques.

Chapter 3 describes algorithm AsyncDF, the first of the two asynchronous scheduling algo-
rithms presented in this dissertation. I analyze the space and time bounds for a program executed
using algorithm AsyncDF. I then describe how the scheduler itself can be parallelized, and analyze
the space and time bounds including the overheads of the parallelized scheduler.

Chapter 4 describes the implementation of a multithreading runtime system that uses the
AsyncDF scheduling algorithm. It also evaluates and compares the performance of the scheduler
with previous scheduling techniques using a set of parallel benchmarks.

Chapter 5 explains how a slight variation of the AsyncDF scheduling algorithm can be added to
a lightweight Pthreads implementation, making it space efficient. I show that the new scheduler can
result in good space and time performance for fine-grained versions of a variety of Pthreads-based
parallel benchmarks.

Chapter 6 presents the second space-efficient scheduling algorithm, namely, algorithm DFDe-
ques. It also analyses the space and time requirements for executing a nested-parallel benchmark
using the DFDeques.

Chapter 7 describes the implementation of DFDeques in the context of a Pthreads library. I
experimentally compare the performance of DFDeques with the original Pthreads scheduler and
with algorithm AsyncDF, by using the Pthreads-based benchmarks introduced in Chapter 5. I also
present simulation results for synthetic benchmarks to compare the performance of DFDeques
with both algorithm AsyncDF, and with another space-efficient (work-stealing) scheduler.

Chapter 8 summarizes the results presented in this dissertation, and describes future directions
for research that emerge from this work.



Chapter 2
Background and Related Work

Dynamically generated graphs are used throughout this dissertation to represent computations with
dynamic parallelism. This chapter begins with a description of previous work on using graphs to
model parallel computations (Section 2.1.1), followed by a definition of the directed acyclic graph
(dag) model used in this dissertation (Section 2.1.2). Sections 2.1.3 and 2.1.4 then define some
properties of the computations (or their dags) that will be referred to in the remainder of this dis-
sertation. Next, Section 2.2 describes some of the models of parallelism that can be implemented
by fine-grained, lightweight threads. For each model, I give examples of existing thread systems
or parallel languages that implement the model. The chapter ends with a summary in Section 2.3
of previous work on dynamic scheduling of lightweight threads for either good locality or space
efficiency, along with an explanation of where this dissertation research fits in.

2.1 Modeling a Parallel Computation as a Graph

This section begins by listing some previous work on modeling parallel computations with different
types of graphs, followed by a description of the particular graph model used in this dissertation.
The section ends with definitions of important properties of parallel computations or their graph
representations.

2.1.1 Background

Marimont [104], Prosser [130], Ianov [86], and Karp [93] introduced directed graphs to represent
sequential programs. Since then, several researchers have used graphs to model both sequential
and parallel computations for a variety of purposes.

Graphs have been used to represent programs in the functional programming community, so
that the programs can be executed using graph reduction [157]. Internal nodes are application
nodes while the leaves are either primitive operators or data values. The left child of an application
node reduces to an operator, while its right child represents the operand for the left child. Graph
reduction has been applied widely in the context of both sequential [29, 57, 94] and parallel [14,
125] machines.

Representing computations as graphs allows relationships between their space and time re-
quirements to be studied using pebbling games. Graphs used in pebbling are typically directed,

15
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acyclic graphs in which nodes represent operations, and an edge from one node to another indicates
that the result of one operation is an operand of another. Pippenger [127] summarizes early results
in pebbling for sequential programs. Pebbling has subsequently been applied to generate parallel
schedules for FFT graphs [141], and to characterize parallel complexity classes [160].

Dennis [51] introduced static dataflow graphs, which were subsequently augmented with dy-
namic tags that increase the available parallelism [4]. A dataflow graph is a directed graph in
which nodes represent operators (or instructions) and the edges represent data dependences be-
tween nodes. Dataflow graphs have been used in the simulation of computer systems [68, 149].
As intermediate representations for dataflow languages, they are also used to execute dataflow pro-
grams at a fine-grained level, where individual operations are dynamically scheduled on special
processors [6, 74]. Alternatively, the macro-dataflow approach involves compile-time partitioning
of the graph nodes into coarser tasks and scheduling them onto more conventional multiproces-
sors [139, 140].

Computation graphs were introduced by Karp and Miller [91] as a model to represent paral-
lelism in simple, repetitive processes. Each node of a computation graph is an operation and each
edge represents a first-in first-out queue of data directed from one node to another. The model
was subsequently extended to include features like conditional branching [2, 7, 52, 103, 106, 135].
These graphical models have a number of different types of nodes, including arithmetic opera-
tors and control flow decisions, and have been used to represent, analyze, manipulate and execute
paralle] computations.

A significant amount of work has focused on static scheduling of task graphs on parallel com-
puters. A task graph is a directed graph in which each node represents a variable-length task (sub-
computation). An edge connecting two tasks represents dependences between them, with weights
denoting communication costs. The communication cost is incurred only if the two tasks are sched-
uled on separate processors. Although the problem of finding an optimal schedule was shown to be
NP-complete even without communication costs [100], scheduling algorithms that produce sched-
ules within a factor of 2 of optimal have been presented for various cases [28, 71, 121]. Several
researchers have analyzed the trade-off between time and communication for different types of
task graphs [89, 120, 122, 154]. A number of heuristics have been suggested to statically partition
and schedule task graphs to minimize execution time [55, 69, 85, 107]. Task graphs have also been
used to predict the performance of parallel computations [12, 98, 110, 144, 152].

Dynamic dags

All the above approaches use graphs as explicit, static representations of programs. In general,
to statically construct and schedule such graphs, the costs for each runtime instance of a task
(node) or data communication (edge) must be known at compile time. These quantities are difficult
to statically estimate for programs with dynamic parallelism, for example, programs with data-
dependent spawning and parallel recursion, or parallel loops with statically unknown bounds and
iteration execution times, etc. Therefore, instead of using a static graph representation, programs
with dynamic parallelism are modeled using dynamic graphs in this dissertation. A dynamic graph
is a directed graph that corresponds to a single execution of a program, and unfolds (is revealed
incrementally) as the execution proceeds. Each node corresponds to a separate execution instance
of some task. Thus, a sequential loop would be represented as a linear sequence of nodes, created
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as the loop executes, instead of a cycle as in static task graphs. The dynamic graphs considered
in this dissertation are assumed to be acyclic'. The complete, directed acyclic graph or dag is
available only at the end of an execution, and need not be explicitly created by the scheduler. We
simply view it as a trace of that execution.

Although static dags were initially used to represent arithmetic expressions [27, 28], researchers
have more recently used dynamic dags to model parallel computations with dynamic parallelism.
Burton et al. [30, 143], Blumofe and Leiserson [24, 26], and Blelloch et al. {21] modeled parallel
computations as dynamic dags to generate efficient schedules. Leighton et al. [99] studied efficient,
online embeddings in hypercubes, of dags that represent a tree of dynamically spawned tasks.
Dynamic dag representations have also been used to define relaxed models of memory consis-
tency [22], or for proving correctness of algorithms that detect race conditions [40, 58]. Bertsekas
and Tsitsiklis [16] present a good introduction to the dynamic dag model for parallel programs.
They explain how parallel executions can be represented by schedules for the corresponding dags,
and they define the running time for a parallel execution in terms of these schedules.

2.1.2 Dynamic dags used in this dissertation

Dynamic dags are used as an abstract model to represent parallel computations in this dissertation.
This has a number of advantages.

e A dag is a simple and intuitive representation for a program execution, independent of the
parallel language or underlying parallel machine.

o The problem of dynamically generating a schedule for the program reduces to the problem
of generating an online schedule for the dynamic dag (see Section 2.1.4).

o The properties of a parallel computation, such as the total number of operations or the critical
path length, can be defined in terms of properties of the dag (see Sections 2.1.3). Similarly,
the costs of a particular schedule can be analyzed in terms of properties of the dag.

e Different models of dynamic parallelism can be compared in terms of the structural proper-
ties of the dags generated by the parallel computations (see Section 2.2).

In the dag model used in this dissertation, each node represents a unit of computation or an
action in a thread; therefore, I will use the terms “node” and “action” interchangeably. Each
action must be executed serially, takes exactly a single timestep (clock cycle) to be executed on
a processor. A single action may allocate or deallocate space. Since machine instructions do not
necessarily complete in a single timestep, one machine instruction may translate to a series of
multiple actions.

Each edge in the dag represents a dependence between two actions. Thus, if the dag has an
edge (u,v), then the node v must be executed after node u. One or more new threads are created
by executing a fork instruction. When a thread ¢, forks a thread ¢, thread ¢, is called the parent
of thread ¢;, and thread ¢, a child of thread ¢,. Figure 2.1 shows an example dag for a simple
parallel computation. The fork edges, shown as dashed lines in the figure, are revealed when a

1A graph representing the execution of a computation with arbitrary synchronizations may contain a cycle, imply-
ing that the execution represented by the graph deadlocks. Therefore, we do not consider such computations.
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thread forks a child thread. The fork edge goes from the current node of the forking thread to the
initial node of the child thread. The dotted synch edges represent a synchronization between two
threads, while each solid and vertical continue edge represents a sequential dependence between a
pair of consecutive actions within a single thread. For every edge (u v) in the dag, node w is called
a parent of node v, and node v a child of node u.

Each node v in the dag is assigned an integer weight m(v) to represent a memory allocation
or deallocation. Thus, a node (action) v that allocates M units of memory is assigned a label
m(v) = M. If the node v deallocates M bytes, then m(v) = — M if it performs no allocation or
deallocation, m(v) = 0. We assume that a single node (action) does not perform both an allocation
and a deallocation.

If the programming model supports multi-way forks, a node can have a high out-degree. In
contrast, in systems that only allow binary forks, the outdegree of a node can be at most two. As
a convention, when a thread forks a child thread, I will draw the child thread to the immediate left
of the parent thread. If multi-way forks are permitted, then the children are shown arranged from
left-to-right in the forking (or program text) order.

Dag-determinism

Each dag represents a single execution of a parallel computation. Therefore, a single parallel com-
putation may result in different dags for each parallel execution of the computation. The analysis in
this dissertation focuses on parallel computations that are dag-deterministic, that is, the structure
of the dag (including the weights on its nodes) is the same for every execution of the computation.
Thus, the dag representing a dag-deterministic computation is independent of factors such as the
scheduling technique, the number of processors, or the relative order of execution of actions that
can be executed in parallel. A dag-deterministic parallel computation may be non-deterministic
in the traditional sense, that is, it may produce different results during different executions. How-
ever, to analyze the space and time costs, we simply require that the dag for each execution be
the same. As an example of a computation that is not dag-deterministic, consider a program with
speculative parallelism. It may perform more (or less) work when executed on multiple processors
compared to its serial execution. Since the dags for the two executions differ, the computation is
not dag-deterministic. Similarly, a search program with pruning may result in different dags for
each execution, and is therefore not dag-deterministic.

The reason for focusing on dag-determinism in this dissertation is that the space and time
costs for a parallel schedule are defined in terms of properties of the dag. For example, I define
the parallel space requirement S, of a computation as a property of the dag that represents the
parallel execution of that computation on p processors. .5, is then bound in terms of the space
requirement .5; for a serial schedule of the same dag. Now this bound makes sense only if the
serial execution of the computation actually produces the same dag. Therefore, this dissertation
restricts its focus to dag-deterministic computations to allow meaningful analyses of the scheduling
algorithms. The schedulers presented in this dissertation are, nonetheless, perfectly useful for
executing computations that are not purely dag-deterministic. However, for such computations,
the space and time costs would be bound in terms of the worst-case space and time costs for all
possible dags, which may be difficult to predict or compute offline. This issue is discussed briefly
in Chapter 8.
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Figure 2.1: An example dag for a parallel computation. Each dashed edge represents a fork, and each
dotted edge represents a synchronization of a child thread with its parent. Solid, vertical edges represent
sequential dependences within threads. Here to, the initial (root) thread, forks a child thread ¢;, which forks
a child thread ¢,. v

2.1.3 Work and depth

The work of a dag-deterministic parallel computation is the total number of actions executed in it.
Since each action requires a single timestep to be executed, the work of a parallel computation also
equals the time taken to execute it serially (assuming zero scheduling overheads). A computation’s
depth is the length of the critical path in it, that is, the time required to execute the computation
on an infinite number of processors (assuming no scheduling or communication overheads). Thus,
the work of a dag-deterministic parallel computation equals the total number of nodes in its dag,
while its depth equals the length of the longest path in the dag. For example, the dag in Figure 2.1
has 10 units (timesteps) of work, and a depth of 6 timesteps; thread ¢, performs 5 units of work.

2.1.4 Schedules: space and time requirement

For analyzing the space and time requirements of a parallel computation, this dissertation assumes
that the clocks (timesteps) of the processors are synchronized. Therefore, although we are mod-
eling asynchronous parallel computations, the schedules are represented as sets of nodes executed
in discrete timesteps. With this assumption, the parallel (or serial) execution of a computation on
p processors can be represented by a p-schedule s, = Vi, V,, ..., V,, where V; is the set of nodes
executed at timestep :. Since each processor can execute at most one node in any timestep, each
set V; contains at most p nodes. Thus, for a serial schedule or 1-schedule, each V; consists of at
most a single node. A p-schedule must obey the dependency edges, that is, a node may appear in
a set V; only if all its parent nodes appear in previous sets.

The length of a p-schedule is the time required to execute the p-schedule, that is, the number
of timesteps in it. Thus, a p-schedule s, = V;, V5, ..., V; has length 7. The space required by s,

is S, = n+ mazjg,.. , (ELI Zyevi m(v)), where 7 is the size of the input data, and m(v) is
the amount of memory allocated by node v.
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Figure 2.2: The state transition diagram for threads. An active thread that is either executing, ready or
suspended.

reactivated

A node in a thread is ready to execute when all its parents have been executed, but the node
itself has not yet been executed. A thread that has been created but has not yet terminated is
called active. A thread is dead once it has terminated. At any time during the execution, the
first unexecuted node (or action) in an active thread is called the thread’s current node. An active
thread is executing if it is currently being executed on some processor. Otherwise, an active thread
is either ready or suspended. The thread is ready if its current node is ready; otherwise, it is said
to be suspended. Figure 2.2 shows the state transition diagram for threads. A suspended thread
is reawakened when its current node becomes ready. We say a thread is scheduled when its state
changes from ready to executing. When it is subsequently descheduled, it leaves the executing
state. '

In this dissertation, a thread’s granularity refers to the average number of actions executed by
the thread. Thus, threads that perform only a few operations are fine grained, while threads that
perform a large number of operations are coarse grained. For example, a SPMD-style computation
that creates one thread per processor, independent of the problem size, has coarse-grained threads.
I also (informally) define scheduling granularity to be the average number of actions executed
consecutively on a single processor, from threads close together in the dag. Figure 2.3 shows two
different mappings of threads from a parallel computation to processors that result in different
scheduling granularities.

Depth-first schedules and serial space

As demonstrated by the examples in Chapter 1, the schedule generated for a parallel computa-
tion depends on the algorithm used to schedule the threads. Thus, several different serial sched-
ules (with different space requirements) may exist for a single dag. A serial implementation that
maintains a LIFO (last-in-first-out) stack of ready threads results in a depth-first schedule. A
depth-first schedule is a 1-schedule in which, at every step, we pick the most recently executed
node v that has a ready child node, and execute any child of v. Since the node v may have two
or more children, and we do not specify which child node to pick first, a dag may have several
depth-first schedules. For example, Figure 2.4 shows two possible depth-first schedules for the dag
from Figure 2.1.

A specific depth-first schedule called a 1DF-schedule can be defined for computations by in-
troducing priorities on the threads—a total order where ¢, > ¢, means that ¢, has a higher priority
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(b)

Figure 2.3: Two different mappings (a) and (b) of threads in a dag onto processors Py, ..., P3. (a) has
higher scheduling granularity than (b).

than ¢;. To derive this ordering we say that whenever a thread ¢, forks a thread ¢, the forked
thread will have a higher priority than the forking thread (¢; > ¢,) but the same priority relative to
all other threads currently existing in the system. If multi-way forks are permitted, priorities are
assigned to the threads in the program text order; thus, if thread ¢, forks n threads ¢;,... ,¢, ina
single timestep, then ¢; > ¢ > ... > t,, > to. A 1DF-schedule is the unique 1-schedule generated
by always executing the current action of the highest-priority ready thread. The order in which
nodes are executed in a 1DF-schedule determines their 1DF-numbers. For example, Figure 2.4 (b)
shows the 1DF-numbering of the dag from Figure 2.1. Recall that my convention is to draw a
newly forked child thread to the immediate left of its parent. Therefore, all my example dags are
drawn such that, if ¢, > t;, then ¢, appears to the left of ¢,. Thus, the 1DF-schedule is the unique,
left-to-right depth-first schedule. :

Serial implementations of many languages execute a 1DF-schedule. In fact, if the thread cre-
ations (forks) were to be replaced by simple function calls, then the serial schedule executed by
any stack-based language such as C is identical to a 1DF-schedule for most parallel computations.
There exist some parallel computations (such as those with right-to-left synch edges), for which
a 1DF-schedule need not be the most natural serial execution order. However, for the class of
computations that this dissertation focuses on, the 1DF-schedule is indeed the most natural serial
execution order, and therefore, its space requirement will be referred to as the serial space require-
ment S; for a parallel computation.

2.2 Models of Parallelism

Researchers in the past have compared different models for parallel machines; for example,
Traff [155] presents a good overview of the PRAM model and its variants. There has also been
some work in classifying parallel languages or models of parallel programming. Bal and Tanen-
baum [8] compare the data-sharing semantics of parallel languages for distributed memory ma-
chines. Sipelstein and Blelloch [147] review and compare a set of parallel languages that provide
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(b)

Figure 2.4 : Two different depth-first schedules (a) and (b) for the example dag from Figure 2.1; each node
is labelled with its execution order. A node cannot be executed until all the nodes that have edges into it
have been executed. (b) is a 1DF-schedule, and therefore each node’s label is its 1DF-number. To obtain a
1DF-schedule, priorities are assigned to the threads such that t, > t; > ;.

data aggregates and operations to manipulate them as language primitives. Dekeyser and Mar-
quet [50] classify some data-parallel languages according to the level of abstraction they provide
to the programmer. Skillicorn and Talia classify a larger set of parallel languages into six categories
based on similar criteria. At one end of their spectrum are languages with implicit parallelism, such
as Haskell [82] and UNITY [38], for which the programming is relatively simple but the perfor-
mance relies heavily on the language implementation. At the other extreme are languages such as
MPI [61] in which the parallelism, partitioning, scheduling, communication and synchronization
are all specified by the programmer. This dissertation research is applicable to the intermediate
class of languages in which the parallelism is explicit and dynamic (in the form of lightweight
threads), while the partitioning, scheduling, communication and synchronization are all implicit,
and left to the language (or machine) implementation. I am not aware of any previous work that
further differentiates between parallel languages in this specific class, based on the model of par-
allel programming supported by each language. Therefore, this section is an attempt to make such
a differentiation. In particular, I describe the different models of parallelism based on the structure
of the dags resulting from the parallel computations, and provide examples of parallel languages
or computations that support each model.

The model of parallelism supported by a language (or thread library) determines the style in
which lightweight threads may be created or synchronized in the language. Imposing no restric-
tions on the programming model leads to computations that are represented by arbitrary, unstruc-
tured dags, and executing them efficiently can be difficult. Therefore, a number of parallel lan-
guages or thread libraries provide a set of primitives that lead to computations with well-structured
dags. Here I describe five models in roughly increasing order of flexibility or expressiveness. I
only cover models that allow dynamic creation of threads, as opposed to the SPMD style where
one thread is created per processor at the start of the computation (e.g., in MPI or Split-C [49]).
This list is by no means comprehensive, but covers the models implemented by a large set of
parallel languages.
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1. Flat parallelism

In the flat model of parallelism, the original (root) thread is allowed to fork child threads. All the
child threads must synchronize with the root thread at a single point in the program and terminate;
the child threads cannot fork more threads themselves or communicate with each other. Once
the threads synchronize, the parent can once again fork new child threads. Figure 2.5 (a) shows a
sample dag for a program with flat parallelism. Flat, data-parallel languages like High Performance
Fortran [60] support this style of parallelism over elements of dense arrays. Parallelizing compilers
also often generate an output program in this style. For example, when the compiler encounters a
loop nest, it may parallelize one of the nested loops by creating one child thread per processor, and
partitioning the iterations of that loop among the child threads. Alternatively, the compiler may
create one child thread per iteration of the chosen loop, and use a static or dynamic scheme [84, 97,
128, 158] to partition the child threads among the processors. The child threads then synchronize
with the parent at the end of the parallelized loop.

2. Nested parallelism

As with flat parallelism, all the child threads in a nested parallel computation synchronize with the
parent at a single point and then terminate. No other synchronizations are permitted, and therefore,
as with flat parallelism, child threads may not communicate with each other. However, a child
thread is allowed to fork its own child threads, and the forks must be perfectly nested (see Fig-
ure 2.5 (b)). The dags that represent nested parallel computations are fairly well structured, and
are called series-parallel dags [21]. Data-parallel languages such as NESL [17] and control-parallel
languages such as Proteus [109] implement nested parallelism. A number of parallel programs, in-
cluding divide-and-conquer computations, branch-and-bound searches, functional expression eval-
uations, parallel loop nests, and octree-based codes for graphics or dynamics applications, make
use of nested parallelism. The examples in Chapter 1 are nested parallel programs.

3. Strictness

Strict computations [24] extend nested parallel computations by allowing one or more synchro-
nization edges from a thread to its ancestor threads. In functional programs, this restriction implies
that a function cannot be invoked until all its arguments are available, although the arguments may
be computed in parallel. Fully strict computations are a subset of strict computations that only
allow synchronization edges from a thread to its parent. For example, the dag in Figure 2.5 (c)
represents a fully strict computation. The Cilk programming language [25] implements a subset of
fully strict computations in which, all the children currently forked by a thread must synchronize
with the parent at a single point; this subset is equivalent to nested parallel computations in its
expressiveness.

4. Synchronization variables

A synchronization variable is a write-once variable, and any thread that performs a read on a syn-
chronization variable before it has been written to, must suspend. Once a write is performed on the
variable, it can be read multiple times. Therefore, there is a synchronization edge from the node
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Figure 2.5: Example dags for the different models of dynamic parallelism. (a) A computation with flat
parallelism, where the root thread may fork child threads. (b) A nested parallel computation, in which
all forks and joins are nested. (c) A strict computation, which allows a thread to synchronize with its
ancestors (this example is also fully strict because threads only synchronize with their parents). (d) A
computation with synchronization variables, where synchronization edges go from nodes that perform writes
to synchronization variables, to nodes that read them.
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that performs a write on a synchronization variable, to every node that reads it. There is no restric-
tion on the pattern of synchronization edges, that is, a synchronization edge may go from a thread
to any other thread, as long as the resulting graph is a dag (has no cycles). As with the above mod-
els, new threads are created by forking. Figure 2.5 (d) shows an example dag representing a parallel
computation with synchronization variables. Synchronization variables can be used to implement
futures in such languages as Multilisp [77], Mul-T [95], Cool [36] and OLDEN [34]; I-structures in
1d [5]; events in PCF [148]; streams in SISAL [59]; and are likely to be helpful in implementing the
user-specified synchronization constraints in Jade [134]. Computations with futures are a special
case, in which all the synch edges in the dag go from left to right; the 1DF-schedule is a natural
serial execution order for such computations.

4. Other synchronization primitives

Computations that use some of the other synchronization primitives, such as mutexes, semaphores,
or condition variables, are often not dag-deterministic. For example, consider a program in which
the root thread forks a child thread, and both then execute some critical section protected by a
mutex. If the root thread acquires the mutex first, there is a synchronization edge from the node
in the root thread that unlocks the mutex to the node in the child thread that locks it. In contrast,
if the child acquires the mutex first, the synchronization edge goes from the unlocking node in the
child thread to the locking node in the parent. Thus, although individual executions have unique
dags to represent them, the computation is not dag-deterministic, i.e., it cannot be represented with
a single dag that is independent of the individual executions. A number of general-purpose thread
libraries provide such arbitrary synchronization primitives [15, 35, 44, 46, 88, 116, 150].

The scheduling algorithms presented in this dissertation are analyzed for nested parallel com-
putations. However, the Pthreads-based implementations described in Chapters 5 and 7 use the
schedulers to execute computations with arbitrary synchronization primitives, including mutexes
and condition variables. The experimental results indicate that the schedulers work well in practice
for computations with a moderate amount of such synchronizations.

2.3 Previous work on lightweight thread systems

A variety of systems have been developed to schedule lightweight, dynamic threads [13, 25, 34,
36,47,75,76, 90, 102, 105, 111, 115, 126, 137, 159, 161, 162, 164]. Although the main goals have
been to achieve low runtime overheads, good load balancing, and high locality, a significant body
of work has also focused on developing scheduling techniques to conserve memory requirements.
This section presents an brief overview of previous work on dynamic thread scheduling for good
locality, followed by a description of space-efficient schedulers.

2.3.1 Scheduling for locality

Detection of data accesses or data sharing patterns among threads in a dynamic and irregular com-
putation is often beyond the scope of the compiler. Further, today’s hardware-coherent SMPs
do not allow explicit, software-controlled placement of data in processor caches; therefore, owner-
compute optimizations for locality that are popular on distributed memory machines do not apply to
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SMPs. However, in many parallel programs, threads close together in the computation’s dag often
access the same data. For example, in a divide-and-conquer computation (such as quicksort) where
a new thread is forked for each recursive call, a thread shares data with all its descendent threads.
Therefore, increasing scheduling granularity typically provides good locality, and also reduces
scheduling contention (that is, contention between processors while accessing shared scheduling
data structures). For example, if the ' thread (going from left to right) in Figure 2.3 accesses
the i** block or element of an array, then scheduling consecutive threads on the same processor,
as in Figure 2.3 (a), provides better locality. Hence many parallel implementations of fine-grained
threads use per-processor data structures to store ready threads [66, 77, 90, 92, 101, 145, 159].
Threads created on a processor are stored locally and moved only when required, so that most of
the threads created on one processor are executed on that processor. This technique effectively
increases scheduling granularity, and can be applied to a variety of programs that dynamically cre-
ate threads, including those with nested parallelism and synchronization variables. For programs
with parallel loops, techniques that statically or dynamically chunk loop iterations were proposed
to achieve similar goals [84, 97, 128, 158].

An alternate approach to scheduling for locality has focused on taking advantage of user-
supplied annotations or hints regarding the data access patterns of the threads. For example, if
threads are annotated with the memory locations that they access, then threads accessing the same
or nearby locations can be scheduled in close succession on the same processor [36, 105, 126].
Similarly, if hints regarding the sharing of data between threads can be provided by the program-
mer, an estimate of the data footprint sizes of threads in a processor’s cache can be computed and
used by the scheduler [161]. However, such annotations can be cuambersome for the user to provide
in complex programs, and are often specific to a certain language or library interface. Therefore,
instead of relying on user-supplied hints, the algorithm presented in this dissertation (Chapter 7)
uses the heuristic of scheduling threads close in the dag on the same processor to obtain good
locality.

2.3.2 Scheduling for space-efficiency

The initial approaches to conserving memory were based on heuristics that work well for some
applications, but do not provide guaranteed bounds on space [13, 32, 48, 56, 67, 70, 73, 77, 102,
111, 118, 119, 124, 138]. For example, Ruggiero and Sargeant introduced throttling [138] to
avoid the creation of too many tasks in the Manchester dataflow machine [74]. Their technique
involves switching between FIFO (first-in-first-out) and LIFO (last-in-first-out) scheduling on the
basis of the system load. Peyton-Jones et al. [124] present a method to control parallelism in
parallel graph reduction, based on spawning new paralle] tasks only when the system load is low.
Burton [32], Epstein [56], and Osborne [118] suggested techniques to control speculative paral-
lelism by assigning priorities to tasks. Culler and Arvind [48] proposed loop-bounding techniques
to control the excess parallelism in a dataflow language Id [5]. Multilisp [77], a flavor of Lisp
that supports parallelism through the “future” construct (and therefore supports computations with
write-once synchronization variables), uses per-processor stacks of ready threads to limit the par-
allelism. Each processor adds or removes threads from the top of its stack, while idle processors
steal from the bottom of some other processor’s stack. A similar method was subsequently imple-
mented in the context of Qlisp [123]. Lazy allocation of a thread stack involves allocating the stack
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when the thread is first executed, instead of when it is created, thereby reducing thread creation
time and conserving memory [13]. Lazy thread creation [70, 90, 111] avoids allocating resources
for a thread unless it is executed in parallel. Filaments [102], a package that supports fine-grained
fork-join or loop parallelism using stateless threads, conserves memory and reduces overheads by
coarsening and pruning excess parallelism. Nested data parallel languages that are implemented
using flattening [18] may require large amounts of memory; runtime serialization can reduce mem-
ory requirements for some programs [119]. Grunwald and Neves use compile-time analysis of the
whole program to conserve the stack space required for lightweight threads [73]; they calculate the
exact size of the stack required for each function, and insert checks for stack overflow in recursive
functions. Fu and Yang reduce memory usage for volatile objects in a distributed objects model,
by clustering and scheduling tasks based on knowing which objects they access [67].

Recent work has resulted in provably efficient scheduling techniques that guarantee upper
bounds on the space required by the parallel computation [21, 24, 26, 30, 143]. For example,
Blumofe and Leiserson [24] showed that randomized work stealing guarantees an upper bound of
p- S, for the space required on p processors, where S, is the serial (depth-first) space requirement?.
In their algorithm, each processor maintains its own list of ready threads, which it treats like a FIFO
stack; threads are pushed on or popped off the top of this ready stack by the processor. When a
processor runs out of threads on its own stack, it picks another processor at random, and steals
from the bottom of its stack. Their model applies to fully-strict computations with binary forks,
and allows memory allocations on a thread stack, but not on the heap®. They also bound the time
and communication requirements of the parallel computations. The Cilk runtime system [25] uses
this randomized work stealing algorithm to efficiently execute multithreaded programs. Various
other systems use similar work stealing strategies [76, 111, 115, 159] to control the parallelism.
This approach also typically provides good locality, since threads close together in the dag are
scheduled on the same processor.

The scheduling algorithm proposed by Burton and Simpson [30, 143] also guarantees an upper
bound of p - 5;. Their model allows dag-deterministic computations with arbitrary dags and is
therefore more general than fully strict parallelism. However, their definition of .S, is the maximum
space required over all possible depth-first serial executions, rather than just the left-to-right depth-
first execution. There may not exist an efficient algorithm to compute this value of S; for arbitrary
dags.

A recent scheduling algorithm by Blelloch et al. [21] improved the previous space bounds
from a multiplicative factor on the number of processors to an additive factor for nested parallel
computations. The algorithm generates a schedule that uses only S; + O(p - D) space, where D
is the depth of the parallel computation. This bound is asymptotically lower than the previous
bound of p - 5; when D = o(5;), which is true for parallel computations that have a high degree
of parallelism, such as all programs in the class NC [42]. For example, a simple algorithm to
multiply two n X n matrices has depth D = ©(logn) and serial space S; = ©(n?), giving space
bounds of O(n? + plog n) instead of O(n2p) on previous systems. The low space bound of S; +

ZMore recent work provides a stronger upper bound than p-S; for space requirements of regular divide-and-conquer
algorithms using randomized work stealing [23].

3Their model does not allow any allocation of space on a global heap. An instruction in a thread may allocate stack
space only if the thread cannot possibly have a living child when the instruction is executed. The stack space allocated
by the thread must be freed when the thread terminates.
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O(p - D) is achieved by ensuring that the parallel execution follows an order that is as close as
possible to the serial execution. However, the algorithm has scheduling overheads that are too
high for it to be practical. Since it is synchronous, threads need to be rescheduled after every unit
computation to guarantee the space bounds. Moreover, it ignores the issue of locality—a thread
may be moved from processor to processor at every timestep, and threads close together in the dag
may get scheduled on different processors.

This dissertation presents two asynchronous scheduling algorithms AsyncDF and DFDeques,
that maintain the same asymptotic space bound of S; + O(p - D) as the previous scheduling algo-
rithm [21], but overcome the above problems. The main goal in the design of the two algorithms
was to allow threads to execute nonpreemptively and asynchronously, allowing for better locality
and lower scheduling overheads. The low space bound is achieved by prioritizing threads accord-
ing to their execution order in the 1DF-schedule (i.e., the 1DF-numbering of their current nodes),
and preempting them when they run out of a preallocated quota of memory. In addition, threads
that perform big memory allocations are delayed by lowering their priority. To ensure scalability,
I present parallelized versions of the scheduler for both algorithms. I show that, including the
costs of the parallelized scheduler, both algorithms execute parallel computations with W work in
O(W/p+ D -logp) time and Sy + O(p - log p - D) space.

The algorithms AsyncDF and DFDeques are designed and analyzed for nested parallel compu-
tations on shared memory machines. Our model allows memory to be allocated on the shared heap
as well as the thread stacks. Algorithm AsyncDF allows multi-way forks, while algorithm DFDe-
ques allows only binary forks. Algorithm AsyncDF uses a single, globally ordered priority queue
of ready threads, with input and output buffers that provide concurrent, non-blocking access to the
queue. However, this results in poor locality when threads are fine grained, since, although a single
thread may execute on the same processor, threads close together in the dag may be scheduled on
different processors. For example, the mapping in Figure 2.3 (a) could be a possible mapping of
threads to processors using work stealing, while algorithm AsyncDF may result in the mapping
shown in Figure 2.3 (b).

Algorithm DFDeques improves upon algorithm AsyncDF by allowing processors to use sep-
arate ready queues, which are globally ordered. This results in better locality (by scheduling fine-
grained threads close in a dag on the same processor) and lower contention during scheduling,
at the cost of a slight increase in space requirement. It is more efficient in practice compared to
algorithm AsyncDF when the threads are finer grained. I present experimental results to show
that both the algorithms achieve good performance in terms of both memory and time for a vari-
ety of parallel benchmarks. Although I analyze the algorithms for nested parallel computations,
experimental results indicate that they are useful in practice for scheduling parallel computations
with more general synchronization primitives, such as locks or condition variables (see Chapters 5
and 7).

Algorithm AsyncDF was recently extended to execute computations with synchronization vari-
ables in a provably-efficient manner [19]. This extension allows a computation with W work, o
synchronizations, D depth and \S; sequential space, torunin O(W/p+o-log(p-D)/p+D-log(p-D))
time and S; + O(p - D - log(p - D)) space on p processors. The bounds include all the space and
time costs for the scheduler. Lower bounds for the special case where the computation graph is
planar were also provided. A detailed description of the scheduling algorithm is beyond the scope
of this dissertation.



Chapter 3

AsyncDF': An asynchronous,
Space-Efficient Scheduler

This chapter describes and analyzes algorithm AsyncDF, the first of the two space-efficient schedul-
ing algorithms presented in this dissertation. The chapter begins by listing the basic ideas behind
the algorithm that make it space and time efficient (Section 3.1). Section 3.2 describes the data
structures used by the scheduler, and then presents the pseudocode for algorithm AsyncDF. Sec-
tion 3.3 then analyzes the space and time requirements of a parallel computation executed using
algorithm AsyncDF. I show that a parallel computation with depth D, work W, and serial space re-
quirement 57, is executed on p processors by algorithm AsyncDF using S; + O(K - p - D) space
(including scheduler space); here, K is the value of the memory threshold used by AsyncDF.
Further, if S, is the total space allocated in the computation, I show that the execution requires
O(W/p+ S, /(K - p) + D) timesteps. This time bound does not include the scheduling overheads;
in Section 3.4 I describe the implementation of a parallelized scheduler and analyze the space
and time bounds including scheduler overheads. The contents of this chapter are summarized in
Section 3.5.

3.1 Basic ‘Concepts

Algorithm AsyncDF is designed for the model of nested pafallelism with multi-way forks. The
algorithm is based on the following concepts; the first four ensure space efficiency, while the last
two are aimed at obtaining good time performance.

e Depth-first priorities. As with the work of Blelloch et al. [21], threads are stored in a
global queue prioritized according to their depth-first execution order, that is, according to
the 1DF-numbering of their current nodes. This limits the number of nodes that execute “out-
of-order” with respect to a 1DF-schedule, thereby bounding the amount of space allocated in
excess of the serial space requirement 5 of the 1DF-schedule.

¢ Fixed memory quota. Every time a thread is scheduled on a processor, that is, every time it
moves from the ready state to the executing state, it is assigned a fixed memory quota of K
bytes. The user-adjustable value K is called the memory threshold of the scheduler. When
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the thread allocates space on its stack or on the shared heap, the available memory quota is
appropriately reduced. Once the thread reaches an instruction that requires more memory
than the remaining quota, the thread is preempted, and the processor finds the next ready
thread to execute.

o Delays before large allocations. When a thread reaches an action that allocates a large
amount' of space, the thread is stalled by inserting dummy threads before the large allo-
cation. In the meantime, if other threads with a higher priority become ready, they get
scheduled before the stalled thread.

o Lazy forks. When a thread reaches a fork instruction, it is preempted and added to the
scheduling queue. Its child threads are created lazily, that is, only when they are selected to
be scheduled. Until then, the parent thread acts as a representative for all its child threads
that are yet to be created.

¢ Uninterrupted execution. Threads are allowed to execute without interruption on the same
processor until they fork, suspend, terminate, or run out of their memory quota. This im-
proves upon previous work [21] by providing better locality and lower scheduling overheads.

¢ Asynchronous scheduling. The scheduling is overlapped with the computation, and the pro-
cessors take turns performing the task of scheduling. The processors execute asynchronously
with respect to each other, that is, they do not synchronize after every timestep?.

Any single thread may be scheduled several times. Every time it is scheduled, a sequence of its
actions is executed non-preemptively. We will refer to each such sequence as a batch. In algorithm
AsyncDF, all the nodes in a batch are part of a single thread. Thus, algorithm AsyncDF effectively
splits a thread into one or more batches. The term batch will be used subsequently in this chapter
to analyze the space requirement.

3.2 The AsyncDF Algorithm

This section presents the AsyncDF scheduling algorithm. It starts by listing the data structures
required for scheduling, followed by pseudocode for the algorithm itself.

3.2.1 Scheduling data structures

As mentioned in the Section 3.1, algorithm AsyncDF prioritizes threads according to the
1DF-numbers of their current nodes. By scheduling threads according to these priorities, the algo-
rithm ensures that their execution order in the parallel schedule is close to that in the 1DF-schedule.

To maintain the relative thread priorities, algorithm AsyncDF uses a shared priority queue R
to store ready threads, suspended threads, and stubs that act as place-holders for threads that are
currently being executed. Threads in R are stored from, say, left to right, in increasing order of

Here, a “large” allocation is an allocation exceeding the memory quota K.
2The analysis, however, assumes that the clocks on the processors are synchronized.
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the 1DF-numbers of their current nodes. The lower the 1DF-number of a thread’s current node, the
higher is the thread’s priority.

Storing threads in order of their priorities requires R to support operations such as inserting
or deleting from the middle of the queue. Implementing these operations in a concurrent and
efficient manner on a shared queue is difficult. Therefore, two additional FIFO queues, @;n and
Qout, are used instead to provide concurrent accesses. ()., and Q.. act as input and output buffers,
respectively, to store threads that are to be inserted into or that have been removed from R (see
Figure 3.1). Thus, processors can perform fast, non-blocking accesses to the two FIFO buffer
queues, instead of directly accessing R. The scheduler described in this chapter serializes the
transfer of threads between the buffer queues and R; Section 3.4 describes how this transfer can
be parallelized.

» Qout
l ; | | (decreasing thread priorities)
Processors I
LI [ | R
l__‘ﬁ:;l
Q.

in

Figure 3.1: The movement of threads between the processors and the scheduling queues. Q);,, and Q. are

FIFOs, whereas R allows insertions and deletions of intermediate nodes. Threads in R are always stored
from left to right in decreasing order of priorities.

3.2.2 Algorithm description

Figure 3.2 shows the pseudocode for the AsyncDF (K) scheduling algorithm; K is the user-
adjustable memory threshold for the scheduler. The processors normally act as workers. A worker
processor takes a thread from (),., executes it until it terminates, preempts itself, or suspends
(waiting for one or more child threads to terminate). The worker then returns the thread to Q;,
and picks the next thread from (),.;. Every time a thread is picked from Q,,;, it is allotted a mem-
ory quota of K bytes; it may subsequently use the quota to allocate heap or stack space. When
the thread exhausts its memory quota and reaches an action that requires additional memory to
be allocated, it must preempt itself before performing the allocation. A thread that reaches a fork
instruction also preempts itself.

In addition to acting as workers, the processors take turns in acting as the scheduler. For this
purpose, we introduce special scheduling threads into the system. Whenever the thread taken
from ()..; by a processor turns out to be a scheduling thread, it assumes the role of the scheduling
processor and executes the scheduler() procedure. We call each execution of the scheduler() pro-
cedure a scheduling step. Only one processor can be executing a scheduling step at a time due to
the scheduler lock. The algorithm begins with a scheduling thread and the first (root) thread of the
program on ().
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begin worker
while (there exist threads in the system)
currT := remove-thread(Q),.:);
if (currT is a scheduling thread)
scheduler();
else
execute the computation associated with currT;
if (currT terminates) or (currT suspends) or (currT preempts itself)
insert-thread(currT, );,);
end worker

begin scheduler
acquire scheduler-lock;
insert a scheduling thread into (),.+;
T :=remove-all-threads(Q;,,);
for each thread Tin 7
insert T into R in its original position;
if (T has terminated)
if (T is the last among its siblings to synchronize) and (the parent T’ of T is suspended)
reactivate T’;
delete T from R;
select the leftmost p ready threads from R:
create child threads in place if needed;
if (there are less than p ready threads)
select them all;
insert these selected threads into (,,;
release scheduler-lock;
end scheduler

Figure 3.2: The AsyncDF scheduling algorithm. currT is the current thread executing on a processor.
The thread preempts itself when it reaches a fork instruction, or when it needs to allocate memory after
exhausting its memory quota. When the scheduler creates new child threads, it inserts them into R to the
immediate left of their parent thread. This maintains the invariant that the threads in the ready queue are
always in increasing order of the 1DF-numbers of their current nodes. Child threads are forked only when
they are to be added to (),,..+, that is, when they are among the leftmost p ready threads in R.
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A processor that executes a scheduling step starts by putting a new scheduling thread on Q.
Next, it moves all the threads from Q;, to R. Each thread has a pointer to a stub that marks
its original position relative to the other threads in R; it is inserted back in that position. The
scheduler then compacts the ready queue by removing threads that have terminated. If a thread
is the last among its siblings to terminate, and the scheduler finds its parent thread suspended, the
parent thread is reactivated. All threads that were preempted due to a fork or an exhaustion of their
memory quota, are returned to R in the ready state. If a thread has reached a fork instruction, its
child threads are created and inserted to its immediate left by the scheduler. The child threads are
placed in R in order of the 1DF-numbers of their current nodes. Finally, the scheduler moves the
leftmost p ready threads from R to Q,.:, leaving behind stubs to mark their positions in R. If R
has less than p ready threads, the scheduler moves them all to (),,;. The scheduling thread then
completes the scheduling step, and the processor resumes the task of a worker.

To limit the number of threads in R, the child threads of a forking thread are created lazily. A
child thread is not explicitly created until it is to be moved to Q,,;, that is, when it is among the
leftmost p threads represented in R. Until then, the parent thread implicitly represents the child
thread. A single parent may represent several child threads. This optimization ensures that a thread
does not have an entry in R until it has been scheduled at least once before, or is in (or about to
be inserted into) (),.:. If a thread T is ready to fork child threads, all its child threads will be
forked (created) and scheduled before either 7', or any other threads in R to the right of 7', can be
scheduled.

Handling large allocations of space. In algorithm AsyncDF (K ), every time a thread is sched-
uled, its memory quota is reset to K bytes (the memory threshold). This does not allow any single
action within a thread to allocate more than K bytes. I now explain how such allocations are han-
dled, similar to the technique suggested in previous work [21]. The key idea is to delay the big
allocations, so that if threads with lower 1 DF-numbers become ready in the meantime, they will be
executed instead. Consider a thread with a node that allocates m units of space in the original dag,
where m > K. We transform the dag by inserting a fork of m/K parallel threads called dummy
threads, before the memory allocation (see Figure 3.3). These dummy threads perform a single
action (a no-op) each, but do not allocate any space. Every time a processor executes the no-op
in a dummy thread, the thread terminates, and the processor gets a new thread from (,,;. Once
all the dummy threads have been executed, the original thread can proceed with the allocation of
m space. Because the dummy threads, which are added using an m / K -way fork, may execute in
parallel, this transformation increases the depth of the dag by at most a constant factor. If S, is the
total space allocated in the program (not counting the deallocations), the number of nodes in the
transformed dag is at most W + S,/ K. This transformation takes place at runtime, and the on-line
AsyncDF algorithm generates a schedule for this transformed dag. This ensures that the space
requirement of the generated schedule does not exceed our space bounds, as proved in Section 3.3.

We now prove the following lemma regarding the order of the nodes in R maintained by algo-
rithm AsyncDF.

Lemma 3.1 The AsyncDF scheduling algorithm always maintains the threads in R from left to
right in an increasing order of the 1DF-numbers of their current nodes.

Proof: This lemma can be proved by induction. When the execution begins, R contains just
the root thread, and therefore it is ordered by the 1DF-numbers. Assume that at the start of some
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Figure 3.3: A transformation of the dag to handle a large allocation of space at a node without violating
the space bound for algorithm AsyncDF (K'). Each node is labeled with the amount of memory its action
allocates. When a thread needs to allocate m space (m > K), m/K dummy child threads are forked in
parallel before the allocation. Each dummy thread consists of a no-op action that does not allocate any
space. After these dummy threads complete execution, the original thread may perform the allocation and
continue with its execution.

scheduling step, the threads in R from left to right are in increasing order of the 1DF-numbers
of their current nodes. For a thread that forks, inserting its child threads to its immediate left in
the order of their 1DF-numbers maintains the ordering by 1DF-numbers. A thread that suspends
due to a memory allocation is returned to its original position. Its new current node has the same
IDF-number as its previous node, relative to current nodes of other threads. Deleting threads
from R does not affect their ordering. Therefore the ordering of threads in R by 1DF-numbers is
preserved after every operation performed by the scheduler. "

Lemma 3.1 implies that when the scheduler moves the leftmost p ready threads from R to Q,u:,
their current nodes have the lowest 1 DF-numbers among all the ready nodes in R. We will use this
fact to prove the space bound of the schedule generated by algorithm AsyncDF.

3.3 Analysis of Algorithm AsyncDF

In this section, I analyze the space and time required by a parallel computation executed using
algorithm AsyncDF. The space bound includes the space required by the scheduling data structures
in the general case. Recall that the scheduler in algorithm AsyncDF is serialized; therefore, the
time bound in this section is presented only for the special case when the scheduler does not
become a bottleneck. In general, this bottleneck can be avoided by parallelizing the scheduler. For
a detailed analysis of the space and time bounds including the overheads of a parallelized scheduler
in the general case, see Section 3.4.2.

This section first states the cost model assumed by the analysis. I then show that a parallel
computation with depth D and work W, which requires 5; space to execute on one processor,
is executed by the AsyncDF scheduling algorithm on p processors using a memory threshold A’
in S; + O(K - p- D) space (including scheduler space). Next, I show that the execution requires
O(W/p + S,/(K - p) + D) timesteps, where S, is the total space allocated in the computation.

Recall that according to the dag model defined in Section 2.1.2, the depth D is defined in terms
of actions, each of which requires a unit timestep (clock cycle) to be executed. Since the granularity
of a clock cycle is somewhat arbitrary, especially considering highly pipelined processors with
multiple functional units, this would seem to make the exact value of the depth D somewhat
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arbitrary. For asymptotic bounds this is not problematic since the granularity will only make
constant factor differences. In Appendix A, however, I modify the space bound to be independent
of the granularity of actions, making it possible to bound the space requirement within tighter
constant factors.

33.1 Cost model

The following timing assumptions are made in the space and time analysis presented here. How-
ever, these assumptions are not required to ensure the correctness of the scheduler itself.

As explained in Section 2.1.2, the timesteps are synchronized across all the processors. At the
start of each timestep, we assume that a worker processor is either busy executing a thread, or is
accessing the queues ,.s or ();». An idle processor always busy waits for threads to appear in
(out- We assume a constant time, atomic fetch-and-add operation in our system. Therefore, using
the algorithms described in Appendix C, all worker processors can access );, and @, in constant
time. Thus, at any timestep, if Q.. has n threads, and p; processors are idle, then min(n, p;) of
the p; idle processors are guaranteed to succeed in picking a thread from (),,; within a constant
number of timesteps. We do not need to limit the duration of each scheduling step to prove the
space bound; we simply assume that it takes at least one timestep to execute.

3.3.2 Space bound

As introduced in Section 3.1, each sequence of nodes in a thread that is executed non-preemptively
is called a batch. We will call the first node to be executed in a batch a keavy node; it is the current
node of the thread when it is scheduled. The remaining nodes in a batch are called light nodes.
Thus, a batch is a heavy node followed by a sequence of light nodes. Note that the splitting of a
thread into batches, and hence the classification of nodes as heavy or light, depends on the value
of the memory threshold being used by the scheduler.

We attribute all the memory allocated by light nodes in a batch to the heavy node of the batch,
and assume that light nodes do not allocate any space themselves (although they may deallocate
space). This is a conservative view of space allocation, that is, the total space allocation analyzed
in this section using this assumption is equal to or more than the actual space allocation. The basic
idea in the analysis is to bound the number of heavy nodes that execute out of order with respect
to the 1DF-schedule.

When a thread is inserted into any of the queues ();,, Q,.: or R, we will say its current (and
heavy) node has been inserted into the queue. A heavy node may get executed several timesteps
after it becomes ready and after it is put into (),,.;. However, a light node is executed in the timestep
it becomes ready, since a processor executes consecutive light nodes in a batch nonpreemptively.

Let s, = Vi,...,V; be the parallel schedule of the dag generated by algorithm AsyncDF (K).
Here V/ is the set of nodes that are executed at timestep i. Let s; be the 1DF-schedule for the same
dag. At any timestep during the execution of s,, all the nodes executed so far form a prefix of
sp. Forj = 1,...,7,a j-prefix of sp is defined as the set of all nodes executed during the first ;
timesteps of s,, that is, the set | JI_,

Consider an arbitrary j-prefix o, of sp, forany j = 1,...,7. Let oy be the longest prefix of
s1 containing only nodes in oy, that is, oy C 0,. Then the preﬁx o, is called the corresponding
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serial prefix of o,,. The nodes in the set o, — o, are called premature nodes, since they have been
executed out of order with respect to the 1DF-schedule s;. All other nodes in o, that is, the set
01, are called non-premature. For example, Figure 3.4 shows a simple dag with a parallel prefix
o, for an arbitrary p-schedule s,, and its corresponding serial prefix o;. Since all the premature
nodes appear in s; after all the non-premature nodes, they have higher 1DF-numbers than the non-
premature nodes.

The parallel execution has higher memory requirements because of the space allocated by the
actions corresponding to the premature nodes. Hence we need to bound the space allocated by the
premature nodes in o,. To get this bound, we need to consider only the heavy premature nodes,
since the light nodes do not allocate any space. We will assume for now that no single node in the
dag allocates more than A" bytes. Later we will relax this assumption to cover bigger allocations.
We first prove the following bound on the number of heavy premature nodes that get executed in
any prefix of the parallel schedule.

Lemma 3.2 Let GG be a dag of W nodes and depth D. Let s, be the 1DF-schedule for G, and let
s, be a parallel schedule for GG executed by the AsyncDF algorithm on p processors. Then the
number of heavy premature nodes in any prefix of s, with respect to the corresponding prefix of s,
isatmost O(p - D).

Proof. Consider an arbitrary prefix o, of s,, and let o, be the corresponding prefix of s;. Let v be
the last non-premature node to be executed in the prefix o,; if there are two or more such nodes,
pick any one of them. Let P be a path in the dag from the root to v constructed such that, for every
edge (u,u’) along P, u is the last parent (or any one of the last parents) of u’ to be executed. (For
example, for the o, shown in Figure 3.4, v is the node labelled e, and the path P is («, b, €).) Since
v is non-premature, all the nodes in P are non-premature.

Let u; be the node on the path P at depth 7; then u;, is the root, and us is the node v, where ¢
is the depth of v. Let ¢; be the timestep in which u; is executed; let ¢5,; be the last timestep in o).
Fori=1,...,4,let I; be the interval {t; + 1,... ,¢;41}.

Consider any interval I; for ¢« = 1,...,6 — 1. We can now show that at most O(p) heavy
premature nodes can be executed in this interval. At the end of timestep ¢;, u; has been executed.
If ;4 is a light node, it gets executed in the next timestep (which, by definition, is timestep ¢;,),
and at most another (p — 1) heavy premature nodes can be executed in the same timestep, that is,
in interval 7.

Consider the case when u;;; is a heavy node. After timestep ¢;, (),,; may contain p nodes.
Further, because access to ();,, requires constant time, the thread 7 that contains u; must be inserted
into ();,, within a constant number of timesteps after ¢;. During these timesteps, a constant number
of scheduling steps may be executed, adding another O(p) threads into Q,,;. Thus, because ),
is a FIFO, a total of O(p) heavy nodes may be picked from (),,; and executed before u;,;; all of
these heavy nodes may be premature. However, once the thread 7 is inserted into ();,, the next
scheduling step must find it in ();,; since u; is the last parent of u;,; to execute, this scheduling
step makes v, available for scheduling. Thus, this scheduling step or any subsequent scheduling
step must put u;;; on (), before it puts any more premature nodes, because u;,, has a lower
1DF-number. When w4, is picked from (),,: and executed by a worker processor, another p — 1
heavy premature nodes may get executed by the remaining worker processors in the same timestep,
which, by definition, is timestep ¢,,. Thus, a total of O(p) heavy premature nodes may be executed



3.3. ANALYSIS OF ALGORI’IHN[ ASYNCDF 37
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Figure 3.4 : (a) A simple program dag; all edges are shown here as solid lines for clarity. The 1DF-schedule
for this dag is s; = [a, b, ¢, d, ¢, f, g,h,1,j, k, I, m, n]. For p = 2, a possible parallel schedule on processors
P, and P, is shownin (c), and is represented as s, = [{a}, {b, h},{c,1},{d, 7}, {e, k},{f, 1}, {m, g}, {n}].
In this schedule, each batch is indicated as a curly line below the nodes in (c). The first node in each batch
is a heavy node; thus, the heavy nodes are a, b, c, e, h and k, and are also shown with bold outlines in (a).
For j = 5, the j-prefix of s, is 6, = {a,b, h,¢,1,d, j, e, k}, and the corresponding serial prefix of s; is
o1 = {a,b,c,d,e}. o, and o, are shown in (b). Therefore, the premature nodes in o, that is, the nodes in
op, — 01, are h, 1, §, and k. Of these, the heavy premature nodes are h and k.
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in interval /;. Similarly, since v = wu; is the last non-premature node in o, at most O(p) heavy
premature nodes get executed in the last interval /5. Because § < D, o, contains a total of O(p- D)
heavy premature nodes. .

We can state the following lemma bounding the space allocation of a parallel schedule.

Lemma 3.3 Let GG be a program dag with depth D, in which every node allocates at most K
space. If the 1DF-schedule for the dag requires S, space, then algorithm AsyncDF (K') generates
a schedule s, on p processors that requires at most S; + O(RK - p - D) space.

Proof: Consider the j-prefix g, of s, forany j = 1, ... , 7, where 7 is the length of s,. According
to Lemma 3.2, o, has O(p - D) heavy premature nodes. Recall that all the memory allocations are
attributed to heavy nodes, and each thread is allotted a quota of A” bytes in AsyncDF (k') every
time it is scheduled. Since no single node in the dag allocates more than A bytes of memory,
every batch in the thread accounts for at most A" memory. Thus, every heavy node allocates at
most K* bytes and light nodes allocate no memory. Therefore, the total memory allocated by all
the premature nodes is at most O(/\" - p- D). Further, the total memory allocated by non-premature
nodes cannot exceed the serial space requirement Sy, and therefore, the total memory allocated by
all the nodes in o, cannot exceed S; + O(K - p - D). Thus, we have bound the space allocated in
the first j timesteps of s, forany j = 1,... ,7. "

Handling allocations bigger than A. A transformation the program dag to handle allocations
bigger than the memory threshold /i’ was described in Section 3.2.2. Consider any heavy premature
node v that allocates m > K space. The m/KA dummy threads inserted before it are executed
before the allocation takes place. Having no-op nodes, they do not actually allocate any space,
but are entitled to allocate a total of m space (X units each) according to algorithm AsyncDF (K).
Hence v can allocate these m units without exceeding the space bound in Lemma 3.3. With this
transformation, a parallel computation with 1 work and D depth that allocates a total of S, units
of memory results in a dag with at most W + S,/ A" nodes and O(D) depth. Therefore, using
Lemma 3.3, we can state the following lemma.

Lemma 3.4 A computation of depth D and work W, which requires S, space to execute on one
processor, is executed on p processors by the AsyncDF algorithm using S; + O(K - p- D) space.

Finally, we bound the space required by the scheduler to store the three queues.

Lemma 3.5 The space required by the scheduler is O(p - D).

Proof. When a processor starts executing a scheduling step, it first empties (;,,. At this time, there
can be at most p — 1 threads running on the other processors, and (Q,,; can have another p threads
in it. The scheduler adds at most another p threads (plus one scheduling thread) to Q,.:, and no
more threads are added to (), until the next scheduling step. Since all the threads executing on
the processors can end up in Q);,,, )i, and @, can have a total of at most 3p threads between them
at any time.
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Finally, we bound the number of entries in R, which has one entry for each active thread. At
any stage during the execution, the number of active threads is at most the number of premature
nodes executed, plus the maximum number of threads in (),,,,; (Which is 2p+ 1), plus the maximum
number of active threads in the 1DF-schedule. Any step of the 1DF-schedule can have at most D
active threads, since it executes threads in a depth-first manner. Since the number of premature
nodes is at most O(p - D), R has at most O(p - D) + (2p + 1) + D O(p - D) threads. Since
each thread’s state can be stored using a constant c units of memory?, the total space requ1red by
the three scheduling queues is O(c-p- D) = O(p - D). n

Using Lemmas 3.4 and 3.5, we can now state the following bound on the total space requirement
of the parallel computation.

Theorem 3.6 A computation of depth D and work W, which requires S, space to execute on one
processor; is executed on p processors by the AsyncDF (K) algorithm using S + O(K - p- D)
space (including scheduler space). 2

When the Ihemory threshold K is a constant, algorithm AsyncDF (K') executes the above compu-
tation on p processors using S; + O(p - D) space.

3.3.3 Time bound

Finally, we bound the time required to execute the parallel schedule generated by algorithm
AsyncDF (K) for a special case; Section 3.4.2 analyzes the time bound in the general case. In
this special case, we assume that the worker processors never have to wait for the scheduler to
add ready threads to €),,;. Thus, when there are r ready threads in the system, and n proces-
sors are idle, (), has at least min(r, n) ready threads. Then min(r,n) of the idle processors are
guaranteed to pick ready threads from (),,; within a constant number of timesteps. We can show
that the time required for such an execution is within a constant factor of the time required to
execute a greedy schedule. A greedy schedule is one in which at every timestep, if » nodes are
ready, min(n, p) of them get executed. Previous results have shown that greedy schedules for dags
with W nodes and D depth require at most W/p + D timesteps to execute [26]. Our transformed
dag has W 4 S,/K nodes and O(D) depth. Therefore, we can show that our scheduler requires
O(W/p+S, /pK + D) timesteps to execute on p processors. When the allocated space S, is O(W),
the number of timesteps required is O(WW/p+ D). For a more in-depth analysis of the running time
that includes the cost of a parallelized scheduler in the general case, see Section 3.4.2.

3.4 A Parallelized Scheduler

The time bound proved in Section 3.3.3 does not include scheduling overheads. The scheduler
in the AsyncDF algorithm is a serial scheduler, that is, only one processor can be executing the

3Recall that a thread allocates stack and heap data from the global pool of memory that is assigned to it every time
it is scheduled; this data is hence accounted for in the space bound proved in Lemma 3.4. Therefore, the thread’s state
here refers simply to its register contents.
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scheduler() procedure at a given time. However, the amount of work involved in a scheduling step,
and hence the time required to execute the scheduler() procedure, increases with the number of
processors p. This can cause idle worker processors to wait longer for ready threads to appear
(out- Therefore, the scheduler must be parallelized to scale with the number of processors. In this
section, I describe a parallel implementation of the scheduler and analyze its space and time costs. I
show that a computation with W work and D depth can be executed in O(W/p+ S, / Kp+ D-log p)
time and S; + O(K - D - p-log p) space on p processors; these bounds include the overheads of the
parallelized scheduler. The additional log p term is due to the parallel prefix operations executed
by the scheduler.

Only a theoretical description of a parallelized scheduler is presented in this dissertation. The
experimental results presented in subsequent chapters have been obtained using a serial scheduler;
the results demonstrate that a serial scheduler provides good performance on a moderate number
of processors.

3.4.1 Parallel implementation of a lazy scheduler

Instead of using scheduler threads to periodically (and serially) execute the scheduler procedure
as shown in Figure 3.2, we devote a constant fraction ap of the p processors to it (where 0 <
a < 1). The remaining (1 — o)p processors always execute as workers. To amortize the cost
of the scheduler, we place a larger number of threads (up to plog p instead of p) into Q,.;. R is
implemented as an array of threads, stored in decreasing order of priorities from left to right.

As described in Section 3.2.2, threads are forked lazily; when a thread reaches a fork instruc-
tion, it is simply marked as a seed thread. At a later time, when its child threads are to be scheduled,
they are created from the seed and placed to the immediate left of the seed in order of their prior-
ities. Each child thread has a pointer to its parent. When all child threads have been created, the
parent (seed) thread once again becomes a regular thread. All the child threads get created from the
seed before the parent thread is next scheduled, since they have higher priorities than the parent.
Thread deletions are also performed lazily: every thread that terminates is simply marked in R as
a dead thread, to be deleted in some subsequent timestep.

The synchronization (join) between child threads of a forking thread is implemented using a
fetch-and-decrement operation on a synchronization counter associated with the fork. Each child
that terminates marks itself as dead and decrements the counter by one. The last child thread
among its siblings to terminate (the one that decrements the counter to zero) switches on a special
last-child flag in its entry.

Unlike the serial scheduler described in Section 3.2, suspended threads (threads waiting to
synchronize with their child threads) are not stored in R. Every other active thread in this imple-
mentation has an entry in R, as do dead threads that are yet to be deleted. Suspended threads found
in Q;, are not put back into R; they are stored elsewhere*, and their entries in R are marked as
dead. A suspended thread is subsequently inserted back into R in place of the child thread that has
the last-child flag set. If a parent reaches the point of synchronization with its child threads after
all the child threads have terminated, the parent does not suspend itself, and retains its entry in %.

4A suspended threads is not stored in any data structure; it just exists as a thread data structure allocated off the
heap. It is subsequently accessed through the parent pointer in one of its child threads.
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For every ready (or seed) thread 7' that has an entry in R, we use a nonnegative integer ¢(7')
to denote the number of ready threads T' represents. Then for every seed T, ¢(7') is the number
of child threads still to be created from it, plus one (for itself). For every other ready thread
in R, ¢(T') = 1, since it only represents itself.

The scheduler() procedure from Figure 3.2 can now be replaced by a while loop that runs
until the entire computation has been executed. Each iteration of this loop, which we call a
scheduling iteration, is executed in parallel by only the ap scheduler processors. Therefore, it
need not be protected by a scheduler lock as in Figure 3.2. Let r be the total number of ready

-threads represented in R after threads from ();,, are moved to R at the beginning of the iteration,
and let |Q),.:| be the number of threads currently in (),,; when the iteration starts. The scheduling
iteration of a lazy scheduler is then described in Figure 3.5.

begin scheduling iteration
Let g, = min(r, plogp — |Qout|)-

1. Remove the set 7 of all threads in @, from @Q;,. Except for suspended threads, move all
threads in 7 to R, that is, update their states in R. For each suspended thread in 7, mark its
entry in R as dead.

2. For every dead thread in 7, if its last-child flag is set, and its parent is suspended, replace its
entry in R with the parent thread and reactivate the parent (mark it as ready).

3. Delete all the dead threads up to the leftmost (g, + 1) ready or seed threads.

4. Perform a prefix-sums computation on the ¢(7") values of the leftmost ¢, ready or seed threads
to find the set C' of the leftmost g, ready threads represented by these threads. For every
thread in C' that is implicitly represented by a seed, create an explicit entry for the thread
in R, marking it as a ready thread.

5. Move the threads in the set C' from R to (},,, leaving stubs in R to mark their positions.

end scheduling iteration

Figure 3.5: The sequence of steps executed in each scheduling iteration. The ap scheduling processors
continuously execute scheduling iterations until the execution is completed.

Consider a child thread 7' that is the last to terminate amongst its siblings. If T' is not the
rightmost (lowest priority) thread amongst its siblings, then some of 7"s siblings, which have
already terminated, may be represented as dead threads to its right in R. If T is replaced by its
parent thread, the parent has a lower priority than these dead siblings of 7' to its immediate right.
Thus, due to lazy deletions, active threads in R may be out of order with respect to one or more
dead threads to their immediate right. However, the scheduler deletes all dead threads up to the
first (¢, + 1) ready or seed threads. This ensures that all dead threads to the immediate right of any
ready thread (or seed representing a ready thread) 7" are deleted before T is scheduled. Therefore,
no descendents of a thread may be created until all dead threads out of order with respect to the
thread are deleted. Thus, at any time during the execution, a thread may remain out of order in R
with respect to only the dead threads to its immediate right.
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We say a thread is live when it is either in Q..+ or Q;,, or when it is being executed on a
processor. Once a scheduling iteration empties ();,, at most plog p+ (1 — «)p threads are live. The
iteration makes at most another plog p threads live before it ends, and no more threads are made
live until the next scheduling step. Therefore at most 2plog p + (1 — a)p threads can be live at
any timestep, and each has one stub entry in R. We now prove the following bound on the time
required to execute a scheduling iteration.

Lemma 3.7 Forany0 < o < 1, a scheduling iteration that deletes n dead threads runs in O( ot

82 time on ap processors.
o

Proof. Let g, = min(r, plogp — |Qow|) be the number of threads the scheduling iteration must
move to (),.; then, ¢, < plog p. We analyze the time required for each step of the scheduling
iteration described in Figure 3.5. Recall that 7 is the set of all threads in (Q;,, at the start of the
scheduling iteration.

1. Atthe beginning of the scheduling iteration, (), contains at most 2plog p+ (1 — a)p threads,
thatis, |7| < 2plog p + (1 — a)p. Since each of these threads has a pointer to its stub in R,
ap processors can move the threads in 7 to R and update their states in O( ’%f—ﬁ) time.

2. ap processors can replace dead threads in 7 that have their last-child flag set with their
suspended parents in O( '—952) time.

3. Let T be the (g, + 1)*" ready or seed thread in R (starting from the left end). The scheduler
needs to delete all dead threads to the left of 7. In the worst case, all the stubs are also to
the left of 7" in R. However, the number of stubs in R is at most 2plog p + (1 — a)p, that is,
one for each live thread. Since there are n dead threads to the left of T, there are a total of at
most n + 2plog p+ (1 — a)p threads to the left of T'. Therefore, the n threads can be deleted
from n + 2plog p + (1 — a)p threads in O( % + lﬁfﬁ) timesteps on ap processors.

4. After the deletions, the leftmost g, < plog p ready threads are among the first 3plog p -+ (1 —
a)p threads in R; therefore the prefix-sums computation will require O( '—"f—”) time.

5. Finally, g, new child threads can be created and added in order to the left end of R in O( '—"fﬂ)
time.

All deletions and additions are performed near the left end of R, which are simple parallel opera-
tions in an array®. Thus, the entire scheduling iteration runs in O( at '%fl) time. "

3.4.2 Space and time bounds using the parallelized scheduler

We can now state the space and time requirement of a parallel computation to include scheduling
overheads. The bounds assume that a constant fraction o of the p processors (forany 0 < o < 1)
are dedicated to the task of scheduling. The detailed proofs are given in Appendix B.

5The additions and deletions must skip over the stubs to the left of 7', which can add at most a 1953 delay.
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Theorem 3.8 Let S, be the space required by a 1DF-schedule for a computation with work W and
depth D, and let S, be the total space allocated in the computation. The parallelized scheduler
with a memory threshold of K units, generates a schedule on p processors that requires S + O(K -
D - p-logp) space and O(W/p + S,/pK + D - log p) time to execute. :

These time and space bounds include scheduling overheads. The time bound is derived by counting
the total number of timesteps during which the worker processors may be either idle, or busy exe-
cuting actions. The space bound is proved using an approach similar to that used in Section 3.3.2.
When the total space allocated S, = O(W), the time bound reduces to O(W/p + D - log p).

3.5 Summary

In this chapter, I have presented AsyncDF, an asynchronous, space-efficient scheduling algorithm.
The algorithm prioritizes threads at runtime by their serial execution order, and preempts threads
before they allocate too much memory. I first described a simple version of AsyncDF which
serializes the scheduling. This version was shown to execute a nested-parallel computation with a
depth of D and a serial space requirement of .S; on p processors using S; + O(K - p - D) space;
here, K is the value of the memory threshold used by the scheduler. (This version is used in
the runtime system described in Chapter 4.) This chapter then presented a version of algorithm
AsyncDF in which the scheduling operations are fully parallelized. A parallel computation can be
implemented with such a scheduler using S; +O(K - D-p-log p) space and O(W/p+S,/p+D log p)
time (including scheduler overheads); here W is the work of the computation, and S, is the total
space allocated. The next two chapters describe experiments with implementing and evaluating
the AsyncDF algorithm in the context of two runtime systems.
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Chapter 4

Implementation and Evaluation of
Algorithm AsyncDF

Chapter 3 presented algorithm AsyncDF, a provably space and time efficient scheduling algorithm
for lightweight threads. However, the theoretical analysis only provides upper (worst-case) bounds
on the space and time requirements of a multithreaded computation. The actual performance for
real parallel programs can be significantly better than these worst-case bounds. Therefore, other
space-efficient schedulers with asymptotically higher space bounds than algorithm AsyncDF, may
still result in lower space requirements in practice. Further, the performance of algorithm AsyncDF
on a real parallel machine may be affected by factors not accounted for in the assumptions made
during its analysis’. Therefore, an experimental evaluation is required to test whether algorithm
AsyncDF is indeed more space efficient than previous approaches, and whether it does result in
good time performance. This chapter describes the implementation and evaluation of a space-
efficient runtime system that uses algorithm AsyncDF (as described in Figure 3.2) to schedule
lightweight threads. The prototype runtime system was built specifically to evaluate the scheduling
algorithm, and to compare its performance with previous space-efficient approaches.

The chapter begins by presenting an overview of the runtime system implementation (Sec-
tion 4.1), followed by a brief description of each parallel benchmark used to evaluate the sys-
tem (Section 4.2). Sections 4.3 and 4.4 then present experimental results measuring the running
times and the memory requirements of the benchmarks. For each benchmark, I compare its space
and time performance on my runtime system with its performance on Cilk [25], a previously ex-
isting space-efficient system. The results indicate that algorithm AsyncDF is more effective in
controlling memory requirements, without compromising time performance. This chapter then
describes the experimental trade-off between running time and memory requirement in algorithm
AsyncDF (K ), which can be adjusted by varying the value of the commandline parameter (i.e., the
memory threshold) K. Finally, Section 4.5 summarizes the results presented in this chapter.

'In particular, the analysis ignores the effects of the memory hierarchies found on real machines.
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4.1 The Runtime system

The runtime system has been implemented on a 16-processor SGI Power Challenge, which has a
shared memory architecture with processors and memory connected via a fast shared-bus intercon-
nect. The bus has a bandwidth of 1.2 GB per second with a 256-bit wide data bus and a separate
40-bit wide address bus. Each processor is a 195 MHz R10000 with a 2 MB secondary cache.
Since the number of processors on this architecture is not very large, a serial implementation of the
scheduler as described in Section 3.2 does not create a bottleneck in the runtime system. The set
R, which is accessed only by a single scheduling thread at any time, is implemented as a simple,
doubly-linked list to allow insertions and deletions of intermediate nodes. The FIFO queues Q);,
and (),.+, which are accessed by the scheduler and the workers, are required to support concurrent
enqueue and dequeue operations. They are implemented using variants of lock-free algorithms
based on atomic fetch-and-® primitives [108].

The parallel programs executed on the runtime system have been explicitly hand-coded in the
continuation-passing style, similar to the code generated by the Cilk-1 preprocessor? [25]. Each
continuation points to a C function representing the next computation of a thread, and a structure
containing all its arguments. These continuations are created dynamically and moved between
the queues. A thread that has reached a fork instruction for a parallel loop holds a pointer to
the function representing the loop body, and the index of the next child thread to be forked. The
scheduler lazily creates separate entries for each child thread when they are to be inserted into Q..
The entries are placed in R to the immediate left of the parent thread. As described in Chapter 3,
a synchronization counter is used to implement a join between child threads.

One kernel thread is forked per processor at the start of the computation to execute the task
of a worker. Each worker takes a continuation off (),,:, and simply applies the function pointed
to by the continuation, to its arguments. The high-level program is manually broken into such
functions at points where it executes a parallel fork, a recursive call, or a memory allocation; thus,
each function corresponds to a batch of instructions (nodes) in a thread. When a worker finds a
scheduling thread on ()., it executes one scheduling step, as described in Section 3.2.

For nested parallel loops, iterations of the innermost loop are grouped by hand into equal-
sized chunks (the chunk size can be specified at runtime), provided it does not contain calls to
any recursive functions. It should be possible to automate such coarsening statically with compiler
support, or at runtime using a dynamic loop scheduling scheme [84, 128, 158, 97]. Scheduling
a chunk at a time improves performance by reducing scheduling overheads and providing good
locality, especially for fine-grained iterations.

Recall that algorithm AsyncDF (k) prescribes adding m /K dummy threads in parallel before
a large memory allocation of m bytes. In this implementation, I instead added a delay counter of
value m/ K units before the memory allocation to represent the dummy threads. Thus, when the
scheduler encounters a thread among the leftmost p ready threads in R with a non-zero value of
the delay counter, it simply decrements the value of the counter by the appropriate value. Each
decrement by one unit represents the scheduling of one dummy thread, and accordingly, fewer real
threads are added to (),,;. For example, on p processors, if the scheduler finds that the leftmost
ready thread 7' in R has a delay counter with value greater than or equal to p, it decrements the

2 A preprocessor-generated version of a program on this system is expected to have similar efficiency as the straight-
forward hand-coded version.
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counter by p units and does not add any ready threads to (), in that scheduling step, even if R
contains ready threads to the right of T'. Since the scheduler decrements delay counters by up to p
units, this corresponds to the dummy threads being forked and executed in parallel by the worker
processors. When the delay counter of a ready thread reaches zero, the thread may be moved to
(out, and the memory allocation, if needed, is performed as soon as the thread is next scheduled
on a processor.

4.2 Benchmark programs

The runtime system was designed to efficiently execute programs with dynamic or irregular par-
allelism. I implemented five such parallel programs to evaluate the runtime system. This section
briefly describes the implementation of these programs, along with the problem sizes and thread
granularities used in the experiments.

1. Blocked recursive matrix multiply (Rec MM)

This program multiplies two dense n x n matrices using a simple recursive divide-and-conquer
method, and performs O(n®) work. The recursion stops when the blocks are down to the size of
64 x 64, after which a standard, row-column matrix multiply is executed serially. Alternatively, a
fast, machine-specific routine such as BLAS3 [54] could be utilized at the leafs of the recursion
tree. The code is similar to the pseudocode shown in Figure 1.1. This algorithm significantly
outperforms the row-column matrix multiply for large matrices (e.g., by a factor of over 4 for
1024 x 1024 matrices) because its use of blocks results in better cache locality. At each stage of
the recursion, temporary storage is first allocated to store intermediate results, which are generated
during subsequent recursive calls. Then a new child thread is forked to execute each of the eight
recursive calls. When the child threads terminate, the results in the temporary storage are added
to the results in the output matrix, and then the temporary storage is deallocated. Note that the
allocation of temporary storage can be avoided, but this leads to either significantly increased
code complexity or reduced parallelism. The results reported are for the multiplication of two
1024 x 1024 matrices of double-precision floats. Although the code is restricted to matrix sizes
that are powers of 2 (or, more precisely, 2" x b for some integer n, where b is the block size), it can
be extended to efficiently multiply matrices of other sizes [63].

2. Strassen’s matrix multiply (Str MM)

The DAG for this algorithm is very similar to that of the blocked recursive matrix multiply (Rec
MM), but performs only O(n*%°") work and makes seven recursive calls at each step [151]. As
with Rec MM, a new thread is forked in parallel for each recursive call, and the parallel recursion
is terminated when the matrix size is reduced to 64 x 64. A simple, serial algorithm is used
to multiply the 64 x 64 matrices at the leafs of the recursion tree. This version of Strassen’s
matrix multiply, which dynamically forks lightweight threads, results in significantly simpler code
compared to when the work is statically partitioned among the processors. The sizes of the input
matrices multiplied were the same as for Rec MM. However, unlike in Rec MM, instead of using
a separate output matrix for the results, the results are stored in one of the input matrices.
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3. Fast multipole method (FMM)

FMM is an N-body algorithm that calculates the forces between N bodies in O(N) work [72].
I have implemented the most time-consuming phases of the algorithm, which are a bottom-up
traversal of the octree followed by a top-down traversal®. In the top-down traversal, for each level
of the octree, the forces on the cells in that level due to their neighboring cells are calculated in
parallel. For each cell, the forces over all its neighbors are also calculated in parallel, for which
temporary storage needs to be allocated. This storage is freed when the forces over the neighbors
have been summed up to get the resulting force on that cell. With two levels of parallelism, the
structure of this code looks very similar to the pseudocode described in Chapter 1 (Figure 1.3).
The experiments were conducted on a uniform octree with 4 levels (8° leaves), using 5 multipole
terms for force calculation. Each thread in the bottom-up phase computes the multipole expansion
of one cell from its child cells. In the top-down phase, each thread handles interactions of a cell
with up to 25 of its neighbors.

4. Sparse matrix-vector multiply (Sparse MV)

This program multiplies an m x n sparse matrix with a n x 1 dense vector. The dot product
of each row of the matrix with the vector is computed to get the corresponding element of the
resulting vector. There are two levels of parallelism: over each row of the matrix, and over the
elements of each row multiplied with the corresponding elements of the vector to calculate the dot
product. Once the elements of a row are multiplied with the corresponding elements of the dense
vector, the results are summed in parallel using a tree-based algorithm. In my experiments, I used
m = 20 and n = 1500000, and 30% of the elements were non-zeroes. Using a large value of n
provides sufficient parallelism within a row, but using large values of m leads to a very large size
of the input matrix, making the amount of dynamic memory allocated in the program negligible
in comparison®. Each thread computed the products of up to 10,000 pairs of elements in each
row-vector dot product.

5. ID3 decision tree builder

This algorithm by Quinlan [132] builds a decision tree from a set of training examples with discrete
attributes in a top-down manner, using a recursive divide-and-conquer strategy. At the root node,
the attribute that best classifies the training data is picked, and recursive calls are made to build
subtrees, with each subtree using only the training examples with a particular value of that attribute.
Each recursive call is made in parallel, and the computation of picking the best attribute at a
node, which involves counting the number of examples in each class for different values for each
attribute, is also parallelized. Temporary space is allocated to store the subset of training examples
used to build each subtree, and is freed once the subtree is built. I built a tree from 4 million test
examples, each with 4 multi-valued attributes®. The parallel recursion was terminated when the

3The Pthreads version described in Chapter 5 includes all the phases in the algorithm.

“The input matrix was randomly generated; the Pthreads version of the algorithm described in Chapter 5 uses input
generated from a real finite elements problem.

5 As with Sparse MV, the input was randomly generated; the Pthreads version of this algorithm described in Chap-
ter 5 uses a real input data set, and is extended significantly to handle continuous attributes.
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number of examples fell under 10,000, after which the recursion was implemented serially.

4.3 Time performance

This section presents the results of experiments that measured and compared the running times of
the five parallel benchmarks on my runtime system, with the same benchmarks written in version
5.0 of the Cilk programming language [25]. Cilk is a space-efficient multithreading system that
guarantees a space bound of p - 5; for programs with a serial space requirement of S; on p proces-
sors. The Cilk programs were written at a high level with simple, fork-join style parallelism using
the Cilk instructions spawn and sync. Cilk uses a Cilk-to-C translator to perform data flow analysis
and convert the high-level programs into a form equivalent to the continuation passing style that I
use to write programs for my runtime system. Although Cilk supports more fine grained threads,
to make a valid comparison, the thread granularities in the Cilk programs were set to be identical
to those in my original programs.

Speedup curves
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FMM (Cilk) -o--
Rec MM —+—
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Figure 4.1: The speedups achieved on up to 16 R10000 processors of a Power Challenge machine, using
a value of K=1000 bytes. The speedup on p processors is the time taken for the serial C version of the
program divided by the time for the multithreaded version to run on p processors. For each application, the
solid line represents the speedup using my system, while the dashed line represents the speedup using the
Cilk system. All programs were compiled using gcc -02 -mips2.

Figure 4.1 shows the speedups for the five benchmarks on up to 16 processors. The speedup
for each program is with respect to its efficient serial C version, which does not use my runtime
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system. Since the serial C program runs faster than my runtime system on a single processor,
the speedup shown for one processor is less than 1. However, for all the programs, it is close
to 1, implying that the overheads in the system are low. The timings on my system include the
overheads due to delays introduced before large allocations. A value of A" = 1000 bytes was used
for all the benchmarks in these experiments. Figure 4.1 also shows the speedups for the same
programs running on Cilk. The timings show that the performance on my system is comparable
with that on Cilk. The memory-intensive programs such as sparse matrix-vector multiply do not
scale well on either system beyond 12 processors; their performance is probably affected by bus
contention as the number of processors increases.

Figure 4.2 shows the breakdown of the running time for one of the programs, blocked recursive
matrix multiplication. The results show that the percentage of time spent waiting for threads to
appear in (), increases as the number of processors increases (since I use a serial scheduler). A
parallel implementation of the scheduler, such as one described in Chapter 3 (Section 3.4), will be
more efficient for a larger number of processors.

40 g
,§ 2 77 7 74 /s Vo) ldle time
. 4 R p
& 30 s [ o — m - Queue access
:E: 20 - Scheduling
: Work overhead
e 10 [ serial work
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1 3 5 7 9 11 13 15
Number of processors (p)

Figure 4.2 : The total processor time (the running time multiplied by the number of processors p) for blocked
recursive matrix multiplication. “Serial work” is the time taken by a single processor executing the equiva-
lent serial C program. For ideal speedups, all the other components would be zero. The other components
are overheads of the parallel execution and the runtime system. “Idle time” is the total time spent waiting
for threads to appear in (Q,.+; “queue access” is the total time spent by the worker processors inserting
threads into @;, and removing them from ,,;. “Scheduling” is the total time spent as the scheduler, and
“work overhead” includes overheads of creating continuations, building structures to hold arguments, and
(de)allocating memory from a shared pool of memory, as well as the effects of the delay counters, cache
misses and bus contention.

4.4 Space performance

This section presents results of experiments that evaluate the space efficiency of algorithm AsyncDF,
followed by an empirical demonstration of the space-time trade-off that exists in the algorithm.
The memory usage of each application was measured as the high water mark of memory al-
location during the execution of the program. Figure 4.3 shows the memory usage for the five
applications. Here three implementations for each program are compared—one in Cilk and the
other two using my runtime system. Of the two implementations on my system, one inserts delays
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Figure 4.3: The memory requirements of the parallel programs. For p = 1 the memory usage shown is
for the serial C version. The memory usage of each program when the big memory allocations are delayed
(with K = 1000), is compared with when they are allowed to proceed without any delay, as well as with
the memory usage on Cilk. The version without the delay on my system (labeled “No delay”) is an estimate
of the memory usage resulting from previous scheduling techniques. These results show that delaying big
allocations significantly changes the order of execution of the threads, and results in much lower memory
usage, especially as the number of processors increases.
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before large allocations, while the other does not. For all the five programs implemented, the ver-
sion without the delay results in approximately the same space requirements as would result from
scheduling the outermost level of parallelism. For example, in Strassen’s matrix multiplication,
algorithm AsyncDF without the delay would allocate temporary space required for p branches
at the top level of the recursion tree before reverting to the execution of the subtree under the
first branch. On the other hand, scheduling the outer parallelism would allocate space for the
p branches at the top level, with each processor executing a subtree serially. Hence algorithm
AsyncDF without the delay is used here to estimate the memory requirements of previous tech-
niques [41, 83], which schedule the outer parallelism with higher priority. Cilk uses less memory
than this estimate due to its use of randomization: an idle processor steals the topmost thread
(representing the outermost parallelism) from the private queue of a randomly picked processor;
this thread may not represent the outermost parallelism in the entire computation. A number of
systems [30, 70, 77, 92, 111, 115, 143, 145, 159] use a work stealing strategy similar to that of
Cilk. The results show that when big allocations are delayed, algorithm AsyncDF results in a
significantly lower memory usage, particularly as the number of processors increases. A notable
exception is the ID3 benchmark, for which our scheduler results in a similar space requirement as
that of Cilk. This is because the value of A" (= 1000 bytes) is too large to sufficiently delay the
large allocations of space until higher priority threads become ready®. In these graphs, I have not
compared AsyncDF to naive scheduling techniques such as breadth-first schedules, which have
much higher memory requirements.

Space-Time Tradeoff

The space bound for algorithm AsyncDF (I\') derived in Chapter 3 (Section 3.3) increases with
K, the value of the memory quota alloted to each thread every time it is scheduled. At the same
time, the number of dummy threads (i.e., the value of the delay counter) introduced before a large
allocation depends on the value of A". Further, the smaller the value of /', the more often is a
thread preempted due to exhaustion of its memory quota, resulting in lower locality and higher
scheduling overheads. Hence there exists a trade-off between memory usage and running time,
that can be adjusted by varying the value of A". For example, Figure 4.4 shows how the running
time and memory usage for blocked recursive matrix multiplication are affected by A". For small
K, many dummy threads (i.e., large delays) are introduced, and threads are preempted often. This
results in poor locality and high scheduling overheads, resulting in a high running time. However,
the execution order is close to a 1DF-schedule, and therefore, the memory requirement is low. In
contrast, for large K, very few dummy threads are inserted, and threads are preempted less often.
This results in low running time, but higher memory requirements. A'=500-2000 bytes results in
both good performance and low memory usage.

For all the five programs implemented, the trade-off curves looked similar; however, they may
vary for other parallel programs. A default value of X' = 1000 bytes resulted in a good balance
between space and time performance for the five test programs, although in practice it might be

SThis problem arose because some inherently parallel operations in the algorithm had been coded serially; this
serialization, although not necessary, simplified the writing of the code in the continuation-passing style required by
the system. Consequently, the depth of the program increased, and there was often not a sufficient amount of inner
parallelism to keep processors busy, forcing them to execute the outer parallelism instead.
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Figure 4.4 : The variation of running time and memory usage with K (in bytes) for multiplying two 1024 x
1024 matrices using blocked recursive matrix multiplication on 8 processors. For very small K, running
time is high while the memory requirement is low. In contrast, for large K, the running time is low while
the memory requirement is high. K'=500-2000 bytes results in both good performance and low memory
usage.

useful to allow users to tune the parameter for their needs.

4.5 Summary

In this chapter, I have described the implementation of a simple, multithreading runtime system
for the SGI Power Challenge SMP. The implementation uses algorithm AsyncDF (presented in
Chapter 3) to schedule lightweight threads. Experimental results for nested-parallel benchmarks
on this system indicate that, compared to previous schedulers (including a provably space-efficient
scheduler), AsyncDF typically leads to a lower space requirement. When innermost, fine-grained
loops (or recursive calls) in the benchmarks were grouped into chunks, the time performance of
algorithm AsyncDF was shown to be comparable to that of an efficient thread scheduler. I also
experimentally demonstrated that the algorithm provides a trade-off between running time and
memory requirement, by adjusting the value of the memory threshold. The next chapter describes
the implementation of algorithm AsyncDF in the context of another runtime system, namely, a
commercial Pthreads package.
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Chapter 5

A Space-Efficient Implementation of
Pthreads

The experimental results presented in Chapter 4 indicate that algorithm AsyncDF does indeed pro-
vide good space and time performance in practice. The runtime system described in that chapter
was built specifically to implement algorithm AsyncDF, and is restricted to purely nested parallel
computations. This chapter describes experiments with implementing a slight variation of algo-
rithm AsyncDF in the context of a more general threads library, namely, Posix standard threads or
Pthreads [88].

The chapter begins by motivating the choice of Pthreads as a medium for my experiments with
space efficient schedulers (Section 5.1). Section 5.2 describes a particular Pthreads implementa-
tion, namely the native Pthreads implementation on Solaris 2.5, which I use in all my subsequent
experiments. The section also presents experimental results of implementing a simple parallel
benchmark, namely, dense matrix multiply, using the existing Pthreads implementation; the al-
gorithm used involves dynamic creation of a large number of Pthreads, and dynamic memory
allocation. The benchmark exhibits poor space and time performance, mainly due to the use of a
space-inefficient scheduler. Section 5.3 then lists the modifications I made to the existing Pthreads
implementation to make it space-efficient, presenting the performance of the benchmark after each
modification. The final version of the implementation uses a variation of algorithm AsyncDF to
schedule the threads. This chapter also describes and presents experimental results for the other
parallel benchmarks; I use them to evaluate and compare the performance of the original Pthreads
implementation with the modified Pthreads implementation (Section 5.4). All the benchmarks dy-
namically create and destroy large numbers of lightweight Pthreads. For a majority of these bench-
marks, I started with a pre-existing, publicly available, coarse-grained version, which I modified
to use large numbers of dynamic Pthreads. For such benchmarks, I also compare the performance
of the rewritten version with the original, coarse-grained version. The coarse-grained versions are
typically hand-coded to carefully partition and balance the load for good performance. The chapter
ends with a brief discussion on selecting the appropriate thread granularity in Section 5.5. I show
that algorithm AsyncDF does not handle finer thread granularities very efficiently, thereby moti-
vating the need for using algorithm DFDeques to handle finer-grained threads. Finally, Section 5.6
summarizes this chapter.

The Pthread-based benchmarks used to evaluate the new space-efficient scheduler predomi-
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nantly use a nested, fork-join style of parallelism; however, some of the benchmarks also make
limited use of mutexes. The Pthread implementation itself makes extensive use of both Pthread
mutexes and condition variables. Because the Pthreads library supports synchronization primi-
tives like mutexes and condition variables, the class of computations that can be expressed us-
ing Pthreads are often not dag-deterministic. Therefore, defining the serial space requirement 5,
precisely for Pthread-based computations may not be possible. Nevertheless, the resulting space
requirement for the parallel execution can be bounded in terms of the serial space requirement of
the dag that represents the particular parallel execution. The experimental results presented in this
chapter indicate that, in practice, the new scheduler does effectively limit the space requirement of
the paralle] benchmarks.

5.1 Motivation

The space-efficient scheduling algorithms presented in this dissertation could be applied in the
context of several multithreaded systems besides Pthreads. There are, however, several reasons
for choosing Pthreads as the platform to implement algorithm AsyncDF (as well as the DFDeques
algorithm described in Chapter 7):

o The Pthread interface is a Posix standard that has recently been adopted by the vendors of a
number of operating systems [53, 79, 87, 142, 153]. Pthread implementations are also freely
available for a wide variety of platforms [131]. Therefore, Pthreads have now become a
common medium for writing portable multithreaded code in general, and, in particular, they
are popular for shared memory parallel programming.

o By selecting a Pthreads library as the medium for my experiments, I can directly use publicly
available Pthread-based benchmarks to evaluate my schedulers. Similarly, the benchmarks
that I code in a lightweight threaded style may be executed directly on any platform support-
ing a Pthreads implementation'.

e The interface provides a fairly broad range of functionality. For example, Pthreads may
synchronize using mutexes, condition variables, or joins. Therefore, my schedulers may be
applied to a class of applications broader than those that are purely nested parallel.

e Most platforms that support Pthreads today are releasing lightweight, user-level implemen-
tations of Pthreads that allow thousands of threads to be expressed in the program. Examples
of current platforms that schedule lightweight, user-level threads on top of kernel threads (to
take advantage of multiple processors) include Digital UNIX, Solaris, IRIX, and AIX. In
particular, I had access to the source code for the popular, native Pthreads implementation
on Solaris. To my knowledge, this is one of the most efficient implementations of user-level
Pthreads today.

e As with MPI, Pthreads adopts a library approach, that is, the use of Pthreads does not re-
quire adopting a new parallel programming language (and compiler front end). Therefore,
Pthreads are gaining acceptance among the parallel programming community.

1For these benchmarks to execute efficiently, the Pthreads implementation must be lightweight (user-level) and
must use a space-efficient scheduler.
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Pthreads have two main disadvantages: the inability to support extremely lightweight thread oper-
ations, and the lack of syntactic sugar to simplify the thread interface. Multithreading languages
with restricted functionality, or thread systems that can take advantage of a preprocessor or spe-
cialized compiler, are able to support extremely lightweight threads and higher-level thread in-
terfaces [66, 70, 102]. The broad functionality and the library approach of Pthreads make an
extremely lightweight implementation of Pthreads impossible, and results in a somewhat large and
complex interface. For example, creating a user-level Pthread is typically two orders of magnitude
more expensive than the cost of a function call, and requires the programmer to explicitly pack the
thread arguments into a contiguous chunk of memory. Further, there are no interface functions to
express multi-way forks or parallel loops; Pthreads only support a binary fork. However, I feel that
these drawbacks are a small price to pay for the other advantages offered by Pthreads. Syntactic
sugar to ease the task of forking Pthreads, or for providing multi-way forks can always be added
through a preprocessor.

Despite several lightweight, user-level implementations of Pthreads, most programmers still
write parallel programs in a coarse-grained style, with one Pthread per processor. The main reason
is probably the lack of good schedulers that can efficiently execute a program with large numbers
of lightweight, dynamic Pthreads. In particular, as I show in the next section, a typical Pthreads
scheduler creates too many simultaneously active threads in such a program. These threads may
all contend for stack and heap space, leading to poor space and time performance. However, this
chapter subsequently shows that by using a space-efficient thread scheduler, an existing Pthreads
implementation can efficiently execute programs with dynamic, lightweight threads.

5.2 The Solaris Pthreads Implementation

This section describes the native Pthreads implementation on Solaris 2.5, followed by some exper-
iments measuring the performance of a parallel matrix multiply benchmark that uses Pthreads on
Solaris. The experiments with the remaining benchmarks are described in Section 5.4.

The Solaris operating system contains kernel support for multiple threads within a single pro-
cess address space [129]. One of the goals of the Solaris Pthreads implementation is to make
the threads sufficiently lightweight so that thousands of them can be present within a process. The
threads are therefore implemented by a user-level threads library so that common thread operations
such as creation, destruction, synchronization and context switching can be performed efficiently
without entering the kernel.

Lightweight, user-level Pthreads on Solaris are multiplexed on top of kernel-supported threads
called LWPs. This assignment of the lightweight threads to LWPs is controlled by the user-level
Pthreads implementation [150]. A thread may be either bound to an LWP (to schedule it on a
system-wide basis) or may be multiplexed along with other unbound threads of the process on top
of one or more LWPs. LWPs are scheduled by the kernel onto the available CPUs according to
their scheduling class and priority, and may run in parallel on a multiprocessor. Figure 5.1 shows
how threads and LWPs in a simple Solaris process may be scheduled. Process 1 has one thread
bound to an LWP, and two other threads multiplexed on another LWP, while process 2 has three
threads multiplexed on two LWPs. This chapter focuses on the policy used to schedule unbound
Pthreads at a given priority level on top of LWPs.
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Figure 5.1: Scheduling of lightweight Pthreads and kernel-level LWPs in Solaris. Threads are multiplexed
on top of LWPs at the user level, while LWPs are scheduled on processors by the kernel.

Operation Create | Context | Join | Semaphore
switch sync.

Unbound thread | 20.5 9 6 19

Bound thread 170 11 8.5 55

Figure 5.2: Uniprocessor timings in microseconds for Solaris threads operations on a 167 MHz Ultra-
SPARC running Solaris 2.5. Creation time is with a preallocated stack, and does not include any context
switch. (Creation of a bound or unbound thread without a preallocated stack incurs an additional overhead
200us for the smallest stack size of a page(8KB). This overhead increases to 260us for a IMB stack.) Join
is the time to join with a thread that has already exited. Semaphore synchronization time is the time for two
threads to synchronize using a semaphore, and includes the time for one context switch.

Since Solaris Pthreads are created, destroyed and synchronized within a user-level library with-
out kernel intervention, these operations are cheaper than the corresponding operations on kernel
threads. Figure 5.2 shows the overheads for some Pthread operations on a 167 MHz UltraSPARC
processor. Operations on bound threads involve operations on LWPs and require kernel interven-
tion; they are hence more expensive than user-level operations on unbound threads. Note, however,
that the user-level thread operations are still significantly more expensive than function calls; e.g.,
the thread creation time of 20.5us corresponds to over 3400 cycles on the 167 MHz UltraSPARC.
The Pthreads implementation incurs this overhead for every thread expressed in the program, and
does not attempt to automatically coarsen the parallelism by combining threads. Therefore, the
basic thread overheads limit how fine-grained a task may be expressed using Pthreads without sig-
nificantly affecting performance. It is left to the programmer to select the finest granularity for the
threads such that the overheads remain insignificant, while maintaining portability, simplicity and
load balance (see Section 5.5 for a discussion of thread granularity).

Although more expensive than function calls, the thread overheads are low enough to allow
the creation of many more threads than the number of processors during the execution of a paral-
lel program, so that the job of scheduling these threads and balancing the load across processors
may be left to the threads implementation. Thus, this implementation of Pthreads is well-suited
to express medium-grained threads, resulting in simple and efficient code, particularly for pro-
grams with dynamic parallelism. For example, Figure 5.3 shows the pseudocode for a block-based,
divide-and-conquer algorithm for matrix multiplication using dynamic parallelism: each parallel,
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recursive call is executed by forking a new thread. (This code was introduced as a programming
example in Chapter 1.) To ensure that the total overhead of thread operations is not significant,
the parallel recursion on a 167 MHz UltraSPARC is terminated once the matrix size is reduced to
64 x 64 elements; beyond that point, an efficient serial algorithm is used to perform the multipli-
cation?. The total time to multiply two 1024 x 1024 matrices with this algorithm on a single 167
MHz UltraSPARC processor, using a LIFO scheduling queue and assuming a preallocated stack
for every thread created, is 17.6s; of this, the thread overheads are no more than 0.2s. The more
complex but asymptotically faster Strassen’s matrix multiply can also be implemented in a similar
divide-and-conquer fashion with a few extra lines of code; coding it with static partitioning is sig-
nificantly more difficult. Further, efficient, serial, machine-specific library routines can be easily
plugged in to multiply the 64 x 64 submatrices at the base of the recursion tree. Temporary space
is allocated at the start of each recursive call to store intermediate results. Although the allocation
of this temporary space can be avoided, but this would significantly add to the complexity of the
code or reduce the parallelism. The resulting dag for this matrix multiply program is shown in
figure 5.4. The dag is similar to the one in Figure 1.3(b), except that threads here are forked in a
tree instead of the flat loop, and memory allocations decrease down the tree. Dense matrix multiply
is a fairly regular application and can be statically partitioned. Nonetheless, I am using it here as a
simple example to represent a broad class of divide-and-conquer algorithms with similar dags but
irregular, data-dependent structures. (Examples of such programs include sorts, data classifiers,
computational geometry codes, etc.) The recursive matrix multiply algorithm discussed here gen-
erates large numbers of threads of varying granularities and memory requirements, and is therefore
a good test for the Pthread scheduler.

Performance of matrix multiply using the native Pthreads implementation

I implemented the algorithm in Figure 5.3 on an 8-processor Sun Enterprise S000 SMP running
Solaris with 2 GB of main memory. Each processor is a 167 MHz UltraSPARC with a 512KB
L2 cache. Memory access latency on the Enterprise is 300 ns (50 cycles), while obtaining a line
from another processor’s L2 cache requires 480 ns (80 cycles). Figure 5.5 (a) shows the speedup
of the program with respect to the serial C version written with function calls instead of forks. The
speedup was unexpectedly poor for a compute-intensive parallel program like matrix multiply.
Further, as shown in Figure 5.5 (b), the maximum memory allocated by the program during its
execution (e.g., 115 MB on 8 processors) significantly exceeded the memory allocated by the
corresponding serial program (25 MB).

To detect the cause for the poor performance of the program, I used a profiling tool (Sun
Workshop version 4.0) to obtain a breakdown of the execution time, as shown in Figure 5.6. The
processors spend a significant portion of the time in the kernel making system calls. The most time-
consuming system calls were those involved in memory allocation. I also measured the maximum
number of threads active during the execution of the program: the Pthreads implementation creates
more than 4500 active threads during execution on a single processor. In contrast, a simple, serial,
depth-first execution of the program (in which a child preempts its parent as soon as it is forked) on
a single processor should result in just 10 threads being simultaneously active. Both these measures
indicate that the native Pthreads implementation creates a large number of active threads, which

2The matrix multiply code was adapted from an example Cilk program available with the Cilk distribution [25].
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begin Matrix_Mult(A, B, C, n)

if (n < Leaf Size)
serial_ mult(A, B, C, n);

else
T := mem_alloc(n x n);
initialize smaller matrices as quadrants of A, B, C, and T;
fork Matrix_Mult(A11, B11, C11, n/2);
fork Matrix Mult(A11, B12, C12, n/2);
fork Matrix_Mult(A21, B12, C22, n/2);
fork Matrix_Mult(A21, B11, C21, n/2);
fork Matrix Mult(A12, B21, T11, n/2);
fork Matrix Mult(A12, B22, T12, n/2);
fork Matrix Mult(A22, B22, T22, n/2);
fork Matrix Mult(A22, B21, T21, n/2);
join with all forked child threads;
Matrix_Add(T, C);
mem_free(T);

end Matrix_Mult
Temporary
Matrix A Matrix B8 Matrix C Storage T
A11{A12 X B11]|B12 c11|C12 T11|T12
A21 [A22 B21| B22 c21|c22 T21]T22

Figure 5.3 : Pseudocode to multiply two n x n matrices A and B and storing the final result in C using a
divide-and-conquer algorithm. The Mat rix_Add function is implemented similarly using a parallel divide-
and-conquer algorithm. The constant Leaf_Size to check for the base condition of the recursion is set to 64
on a 167 MHz UltraSPARC.

alloc( n?)

free( n2) ©

Figure 5.4 : Program dag for recursive matrix multiply; the oval outlines demarcate the recursive calls at
the top level of the recursion. Shaded nodes denote allocation (black) and deallocation (grey) of temporary
space. The additional threads that perform matrix addition in parallel (in matrix_add) are not shown here for
brevity.
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Figure 5.5: Performance of matrix multiply on an 8-processor Enterprise 5000 SMP using the native
Pthreads implementation: (a) speedup with respect to a serial C version; (b) high water mark of total heap
memory allocation during the execution of the program. “Serial” is the space requirement of the serial
program, and equals the size of the input and output (A, B, and C) matrices.

all contend for allocation of stack and heap space, as well as for scheduler locks, resulting in poor
~ speedup and high memory allocation. Even if a parallel program exhibits good speedups for a
given problem size, it is important to minimize its memory requirement; otherwise, as the problem
size increases, the performance soon begins to suffer due to excessive TLB and page misses.

The Solaris Pthreads implementation creates a very large number of active threads because it
uses a FIFO queue. Further, when a parent thread forks a child thread, the child thread is added to
the queue rather than being scheduled immediately. Consequently, the program dag is executed in
a breadth-first manner, resulting in almost all the 4096 threads at the lowest level of the recursion
tree being simultaneously active.

To improve the time and space performance of multithreaded applications a scheduling tech-
nique that creates fewer active threads, as well as limits their memory allocation, is necessary. I
next describe the modifications I made to the existing Pthreads implementation to make it space-
efficient.

5.3 Improvements to the Pthreads Implementation

This section lists the modifications I made to the user-level Pthreads implementation on Solaris 2.5
to improve the performance of the matrix multiply algorithm described in Section 5.2. The effect
of each modification on the program’s space and time performance is shown in Figure 5.7. All the
speedups in Figure 5.7(a) are with respect to the serial C version of matrix multiply. The curves
marked “Original” in the figure are for the original Pthreads implementation (with the deadlock-
avoidance feature of automatic creation of new LWPs [150] disabled to get consistent timings®).
All threads were created at the same priority level, and the term “scheduling queue” used

3Disabling this feature stabilizes and marginally improves the performance of the application using the original
Pthreads scheduler.




62 CHAPTER 5. A SPACE-EFFICIENT IMPLEMENTATION OF PTHREADS

~_ Compute Il System & Sys-Wait EZ Other

1 1 2 3 4 5 6 7 8

Serial Parallel: No. of processors

Figure 5.6: A breakdown of execution times on up to 8 processors for matrix multiply. “Compute” is the
percentage of time doing useful computation, “system” is the percentage of time spent in system calls, and
“sys-wait” is the percentage of time spent waiting in the kernel. “Other” includes idle time, the time spent
waiting on user-level locks, and the time spent faulting in text and data pages.

below refers to the set of all threads at that priority level. In the original Pthreads implementation,
this scheduling queue is implemented as a FIFO queue. To prevent multiple processors from
simultaneously accessing the queue, it is protected by a common scheduler lock. I retained the use
of this lock in all my modifications. '

1. LIFO scheduler. I first modified the scheduling queue to be last-in-first-out (LIFO) in-
stead of FIFO. A FIFO queue executes the threads in a breadth-first order, while a LIFO
queue results in execution that is closer to a depth-first order. As expected, this reduces the
memory requirement. However, the memory requirement still increases with the number of
processors. The speedup improves significantly (see curve labeled as “LIFO” in Figure 5.7).

2. AsyncDF : a space-efficient scheduler.  Next, I implemented a variation of algorithm
AsyncDF (as shown in Figure 3.2). In this variation, instead of using the queues Q;, and
Qout» all processors directly access the scheduling queue (R) using the existing scheduler
lock. Therefore, no special scheduler threads are required. The main difference between
this variation of AsyncDF and the LIFO scheduler is that threads in the scheduling queue
at each priority level are always maintained in their serial, depth-first execution order. As
described in Chapter 3, maintaining this order at runtime is simple and inexpensive. The
final scheduling algorithm can be described as follows.

¢ There is an entry in the scheduling queue for every thread that has been created but that
has not yet exited. Thus threads represented in the queue may be either ready, blocked,
or executing. These entries serve as placeholders for blocked or executing threads.

e When a thread is preempted, it is returned to the scheduling queue in the same position
(relative to the other threads) that it was in when it was last selected for execution. This
position was marked by the thread’s entry in the queue.
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e When a parent thread forks a child thread, the parent is preempted inimediately and
the processor starts executing the child thread. A newly forked thread is placed to the
immediate left of its parent in the scheduling queue.

o Every time a thread is scheduled, it is allocated a memory quota (implemented as a
simple integer counter) initialized to a constant K™ bytes (the memory threshold). When
it allocates m bytes of memory, the counter is decremented by m units. When a thread
reaches an action that needs to allocate more memory than the current value of its
counter, the thread is preempted. If a thread contains an action that allocates m > K
bytes, § dummy threads (threads that perform a no-op and exit) are inserted in parallel*
by the new scheduler before the allocation, where § is proportional to m /K.

I modified the malloc and free library functions to keep track of a thread’s memory
quota, and fork dummy threads when necessary. The curve labelled “ADF” in Figure 5.7(a)
shows that the speedup improves with the space-efficient scheduler. Further, the memory
requirement (see Figure 5.7(b)) is significantly lower, and no longer increases rapidly with
the number of processors. The memory threshold K was set to 50,000 bytes in these exper-
iments°.

3. Reduced default stack size. The Pthread library on Solaris specifies a stack size of 1MB
for threads created with default attributes, and caches stacks of this default size for reuse.
However, for applications that dynamically create and destroy a large number of threads,
where each thread requires a more modest stack size, the default size of 1MB is too large.
Therefore, to avoid requiring the programmer to supply and cache thread stacks in each ap-
plication, I changed the default stack size to be a page (8KB). This reduces the time spent
allocating the stacks. The improved performance curves are marked as “LIFO + small stk”
with the LIFO scheduler, and “ADF + small stk” with the new, space-efficient scheduler. The
final version (“ADF + small stk”) yields good absolute performance for matrix multiplica-
tion; it runs within 2% of the hand-optimized, machine-specific BLAS3 routine for matrix
multiplication on Solaris 2.5. The breakdown of running times in this final version is shown
in Figure 5.8.

The improvements indicate that allowing the user to determine the default thread stack size
may be useful. However, predicting the required stack size can be difficult for some ap-
plications. In such cases, instead of conservatively allocating an extremely large stack, a
technique such as stacklets [70] or whole program optimization [73] could be used to dy-
namically and efficiently extend stacks.

5.4 Other Parallel Benchmarks

In this section, I briefly describe experiments with 6 additional Pthreads-based parallel programs.
The majority of them were originally written to use one thread per processor. I rewrote the pro-

4Since the Pthreads interface allows only a binary fork, these & threads are forked as a binary tree instead of a
d-way fork. '

SCompared to the threads described in Chapter 4, Pthreads are more expensive to create and destroy. Therefore, a
fewer number of Pthreads (and hence a larger K) are sufficient to delay large allocations. ‘
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Figure 5.7 ; Performance of matrix multiply on an 8-processor Enterprise 5000 SMP using variations of the
native Pthreads implementation: (a) speedup with respect to a serial C version; (b) high water mark of heap
memory allocation during the execution of the program. The results were averaged over 3 consecutive runs
of the program. “Original” is with the original Pthreads implementation, “LIFO” uses a LIFO scheduler,
“LIFO + small stk” stands for the LIFO scheduler with a reduced default stack size, “ADF” uses a variation
of algorithm AsyncDF, and “ADF + small stk” uses the variation of AsyncDF with a reduced default stack
size.
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Figure 5.8: A breakdown of execution times on up to 8 processors for matrix multiply using the space-
efficient scheduler based on algorithm AsyncDF. The Pthread library’s default stack size was set at 8KB.
The different components are the same as the components in Figure 5.6.
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Benchmark Problem Size Coarse gr. | Fine gr. + orig. lib | Fine gr. + new lib

Speedup | Speedup | Threads | Speedup | Threads
Matrix Mult. 1024 x 1024 6.63 3.65 1977 6.56 59
Bammes Hut | N = 100K, Plmr, model 753 5.76 860 7.80 34
FMM N = 10K, 5 terms — | 490 4348 7.45 24
Decision Tree 133,999 instances — 5.23 94 525 70
FFTW N =222 6.27 5.84 224 594 14
Sparse Matrix | 30K nodes, 151K edges 6.14 441 55 5.96 32
Vol. Rend. | 2563 volume, 3752 image 6.79 5.73 131 6.69 25

Figure 5.9: Speedups on 8 processors over the corresponding serial C programs for the 7 parallel bench-
marks. Three versions of each benchmark are listed here: the original coarse-grained version (BLAS3 for
Matrix Multiply, and none for FMM or Decision Tree), the fine-grained version that uses a large number of
threads with the original Solaris Pthreads implementation, and the fine-grained version with the modified
Pthreads implementation (that uses the space-efficient scheduler and an 8KB default stack size). “Threads”
is the maximum number of active threads during the 8-processor execution.

grams to use a large number of Pthreads, and compared the performance of the original, coarse-
grained program with the rewritten, fine-grained version. The performance of the fine-grained
version was measured using both the original Pthreads implementation and the implementation
with the space-efficient scheduler based on algorithm AsyncDF (using a reduced 8KB default
stack size). I refer to the latter setting as the new Pthreads scheduler (or as the new version of the
Pthreads implementation). Since Pthreads are significantly more expensive than function calls, I
coarsened some of the natural parallelism available in the program. This simply involved setting
the chunking size for parallel loops or the termination condition for parallel recursive calls. The
coarsening amortizes thread operation costs and also provides good locality within a thread, but
still allows a large number of threads to be expressed. All threads were created requesting the
smallest stack size of one page (8KB). The experiments were performed on the 8-processor En-
terprise 5000 described in Section 5.2. The memory threshold K was set to 50,000 bytes. All
programs were compiled using Sun’s Workshop compiler (cc) 4.2, with the optimization flags
-fast -xarch=v8plusa -xchip=ultra -xtarget=native -x04.

5.4.1 The parallel benchmarks

Each benchmark is described below with its experimental results; Figure 5.9 summarizes the results
for all the benchmarks.

1. Barnes Hut

This program simulates the interactions in a system of N bodies over several timesteps using the
Barnes-Hut algorithm[11]. Each timestep has three phases: an octree is first built from the set of
bodies, the force on each body is then calculated by traversing this octree, and finally, the position
and velocity of each body is updated. I used the “Barnes” application code from the SPLASH-2
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benchmark suite [163] in our experiments.

In the SPLASH-2 Barnes code, one Pthread is created for each processor at the beginning of the
execution; the threads (processors) synchronize using a barrier after each phase within a timestep.
Once the tree is constructed, the bodies are partitioned among the processors. Each processor tra-
verses the octree to calculate the forces on the bodies in its partition, and then updates the positions
- and velocities of those bodies. It also uses its partition of bodies to construct the octree in the next
timestep. Since the distribution of bodies in space may be highly non-uniform, the work involved
for the bodies may vary to a large extent, and a uniform partition of bodies across processors leads
to load imbalance. The Barnes code therefore uses a costzones partitioning scheme to partition the
bodies among processors [146]. This scheme tries to assign to each processor a set of bodies that
involve roughly the same amount of work, and are located close to each other in the tree to get
better locality.

I modified the Barnes code so that, instead of partitioning the work across the processors, a
new Pthread is created to execute each small, constant-sized unit of work. For example, in the
force calculation phase, starting from the root of the octree, a new Pthread was recursively forked
to compute the force on the set of particles in each subtree. The recursion was terminated when
the subtree had (on average) under 8 leaves. Since each leaf holds multiple bodies, this granularity
is sufficient to amortize the cost of thread overheads and to provide good locality within a thread.
Thus, we do not need any partitioning scheme in my code, since the large number of threads in each
phase are automatically load balanced by the Pthreads implementation. Further, no per-processor
data structures were required in my code, and the final version was significantly simpler than the
original code.

The simulation was run on a system of 100,000 bodies generated under the Plummer model [1]
for four timesteps (as with the default Splash-2 settings, the first two timesteps were not timed).
Figure 5.9 shows that the simpler, fine-grained approach achieves the same high performance as
the original code. However, the Pthread scheduler needs to be carefully implemented to achieve
this performance. When the thread granularity is coarsened and therefore the number of threads
is reduced, the performance of the original scheduler also improves significantly. However, as
the problem size scales, unless the number of threads increases, the scheduler cannot balance the
load effectively. Besides forks and joins, this application uses Pthread mutexes in the tree building
phase to synchronize modifications to the partially built octree.

2. Fast Multipole Method

This application executes the Fast Multipole Method or FMM [72], another N-Body algorithm.
The FMM in three dimensions, although more complex, has been shown to perform fewer compu-
tations than the Barnes-Hut algorithm for simulations requiring high accuracy, such as electrostatic
systems [20]. The main work in FMM involves the computation of local and multipole expansion
series that describe the potential field within and outside a cell, respectively. I first wrote the serial
C version for the uniform FMM algorithm, and then parallelized it using Pthreads. The parallel
version is written to use a large number of threads, and I do not compare it here to any preexisting
version written with one thread per processor. The program was executed on 10,000 uniformly
distributed particles by constructing a tree with 4 levels and using 5 terms in the multipole and
local expansions.
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Figure 5.10 : Memory requirements for the FMM and Decision Tree benchmarks. “Orig. lib” uses the native
Pthreads implementation, while “New lib” uses the implementation modified to use the new scheduler based
on AsyncDF. “Serial” is the space requirement of the serial program.

Each phase of the force calculation and its parallelization is described below.

1.

Multipole expansions for leaf cells are calculated from the positions and masses of their
bodies; a separate thread is created for each leaf cell.

Multipole expansions of interior cells are calculated from their children in a bottom-up
phase; a separate thread is created for each interior (parent) cell.

In a top-down phase, the local expansion for each cell is calculated from its parent cell and
from its well-separated neighbors; since each cell can have a large number of neighbors (up
to 875), we created a separate thread to compute interactions with up to constant number
(25) of a cell’s neighbors. Threads are forked as a binary tree.

The forces on bodies are calculated from the local expansions of their leafs and from direct
interactions with neighboring bodies; a separate thread is created for each leaf cell.

Since this algorithm involves dynamic memory allocation (in phase 3), I measured its space
requirement with the original and new versions of the Pthreads library implementation (see Fig-
ure 5.10(a)). As with matrix multiply, the new scheduling technique (based on AsyncDF) results
in lower space requirement. The speedups with respect to the serial C version are included in
Figure 5.9.

3. Decision Tree Builder

Classification is an important data mining problem. I implemented a decision tree builder to clas-
sify instances with continuous attributes. The algorithm used is similar to ID3 [132], with C4.5-
like additions to handle continuous attributes [133]. The algorithm builds the decision tree in a
top-down, divide-and-conquer fashion, by choosing a split along the continuous-valued attributes
based on the best gain ratio at each stage. The instances are sorted by each attribute to calculate the
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Figure 5.11 : Running times for three versions of the multithreaded, one-dimensional DFT from the FEFTW
library on p processors: (1) using p threads, (2) using 256 threads with the original Pthreads scheduler, (3)
using 256 threads with the modified Pthreads scheduler.

optimal split. The resulting divide-and-conquer computation graph is highly irregular and data de-
pendent, where each stage of the recursion itself involves a parallel divide-and-conquer quicksort
to split the instances. I used a speech recognition dataset [78] with 133,999 instances, each with 4
continuous attributes and a true/false classification as the input. A thread is forked for each recur-
sive call in the tree builder, as well as for each recursive call in quicksort. In both cases, a switch to
serial recursion is made once the number of instances is reduced to 2000. Since a coarse-grained
implementation of this algorithm would be highly complex, requiring explicit load balancing, I did
not implement it. The 8-processor speedups obtained with the original and new Pthreads scheduler
are shown in Figure 5.9; both the schedulers result in good time performance; however, the new
scheduler resulted in a lower space requirement (see Figure 5.10(b)).

4. Fast Fourier Transform

The FFTW (“Fastest Fourier Transform in the West”) library [65] computes the one- and multidi-
mensional complex discrete Fourier transform (DFT). The FFTW library is typically faster than all
other publicly available DFT code, and is competitive or better than proprietary, highly optimized
versions such as Sun’s Performance Library code. FFTW implements the divide-and-conquer
Cooley-Tukey algorithm [43]. The algorithm factors the size N of the transforminto N = N; - N,,
and recursively computes /N, transforms of size N,, followed by N, transforms of size N;. The
package includes a version of the code written with Pthreads, which I used in these experiments.
The FFTW interface allows the programmer to specify the number of threads to be used in the
DFT. The code forks a Pthread for each recursive transform, until the specified number of threads
are created; after that it executes the recursion serially. The authors of the library recommend using
one Pthread per processor for optimal performance.

A one-dimensional DFT of size N = 22? was executed in these experiments, using either p
threads (where p = no. of processors) as the coarse grained version, or 256 threads as the fine
grained version. Figure 5.11 shows the speedups over the serial version of the code for one to eight
processors. When p is a power of two, the problem size (which is also a power of two) can be
uniformly partitioned among the processors using p threads, and being a regular computation, it
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does not suffer from load imbalance. Therefore, for p = 2,4, 8, the version with p threads runs
marginally faster. However, for all other p, the version with a larger number of threads can be
better load balanced by the Pthreads implementation, and therefore performs better. This example
indicates that without any changes to the code, the performance becomes less sensitive to the
number of processors when a large number of lightweight threads are used. The performance
of this application was comparable with both the original Pthreads scheduler and the modified
scheduler (see Figure 5.9). ’

S. Sparse Matrix Vector Product

This benchmark involves of 20 iterations of the product w = M - v, where M is a sparse, non-
symmetric matrix and v and w are dense vectors. The code is a modified version of the Spark98
kernels [117] which are written for symmetric matrices. The sparse matrix in these experiments
is generated from a finite element mesh used to simulate the motion of the ground after an earth-
quake in the San Fernando valley [9, 10]; it has 30,169 rows and 151,239 non-zeroes. In the
coarse-grained version, one thread is created for each processor at the beginning of the simulation,
and the threads execute a barrier at the end of each iteration. Each processor (thread) is assigned a
disjoint and contiguous set of rows of M, such that each row has roughly equal number of nonze-
roes. Keeping the sets of rows disjoint allows the results to be written to the w vector without
locking.

In the fine-grained version, 64 threads are created and destroyed in each iteration. The rows
are partitioned equally rather than by number of nonzeroes, and the load is automatically balanced
by the threads scheduler (see Figure 5.9).

6. Volume Rendering

This application from the Splash-2 benchmark suite uses a ray casting algorithm to render a 3D
volume [145, 163] . The volume is represented by a cube of volume elements, and an octree data
structure is used to traverse the volume quickly. The program renders a sequence of frames from
changing viewpoints. For each frame, a ray is cast from the viewing position through each pixel;
rays are not reflected, but may be terminated early. Parallelism is exploited across these pixels in
the image plane. My experiments do not include times for the preprocessing stage which reads in
the image data and builds the octree.

In the Splash-2 code, the image plane is partitioned into equal sized rectangular blocks, one
for each processor. However, due to the nonuniformity of the volume data, an equal partitioning
may not be load balanced. Therefore, every block is further split into tiles, which are 4 x 4 pixels
in size. A task queue is explicitly maintained for each processor, and is initialized to contain all
the tiles in the processor’s block. When a processor runs out of work, it steals a tile from another
processor’s task queue. The program was run on a 256 x 256 x 256 volume data set of a Computed
Tomography head and the resulting image plane was 375 x 375 pixels.

In the fine-grained version, a separate Pthread was created to handle each set of 64 tiles (out
of a total of 8836 tiles). Since rays cast through consecutive pixels are likely to access much of
the same volume data, grouping a small set of tiles together is likely to provided better locality.
However, since the number of threads created is much larger than the number of processors, the
computation is load balanced across the processors by the Pthreads scheduler, and does not require
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Figure 5.12: Variation of speedup with thread granularity (defined as the maximum number of 4 x 4 pixel
tiles processed by each thread) for the volume rendering benchmark. “Orig. sched.” is the speedup using

the original FIFO scheduling queue, while “New sched.” is the speedup using the space-efficient scheduler
based on AsyncDF.

the explicit task queues used in the original, coarse-grained version. Figure 5.9 shows that the
performance of the simpler, rewritten code (using the modified Pthread scheduler) is competitive
with the performance of the original code.

5.5 Selecting the optimal thread granularity

Fine-grained threads allow for good load balancing, but may incur high thread overheads and poor
locality. In the experiments described so far, the granularity of the Pthreads was adjusted to amor-
tize the cost of basic thread operations (such as creation, deletion, and synchronization). However,
since algorithm AsyncDF may schedule threads accessing common data on different processors,
the granularity needed to be increased further for some applications to get good locality within
each thread. For example, in the volume rendering application, if we create a separate thread to
handle each set of 8 4x4 tiles of the image, the serial execution of the multithreaded program is
slowed down by at most 2.25% due to basic thread overheads, compared to the serial C program.
However, the same program on 8 processors slows down nearly 20%, probably due to poorer data
locality. Tiles close together in the image are likely to access common data, and therefore the pro-
gram scales well when the thread granularity is increased so that each thread handles 64 (instead of
8) tiles. This effect of thread granularity on performance is shown in Figure 5.12. The application
slows down at large thread granularities (> 130 tiles per thread) due to load imbalance, while the
slowdown at finer thread granularities (< 50 tiles per thread) is due to high scheduling overheads
and poor locality. Ideally, we would like the performance to be maintained as the granularity is
reduced.

Since basic Pthread operations cannot be avoided, the user must coarsen thread granularities
to amortize their costs. However, ideally, we would not require the user to further coarsen threads
for locality. Instead, the scheduling algorithm should schedule threads that are close in the com-
putation graph on the same processor, so that good locality may be achieved. Chapter 7 presents
a space-efficient scheduling algorithm, namely, algorithm DFDeques, that was designed for this
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purpose.

5.6 Summary

In this chapter, I have described a space-efficient implementation of Posix threads or Pthreads.
The new scheduler added to-the native Pthreads implementation on Solaris is based on algorithm
AsyncDF. The shared scheduling queue within the threads package was essentially converted from
a FIFO queue to a priority queue in which Pthreads are prioritized by their serial execution order.

The space and time performance of new scheduler was evaluated using seven Pthreads-based
benchmarks: a dense matrix multiply, a sparse matrix multiply, a volume renderer, a decision
tree builder, two N-body codes, and an FFT package. The experimental results indicate that the
space-efficient scheduler results in better space and time performance compared to the original
FIFO scheduler. In particular, it allows simpler, fine-grained code for the benchmarks to perform
competitively with their hand-partitioned, coarse-grained counterparts.

One drawback of expressing a large number of lightweight, fine-grained Pthreads is having to
pick the appropriate thread granularity. Since Pthreads are two orders of magnitude more expensive
than function calls, the user always has to ensure that the work performed by the threads amortizes
the cost of basic thread operations. However, with algorithm AsyncDF, further coarsening of
threads may be required to ensure low scheduling contention and good data locality within each
thread. The next chapter presents algorithm DFDeques with the goal of addressing this problem.
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Chapter 6

Automatic Coarsening of Scheduling
Granularity

Thread packages like Pthreads do not support very fine-grained thread operations due to their
rich functionality and library approach. For example, because Pthreads cannot take advantage
of lazy thread creation as in specialized multithreaded languages [70, 66, 102], every Pthread
expressed by the programmer incurs the cost of a thread creation and deletion. Therefore, even
for serial executions, the programmer must ensure that average thread granularities are sufficiently
large to amortize the costs of basic thread operations. However, we showed in Chapter 5 that for
some applications, the AsyncDF scheduling algorithm does not result in good parallel performance
even at such threads granularities. In particular, threads have to be further coarsened to allow
good locality and low scheduling overheads during a parallel execution. Ideally, however, the user
should not have to further coarsen threads beyond what is required to amortize the cost of basic
thread operations. Instead, the scheduling algorithm should automatically schedule fine-grained
threads that are close in the computation’s dag on the same processor, so that good locality and low
scheduling overheads are achieved.

In this chapter, I introduce algorithm DFDeques, an improvement on algorithm AsyncDF; it is
aimed at providing better time performance for finer grained threads by increasing the scheduling
granularity beyond the granularities of individual threads. Like algorithm AsyncDF, it guarantees
a space bound of S; + O(K - p - D) (in the expected case) for a nested-parallel program with
serial space requirement .57 and depth D executing on p processors. As before, K is the user-
adjustable memory threshold used by the scheduler. For a simplistic cost model, I show that the
expected running time is O(W/p+ D) on p processors. However, when the scheduler in DFDeques
is parallelized, the costs of all scheduling operations can be accounted for with a more realistic
model. Then the parallel computation can be executed using S; + O(K - D - p - logp) space
and O(W/p + D - log p) time (including scheduling overheads); such a parallelized scheduler is
described in Appendix D. '

This chapter is organized as follows. Section 6.1 motivates the need for improving algorithm
AsyncDF by providing a simple example; it also explains the main differences between algorithms
AsyncDF and DFDeques. Section 6.2 then describes the programming model supported by algo-
rithm DFDeques and the data structures it uses, followed by the pseudocode for the algorithm
itself. I analyze the space and time requirements for a parallel computation executed using al-
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rootthread ___»

Figure 6.1: An example dag for a parallel computation. each of the 16 threads is shown as a shaded region.
The threads are numbered from right-to-left; thread ¢, is the initial, root thread. In this example, thread t;
accesses i'" element of an array.

gorithm DFDeques in Section 6.3. Finally, Section 6.4 summarizes the results presented in this
chapter.

6.1 Motivation and Basic Concepts

Consider the example in Figure 6.1. The dag represents a parallel loop that is forked as a binary
tree of threads, with one thread per iteration. Let the i*" thread (going from right to left) execute
the i*" iteration of the parallel loop; let us assume that it accesses the i*" element of an array.
Therefore, if multiple, consecutive elements of an array fit into one cache line, then scheduling a
block of consecutive threads on one processor results in good locality; Figure 6.2(a) shows one
such schedule. Further, contention while accessing scheduling data structures could be reduced
by storing an entire block of threads in an individual processor’s scheduling queue. Then for a
majority of the time, a processor has to access only its own queue. Work stealing scheduling
techniques in which coarser-grained threads are typically stolen by an idle processor [77, 25, 101,
96, 159] provide such benefits, and are therefore likely to result in schedules such as the one shown
in Figure 6.2(a).

Unlike work stealing, algorithm AsyncDF uses a single, flat, global scheduling queue. Fur-
ther, high-priority threads in AsyncDF are often deeper in the dag and therefore more fine grained.
Consequently, consecutive threads in the example may be scheduled by AsyncDF on different pro-
cessors, as shown in Figure 6.2(b). This can result in poor locality and high scheduling overheads
when the threads are fairly fine grained. Note, however, that if each thread were somewhat coars-
ened, so that it represents a block of iterations of the parallel loop and therefore access several
consecutive memory locations, the time performance of algorithm AsyncDF would, in practice,
be equivalent to that of a work stealing scheduler. Further, as indicated by results in Chapters 4
and 5, it would also typically result in lower memory requirements compared to previous sched-
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Figure 6.2: (a) and (b): Two different mappings of threads of the dag in Figure 6.1 onto processors
Fy, ..., Ps. Scheduling consecutive threads on the same processor, as in (a), can provide better cache
locality in this example.

ulers. Algorithm DFDeques was therefore designed to improve upon AsyncDF by automatically

combining fine-grained threads close together in the dag into a single scheduling unit to provide

a higher scheduling granularity. This typically results in better locality and lower scheduling con-
tention that AsyncDF, particularly when threads are more fine grained. Algorithm DFDeques
borrows ideas from work stealing to obtain this improvement in time performance, while main-
taining the same asymptotic space bound as algorithm AsyncDF. However, as shown in Chapter 7,
in practice DFDeques results in a marginally higher memory requirement compared to AsyncDF.

The basic differences between algorithms AsyncDF and DFDeques are summarized below.

o Threads in AsyncDF were organized in a flat priority queue (R). In contrast, DFDeques uses
a prioritized queue R', each element of which is a deque (doubly-ended queue). A deque
holds multiple threads with contiguous (relative) priorities. At any time, a processor owns a
separate deque (unless it is switching between deques) and treats it like a private LIFO stack
to store ready threads.

o In AsyncDF, an idle processor always picks the next thread on @),,+; (,.: buffers the highest
priority threads in R. In contrast, an idle processor in DFDeques picks the top thread from its
current deque. If it finds it’s deque empty (or if it does not own a deque), it selects at random
one of the high-priority deques, and steals a thread from the bottom of the deque. This thread
is typically more coarse-grained than the thread with the absolute, highest priority.

e In algorithm AsyncDF, the memory threshold was used to limit the memory allocated by
each individual thread between preemptions; a thread was preempted and its memory thresh-
old was reset when it reached a fork instruction. In contrast, DFDeques allows the memory
threshold to be used towards the memory allocation of multiple threads from the same deque.
This allows multiple, fine-grained threads close in the dag to execute on the same processor
(assuming they do not allocate much memory).

e In algorithm AsyncDF, all idle processors picked threads from the head of Q),,;; for fine-
grained threads, accessing (),,: can therefore become a bottleneck. DFDeques uses random-
ization to reduce contention between idle processors when they steal. I therefore provide
high probability (and expected case) bounds for the space and time requirements of parallel
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computations executed using algorithm DFDeques.

6.2 Algorithm DFDeques

This section begins by describing the programming model for the multithreaded computations that
are executed by the algorithm DFDeques. I then list the data structures used in the scheduling
algorithm, followed by the description of the scheduling algorithm.

6.2.1 Programming model

Algorithm DFDeques executes nested parallel computations with binary forks and joins (unlike the
multi-way forks and joins supported by AsyncDF). For example, the dag in Figure 6.1 represents a
nested parallel computation with binary forks and joins. As with AsyncDF, although I describe and
analyze algorithm DFDeques for nested parallel computations, in practice it can be easily extended
to programs with more general styles of parallelism. For example, the Pthreads scheduler described
in Chapter 7 (Section 7.1) efficiently supports computations with arbitrary synchronizations, such
as mutexes and condition variables.

6.2.2 Scheduling data structures

As with algorithm AsyncDF, threads are prioritized according to their serial execution order (i.e.,
according to the 1DF-numbering of their current nodes). The ready threads are stored in doubly-
ended queues or deques [45]. Each of these deques supports popping from and pushing onto
its top, as well as popping from the bottom of the deque. At any time during the execution, a
processor owns at most one deque, and executes threads from it. A single deque has at most one
owner at any time. However, unlike traditional work stealing, the total number of deques in the
system may exceed the number of processors. Since the programming model allows only binary
threads, threads need not be forked lazily to conserve space. Further, unlike algorithm AsyncDF,
placeholders for currently executing threads are not required in algorithm DFDeques. Therefore,
the deques of threads only contain ready threads, and not seed threads or placeholders. :

All the deques are arranged in a global list R’ of deques. The list supports adding of a new
deque to the immediate right of another deque, deletion of a deque, and finding the m*" deque from
the left end of R'. As we will prove in the next Section, algorithm DFDeques maintains threads in
R’ in decreasing order of priorities from left-to-right across deques, and from top to bottom within
each deque (see Figure 6.3).

6.2.3 The scheduling algorithm

The processors execute the code in Figure 6.4 for algorithm DFDeques (K), where K is the mem-
ory threshold. Each processor treats its own deque as a regular LIFO stack, and is assigned a
memory quota of A bytes from which to allocate heap and stack data. This memory quota K
is equivalent to the per-thread memory quota in algorithm AsyncDF. However, as noted in Sec-
tion 6.1, the memory quota is assigned to a processor to execute multiple threads from a single
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Figure 6.3 : The list R’ of deques maintained in the system by algorithm DFDeques. Each deque may have
one (or no) owner processor. The dotted line traces the decreasing order of priorities of the threads in the
system; thus ¢, in this figure has the highest priority, while ¢, has the lowest priority.

deque (rather than a single thread, as in AsyncDF). A thread executes without preemption on a
processor until one of four events takes place: (a) it forks a child thread, (b) it suspends waiting for
a child to terminate, (c) the processor runs out of its memory quota, or (d) the thread terminates.
When an idle processor finds its deque empty, it deletes the deque. When a processor runs out of
its memory quota, or when it becomes idle and finds its deque empty, it gives up ownership of its
deque and uses the steal () procedure to obtain a new deque. Every invocation of steal () re-
sets the processor’s memory quota to K bytes. Each iteration of the while loop in the steal ()

procedure a referred to as a steal attempt.

The scheduling algorithm starts with a single deque in the system, containing the initial (root)
thread. A processor executes a steal attempt by picking a random number m between 1 and p,
where p is the number of processors. It then tries to steal the bottom thread from the m!* deque
(starting from the left end) in R’; this thread need not be the highest priority thread in the system. If
R'hasonly n < p deques, any steal attempts for m € [n+1, p] fail (that is, pop_from_bot returns
NULL). A steal attempt may also fail if two or more processors target the same deque (as explained
in Section 6.3.1), or if the deque is empty. If the steal attempt is successful (pop_from bot
returns a thread), the stealing processor creates a new deque for itself, places it to the immediate
right of the chosen deque, and starts executing the stolen thread. Otherwise, it repeats the steal
attempt. When a processor steals the last thread from a deque not currently associated with (owned
by) any processor, it deletes the deque.

If a thread contains an action that performs a memory allocation of m units such that m > K,
then | m /K | dummy threads must be inserted before the allocation, similar to algorithm AsyncDF.
Since the programming model supports only binary forks, these dummy threads are forked in a
binary tree. We do not show this extension in Figure 6.4 for brevity. Each dummy thread executes
ano-op. However, processors must give up their deques and perform a steal every time they execute
a dummy thread. Once all the dummy threads have been executed, a processor may proceed with
the memory allocation. This addition of dummy threads effectively delays large allocations of
space, so that higher priority threads may be scheduled instead.

Work stealmg as a special case of algorithm DFDeques. For a nested-parallel computation,




78 CHAPTER 6. AUTOMATIC COARSENING OF SCHEDULING GRANULARITY

while (3 threads)
if (currS = NULL) currS := steal();
if (currT = NULL) currT := pop_from_top(currS);
execute currT until it forks, suspends, terminates,
or mem quota exhausted:
case (fork):
push_to_top(currT, currS);
currT := newly forked child thread;
case (suspend):
currT := NULL;
case (mem quota exhausted):
push_to_top(currT, currS);
currT := NULL;
currS := NULL;
case (terminate):

/* give up stack; */

procedure steal():
set memory quota to K;
while (TRUE )
m :=random numberin [1...p];
S := mt*deque in R';
T := pop_from_bot(S);
if (T # NULL)
create new deque S’ containing T
and become its owner;

place S’ to immediate right of Sin R’;

3

if currT wakes up suspended parent T’ return S’;
curtT :=T';
else currT := NULL;
if ((is_.empty(currS)) and (currT= NULL))
currS := NULL;

endwhile

Figure 6.4 : Pseudocode for the DFDeques (K') scheduling algorithm executed by each of the p processors.
K is the memory threshold, designed to be a user-adjustable command-line parameter. currsS is the proces-
sor’s current deque. currT is the current thread being executed; changing its value denotes a context switch.
Memory management of the deques is not shown here for brevity.

consider the case when we set K’ = oo on p processors. Then, algorithm DFDeques (oo ) produces
a schedule identical to the one produced by the provably efficient work stealing scheduler used
in Cilk [25]. Since processors never give up a deque due to exhaustion of their memory quota,
there are never more than p deques in the system. Maintaining the relative order of deques in R’
becomes superfluous in this case, since now steal targets are always chosen at random from among
all the deques in the system.

6.3 Analysis of Algorithm DFDeques

This section analyzes the time and space bounds for a parallel computation executed using algo-
rithm DFDeques (K'), where K is the user-assigned memory threshold. I first state the cost model
assumed in the analysis, followed by definitions of some terms used in this section. I then prove
the time and space bounds for a computation using algorithm DFDeques (K). To simplify the anal-
ysis, the cost model defined in this section assumes that deques can be inserted and deleted from
R’ at no additional cost. Appendix D explains how these operations can be performed lazily, and
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e = non-premature
e = premature

Figure 6.5: An example snapshot of a parallel schedule for the dag from Figure 6.1. The shaded nodes (the
set of nodes in 0,,) have been executed, while the blank (white) nodes have not. Of the nodes in op, the black
nodes form the corresponding parallel prefix oy, while the remaining grey nodes are premature.

analyzes the running time after including their costs.

6.3.1 Cost model

As with the analysis of algorithm AsyncDF, we assume that the timesteps (clock cycles) are syn-
chronized across all the processors. Recall that each action (or node in the dag) requires one
timestep to be executed. We assume that an allocation of M bytes of memory (for any M > 0) has
a depth of ©(log M). This is a reasonable assumption in systems with binary forks that zero out
the memory as soon as it is allocated; this zeroing can be performed in parallel by forking a tree of
height ©(log M).

If multiple processors target a non-empty deque in a single timestep, we assume that one of
them succeeds in the steal, while all the others fail in that timestep. If the deque targeted by one or
more steals is empty, all of those steals fail in a single timestep. When a steal fails, the processor
attempts another steal in the next timestep. When a steal succeeds, the processor inserts the newly
created deque into R’ and executes the first action from the stolen thread in the same timestep. At
the end of a timestep, if a processor’s current thread terminates or suspends, and it finds its deque
to be empty, it immediately deletes its deque in that timestep. Similarly, when a processor steals
the last thread from a deque not currently associated with any processor, it deletes the deque in that
timestep. Thus, at the start of a timestep, if a deque is empty, it must be owned by a processor that
is busy executing a thread. In practice, the insertions of new deques and deletions of empty deques
from R’ can be either serialized (see Section 7.1), or performed lazily in parallel (see Appendix D).
If a processor tries to remove the last thread from its deque, and another processor attempts a steal
from the same deque, we assume that any one of them succeeds in removing the thread.
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e =heavynodes

Figure 6.6 : A possible partitioning of nodes into batches for the parallel prefix o, from Figure 6.5. Each
batch, shown with as a shaded region, is executed on one of the processors Fy, ..., P; in depth-first order
without interruption. The heavy node in each batch is shown shaded black.

6.3.2 Definitions

We use the same definitions of prefixes and (non-)premature nodes that were defined in Chapter 3
(Section 3.3.2). Figure 6.5 shows the premature and non-premature nodes in an example dag for
some arbitrary parallel prefix o,. However, we define a batch (of nodes) in a slightly different
manner from Chapter 3. In the case of algorithm DFDeques, a batch now becomes the set of all
nodes executed by a processor between consecutive steals. Since a processor uses its own deque
to store and retrieve threads between steals, this new definition of a batch may include nodes from
multiple threads instead of just one thread. As before, the first node executed from a batch is a
heavy node, while all other nodes are light nodes. Thus, when a processor steals a thread from the
bottom of a deque, the current node of the thread becomes a heavy node. As with the analysis
of AsyncDF, heavy nodes are a property of the particular execution (p-schedule) rather than of
the dag, since steals may take place at different times in different executions. Figure 6.6 shows a
possible partitioning of nodes into batches for the parallel prefix from Figure 6.5.

We assume for now that all nodes allocate at most A" memory; we will relax this assumption
at the end of this subsection. Since the memory quota of a processor is reset to A” every time it
performs a steal, a processor may allocate at most A space for every heavy node it executes.

A ready thread being present in a deque is equivalent to its first unexecuted node (action) being
in the deque, and we will use the two phrases interchangeably. Given a p-schedule s, of a nested-
parallel dag & generated by algorithm DFDeques, we can find a unique last parent for every node
in G (except for the root node) as follows. The last parent of a node u in G is defined as the last of
u’s parent nodes to be executed in the schedule s,. If two or more parent nodes of u were the last
to be executed, the processor executing one of them continues execution of u’s thread. We label
the unique parent of u executed by this processor as its last parent. The processor may have to
preempt u’s thread without executing v if it runs out of its memory quota; in this case, it puts u’s
thread on to its deque and then gives up the deque.
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6.3.3 Space bound

We now show that using algorithm DFDeques (K') results in an expected space requirement of
51+ O(p - D - min(K, Sy)) for a nested-parallel computation with D depth and S, serial space
requirement on p processors. Because, in practice, we use small, constant value of K, the space
bound reduces to S; + O(p - D), as with algorithm AsyncDF.

The approach for proving the space bound of algorithm DFDeques is similar to that for al-
gorithm AsyncDF. We first prove a lemma regarding the order of threads in R’ maintained by
algorithm DFDeques; this order is shown pictorially in Figure 6.3. We will then bound the number
of heavy premature nodes that may have been executed in the parallel computation by the end of
any timestep, that is, we bound the cardinality of the set o, — o4, for any prefix o, of a parallel
schedule s, executed by algorithm DFDeques.

Lemma 6.1 Algorithm DFDeques maintains the following properties of the ordering of threads in
the system. '

1. Threads in each deque are in decreasing order of priorities from top to bottom.

2. A thread currently executing on a processor has higher priority than all other threads on the
processor’s deque.

3. The threads in any given deque have higher priorities than threads in all the deques to its
rightin R'.

Proof: By induction on the timesteps. The base case is the start of the execution, when the root
thread is the only thread in the system. Let the three properties be true at the start of any subsequent
timestep. Any of the following events may take place on each processor during the timestep; we
will show that the properties continue to hold at the end of the timestep.

- When a thread forks a child thread, the parent is added to the top of the processor’s deque,
and the child starts execution. Since the parent has a higher priority that all other threads in the
processor’s deque (by induction), and since the child thread has a higher priority (earlier depth-first
execution order) than its parent, properties (1) and (2) continue to hold. Further, since the child
now has the priority immediately higher than its parent, property (3) holds.

When a thread T exits, the processor checks if 7' has reactivated a suspended parent thread
T,. In this case, it starts executing 7),. Since the computation is nested parallel, the processor’s
deque must now be empty (since the parent 7, must have been stolen at some earlier point and
then suspended). Therefore, all 3 conditions continue to hold. If 7' did not wake up its parent, the
processor picks the next thread from the top its deque. If the deque is empty, it deletes the deque
and performs a steal. Therefore all three properties continue to hold in these cases too.

When a thread suspends or is preempted due to exhaustion of the processor’s memory quota, it
is put back on the top of its deque, and the deque retains its position in R’. Thus all three properties
continue to hold. '

When a processor steals the bottom thread from another deque, it adds the new deque to the
right of the target deque. Since the stolen thread had the lowest priority in the target deque, the
properties continue to hold. Similarly, removal of a thread from the target deque does not affect
the validity of the three properties for the target deque. A thread may be stolen from a processor’s
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deque while one of the above events takes place on the processor itself; this does not affect the
validity of our argument.
Finally, deletion of one or more deques from R’ does not affect the three properties. n

We can now bound the number of heavy premature nodes in any snapshot (prefix) of the parallel
schedule. Let s, be the p-schedule of length T" generated for GG by algorithm DFDeques (Iv). For
any 1 <7 < T,let o, be the prefix of s, representing the execution after the first 7 timesteps. Let
o1 C o, be the corresponding serial prefix of . Let v be the last non-premature node (i.e., the last
node from o) to be executed during the first 7 timesteps of s,. If more than one such node exist,
let v be any one of them. Let P be a set of nodes in the dag constructed as follows: P is initialized
to {v}; for every node « in P, the last parent of u is added to P. Since the root is the only node at
depth 1, it must be in P, and thus, P contains exactly all the nodes along a particular path from the
root to v. Further, since v is non-premature, all the nodes in P are non-premature.

Let u; be the node in P at depth ¢; then v, is the root, and u; is the node v, where ¢ is the
depth of v. Let ¢; be the timestep in which u; is executed; then ¢, = 1 since the root is executed
in the first timestep. For: = 2,... ,4 let J; be the interval {¢,_; + 1,... ,t;}, and let I; = {1}.
Let Is41 = {ts+1,...,7}. Since o, consists of all the nodes executed in the first 7 timesteps, the
intervals Iy,. .. , Is;, cover the duration of execution of all nodes in o,,.

We first prove a lemma regarding the nodes in a deque below any of the nodes in P.

Lemma 6.2 Forany1 < i < 4, let u; be the node in P at depth i. Then,

1. If anytime during the execution (in the first t; — 1 timesteps) u; is on some deque, then every
node below it in its deque is the right child of some node in P.

2. When u; is executed (at timestep t;) on a processor, every node on the processor’s deque
must be the right child of some node in P.

Proof: We can prove this lemma to be true for any u; by induction on . The base case is the root
node. Initially it is the only node in its deque, and gets executed before any new nodes are created.
Thus the lemma is trivially true. Let us assume the lemma is true for all u;, for 0 < j < i. We
must prove that it is true for u; ;.

Since u; is the last parent of ;. 1, u;;; becomes ready immediately after u; is executed on some
processor. There are two possibilities:

1. w4y is executed immediately following u; on that processor. Property (1) hold trivially
since u,; is never put on a deque. If the deque remains unchanged before u,,, is executed,
property (2) holds trivially for u;;;. Otherwise, the only change that may be made to the
deque is the addition of the right child of u; before u;,, is executed, if u; was a fork with
;41 as its left child. In this case too, property (2) holds, since the new node in the deque is
right child of some node in P.

2. wu;41 is added to the processor’s deque after u; is executed. This may happen because u; was
a fork and u;,, was its right child (see Figure 6.7), or because the processor exhausted its
memory quota. In the former case, since u;4, is the right child of u;, nothing can be added
to the deque before u;y,. In the latter case (that is, the memory quota is exhausted before



6.3. ANALYSIS OF ALGORITHM DFDEQUES 83

deque

d | top
Yirg

I : nodes along path P b
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Figure 6.7 : (a) A portion of the dynamically unfolding dag during the execution. Node ;. along the path
P is ready, and is currently present in some deque. The deque is shown in (b); all nodes below u;;; on the
deque must be right children of some nodes on P above u; ;. In this example, node u;,.; was the right child
of u;, and was added to the deque when the fork at u; was executed. Subsequently, descendents of the left
child of u; (e.g., node d), may be added to the deque above ;1.

u;41 1s executed), the only node that may be added to the deque before u;. is the right child
of u;, if u; is a fork. This does not violate the lemma. Once u;,; is added to the deque, it
may either get executed on a processor when it becomes the topmost node in the deque, or it
may get stolen. If it gets executed without being stolen, properties (1) and (2) hold, since no
new nodes can be added below v, in the deque. If it is stolen, the processor that steals and
executes it has an empty deque, and therefore properties (1) and (2) are true, and continue to
hold until %;,, has been executed.

Recall that heavy nodes are a property of the parallel schedule, while premature nodes are defined
relative to a given prefix o, of the parallel schedule. We now prove lemmas related to the number
of heavy premature nodes in o,.

Lemma 6.3 Let o, be any parallel prefix of a p-schedule produced by algorithm DFDeques (K )
for a computation with depth D. Then the expected number of heavy premature nodes in o, is
O(p - D). Further, for any ¢ > 0, the number of heavy premature nodes is O(p - (D + In(1/¢)))
with probability at least 1 — .

Proof:. Consider the start of any interval /; of o,,, fori = 1,... ,§ (we will look at the last interval
Isy, separately). By Lemma 6.1, all nodes in the deques to the left of u;’s deque, and all nodes
above u; in its deque are non-premature. Let z; be the number of nodes below u; in its deque.
Because steals target the first p deques in R’, heavy premature nodes can be picked in any timestep
from at most p deques. Further, every time a heavy premature node is picked, the deque containing
u; must also be a candidate deque to be picked as a target for a steal; that is, u; must be among
the leftmost p deques. Consider only the timesteps in which u; is among the leftmost p deques; we
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will refer to such timesteps as candidate timesteps. Because new deques may be created to the left
of u; at any time, the candidate timesteps need not be contiguous.

We now bound the total number of steals that take place during the candidate timesteps; these
are the only steals that may result in the execution of heavy premature nodes. Because a processor
may attempt at most one steal in any timestep, each timestep can have at most p steals. Therefore,
similar to the analysis in previous work [3], we can partition the candidate timesteps into phases,
such that each phase has between p and 2p — 1 steals. We call a phase in interval I; successful if
at least one of its ©(p) steals targets the deque containing u;. Let X;; be the random variable with
value 1 if the j** phase in interval I; is successful, and O otherwise. Because targets for steals are
chosen at random from the leftmost p deques with uniform probability, and because each phase has
atleast P steals, Pr[X;; = 1] > 1—(1 ~1/p)” > 1—1/e > 1/2. Thus, each phase succeeds with
probability greater than 1/2. Because u; must get executed before or by the time «; + 1 successful
steals target u;’s deque, there can be at most x; + 1 successful phases in interval I;. Node u; may
get executed before z; + 1 steals target its deque, if its owner processor executes u; off the top of
the deque. Let there be some n; < (z; 4+ 1) successful phases in the interval ;. From Lemma 6.2,
the z; nodes below u; are right children of nodes in P. There are (§ — 1) < D nodes along P not
including u;, and each of them may have at most one right child. Further, each successful phase in
any of the first ¢ intervals results in at least one of these right children (or the current ready node
on P) being executed. Therefore, the total number of successful phases in the first § intervals is
Z;;l n; < 2D.

Finally, consider the final phase I5,;. Let z be the ready node at the start of the interval with
the highest priority. Note that » ¢ ¢, because otherwise = (or some other node), and not v, would
have been the last non-premature node to be executed in o,. Hence, if = is about to be executed
on a processor, then interval /s, is empty. Otherwise, ~ must be at the top of the leftmost deque
at the start of interval I5,,. Using an argument similar to that of Lemma 6.2, we can show that
the nodes below =z in the deque must be right children of nodes along a path from the root to z.
Thus = can have at most (D — 2) nodes below it. Because = must be among the leftmost p deques
throughout the interval /s.,, the phases in this interval are formed from all its timesteps. We call
a phase successful in interval s, if at least one of the ©(p) steals in the phase targets the deque
containing z. Then this interval must have less than D successful phases. As before, the probability
of a phase being successful is at least 1/2.

We have shown that the first 7 timesteps of the parallel execution (i.e., the time within which
nodes from o, are executed) must have < 3D successful phases. Each phase may result in O(p)
heavy premature nodes being stolen and executed. Further, for7 = 1,... , 4, in each interval I,
another p — 1 heavy premature nodes may be executed in the same timestep that w; is executed.
Therefore, if o, has a total of N phases, the number of heavy premature nodes in o, is at most
(N + D) - p. Because the entire execution must have less than 3D successful phases, and each
phase succeeds with probability > 1/2, the expected number of total phases before we see 3D
successful phases is at most 6 D. Therefore, the expected number of heavy premature nodes in o,
isatmost 7D - p = O(p - D).

The high probability bound can be proved as follows. Suppose the execution takes at least
12D + 81n(1/€) phases. Then the expected number of successful phases is at least © = 6D +
41n(1/€). Using the Chernoff bound [112, Theorem 4.2] on the number of successful phases X,
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and setting a = 6D 48 In(1/€), we get!

PriX < p—a/2] < exp [_(_;;iz_)_] ,

which implies that

Pr[(X <3D)] < exp -121) :rasl/ril(l/e)}

= exp 1 (24 :81n(1/€))jl
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[—(6D + 81n(1/e))}

= €

= exp

8
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= €

Because there can be at most 3D successful phases, algorithm DFDeques requires 12D -+
81In(1/¢) or more phases with probability at most . Recall that each phase consists of ©(p) steals.
Therefore, o, has O(p - (D + In(1/¢))) heavy premature nodes with probability at least 1 — .

]

We can now state a lemma relating the number of heavy premature nodes in o, with the memory
requirement of s,,.

Lemma 6.4 Let G be a dag with depth D, in which every node allocates at most K space, and for
which the 1DF-schedule requires S space. Let s, be the p-schedule of length T generated for G
by algorithm DFDeques (K). If for any i such that1 < 1 < T, the prefix o, of s, representing the
computation after the first i timesteps contains at most r heavy premature nodes, then the parallel
space requirement of s, is at most Sy +r-min(K, Sy ). Further, there are at most D+r-min( K, S;)
active threads during the execution.

Proof: We can partition o, into the set of non-premature nodes and the set of premature nodes.
Since, by definition, all non-premature nodes form some serial prefix of the 1DF-schedule, their net
memory allocation cannot exceed S;. We now bound the net memory allocated by the premature
nodes. Consider a steal that results in the execution of a heavy premature node on a processor P,.
The nodes executed by P, until its next steal, cannot allocate more than K space. Because there

!The probability of success for a phase is not necessarily independent of previous phases; however, because each
phase succeeds with probability at least 1/2, independent of other phases, we can apply the Chernoff bound.
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thread t

Figure 6.8: An example scenario when a processor may not execute a contiguous subsequence of nodes
between steals. The shaded regions indicate the subset of nodes executed on each of the two processors, P,
and F;. Here, processor P, steals the thread ¢ and executes node u. It then forks a child thread (containing
node v), puts thread ¢ on its deque, and starts executing the child. In the mean time, processor P, steals thread
¢ from the deque belonging to F,, and executes it (starting with node w) until it suspends. Subsequently,
P, finishes executing the child thread, wakes up the suspended parent ¢, and resumes execution of t. The
combined sets of nodes executed on both processors forms a contiguous subsequence of the 1DF-schedule.

are at most r heavy premature nodes executed, the total space allocated across all processors after
: timesteps cannot exceed S; + 7 - K.

We can now obtain a tighter bound when A" > S;. Consider the case when processor P, steals a
thread and executes a heavy premature node. The nodes executed by P, before the next steal are all
premature, and form a series of one or more subsequences of the 1DF-schedule. The intermediate
nodes between these subsequences (in depth-first order) are executed on other processors (e.g., see
Figure 6.8). These intermediate nodes occur when other processors steal threads from the deque
belonging to F,, and finish executing the stolen threads before P, finishes executing all the remain-
ing threads in its deque. Subsequently, when P,’s deque becomes empty, the thread executing on
P, may wake up its parent, so that P, starts executing the parent without performing another steal.
Therefore, the set of nodes executed by P, before the next steal, possibly along with premature
nodes executed on other processors, form a contiguous subsequence of the 1DF-schedule.

Assuming that the net space allocated during the 1DF-schedule can never be negative, this sub-
sequence cannot allocate more than S; units of net memory. Therefore, the net memory allocation
of all the premature nodes cannot exceed r - min( A, S ), and the total space allocated across all
processors after : timesteps cannot exceed S; + - min( A\, Sy ). Because this bound holds for every
prefix of s, it holds for the entire parallel execution.

The maximum number of active threads is at most the number of threads with premature nodes,
plus the maximum number of active threads during a serial execution, which is D. Assuming that
each thread needs to allocate at least a unit of space when it is forked (e.g., to store its register
state), at most min( K, S;) threads with premature nodes can be forked for each heavy premature
node executed. Therefore, the total number of active threads is at most D + r - min(K, S;). "

Each active thread requires at most a constant amount of space to be stored by the scheduler (not
including stack space). Therefore, using Lemmas 6.3 and 6.4, we can state the following lemma.
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Lemma 6.5 Let G be a nested-parallel dag with depth D, and let every node in G allocate at
most K space. Then the expected amount of space required to execute G on p processors using
algorithm DFDeques (K ), including scheduling space, is Sy + O(p - D - min(K, S1)). Further, for
any € > 0, the probability that the computation requires S; + O(p - (D + In(1/¢)) - min(K, S;))
space is at least 1 — . ' .

Handling large allocations of space. We had assumed earlier in this section that every node
allocates at most K units of memory. Individual nodes that allocate more than K space are handled
as described in Section 6.2. The key idea is to delay the big allocations, so that if threads with
higher priorities become ready, they will be executed instead. The solution is to insert before every
allocation of m bytes (m > K), a binary fork tree of depth log(m/K), so that m/K dummy
threads are created at its leaves. Each of the dummy threads simply performs a no-op that takes
one timestep, but the threads at the leaves of the fork tree are treated as if it were allocating K
space; a processor gives up its deque and performs a steal after executing each of these dummy
threads. Therefore, by the time the m /K dummy threads are executed, a processor may proceed
with the allocation of m bytes without exceeding our space bound. Recall that in our cost model,
an allocation of m bytes requires a depth of O(log m); therefore, this transformation of the dag
increases its depth by at most a constant factor. This transformation takes place at runtime, and
the on-line DFDeques algorithm generates a schedule for this transformed dag. Therefore, the
bound on the space requirement of the generated schedule remains the same as the bound stated in
Lemma 6.5; the final space bound is stated below.

Theorem 6.6 Let G be a nested-parallel dag with depth D. Then the expected amount of space
required to execute Gi on p processors using algorithm DFDeques (K ), including scheduling space,
is S14O(p- D -min(K, S1)). Further, for any € > 0, the probability that the computation requires
S1+O0(p- (D +1n(1/¢)) - min(K, S;)) space is at least 1 — «. n

- When K is a small constant amount of memory, the expected space requirement reduces to S; +
O(p- D).

6.3.4 Lower bound on space requirement

We now show that the upper bound on space requirement, as stated in Theorem 6.6, is tight (within
constant factors) in the expected case, for algorithm DFDeques.

Theorem 6.7 (Lower bound on space requirement)

Forany 51 > 0, p > 0, K > 0, and D > 24log p, there exists a nested parallel dag with a
serial space requirement of Sy and depth D, such that the expected space required by algorithm
DFDeques (K ) to execute the dag on p processors is Q(S; + min(K, S;) - p- D).

Proof:  Consider the dag shown in Figure 6.9. The black nodes denote allocations, while the
grey nodes denote deallocations. The dag essentially has the a fork tree of depth log(p/2), at the
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leaves of which exist subgraphs®. The root nodes of these subgraphs are labelled u, us, . . . , un,
where n = p/2. The leftmost of these subgraphs, (7, shown in Figure 6.9 (b), consists of a serial
chain of d nodes. The remaining subgraphs are identical, have a depth of 2d + 1, and are shown
in Figure 6.9 (c). The amount of space allocated by each of the black nodes in these subgraphs is
defined as A = min(K, S;). Since we are constructing a dag of depth D, the value of d is set such
that 2d + 1 + 2log(p/2) = D. The space requirement of a 1DF-schedule for this dag is ;.

We now examine how algorithm DFDeques (/) would execute such a dag. One processor
starts executing the root node, and executes the left child of the current node at each timestep.
Thus, within log(p/2) = logn timesteps, it will have executed node u;. Now consider node u,,;
it is guaranteed to be executed once log n successful steals target the root thread. (Recall that the
right child of a forking node, that is, the next node in the parent thread, must be executed either
before or when the parent thread is next stolen.) Because there are always n = p/2 processors in
this example that are idle and attempt steals targeting p deques at the start of every timestep, the
probability Fi:.. that a steal will target a particular deque is given by

1 p/2
Psteal Z 1"'(1__)
p
> 1_6-—1/2
1
> =

3

We call a timestep : successful if some node along the path from the root to u,, gets executed; this
happens when a steal targets the deque containing that node. Thus, after log n successful timesteps,
node u,, must get executed; after that, we can consider every subsequent timestep to be successful.
Let S be the number of successful timesteps in the first 12log n timesteps. Then, the expected
value is given by

E[S] > 12logn - Pyea
> 4logn

Using the Chernoff bound [112, Theorem 4.2] on the number of successful timesteps, we have

(< () 5

Pr[S <logn] < exp [—glog n]

Therefore,

. 9 Inn
- P 8 In2
< e—l.62-]nn
1
— 062 1
n
2 1
< 3 for p >4

2All logarithms denoted as log are to the base 2.
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Figure 6.9: (a) The dag for which the existential lower bound holds. (b) and (c) present the details of the
subgraphs shown in (a). The black nodes denote allocations and grey nodes denote deallocations; the nodes
are marked with the amount of memory (de)allocated.
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Recall that n = p/2. (The case of p < 4 can be easily handled separately.) Let £ be the event that
node u; is not executed within the first 12 log n timesteps. We have showed that Pr[£,] < 2/3-1/n.
Similarly, we can show that foreach7 = 1,... ,n — 1, Pr[£i] < 2/3-1/n. Therefore, Pr[|J] &] <
2/3. Thus, for7 = 1,... ,n, all the u; nodes get executed within the first 12]log n timesteps with
probability greater than 1/3.

Each subgraph G has d nodes at different depths that allocate memory; the first of these nodes
cannot be executed before timestep logn. Let ¢ be the first timestep at which all the u; nodes
have been executed. Then, at this timestep, there are at least (d + logn — t) nodes remaining in
each subgraph (7 that allocate A bytes each, but have not yet been executed. Similarly, node w
in subgraph G, will not be executed before timestep (d + log n), that is, another (d + logn — t)
timesteps after timestep ¢. Therefore, for the next (d + logn — t) timesteps there are always
n —1 = (p/2) — 1 non-empty deques (out of a total of p deques) during the execution. Each time
a thread is stolen from one of these deques, a black node (see Figure 6.9 (c)) is executed, and the
thread then suspends. Because p/2 processors become idle and attempt a steal at the start of each
timestep, we can show that in the expected case, at least a constant fraction of the p/2 steals are
successful in every timestep. Each successful steal results in A = min(.S;, K') units of memory
being allocated. Consider the case when ¢ = 12logn, Then, using linearity of expectations,
over the d — 11log n timesteps after timestep ¢, the expected value of the total space allocated
is S + QA -p-(d—11logn)) = S1 4+ QA -p- (D —logp)). (D > 24logp ensures that
(d—11logn) > 0.)

We showed that with constant probability (> 1/3), all the u; nodes will be executed within the
first 12]og n timesteps. Therefore, in the expected case, the space allocated (at some point during
the execution after all u; nodes have been executed) is 2(.S; + min(Sy, K') - (D — logp) - p). =

Corollary 6.8 (Lower bound using work stealing)

Forany Sy > 0, p > 0, and D > 24log p, there exists a nested parallel dag with a serial space
requirement of S| and depth D, such that the expected space required to execute it using the space-
efficient work stealer from [24] on p processors is Q(Sy - p - D). .

The corollary follows from Theorem 6.7 and the fact that algorithm DFDeques behaves like the
space-efficient work-stealing scheduler for A’ = oo. Blumofe and Leiserson [24] presented an
upper bound on space of p- 5, using randomized work stealing. Their result is not inconsistent with
the above corollary, because their analysis allows only “stack-like” memory allocation?, which is
more restricted than our model. For such restricted dags, their space bound of p - S; also applies
directly to DFDeques (cc). Our lower bound is also consistent with the upper bound of p - S by
Simpson and Burton [143], where S is the maximum space requirement over all possible depth-
first schedules. In this example, S = S; - D, since the right-to-left depth-first schedule requires
Sy - D space.

3Their model does not allow allocation of space on a global heap. An instruction in a thread may allocate stack
space only if the thread cannot possibly have a living child when the instruction is executed. The stack space allocated
by the thread must be freed when the thread terminates.
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6.3.5 Time bound

We now prove the time bound required for a parallel computation using algorithm DFDeques. This
time bound do not include the scheduling costs of maintaining the relative order of the deques (i.e.,
inserting and deleting deques in R'), or finding the m** deque. In Appendix D we describe how
the scheduler can be parallelized, and then prove the time bound including these scheduling costs.
We assume for now that every action allocates at most A space, for some constant K. We relax
this assumption and provide the modified time bound at the end of this subsection.

Lemma 6.9 Consider a parallel computation with work W and depth D, in which every action
allocates at most K space. The expected time to execute this computation on p processors using
the DFDeques (K ) scheduling algorithm is O(W/p+ D). Further, for any € > 0, the time required
to execute the computation is O(W/p + D + In(1/¢)) with probability at least 1 — e.

Proof: Consider any timestep : of the p-schedule; let n; be the number of deques in R’ at timestep
1. We first classify each timestep ¢ into one of two types (A and B), depending on the value of n;.
We then bound the total number of timesteps 7’4 and Tz of types A and B, respectively.

Type A: n; > p. At the start of timestep ¢, let there be r < p steal attempts in this timestep. Then
the remaining p — r processors are busy executing nodes, that is, at least p — r nodes are executed
in timestep 7. Further, at most p — r of the leftmost p deques may be empty; the rest must have at
least one thread in them. .

Let X; be the random variable with value 1 if the j'* non-empty deque in R’ (from the left
end) gets exactly one steal request, and 0 otherwise. Then, Pr[X; = 1] = (r/p)- (1 —1/p)"" . Let
X be the random variable representing the total number of non-empty deques that get exactly one
steal request. Because there are at least » non-empty deques, the expected value of X is given by

BX] > YEX)

1
= roC.(1— =yt
p p
2
> r_.(l_l)p
p p
2 1, 1
> r_.(l__)._
P p ¢
7,,2
>
- 2-p-e

Recall that p — r nodes are executed by the busy processors. Therefore, if Y is the random variable
denoting the total number of nodes executed during this timestep, then E[Y] > (p—r) +1?/2ep >
p/2e. Therefore, E[p— Y] < p—p/2e = p(1—1/2¢). The quantity (p— Y ) must be non-negative;
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therefore, using the Markov’s inequality [112, Theorem 3.2], we get

Pr((p —Y) > p(1 —1/4¢)] <

which implies that

PrlY < p/de] < 9/10,
thatis, Pr[Y > p/de] > 1/10

We will call each timestep of type A successful if > p/4e nodes get executed during the
timestep. Then the probability of the timestep being successful is at least 1/10. Because there are
W nodes in the entire computation, there can be at most 4¢ - W/p successful timesteps of type A.
Therefore, the expected value for 7'4 is at most 40e - W/p.

The analysis of the high probability bound is similar to that for Lemma 6.3. Suppose the
execution takes more than 80eWW/p + 401n(1/¢) timesteps of type A. Then the expected number 1
of successful timesteps of type A is at least 8eI1¥/p+41n(1/¢). If Z is the random variable denoting
the total number of successful timesteps, then using the Chernoff bound [112, Theorem 4.2], and
setting a = 40eW/p + 401n(1/¢), we get*

— (a/10)?
Pr[Z < p—a/10] < exp [—(—%i——l—-]
Therefore,
Pr[Z < 4eW/p] [
riZ <4eW/p| < exp|— }
| 2004
- o2
= exp|—
P17200(a/5 — 41n(1/¢))
< exp|-—2
= 17500 /5
— e—a/40
e—eVV/p~|n(l/c)
< e—]n(l/c)

= €

4As with the proof of Lemma 6.3, we can use the Chernoff bound here because each timestep succeeds with
probability at least 1/10, even if the exact probabilities of successes for timesteps are not independent.
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We have shown that the execution will not complete even after 80eW¥/p + 401n(1/¢) type A
timesteps with probability at most ¢. Thus, forany € > 0, 74 = O(W/p+In(1/¢)) with probability
atleast 1 —e.

Type B: n; < p. We now consider timesteps in which the number of deques in R’ is less than p.
Again, we split type B timesteps into phases such that each phase has between p and 2p — 1 steals.
We can then use a potential function argument similar to the dedicated machine case by Arora
et. al. [3]. Composing phases from only type B timesteps (ignoring type A timesteps) retains
the validity of their analysis. I briefly outline the proof here. Nodes are assigned exponentially
decreasing potentials starting from the root downwards. Thus a node at a depth of d is assigned a
potential of 32(P~%)  and in the timestep in which it is about to be executed on a processor, a weight
of 32(P~9)-1_ They show that in any phase during which between p and 2p — 1 steal attempts occur,
the total potential of the nodes in all the deques drops by a constant factor with at least a constant
probability. Since the potential at the start of the execution is 3°°~!, the expected value of the total
number of phases is O(D). The difference with our algorithm is that a processor may execute a
node, and then put up to 2 (instead of 1) children of the node on the deque if it runs out of memory;
however, this difference does not violate the basis of their arguments. Since each phase has O(p)
steals, the expected number of steals during type B timesteps is O(pD). Further, for any ¢ > 0, we
can show that the total number of steals during timesteps of type B is O(p - (D + In(1/¢))) with
probability at least 1 — .

Recall that in every timestep, each processor either executes a steal that fails, or executes a
node from the dag. Therefore, if Ngea) is the total the number of steals during type B timesteps,
then T’ is at most (W + Nga1)/p. Therefore, the expected value for 7}, is O(W/p + D), and for
any € > 0, the number of timesteps is O(W/p + D + In(1/¢)) with probability at least 1 — .

The total number of timesteps in the entire execution is 74 + T5. Therefore, the expected
number of timesteps in the execution is O(W/p + D). Further, combining the high probability
bounds for timesteps of type A and B, (and using the fact that P(A U B) < P(A) + P(B)), we
can show that for any € > 0, the total number of timesteps in the parallel execution is O(W/p +
D + In(1/¢)) with probability at least 1 — e. .

To handle large allocations, recall that we add binary forks of dummy threads. If S, is the total
space allocated in the program (not counting the deallocations), the additional number of nodes in
the transformed dag is O(S,/K’). The transformation increases the depth of the dag by at most a
constant factor. Therefore, using Lemma 6.9, the modified time bound is stated as follows.

Theorem 6.10 The expected time to execute a parallel computation with W work, D depth, and
total space allocation S, on p processors using algorithm DFDeques (K )is O(W/p+S, /pK + D).
Further, for any ¢ > 0, the time required to execute the computation is O(W/p + S, /pK + D +
In(1/€)) with probability at least 1 — . ]

In a system where every memory location allocated must be zeroed, S, = O(W). The expected
time bound therefore becomes O(W/p + D), which is asymptotically optimal [28].

If we parallelize the scheduler, we can account for scheduling overheads. Then the computa-
tion can be executed in O(W/p + D log p) timesteps including scheduling costs. Such a parallel
implementation of the scheduler is described and analyzed in Appendix D.
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6.4 Summary

In this chapter, I have presented the DFDeques scheduling algorithm, which enhances algorithm
AsyncDF with ideas from previous work stealing approaches. In particular, algorithm DFDe-
ques was designed to handle finer grained threads more efficiently than algorithm AsyncDF by
increasing scheduling granularity beyond the granularities of individual threads. The scheduling
granularity is increased by scheduling fine-grained threads close in the dag on the same processor,
without repeated accesses to the global scheduling queue. I have shown that the expected space
requirement of the algorithm for executing a computation with D depth, W work and S; serial
space requirement, is 5; + O(p - D), while the expected running time is O(W/p + D). In the next
chapter, I describe experiments with implementing the DFDeques algorithm.



Chapter 7

Experimental Evaluation of Algorithm
DFDeques

In Chapter 6, I presented the DFDeques scheduling algorithm, which automatically increases
scheduling granularity. In this chapter, I describe experiments to evaluate the performance of
algorithm DFDeques in practice. To evaluate the algorithm, I have implemented it in the context
of the Solaris Pthreads package. Results of the Pthreads-based experiments presented in this chap-
ter indicate that in practice, the new DFDeques scheduling algorithm results in better locality and
higher speedups compared to both algorithm AsyncDF and the FIFO scheduler. (This difference
is more pronounced for finer thread granularities.) DFDeques provides this improved performance
by scheduling threads close in the dag on the same processor. This typically results in better local-
ity and lower scheduling overheads. Throughout this chapter, algorithm AsyncDF actually refers
to the variant of the original algorithm, that is, it does not use the buffer queues Q;,, and Q,.; this
variant was described in Chapter 5.

Ideally, we would like to compare the Pthreads-based implementation of DFDeques with a
space-efficient work-stealing scheduler. However, implementing a provably space-efficient work-
stealing scheduler (e.g., [25]) that can support the general Pthreads functionality would require
significant modification to both the scheduling algorithm and the Pthreads implementation!. There-
fore, to compare algorithm DFDeques to an existing, space-efficient work-stealing scheduler, I in-
stead built a simple simulator that implements synthetic, purely nested-parallel benchmarks. The
simulation results indicate that by adjusting the memory threshold, DFDeques can cover a wide
range of space requirements and scheduling granularities. At one extreme it performs similar to
algorithm AsyncDF, with a low space requirement and small scheduling granularity. At the other
extreme, it behaves exactly like a work-stealing scheduler, with a higher space requirement and
larger scheduling granularity.

This chapter is organized as follows. Section 7.1 describes the implementation of the algo-
rithm in the context of Pthreads, along with the results of executing the set of Pthreads-based
benchmarks that were introduced in Chapter 5. Section 7.2 presents the simulation results that
compare DFDeques with AsyncDF and a work-stealing scheduler, and Section 7.3 summarizes

1The Pthreads implementation itself makes extensive use of blocking synchronization primitives such as Pthreads
mutexes and condition variables. Therefore, even fully strict Pthreads benchmarks cannot be executed using such a
work stealing scheduler in the existing Solaris Pthreads implementation.

95




96 CHAPTER 7. EXPERIMENTAL EVALUATION OF ALGORITHM DFDEQUES

the results presented in this chapter.

7.1 Experiments with Pthreads

I have implemented the DFDeques scheduling algorithm as part of the native Solaris Pthreads
library described in Chapter 5 (Section 5.2). The machine used for all the experiments in this
Section is the 8-processor Enterprise 5000 SMP described in Section 5.2. Recall that because
Pthreads are not very fine grained, the user is required to create Pthreads that are coarse enough
to amortize the cost of thread operations. This section shows that by using algorithm DFDeques,
high parallel performance can be achieved without any additional coarsening of threads. Thus, the
user can now fix the thread granularity to amortize thread operation costs, and expect to get good
parallel performance in both space and time.

As with the implementation of algorithm AsyncDF for scheduling Pthreads, I modified mem-
ory allocation routines malloc and free to keep track of the memory quota of the current pro-
cessor (or kernel thread) and to fork dummy threads before an allocation if required. Recall that
algorithm DFDeques (Figure 6.4) was designed for purely nested parallel computations. However,
the scheduler implementation described in this section is an extension of algorithm DFDeques that
supports the full Pthreads functionality (including mutexes and condition variables). To support
this functionality, it maintains additional entries in R’ for threads suspended on synchronizations.
When a thread suspends, a new deque is created for it to the immediate right of its current deque.
Although the benchmarks presented in this chapter make limited use of mutexes and condition
variables, the Pthreads library itself makes extensive use of them both.

Since the execution platform is an SMP with a modest number of processors, access to the
ready threads in R’ was serialized. R’ is implemented as a linked list of deques protected by
a shared scheduler lock. I optimized the common cases of pushing and popping threads onto a
processor’s current deque by minimizing the synchronization time. A steal requires the scheduler
lock to be held for a longer period of time, until the processor selects and steals from a target
stack. This Pthreads-based implementation uses a slightly different stealing strategy than the one
described in the original DFDeques algorithm (Figure 6.4). In this implementation, if an idle
processor tries to steal from a deque that is currently not owned by any processor, the processor
takes over ownership of that deque, and starts executing the top thread in that deque. Recall that
in the original algorithm, the processor would instead steal the bottom thread from the deque and
create a new deque for itself. The goal of this modification was to reduce the number of deques
present in R'; in practice, it also results in a small additional increase in the scheduling granularity.

In the Solaris Pthreads implementation, it is not always possible to place a reawakened thread
on the same deque as the thread that wakes it up. Further, unlike in nested parallel computations,
a thread that wakes up another thread may continue execution. Therefore, instead of requiring
the processor that wakes up a thread to move the newly awakened thread to its deque, the thread
remains in its current deque (that was created for it when it suspended). Therefore, this implemen-
tation of DFDeques is an approximation of the pseudocode in Figure 6.4. Further, since access
to R’ is serialized, and mutexes and condition variables are supported and used by the Pthreads
implementation, setting &' = oo does not produce the same schedule as the space-efficient work-
stealing scheduler intended for fully strict computations [24]. Therefore, we can use this setting
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only as a rough approximation of a pure work-stealing scheduler.

I first list the benchmarks used in the experiments. Next, I compare the space and time perfor-
mance of the library’s original FIFO scheduler (labelled “FIFO”) with the implementation of al-
gorithm AsyncDF (labelled “ADF”) as described in Chapter 5, and algorithm DFDeques (labelled
“DFD”) for a fixed value of the memory quota K. DFDeques (c0) is used as an approximation for
a space-efficient work-stealing scheduler (labelled “DFD-inf”). To study how the performance of
the schedulers is affected by thread granularity, I present results of the experiments at two different
thread granularities. Finally, I measure the trade-off between running time, scheduling granularity,
and space requirement using the new scheduler by varying the value of K for one of the bench-
marks.

7.1.1 Parallel benchmarks

The Pthreads-based parallel benchmarks and the inputs used are described in detail in Chapter 5.
The parallelism in both divide-and-conquer recursion and parallel loops was expressed as a binary
tree of forks, with a separate Pthread created for each recursive call. Thread granularity was ad-
justed by serializing the recursion near the leafs of the recursion tree. In the comparison results
in Section 7.1.2, fine granularity refers to the thread granularity that provides good parallel per-
formance using algorithm AsyncDF (this is the thread granularity used in Chapter 5). As shown
in that chapter, even at this granularity, the number of threads significantly exceeds the number
of processors, allowing for simple code and automatic load balancing, and yet resulting in perfor-
mance equivalent to hand-partitioned, coarse-grained code. Finer granularity refers to the finest
thread granularity that allows the cost of thread operations in a single-processor execution add up
to at most 5% of the serial execution time2. Ideally, at this finer thread granularity, the parallel
executions of the programs should also require at most 5% more time than their fine (or coarse)
grained versions.
The two thread granularities for each of the benchmarks are specified below:

1. Volume Rendering. Each thread processes up to 64 4 x 4 pixel tiles of the rendered i image
at fine granularity, and up to 5 tiles at finer granularity.

2. Dense Matrix Multiply. The fine grained version uses 64 x 64 blocks at the leafs of the
recursion tree in a divide-and conquer algonthm the finer grained version uses 32 x 32
blocks.

3. Sparse Matrix Vector Multiply. At fine granularity, 64 threads are used to perform the
multiplication, while 256 threads are used at the finer granularity.

4. Fast Fourier Transform. 256 threads are used to compute the 1D FFT at fine granularity,
and 512 threads at finer granularity.

5. Fast Multipole Method. At fine granularity, each thread calculates 25 interactions of a cell
with its neighboring cells, while at finer granulanty, each thread computes 5 such interac-
tions.

2The exception was the dense matrix multiply, which is written for n x n blocks, where n is a power of two.
Therefore, finer granularity involved reducing the block size by a factor of 4, and increasing the number of threads by
a factor of 8, resulting in 10% additional overhead.
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Benchmark Input size Fine grained Finer grained
total | FIFO | ADF | DFD || total [ FIFO | ADF | DFD
Vol. Rend. 2563 vol, 375 img 1427 | 195 29 29 4499 436 36 37

Dense MM 1024 x 1024 doubles 4687 623 33 48 37491 | 3752 55 77
Sparse MVM | 30K nodes, 151K edges 1263 54 31 31 5103 173 51 49

FFTW N =222 177 64 13 18 1777 510 30 33
FMM N = 10K, 5 mpl terms 4500 | 1314 21 29 36676 | 2030 50 54
Barnes Hut N = 100K, Pimr model || 40893 | 1264 33 106 124767 | 3570 | 42 120
Decision Tree 133,999 instances 3059 82 60 77 6995 194 138 149

Figure 7.1: Input sizes for each benchmark, the total number of threads expressed in the program at fine and
finer granularities, and the maximum number of simultaneously active threads created by each scheduler at
both granularities. K was set to 50,000 bytes. The results for “DFD-inf” are not shown here; it creates up
to twice as many threads as “DFD” for dense matrix multiply, and at most 15% more threads than “DFD”
for the remaining benchmarks.

6. Barnes-Hut. At fine granularity, each thread computes the forces on particles in up to 8 leaf
cells (on average), while at the finer granularity, each thread handles one leaf cell.

7. Decision Tree Builder. The thread granularity is adjusted by setting a threshold for the
number of instances, below which the recursion is executed serially. The thresholds were set
to 2000 and 200 for the fine and finer granularities, respectively.

7.1.2 Comparison results

In all the comparison results, the memory threshold was set to A~ =50,000 bytes for the AsyncDF
and DFDeques algorithms. An 8KB (1 page) stack was allocated for each active thread. In each
of the three versions (FIFO, AsyncDF, and DFDeques), the default Pthread stack size was set to
8KB, so that the Pthread implementation could cache previously-used stacks. In general, the space-
efficient schedulers (AsyncDF and DFDeques) effectively conserve stack memory by creating
fewer simultaneously active threads compared to the original FIFO scheduler (see Figure 7.1). The
FIFO scheduler was found to spend significant portions of time executing system calls related to
memory allocation for both stack and heap space.

The 8-processor speedups for all the benchmarks at the fine and finer thread granularities are
shown in Figure 7.2. To concentrate on the impact of the scheduler, and to ignore the effect of
increased thread overheads (up to 5% for all except dense matrix multiply), speedups for each
thread granularity shown here are computed with respect to the single-processor execution of the
multithreaded program at that granularity. The speedups indicate that both space-efficient algo-
rithms AsyncDF and DFDeques outperform the library’s original scheduler. However, at the finer
thread granularity, algorithm DFDeques provides better performance than algorithm AsyncDF.
This difference can be explained by the better locality and lower scheduling contention incurred
by algorithm DFDeques.

For one of the benchmarks (dense matrix multiply), even algorithm DFDeques suffers a slow-
down at finer granularity. Due to the use of a single scheduling queue protected by a common lock,
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Figure 7.2: Speedups on 8 processors with respect to single-processor executions for the three sched-
ulers (the original “FIFO” scheduler, algorithm AsyncDF or “ADF”, and algorithm DFDeques or “DFD”)
at both fine and finer thread granularities. K was set to 50,000 bytes. Performance of “DFD-inf”, be-
ing very similar to that of “DFD”, is not shown here. All benchmarks were compiled using cc -fast
-xarch=v8plusa -xchip=ultra -xtarget=native -x04.
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Benchmark | FIFO | ADF | DFD—|

Vol. Rend. 4.2 30 1.8
Dense MM 240 13 8.7
Sparse MVM | 13.8 | 13.7 | 13.7

FFTW 146 | 164 | 144
FMM 140 | 2.1 1.0
Barnes Hut 19.0 | 39 29
Decision Tr. 5.8 49 4.6

Figure 7.3 : L2 Cache miss rates (%) for Pthreads benchmarks at the finer thread granularities. “FIFO” is the
original Pthreads scheduler that uses a FIFO queue, “ADF” algorithm AsyncDF, and “DFD” is algorithm
DFDeques.

contention for the lock increases at the finer thread granularity. This slowdown indicates that the
current implementation of Pthreads, with a single scheduling lock that also protects other shared
data structures, will not efficiently support very fine-grained threads.

To verify that DFDeques results in better locality compared to the FIFO and AsyncDF sched-
ulers, I measured the external (L2) cache miss rates for each benchmark using on-chip UltraSPARC
performance counters. Figure 7.3, which lists the results at the finer granularity, shows that DFD-
. eques achieves relatively low cache miss rates.

Three out of the seven benchmarks make significant use of heap memory. For these bench-
marks, I measured the high water mark for heap memory allocation using the three schedulers.
Figure 7.4 shows that algorithm DFDeques results in slightly higher heap memory requirement
compared to algorithm AsyncDF, but still outperforms the original FIFO scheduler.

The Cilk [66] runtime system uses a provably space-efficient work stealing algorithm to sched-
ule threads. Because it requires gcc to compile the benchmarks (which results in slower code
compared to the native cc compiler on UltraSPARCs), a direct comparison of running times of
Cilk benchmarks with my Pthreads-based system is not possible. However, in Figure 7.5 I com-
pare the space performance of Cilk with algorithms AsyncDF and DFDeques for the dense matrix
multiply benchmark (with 32 x 32 blocks). The figure indicates that DFDeques requires more
memory than AsyncDF, but less memory than Cilk. In particular, like AsyncDF, the memory
requirement of DFDeques increases slowly with the number of processors.

To test the performance of the schedulers on a benchmark that makes extensive use of locks
throughout the execution, I measured the performance of just the octree-building phase of Barnes
Hut. Threads in this phase are forked in a divide-and-conquer fashion; at the leafs of the recur-
sion tree, each thread handles a constant number of particles, which it inserts into the octree. For
inserting particles into the octree, I used the naive algorithm from the original SPLASH-2 bench-
mark [163]. Each particle is inserted starting at the root, and filters down the octree depending
on its coordinates. When it reaches a leaf cell, it is inserted into the leaf; the leaf may conse-
quently be subdivided if it now contains too many particles. Any modifications to the cells in
the octree are protected by a lock (mutex) on the cell. Thus, the benchmark involves frequent
locking of different cells of the octree. The benchmark does not scale very well because threads
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Figure 7.4 : High water mark of heap memory allocation (in MB) on 8 processors for benchmarks involving
dynamic memory allocation (K = 50,000 bytes for “ADF” and “DFD”), at both thread granularities. “DFD-
inf” is my approximation of work stealing using DFDeques (co).
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Figure 7.5 : Variation of the memory requirement with the number of processors for dense matrix multiply
using three schedulers: AsyncDF (“ADF”), DFDeques (“DFD”), and Cilk (“Cilk”).
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Figure 7.6 : Speedups for the octree-building phase of Barnes Hut (for 1M particles). The phase involves
extensive use of locks on cells of the tree to ensure mutual exclusion. The Pthreads-based schedulers (all
except Cilk) support blocking locks.

often contend for locks on cells near the root of the tree. Figure 7.6 compares the performance of
DFDeques with the original FIFO scheduler, AsyncDF, and with the Cilk runtime system. Due
to limited use of floating point arithmetic, the single-processor performance of the benchmark on
Cilk was comparable to that of my Pthreads-based implementation, making this comparison of
speedups meaningful. Because threads suspend often on mutexes, DFDeques does not result in
a large scheduling granularity; therefore, its performance is comparable to that of AsyncDF. The
FIFO scheduler performs poorly due to the creation of an excessive number of Pthreads. The dif-
ference between my Pthreads-based schedulers and the Cilk scheduler is probably explained by the
fact that Cilk uses a spin-waiting implementation for locks, while my Pthreads schedulers support
blocking implementations of Pthread mutexes. Algorithm DFDeques could be easily extended to
support blocking synchronization because it inherently allows more deques than processors; thus,
when a thread suspends, it is placed on a new deque, where it resides when it is subsequently
reawakened. Future work, as described in Chapter 8, involves more extensive experiments with
such non-nested-parallel benchmarks.

7.1.3 Tradeoff between space, time, and scheduling granularity

Recall that between consecutive steals, each processor executes threads from a single deque. If
the memory quota is exhausted by these threads and some thread reaches a memory allocation that
requires more memory, the processor preempts the thread, gives up the deque, and performs the
next steal. Therefore, when the value of the memory threshold is raised, the scheduling granularity
typically increases. A larger scheduling granularity leads to better time performance; however, a
larger memory threshold may also lead to a higher space requirement.

This section shows how the value of the memory threshold K affects the running time, the
memory requirement, and the scheduling granularity in practice. Each processor keeps track of
the number of times a thread from its own deque is scheduled, and the number of times it has
to perform a steal. The ratio of these two counts, averaged over all the processors, is used as an
approximation of the scheduling granularity. The trade-off is best illustrated in the dense matrix
multiply benchmark, which allocates significant amounts of heap memory. Figure 7.7 shows the
resulting trade-off for this benchmark at the finer thread granularity. As expected, both memory
and scheduling granularity increase with /', while running time reduces as A is increased.
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Figure 7.7 : Trade-off between running time, memory allocation and scheduling granularity using algorithm
DFDeques, as the memory quota K is varied, for the dense matrix multiply benchmark at the finer thread
granularity.

7.2 A Simulator to Compare DFDeques with Previous
Schedulers

Fully strict parallelism [24] does not support the use of synchronization primitives such as mutexes
or condition variables, that are part of the standard Pthreads interface. Therefore, implementing
a pure, space-efficient work stealing algorithm [24] intended for fully strict computations in the
context of a Pthreads implementation would involve significant changes to the algorithm and to
the implementation. To compare algorithm DFDeques with a work stealing algorithm, I instead
built a simple system that simulates the parallel execution of fully strict synthetic benchmarks.
The benchmarks represent recursive, divide-and-conquer computations expressed as a binary tree
of forks, in which the memory or time requirements at each level of the tree can be varied. The im-
plementation simulates a space-efficient work scheduler [24] (labeled “WS”), algorithm AsyncDF
(labeled “ADF”), and algorithm DFDeques (labeled “DFD”).

This section describes the synthetic benchmarks and their properties that can be varied in the
simulator. I then present an overview of the implementation, followed by the simulation results.

7.2.1 Parallel computations modeled by the simulator

I simulate the execution of threads forked as a balanced binary tree with adjustable memory re-
quirements and granularity. The simulated computation begins with a root thread, which may
allocate some memory, and execute some number of instructions. It then forks 2 child threads;
the child threads may allocate memory and execute instructions, after which they forks 2 child
threads each, and so on. The forking stops when the specified nesting level is reached. When both
children of a thread terminate, the thread deallocates the memory it had allocated and terminates
immediately. All the real work is executed by threads before they fork; after the fork they sim-
ply synchronize with their children and exit. Thus the nodes representing the real work form a
balanced binary tree (see Figure 7.8), which is referred to as the “tree” in the rest of this section.
Each node in this tree may represent multiple actions that are executed serially (instead of a single
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root
thread

Figure 7.8: A sample dag for the class of computations simulated by the simulator. Each thread forks 2
children, which fork 2 children each, and so on. Each node here represents a variable number of actions
performed serially, rather than just one action. The “real work” in each thread is executed before the fork;
after the fork, the thread simply synchronizes with its 2 child threads and exits. The nodes performing the
real work and the edges joining them are shown in bold; the simulator generates computations where these
nodes and edges form a balanced binary tree as shown here.

action). In the remainder of this section, the depth of a thread refers to its depth in the recursion
tree, that is, the number of threads forked on the path from the root thread to the given thread.

The characteristics of the threads in the binary tree that can be varied in the simulator are
described below.

e Granularity. The granularity of each thread refers to the number of actions it executes
before it forks any children. When a granularity of » units if specified for a thread, the
simulator can either set the thread’s granularity to an exact n units, or to a value chosen
uniformly at random in the range [1, 2n]. The random values are intended to model irregular
parallelism®. Further, the average granularity of a thread can be varied as follows.

G1. E(jual for all threads. This setting models simple recursive calls where an approxi-
mately equal amount of work is done in each recursive call.

G2. Decreasing geometrically with the depth of the thread. Geometrically decreasing gran-
ularity is intended to model divide-and-conquer algorithms for which the work de-
creases with the depth in the recursion tree.

G3. A small, constant granularity for all interior threads, and a larger, constant value for the
leaf threads in the tree. This models a parallel loop executed as a binary tree of forks,
in which the real work is executed at the leaves.

o Memory requirement. The memory requirement of a thread is the amount of memory it
allocates when it starts executing. The memory requirement for each thread can be varied in
the scheduler as follows.

3 An alternative way to model irregularity in the execution tree would be to execute an irregular binary tree instead
of a balanced tree. I chose to vary the thread granularities for simplicity.
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M1. Constant for all threads. This models recursive divide-and-conquer computations that
do not dynamically allocate memory, but require a small, constant amount of stack
space for each recursive call, which is executed by a separate thread.

M2. Decreasing geometrically with the depth. This models divide-and-conquer algorithms
that dynamically allocate memory at each stage of the recursion, and the allocations
reduce with depth.

Ma3. Constant for all threads except all threads at a specified depth ; threads at depth :
allocate a larger, constant amount of memory. This option is used with option G3
(i.e., large granularity at the leaves), and models two nested paraliel loops where the
outer loop has 2¢ iterations and allocates a large amount of memory at the start of each
iteration, and then executes an inner (nested) loop with 2(@-9) jterations, where d is the
depth of the tree (that is, the number of threads from the root to a leaf). Thus threads
at depth 7 represent the iterations of the outer loop forked as a binary tree. All other
threads simply require a small, constant amount of space for their stacks.

7.2.2 Implementation of the Simulator

The simulator maintains a linked list of deques with threads stored in their depth-first execution
order (as shown in Figure 6.3). Each processor may own at most one deque. In each timestep, the
state of each processor is checked and modified. If the processor needs to execute a steal, a steal
request for it is queued. At the end of the timestep, the steal requests are processed in a random
order to avoid giving preference to any processors. All the steal requests that pick a particular
processor’s deque as their target are queued at the processor, and in each timestep, the processor
picks one of the requests at random and services it. If its deque is empty, it returns a failure to the
stealer, and otherwise it returns a thread from its deque. Each steal requires 1 timestep, and at most
one steal request is serviced by each target processor in each timestep. A thread with granularity ¢
mmplies it has ¢ actions, where each action takes one timestep to execute.

In the simulation of algorithm DFDeques, each of the p processors makes steal requests to
one of the leftmost p non-empty deques chosen at random, and threads are stolen from the bot-
tom deques. The first processor to make a steal request to a deque not owned by any processor
becomes the new owner of the deque; this change from the original DFDeques algorithm does
not significantly modify the simulation results presented in this section. For algorithm AsyncDF,
the top thread from the leftmost deque is always stolen by an idle processor. In both algorithms,
a binary tree of m /K dummy threads is inserted before every large allocation of m (m > K)
units. A processor must give up its deque and steal every time it executes a dummy thread. I
assume the overhead of creating, executing and deleting a dummy thread is a constant number of
timesteps. For both algorithms AsyncDF and DFDeques, the simulator assumes that deques are
created, inserted into the ordered queue, and deleted from it at no additional cost. In the simulation
of algorithm AsyncDF, a processor is allowed to use the memory quota of K units for multiple
threads from a deque (instead of just one thread). This leads to a higher scheduling granularity
compared to the original AsyncDF algorithm.

To implement the space-efficient work-stealing scheduler, the memory quota K is simply set
to infinity in algorithm DFDeques. This ensures that a processor never gives up ownership of its
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deque due to a memory allocation, and there are always p deques in the system, one owned by each
of the p processors.

7.2.3 Simulation results

For each of the following computations, I measured the scheduling granularity (the average number
of actions executed by a processor between two steals) and the total memory requirement (the
high water mark of the total memory allocated across all processors) as the memory threshold A
is varied. An ideal scheduler would result in a high scheduling granularity and a low memory
requirement. All the experiments simulated binary trees of depth 15 on 64 processors. The units
of memory allocation are assumed to be bytes; the memory requirements for threads were set such
that the total memory allocated by all the 2!¢ — 1 threads was approximately 4MB.

(a) G3+M1: Simple binary tree or parallel loop with constant memory requirements

This experiment simulates a simple binary tree, where the memory requirement of each thread
was selected uniformly at random, with a constant expected value. The granularity of interior
threads is set to a small constant (2 units), while the granularity at the leaves is set to 50 units.
Computations represented by such graphs include a simple divide-and-conquer algorithm or a
parallel loop implemented as a tree, where the main work is executed at the leaves. The results
in Figure 7.9 show that algorithm DFDeques is effective in increasing the granularity compared
to the AsyncDF, but is not effective in controlling memory requirements, even compared to the
W S scheduler. For such a computation with a depth D, the serial space S; is O(D), and therefore
the bounds of p - S; and S; + O(p - D) are asymptotically equivalent. For small values of 1,
the DFDeques scheduler results in more preempted threads compared to W S, which explains the
greater memory requirement. DFDeques behaves similar to WS when i’ is large compared to the
memory requirement of individual threads. In practice, since most threads do very little work and
typically require very small stacks in such a program, the value of A" set by the user should indeed
be large enough to provide good performance using DFDeques. The results were similar with
constant granularity for all threads (instead of distinguishing the leaves from the interior threads).

(b) G3+M3: Nested loop with memory allocation in outer loop

This experiment simulates a binary tree of threads in which the memory requirement of each thread
at depth 6 is large (40KB), while all other threads have (on average) a small constant memory
requirement. Such a tree represents a nested parallel loop, with 2° = 64 iterations in the outer
loop, and 2'5~% = 512 iterations in each inner loop. Each iteration of the outer loop allocates a
large amount of memory to execute an inner loop. The thread granularities were set to a large
constant value (50 units) at the leaves of the tree, and a small constant value (2 units) for all
interior threads. We now begin to see the benefits of algorithm DFDeques (see Figure 7.10), since
S is no longer just O(D); the value of i’ now provides a trade-off between the granularity and
the memory requirement. Figure 7.10 also shows that work stealing results in high scheduling
granularity and high space requirement, while AsyncDF results in low scheduling granularity and
low space requirement. In contrast, DFDeques allows scheduling granularity to be traded with
space requirement by varying K.
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ments for each thread.
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Figure 7.11: Geometrically decreasing memory and random, non-decreasing granularity.
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Figure 7.12: Geometrically decreasing memory and granularity.

(¢) G1+M2: Decreasing memory and random, non-decreasing granularity

In this experiment, the memory requirements of the threads were set to decrease geometrically (by
a factor of 2) with their depth. The thread granularities are selected uniformly at random with
50 units as the expected value. Figure 7.11 shoes the results for this case. As before, the value
of the memory threshold A is effective in generating a trade-off between space and granularity
for algorithm DFDeques, which covers a range of behavior between that of algorithms WS and
AsyncDF.

(d) G2+M2: Geometrically decreasing memory and granularity

Figure 7.12 shows the results when both the memory requirements and the average granularity
of the threads decreases geometrically (by a factor of 2) with the depth. Programs with such
characteristics include divide-and-conquer algorithms such as a recursive matrix multiply or sort
(not in-place). Once again, we see that DFDeques allows granularity to be traded with space by

varying K.
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7.3 Summary

In this chapter, I have described experiments with implementing the DFDeques scheduling al-

gorithm that was presented in Chapter 6. The results of executing Pthreads-based benchmarks

using the DFDeques scheduling algorithm indicate that it outperforms both the original FIFO and

AsyncDF schedulers for finer-grained Pthreads. It’s memory requirement is higher than AsyncDF,
. but lower than previous work-stealing schedulers and the FIFO scheduler. Further, simulation re-

sults for executing simple nested-parallel benchmarks using algorithm DFDeques indicate that the

memory threshold provides a trade-off between the space requirements and the scheduling granu-
- larity.
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Chapter 8

Conclusions

This chapter first summarizes the contributions of this dissertation, and then describes possible
directions for future research.

8.1 Thesis Contributions

(a) Scheduling algorithms. I presented two asynchronous scheduling algorithms, AsyncDF and
DFDeques, that provide provable upper bounds on the space and time required to execute a parallel
program. The bounds are expressed in terms of its total work, depth (length of the critical path)
and serial space requirement. In particular, a program with a serial space requirement of .S; and
depth D can be executed on p processors using S; + O(K - p- D) space!. Here, K (the memory
threshold) is a user-adjustable runtime parameter, which provides a trade-off between running time
and space requirement. I presented and analyzed serialized schedulers for both algorithms. I also
described how to parallelize the schedulers, and analyzed the the total space and time requirements
including scheduling overheads.

(b) Runtime systems. This dissertation has described the implementation of a specialized runtime
system on the SGI Power Challenge SMP, that uses algorithm AsyncDF to schedule lightweight
threads. I have also implemented algorithms AsyncDF and DFDeques in the context of a com-
mercial user-level Pthreads library for Solaris-based SMPs. Although the space and time bounds
of both algorithms were analyzed for purely nested parallel programs, their Pthreads-based imple-
mentations may, in practice, be used to execute more general styles of parallelism. The modified
library supports the complete Pthreads API, including signal-handling and blocking synchroniza-
tion. Therefore, any Pthreads programs can benefit from the new scheduling techniques.

(c) Benchmark implementation and evaluation. I used a variety of benchmarks with irregular or
dynamic parallelism on the multithreaded runtime systems to evaluate the effectiveness of the two
scheduling algorithms. These benchmarks include dense and sparse matrix multiplies, two N-body
codes, a volume rendering benchmark, a high performance FFT package, and a data classifier. In
contrast to the original FIFO scheduler, my new schedulers allow simpler code for the fine-grained

YFor the DFDeques algorithm, this is the space bound in the expected case.
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benchmarks to obtain the same high performance as their hand-partitioned, coarse-grained coun-
terparts. My experimental results also indicate that the new scheduling algorithms are effective in
reducing the memory requirements of the benchmarks compared to previous schedulers.

(d) Analysis of space-time trade-offs. In both scheduling algorithms, the memory threshold
acts as a user-adjustable parameter providing a tradeoff between space and time requirements.
The theoretical analysis in this dissertation reflects this tradeoff. In addition, I experimentally
demonstrate the tradeoff in the execution of the parallel benchmarks. For algorithm DFDeques, I
also demonstrate the trade-off between space requirement and scheduling granularity.

8.2 Future Work

The research presented in this dissertation can be extended in several ways.

(a) Beyond nested parallelism. The most obvious direction for future research is to extend both
the analysis and the experiments to benchmarks that have a structure more general that nested
parallelism. In particular, the approach for analyzing the space bound used in this dissertation can
be applied to more general styles of parallelism if a well-defined, serial schedule can be identified.
If the relative thread priorities determined by this serial schedule can be maintained (on-line) in a
fairly efficient manner, then the space and time requirements of the scheduler can be bounded by
a reasonable value. We have used such an approach to obtain a space- and time-efficient scheduler
for programs with synchronization variables [19]. This scheduler could be used, for example, to
provide a provably space-efficient implementation of languages with futures [77, 95, 33, 64, 80].
However, for programs with arbitrary synchronizations (such a locks), identifying the “natural”
serial schedule becomes difficult. Further, programs with such synchronizations are typically not
dag-deterministic. Therefore, the dag for each execution of the program may be significantly
different. One approach is to analyze the space requirement in terms of the worst-case space
requirement over serial schedules for all possible dags. However, the dags may vary significantly,
and therefore identifying the possible serial schedules is a difficult problem [143]. An alternate
approach is to simply specify the space requirement in terms of the serial space requirement of
the dag for the particular parallel execution under consideration. Again, determining this space
requirement either offline or by running the program serially may not be possible.

The benchmarks presented in this dissertation, including the Pthreads-based codes, are pre-
dominantly nested parallel. They use a limited amount of locking (such as in the tree construction
phase in Barnes-Hut); in addition, the Pthreads library uses a moderate number of locks and con-
dition variables in its own implementation. However, since the scheduling algorithms support the
full Pthreads interface, in the future they should be evaluated for fine-grained programs with more
general styles of parallelism. For example, it is possible that the scheduling algorithms will have
to be modified to efficiently execute programs that make an extensive use of locks.

(b) Finding the right memory threshold. Recall that the memory thresholds K is a user-
adjustable parameter that can be used to adjust the space-time trade-off in both the scheduling
algorithms. One drawback of using this parameter is that the user must set it to a “reasonable”
value. This value may vary for different applications, and may depend on the underlying thread
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implementation. In all my experiments, on a given multithreaded system, the same value of K
works well for all the tested benchmarks. However, in practice, other benchmarks may exhibit
very different trade-off curves. Future work involves having the system automatically set the value
of K for each program. For example, it could use a trace-based scheme that runs the program
for small problem sizes to learn the nature of the trade-off curve, and use the results to predict a
suitable, static value of K for larger, more realistic problem sizes. Alternatively, the system could
dynamically adjust the value of K as the benchmark runs. The value of K (and hence also the
number of dummy threads added) would be selected based on some heuristics, or if possible, in
some provably efficient manner. For both the static and dynamic approaches, the user could specify
some space and time constraints (such as, how much space overhead in addition to the serial space
requirement can be tolerated, or how much slowdown over the best possible case is acceptable).

(c) Supporting very fine-grained threads. Recall that each processor in the DFDeques algorithm
treats its deque as a regular stack. Further, in a nested-parallel program with very fine-grained
threads, the fine-grained threads typically do not allocate large amounts of memory. Consequently,
a processor in DFDeques would often execute a large number of threads from a single deque
between steals. The algorithm should, therefore, benefit from stack-based optimizations such as
lazy thread creation [70, 111]; these methods avoid allocating resources for a thread unless it
is stolen, thereby making most thread creations nearly as cheap as function calls. Future work
involves using DFDeques to execute very fine-grained benchmarks in the context of a runtime
system that supports such optimizations.

(d) Scaling beyond SMPs. All the experiments have been conducted on single SMP with up to
16 processors. The use of globally ordered data structures implies that the AsyncDF and DFDe-
ques scheduling algorithms are better suited for such tightly-coupled parallel machines. Further,
processors in SMPs have hardware-coherent caches of limited size (a few megabytes) and they do
not support explicit data placement in these caches. Therefore, as long as a thread (or scheduling
unit) executes on a processor long enough to make reasonable use of the processor’s cache, which
particular processor it is scheduled on has little impact on the overall performance. In contrast, on
distributed memory machines (or software-coherent clusters), executing a thread where the data re-
sides becomes important. Scaling the multithreading implementations to clusters of SMPs would
therefore require some multi-level strategy. In particular, a space-efficient scheduler from this dis-
sertation could be deployed within a single SMP, while some scheme based on data affinity could
be used across SMPs. It will be interesting to explore both analytical and experimental solutions
in this direction. At the other end of the spectrum of hardware platforms, the research presented
in this dissertation could be applied to the scheduling of fine-grained threads on emerging multi-
threaded architectures, with the goal of minimizing the size of the cache footprint.

8.3 Summary

Conserving the space usage of parallel programs is often as important as reducing their running
time. I have shown that for nested-parallel programs, space-efficient, asynchronous scheduling
techniques result in good space and time performance in both theory and practice. For a majority
of the benchmarks, these schedulers result in lower space requirements than previous schedulers.
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In practice, these scheduling techniques can also be extended to programs with non-nested paral-
lelism, thereby making them applicable to a large class of fine-grained, parallel applications.

The main goal in developing the provably space-efficient schedulers was to allow users to write
high-level parallel programs without manually mapping the work onto the processors, while still
being guaranteed of good space and time performance. It is relatively easy to convince people that
writing parallel programs in a high-level parallel language or model is simpler than using more
popular, low-level paradigms. It is much harder to convince them that the high-level models can
also perform as well; I hope this dissertation will be a step in that direction.



Appendix A

A Tighter Bound on Space Requirement

In Chapter 3 (Section 3.3) algorithm AsyncDF was shown to execute a parallel computation with
depth D and serial space requirement .5; on p processors using 5; + O(p - D) space. In particular,
when actions that allocate space are represented by heavy nodes, and each heavy node allocates
at most K space (the value of the memory threshold), I proved that any prefix of the parallel
computation has O(p - D) heavy premature nodes. Here D is the maximum number of actions
along any path in the program dag. Therefore, the value of D and the number of premature nodes
(and hence the space bound) depends on the definition of an action; recall that an action is a “unit”
of work that may allocate or deallocate space, and requires a timestep to be executed. An action
may be as small as a fraction of a machine instruction, or as large as several machine instructions,
depending on the definition of a timestep and the underlying architecture. In this section, we give
a more precise space bound by specifying the bound in terms of a ratio of the depth D, and the
number of actions between consecutive heavy nodes. Being a ratio of two values specified in terms
of actions, it is no longer dependent on the granularity of an action.

Recall that heavy nodes may allocate K space and use it for subsequent actions, until the thread
runs out of space and needs to perform another allocation. Thus, threads typically have heavy nodes
followed by a large number of light nodes, and the number of allocations (heavy nodes) along any
path may be much smaller than the depth of the computation. We define the granularity g of the
computation to be the minimum number of actions (nodes) between two consecutive heavy nodes
on any path in the program dag, that is, the minimum number of actions executed non-preemptively
by a thread every time it is scheduled. The granularity of a computation, as defined here, depends
on the value of the memory threshold K. In this section, we prove that the number of heavy
premature nodes is O(p - D/g), and therefore, the parallel space requirement is S; + O(p - D/g).

Lemma A.1 Let G be a dag with W nodes, depth D and granularity g, in which every node
allocates at most K space. Let s, be the 1DF-schedule for G, and s, the parallel schedule for G
executed by the AsyncDF algorithm on p processors. Then the number of heavy premature nodes
in any prefix of s, with respect to the corresponding prefix of s, is O(p - D/9g).

Proof. The proof is similar to the proof for Lemma 3.2. Consider an arbitrary prefix o, of s,, and
let o, be the corresponding prefix of s;. As with Lemma 3.2, we pick a path P from the root to the
last non-premature node v to be executed in o, such that for every edge (u,u’) along the path, u
is the last parent of u’ to be executed. Let u; be the i** heavy node along P; let § be the number of
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heavy nodes on P. Let ¢; be the timestep in which u; gets executed; let ¢5..; be the last timestep in
op. Fori=1,...,6,let I, be theinterval {¢; + 1,... ,t;41}.

Consider any Interval [;, fori = 1,...,§ — 1. Let [; be the number of nodes between u;
and ;4. Since all these nodes are light nodes, they get executed at timesteps ¢; + 1,... ,t; -+ [;.
During these timesteps, the other p — 1 worker processors may execute heavy nodes; however,
for each heavy node, they must execute at least (g — 1) light nodes. Therefore, each of these
worker processors may execute at most [/;/g| heavy premature nodes during the first /; timesteps
of interval ;. At the end of timestep ¢, +/;, there may be at most p nodes in (0,,;. Before the thread
7 containing u; is inserted into (;,,, at most another O(p) heavy premature nodes may be added to
Qout- Further, (p — 1) heavy premature nodes may execute along with ;.. Hence O(p) < c¢- p
heavy premature nodes (for some constant ¢) may be executed before or with w;,; after timestep
ti + ;. Thus, atotal of ((p— 1) - [;/g] + ¢ - p) heavy premature nodes get executed in the interval
I;. Similarly, we can bound the number of heavy premature nodes executed in the last interval /5
to((p—1)-[ls/g] +c-p).

Because there are § < D/g such intervals, and since Zle l; < D, the total number of heavy
premature nodes executed over all the § intervals is at most

3 (00 [2] o)

=1

)

Z(p-(li/g+1)+c-p)

IN

1)
(c+1)p-D/g+plg-) L

=1
= O(p-D/g)

IN

Similarly, we can prove that the scheduling queues require O(p - D/g) space; therefore, the
computation requires a total of .S} + O(p - D/g) space to execute on p processors.

Now consider a computation in which individual nodes allocate greater than K™ space. Let ¢;
be the original granularity of the dag (by simply treating the nodes that perform large allocations
as heavy nodes). Now the granularity of this dag may change when we add dummy nodes before
large allocations. Let g, be the number of actions associated with the creation and execution of
each of the dummy threads that we add to the dag. Then the granularity of the transformed dag is
g = min(gi,¢2). The space bound using the parallelized scheduler can be similarly modified to
S1+O(D - p-logp/g).

Besides making the space bound independent of the definition of an action, this modified bound
is significantly lower than the original bound for programs with high granularity g, that is, programs
that perform a large number of actions between allocations, forks or synchronizations.



Appendix B

Analysis of the Parallelized Scheduler for
AsyncDF

In this section, we prove the space and time bounds for a parallel computation executed using
the parallelized scheduler for algorithm AsyncDF, as stated in Section 3.4 (Theorem 3.8). These
bounds include the space and time overheads of the scheduler. We first define a class of dags that
are more general than the dags used to represent parallel computations so far. This class of dags
will be used to represent the computation that is executed by the parallelized scheduler. We then
use this class of dags to prove the time and space bounds of the parallel computation including
scheduler overheads.

B.1 Latency-weighted dags

We extend the definition of a program dag (as defined in Section 2.1.2) by allowing nonnega-
tive weights on the edges; we call this new dag a latency-weighteddag. let G = (V,E) be a
latency-weighted dag representing a parallel computation. Each edge (u,v) € E has a nonneg-
ative weight /(u, v) which represents the latency between the actions of the nodes v and v. The
latency-weighted length of a path in G is the sum of the total number of nodes in the path plus
the sum of the latencies on the edges along the path. We define latency-weighted depth D, of G
to be the maximum over the latency-weighted lengths of all paths in GG. Since all latencies are
nonnegative, ); > D. The dag described in Section 2.1.2 is a special case of a latency-weighted
dag in which the latencies on all the edges are zero. We will use non-zero latencies to model the
delays caused by the parallelized scheduler.

Let t.(v) be the timestep in which a node v € V gets executed. Then v becomes ready at a
timestep ¢ < t.(v) such thati = max(,.)eg(te(v)+!(u,v)+1). Thus, a p-schedule V;, V4, ... , Vi
for a latency-weighted dag must obey the latencies on the edges, that is, V(u,v) € E,u € V;
andv € V; = ¢ > j + I(u,v). We can now bound the time required to execute a greedy schedule
for latency-weighted dags; this proof uses an approach similar to that used by [26] for dags without
latencies.

Lemma B.1 Given a latency-weighted computation graph G with W nodes and latency-weighted
depth D,, any greedy p-schedule of G will require at most W/p + D, timesteps.
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Proof: We transform (i into a dag " without latencies by replacing each edge (u,v) with a chain
of [(u,v) delay nodes. The delay nodes do not represent real work, but require a timestep to
be executed. Any delay node that becomes ready at the end of timestep ¢ — 1 is automatically
executed in timestep ¢, that is, a processor is not necessary to execute it. Therefore, replacing each
edge (u,v) with [(u,v) delay nodes imposes the required condition that v becomes ready (u,v)
timesteps after u is executed. The depth of G’ is D,.

Consider any greedy p-schedule s, = (V1,...,Vr) of Gi. s, can be converted to a schedule s,
= (V{,...,V7) of G’ by adding (executing) delay nodes to the schedule as soon as they become
ready. Thus, for: = 1,...,T, V/ may contain at most p real nodes (i.e., nodes from ), and an
arbitrary number of delay nodes, because delay nodes do not require processors to be executed.
A real node in s; becomes ready at the same timestep as it does in s,, since delay nodes now
represent the latencies on the edges. Therefore, s, is also a “greedy” p-schedule for ¢, that is, at
a timestep when n. real nodes are ready, min(n, p) of them get executed, and all delay nodes ready
in that timestep get executed.

We can now prove that any greedy p-schedule s, of G’ will require at most W/p+ D; timesteps
to execute. Let G} denote the subgraph of G’ containing nodes that have not yet been executed
at the beginning of timestep ¢; then G| = G’. Let n; be the number of real nodes executed in
timestep ; therefore n; < p. If n; = p, there can be at most W/p such timesteps, because there
are IV real nodes in the graph. If n; < p, consider the set of nodes R, that are ready at the beginning
of timestep ¢, that is, the set of root nodes in G. Since this is a greedy schedule, there are less
‘than p real nodes in F;. Hence all the real nodes in R; get executed in timestep 7. In addition, all the
delay nodes in E; get executed in this step, because they are ready, and do not require processors.
Since all the nodes in R; have been executed, the depth of G, is one less than the depth of .
Because D, is the depth of (¢}, there are at most D; such timesteps. Thus, s; (and hence s,) can
require at most W/p + D, timesteps to execute. "

Representing the parallel execution as a latency-weighted dag

This section describes how the computation executed by the parallelized scheduler can be repre-
sented as a latency-weighted dag, and then proves properties of such a dag.

As in Section 3.3.2, we call the first node in each batch of a thread a heavy node, and the
remaining nodes light nodes. With the parallelized scheduler, we consider a thread (or its leading
heavy node v) to become ready when all the parents of v have been executed, and the scheduler
has made v available for scheduling. Since this may require a scheduling iteration after the parents
of v have been executed and inserted into ();,, the cost of this iteration imposes latencies on
edges into v, resulting in a latency-weighted dag. We can now characterize the latency-weighted
dag generated by the parallelized scheduler. The constant-time accesses to the queues (),,; and
(i, are represented as additional actions in this dag, while the cost of the scheduling iterations
are represented by the latency-weighted edges. As with the analysis of the serial scheduler in
Section 3.3, we assume for now that every action allocates at most A space (where A’ is the user-
specified, constant memory threshold), and deal with larger allocations later.

Lemma B.2 Consider a parallel computation with work W and depth D, in which every action
allocates at most KX space. Using the parallelized scheduler with ap processors acting as sched-
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ulers, the remaining (1 — o)p worker processors execute a latency-weighted dag with O(W) work,
O(D) depth, and a latency-weighted depth of O(g% + %). Further, after the last parent of a
node in the dag is executed, at most one iteration may complete before the node becomes ready.

Proof: Let G be the resulting dag executed by the worker processors. Each thread is executed
non-preemptively as long as it does not terminate or suspend, and does not need to allocate more
than a net of K units of memory. Each time a thread is scheduled and then preempted or sus-
pended, a processor performs two constant-time accesses to the queues Q,.; and @Q;,. As shown
in Figure B.1, we represent these accesses as a series of a constant number of actions (nodes)
added to the thread; these nodes are added both before a heavy node (to model the delay while
accessing ()..:) and after the series of light nodes that follow the heavy node (to model the delay
while accessing ();,). We will now consider the first of these added nodes to be the heavy node,
instead of the real heavy node that allocates space; this gives us a conservative bound on the space
requirement of the parallel computation, because we are assuming that the memory allocation has
moved to an earlier time. A thread executes at least one action from the original computation every
time it is scheduled. Since the original computation has W nodes, the total work performed by the
worker processors is O(W), that is, the resulting dag has O(W) work; similarly, its depth is O(D).

Next, we show that at most one scheduling iteration begins or completes after a node is executed
and before its child becomes ready. Consider any thread 7 in G, and let v be a node in the thread.
Let ¢ be the timestep in which the last parent u of v is completed. If v is a light node, it is executed
in the next timestep. Else, the thread containing v is placed in Q);, at timestep #. (Recall that we
have already added nodes such as u to represent the access overhead for (9;,.) In the worst case,
a scheduling iteration may be in progress. However, the next scheduling iteration must find u in
®in; this scheduling iteration moves u to R and makes v ready to be scheduled before the iteration
completes.

Finally, we show that G has a latency-weighted depth of O(amp + D'—t’sﬁ). Consider any path
in G. Let [ be its length. For any edge e = (u, v) along the path, if u is the last parent of v, we just
showed that v becomes ready by the end of at most two scheduling iterations after u is executed.
Therefore the latency /(u, v) is at most the duration of these 2 scheduling iterations. Let n and n’
be the number of dead threads deleted by these two scheduling iterations, respectively. Then,
using Lemma 3.7, [(u,v) = O3 + g—;— -+ lﬂ%). Because each thread is deleted by the scheduler
at most once, a total of O(1V) deletions take place. Since any path in G has O(D) edges, the
latency weighted depth of the path is O(D) plus the sum of the latencies on O(D) edges, which
is O(L 4 Blosr), "

The schedule generated by the parallelized scheduler for the latency-weighted dag is a (1 — o)p-
schedule, because it is executed on (1 — a)p worker processors.

B.2 Time Bound

We can now bound the total running time of the resulting schedule, including scheduler overheads.

Lemma B.3 Consider a parallel computation with depth D and work W. For any 0 < o < 1,
when ap of the processors are dedicated to execute as schedulers, while the remaining act as

worker processors, the parallel computation is executed in O( - (lv—Yoz)p + 2 .1§g L) time.
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Figure B.1: (2) A portion of the original computation dag, and (b) the corresponding portion of the latency-
weighted dag as executed by the parallelized scheduler. This portion is the sequence of nodes in a thread
executed non-preemptively on a processor, and therefore consists of a heavy node followed by a series of
light nodes. The dag executed by the parallelized scheduler has latencies /; and I, imposed by scheduling
iterations (shown as bold edges here), while the additional grey nodes represent the constant delay to access
Qin and Q... We consider the first of these grey nodes to be a heavy node, instead of the original heavy
node that performs the real allocation.

Proof: Let (& be the dag executed by the parallelized scheduler for this computation. We will show
that the generated schedule s, of 7 is a greedy schedule, with O(1¥/p) additional timesteps in
which the worker processors may be idle. Consider any scheduling iteration. Let ¢; be the timestep
at which the 1** scheduling iteration ends. After threads are inserted into @, by the 7** scheduling
iteration, there are two possibilities:

1. |Qow| < p-logp. This implies that all the ready threads are in ()., and no threads become
ready until the end of the next scheduling iteration. Therefore, at every timestep ; such
that ¢; < j < t;44, if m; processors become idle and r; threads are ready, min(m;,7;)
threads are scheduled on the processors. (Recall that we have already added nodes to the dag
G' to model the overheads of accessing Q;, and Q,.:.)

2. |Qowt| = p - logp. Since (1 — a)p worker processors will require at least %71)— timesteps

to execute p log p actions, none of the worker processors will be idle for the first (—'19%5—) steps
after ¢;, However, if the (¢ + 1)"* scheduling iteration, which is currently executing, has to

delete n;.; dead threads, it may execute for O + "’—fﬁ) timesteps (using Lemma 3.7).
Thus, in the worst case, the processors will be busy for (11251% steps and then remain idle for
another O( % + l"—fﬁ) steps, until the next scheduling iteration ends. We call such timesteps
idling timesteps. Of the O("—gfpi + 135—”) idling steps, O('ﬂfﬂ) steps are within a factor of
59—;—“1 of the preceding ('1&_% steps when all worker processors were busy (for some constant
c); therefore, they can add up to O(% . il%’l) = O(Z‘—; ). In addition, because each thread is
deleted only once, at most W threads can be deleted. Therefore, if the (i + 1)* scheduling

iteration results in an additional O(%) idle steps, they add up to O(%) idle steps over
all the scheduling iterations. Therefore, a total of O(;‘—;) idling steps can result due the
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scheduler.

All timesteps besides the idling steps caused by the scheduler obey the condltlons required to
make it a greedy (1 — a)p-schedule, and therefore add up to O( —|— a T M) (using

Lemmas B.1 and B.2). Along with the additional O(% ~) idling steps the schedule requires a total
of O(= + L ’°g” ) timesteps. x

(1- a)p

Because o is a constant, that is, a constant fraction of the processors are dedicated to the task of
scheduling, the running time reduces to O(W/p+ D log p); here p is the total number of processors,
including both the schedulers and the workers.

B.3 Space bound

We now show that the total space requirement of the parallel schedule exceeds the serial schedule
by O(D - p - log p). We first bound the number of premature nodes that may exist in any prefix of
the parallel schedule, and then bound the space required to store threads in the three scheduling
queues.

From Lemma B.2, we know that for a parallel computation with depth D, the parallelized
scheduler executes a dag of depth ©( D). Therefore, using an approach similar to that of Lemma 3.2,
we can prove the following bound for the parallelized scheduler.

Lemma B.4 For a parallel computation with depth D executing on p processors, the number of
premature nodes in any prefix of the schedule generated by the parallelized scheduler is O -p-

log p).

Proof: The approach used in the proof is similar to that of Lemma 3.2. Let G be the latency-
weighted dag representing the executed computation; according to Lemma B.2, G has a depth of
©(D). Let o, be any prefix of the parallel schedule s, generated by the parallelized scheduler, and
let o be the corresponding serial prefix, that is, the longest prefix of the 1DF-schedule containing
only nodes in o,,.

Let v be any one of the last non-premature nodes executed in o,,. Let P be the path from the
root to v such that, for every edge (u,u’) along the path, u is the last parent (or any one of the last
parents) of u’ to be executed. Let u; be the node along P at depth i. Then u; is the root node, and
us = v, where ¢ is the depth of node v. For: = 1,...,4, let ¢; be the timestep in which u; gets
executed. Let {o = 0 and let ¢s,, be the last timestep in which nodes from o, are executed. For
¢ =0,...,d, let I; be the interval {¢; + 1,...,#;;1}. Then the intervals Iy, ..., Is cover all the
timesteps in which the nodes in o, are executed.

During interval I,, only the root node u, is ready, and therefore, no premature nodes are ex-
ecuted during /. Consider any interval [;, for: = 1,...,6 — 1. We will bound the number of
heavy premature nodes executed in this interval. By the end of timestep #;, the last parent of ;.
has been executed. Therefore, if u;y, is a light node, it will be executed in the next timestep, and
the remaining worker processors may execute another (1 — «)p — 1 heavy premature nodes with
it, that is, at most (1 — a)p — 1 heavy premature get executed in interval ;.

Consider the case when u,4; is a heavy node. Due to latencies on the edges, u;4; may not be
ready in timestep ¢; + 1. At the start of this timestep ¢; + 1, Q).+ may contain at most p-log p nodes,
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all of which may be heavy premature nodes and will be executed in the interval /;. Let ¢, > ¢; be
the timestep in which u;;, becomes ready. By Lemma B.2, at most one scheduling iteration may
complete after ¢; and before ¢,. This iteration may add at most p - log p heavy nodes to (),.+; all of
these nodes may be premature in the worst case, and will be executed in interval /;. Timestep ¢,
onwards, u;,; must be added to ),,; before any premature nodes, since it has a lower 1DF-number.
When wu;,; is taken off (),.; and executed (at timestep ¢;,,) by a worker processor, the remaining
(1 — a)p — 1 worker processors may pick premature nodes from Q).+ to execute in the same
timestep.

Therefore, a total of at most O(p - log p) heavy premature nodes may get executed in any
interval [;, for ¢ = 1,...,8 — 1. Similarly, because u; is the last non-premature node to be
executed in o, at most another 2p - log p heavy premature nodes may get executed during the
interval /5 following its execution. Therefore, since § = O(D), summing over all the intervals
I, ..., Is,at most (p-log p- D) heavy premature nodes may be scheduled in any prefix of s,. u

Lemma B.5 The total space required for storing threads in Q;,, ()o.:, and ‘R while executing a
parallel computation of depth D on p processors is O(D - p - log p).

Proof: (),,+ may hold at most p - log p threads at any time. Similarly, ();, may hold at most
2p - logp + (1 — a)p threads, which is the maximum number of active threads. Each thread can
be represented using a constant amount of space. Therefore the space required for (};, and (),
is O(p - log p).

We now bound the space required for R, along with the space required to store suspended
threads. We will use the limit on the number of non-premature nodes in the any prefix of the
parallel schedule (Lemma B.4) to derive this bound. Recall that R consists of ready threads, stubs
for live threads, and dead threads. At any timestep, the number of suspended threads plus the
number of ready threads and stubs in R equals the number of active threads in the system. Let us
call a thread a premature thread at timestep ; if at least one of its heavy nodes that was executed
or put on (), is premature in the j-prefix o, of the parallel schedule. The total number of active
threads at any. timestep is at most the number of premature threads, plus the number of stubs (which
is O(p - log p)), plus the number of active threads that are not premature (which is bounded by the
maximum number of active threads in the 1DF-schedule). A 1DF-schedule may have at most D
active threads at any timestep. Further, the number of premature threads at any timestep ¢ is at most
the number of premature nodes in the ¢-prefix of the schedule, which is at most O(p - logp - D)
(using Lemma B.4). Therefore, the total number of active threads (including suspended threads) at
any timestep is at most O(p - log p - D).

The scheduler performs lazy deletions of dead threads; therefore, the number of dead threads
in R must also be counted. Let )\; be the i* scheduling iteration that moves at least one thread
to Qou: (i-e., g, > 1 in Figure 3.5 for such an iteration). Consider any such iteration A;. Recall
that this iteration must deletes at least all the dead threads up to the second ready or seed thread
in R (step 3 in Figure 3.5). We will show that after scheduling iteration A; performs deletions, all
remaining dead threads in % must be premature threads at that timestep. Let 7 and 73 be the first
two ready (or seed) threads in R. Since the scheduler deletes all dead threads up to 75, there can
be no more dead threads to the immediate right of 7' that may had a higher priority than 7, that
is, Ty now has a higher priority than all the dead threads in R. Since all the remaining dead threads
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have been executed before 7}, they must be premature. Therefore, all dead threads in R at the end
of scheduling iteration A; must be premature, and are therefore O(p - log p - D) in number (using
Lemma B.4). The scheduling iterations between ); and \;1; do not move any threads to )., and
therefore do not create any new entries in R. They may, however, mark existing active threads as
dead. Thus the number of dead threads in R may increase, but the total number of threads in R
remains the same. Scheduling iteration \;;; must delete all dead threads up to the second ready
thread in R. Therefore, before it creates any new threads, the iteration reduces the number of
dead threads back to O(p - log p - D). Thus at any time, the total space required for R and for the
suspended threads, is O(p - log p - D). a

Since every premature node may allocate at most K space, we can now state the following
space bound using Lemmas B.4 and B.5.

Lemma B.6 A parallel computation with work W and depth D, in which every node allocates at
most K space, and which requires S, space to execute on one processor, can be executed on p
processors in Sy + O(K - D - p - log p) space (including scheduler space) using the parallelized
scheduler. 1

As in Section 3.3.2, allocations larger than K units are handled by delaying the allocation with
parallel dummy threads. If S, is the total space allocated, the number of dummy nodes added is at
most S,/ K, and the depth is increased by a constant factor. Thus, using the parallelized scheduler,
the final time bound of O(W/p+ S, /pK + D -log p) and the space bound of S; + O(K - D -p-log p)
follow, as stated in Theorem 3.8. These bounds include the scheduler overheads.
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Appendix C

Algorithms to Access Queues Q;,, and Q,,;

Figures C.1 and C.2 present the algorithms for the worker processors and the scheduler thread of
algorithm AsyncDF (as shown in Figure 3.2) to access to the queues @);,, and ),,;. The algorithms
shown here are designed for the serial scheduler; thus, only one processor at a time accesses (J;,,
and (), as the scheduler. In contrast, multiple processors may concurrently access Q;, and @,
as workers. The algorithms can be extended for the parallelized scheduler described in Section 3.4.

According to Lemma 3.5, neither of the two queues can have more than 3p threads (p is the
total number of processors). Therefore, both ();,, and (),,; can be implemented as arrays of length
L = 3p that wrap around. Threads are added to the tail and removed from the head. The head
index H and the tail index 7" increase monotonically, and the current locations of the head and tail
are accessed using modulo L arithmetic. The algorithms assume that values of indices H and T
do not overflow.

Some operations may get arbitrarily delayed on any processor (e.g., due to external interrup-
tions). Therefore, to ensure correctness, I introduce auxiliary bit arrays full,, and full,,;, and an
array next_reader of index values. These auxiliary arrays are each of length L. The bit in the 7t
location of full;, (or full,.) is set when the :** location of the corresponding queue contains a
thread. The " location of the next_reader array contains the value ; of the head index H for
which a worker may next read a thread from the :** location of Q,..; according to the algorithm
in Figure C.1, h; = ¢ (mod L). The algorithm assumes that reads and writes to each element of
next_reader are atomic.

The auxiliary bit arrays are required to provide synchronization between the workers and the
scheduler. For example, in Figure C.1, instead of using the full ,,; array, suppose the workers were
to simply use fetch-and-add() modulo L to obtain an index into (),.;, and then read a thread from
the corresponding location of (),,:. In this case, a worker may read a thread from a location before
the scheduler has written a thread to it, resulting in incorrect behavior, Similarly, before writing a
thread to ()., the scheduler must check the value of the corresponding bit in full,,; to ensure that
the location in (), is now empty. The next_reader array is used to order the accesses by workers
while reading (),.;. Without this array, two (or more) workers may end up reading from the same
location in (). This can happen if one worker obtains an index and is delayed before it reads
the corresponding thread from ()..;, while another worker subsequently obtains the same index
(modulo L) into ;. :

Algorithm AsyncDF inherently ensures that, irrespective of how long a worker or a scheduler
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may get delayed, there can never be more than 3p threads in (or being inserted into) Q;,,. Thus, the
functions defined in Figure C.2 ensure that the scheduler must read the thread written by a worker
from a given location in ();, before another worker attempts to write to the same location (when
the tail wraps around). Therefore, the algorithm for the worker in Figure C.2 does not require
checking the contents of an auxiliary array.

At the start of the execution, all the locations in the full;, and full,,; arrays are set to FALSE ;
H is initialized to 0 and 7' is initialized to —1. The :"* element of the next_reader array is initialized
to ¢.

Worker Scheduler
To delete a thread from Q) - To insert m threads into QQ ,:
begin (),,;-removal begin (),;-insertion
h :=fetch-and-add (H, 1); t:=T;
while (next_reader[h mod L] # h) ; T:=T+m;
while (full ,,,; [h mod L] = FALSE ) ; fori:=1,...,m:
read thread at Q¢ [ mod LJ; while (full ,,,; [(t + 7) mod L] = TRUE ) ;
full ;s [h mod L) := FALSE ; write thread at Q¢ [(t + ¢) mod L];
next_reader[h mod L]:=h + L; full ., [(t + 7) mod L] := TRUE ;
end (),.;-removal end (),,;-insertion

Figure C.1: Functions to access queues (J,,;. The next_reader array is used to order the reads by multiple
workers from any given location in Q).

Time analysis. The above algorithms to access @),. and ();,, work correctly without assuming any
bound on the time required for the various operations. However, to bound the time for each queue
access (which is required to analyze the total running time and space requirement), we now assume
the cost model described in Section 3.3.1. We also assume that reads and writes take constant time.
Because each processor can now execute a fetch-and-add operation in constant time, the worker
processors can add a thread to ();,, in constant time. Further, when there are a sufficient number of
threads in (),.;, a worker can remove a thread from it in constant time. Thus, at any timestep, if
(ot has n threads, and p; worker processors are idle, then min(n, p;) of the p; idle processors are
guaranteed to succeed in picking a thread from (), within a constant number of timesteps.



Worker

Scheduler

To insert a thread into (0;,,:

begin ();,-insertion
t := fetch-and-add (T’, 1);
t:=t+1;
write thread at Q;,, [t mod L];
full;,, [t mod L] := TRUE ;
end ();,,-insertion

To remove all threads from ();,,:

begin (J;,-removal
t:=T;
ni=t—H+1;
fori:=0,...,n—1:
while (full;, [H mod L] = FALSE );
read the thread at );, [H mod L];
full;, [H mod L] := FALSE ;
H:=H+1;
end ();,,-removal

127

Figure C.2: Functions to access queues ();,. The workers need not check the full bit before inserting a
thread, since there can never be more than L threads that are either in Q);,, or are about to be put into Q;,,.
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Appendix D

A Parallelized Scheduler for Algorithm
DFDeques

I first describe and analyze a synchronous, parallelized scheduler for algorithm DFDeques, and
then briefly outline the implementation and analysis of an asynchronous version of the parallel
scheduler. The parallelization described here is similar to the parallel implementation of the sched-
uler for algorithm AsyncDF presented in Section 3.4. The scheduler needs to support fast lookups
(i.e., finding the m*" deque from the left end on R’) and must also provide delete and insert opera-
tions for deques in R'. Therefore, both versions implement R’ as an array, and perform insertions
and deletions of deques lazily. The synchronous scheduler requires the processors to suspend ex-
ecution of the parallel computation after every few timesteps, and synchronously perform update
to R’ (such as inserts and deletes). In contrast, the asynchronous version of the parallelized sched-
uler uses a constant fraction of the processors to continuously execute the updates to R/, while the
remaining processors asynchronously execute the parallel computation.

D.1 A Synchronous, Parallelized Scheduler

The globally ordered set of ready threads R’ is implemented as an array; the deques in the the
array are arranged from left to right in decreasing order of their thread priorities. The processors
execute the code shown in Figure 6.4; they select a steal target by randomly picking one of the first
(leftmost) p deques in R’. Deques are deleted lazily; when a processor needs to delete a deque, it
simply marks it as deleted. Subsequent steals to this deque fail. Deques that have been marked for
deletion but have not yet been deleted from R’ are called dead deques; all other deques are called
live deques. When a processor creates a new deque, it adds the deque to a local set of deques rather
than directly to R’ . These new deques do not serve as targets for steals by other processors until
they are subsequently inserted into R’. Such deques that have been created but not yet inserted
into R’ are referred to as nascent deques. Besides a pointer to a deque A, each entry in R’ also
contains a linked list nlist of pointers to all the nascent deques that have been created when threads
were stolen from the deque A. The pointers in this nlist are stored in the correct priority order,
that is, the order in which the steals from A were performed. The entry for each deque A in R’
also contains an ncount value that reflects the number of nascent deques created due to steals from
deque A. Thus, when a processor steals a thread from a deque A, it increments the ncount value
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owners P0 - P3 - P2 - T - Pl
ncounts 4 02003020
deques [Ol® O\O\Ol@ ®1o\ol

@ O = live deque
® = dead deque

© = nascent deque

nlists

Figure D.1: An example snapshot of R’ during the execution of the parallelized scheduler for algorithm
DFDeques. Dead deques are shown crossed out, while nascent deques are shown as shaded gray. The
ncount values record the number of nascent deques created as a result of steals from each deque.

of the deque, and adds a pointer to the newly created deque to the nlist for A. Figure D.1 shows an
example snapshot of R’ at some intermediate timestep.

To amortize the cost of scheduling operations such as insertions and deletions of deques from
R, they are performed every log p timesteps. Thus, after every log p timesteps, all the processors
temporarily interrupt their current thread and execute a scheduling iteration during which they
update R'. Further, to keep processors busy between scheduling iterations, they are allowed to
steal from the leftmost p - log p deques in R’ (instead of the leftmost p deques). A scheduling
iteration involves deleting all the dead deques that are to the left of the first (leftmost) p - log p live
deques® in R'. The processors finally collect all the nascent deques and insert then into the correct
positions in R'. The scheduling iteration then ends, and the processors resume execution of the
code in Figure 3.2.

All elements in the nlists are allocated from a contiguous chunk of memory. Subsequently
performing insertions of nascent deques into R’ requires a list ranking operation on these nlists.
List ranking on O(p - log p) contiguous elements can be executed on p processors in O(log p) time.
Flattening the lists for insertion into R’ also requires a scan operation on the leftmost p - log p
ncount values, which can be performed in O(log p) time on p processors. Adding to or deleting
from one end (the left end) of an array is straightforward?®.

As noted in Section 6.3.1, we assume that in every timestep, a processor either attempts a steal
or executes some work. If the steal is successful, it begins executing the first action of the stolen
thread in the same timestep; this assumption is made only to simplify the analysis. Our asymptotic
bounds are not affected if a successful (or failed) steal attempt causes a constant delay.

We now prove the following lemma bounding the time required to execute a scheduling itera-
tion.

Lemma D.1 In the synchronous scheduler for algorithm DFDeques (K'), a scheduling iteration
that deletes n deques requires O(n /p + log p) timesteps to execute.

! As with the parallelized AsyncDF scheduler in Chapter 3, other dead deques are deleted during some subsequent
scheduling iteration, when they appear to the left of the leftmost (p - log p + 1) live deques in R'.

2Since the array R’ may need to be occasionally shrunk (grown) by copying over all the elements to a new space,
all our scheduling costs have amortized bounds.
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Proof: This proof is similar to the proof of Lemma 3.7, except that operations are performed on
deques rather than individual threads. Since in each scheduling iteration only the deques to the
left of the the leftmost p - log p live deques are deleted, the n deques to be deleted appear among
the leftmost n + p - log p deques in R’. Therefore, finding and deleting these » threads from the
n + p - log p threads at the left end of array R’ requires O(n/p + log p) timesteps on p processors>.
Further, at most p - log p new deques may be created between consecutive scheduling iterations,
and they will need to be inserted between the leftmost p - log p live deques in R'. By performing a
parallel prefix sum operation on the ncounts of the first p- log p entries, and a list-ranking operation
on their nlists, these insertions can be executed on p processors in O(log p) time. .

We can now bound the time required for the parallel computation.

Theorem D.2 Consider a parallel computation with depth D and total work W. The expected
time for algorithm DFDeques to executes this computation using the parallelized scheduler on p
processors, is O(W/p + D -log p). Further, for any € > 0, the execution requires O(W/p + (D +
In(1/€)) - log p) time with probability at least 1 — «.

Proof: 1 present only the expected case analysis here; the analysis of the high probability bound
follows in a similar manner as that for Lemma 6.9.

We call the timesteps required to execute scheduling iterations as the scheduling timesteps,
and the remaining timesteps as the worker timesteps. There are log p worker timesteps between
consecutive scheduling iterations. Let n; be the number of deques deleted in the :** scheduling
iteration. Let R; be the number of live deques in R’ at the end of the :** scheduling iteration. We
look at two types of scheduling iterations, A and B, depending on whether R; is greater or less
than p - log p. All timesteps at the end of a type A (B) scheduling iteration are called type A (B)
timesteps.

Type A: R; > p - log p, that is, at the end of the scheduling iteration R’ contains at least p - log p
live deques. We will call each sequence of log p worker timesteps following a type A scheduling
iteration a phase. We will call a phase successful if > (p - log p/10e) nodes get executed during
the phase. Then, similar to the analysis for Lemma 6.9, we can compute a lower bound for the
probability of success of a phase as follows.

Consider any given phase. For 1 <: < logp, let X;; be a random variable with value 1 if the
7' bin gets at least one steal request in the ;** timestep of the phase, and 0 otherwise. The variable
X;; must be 1 every time the j** bin gets exactly 1 request (it can be 1 at other times too). Let r;
be the number of steal requests during the i*" timestep of this phase. Then, the probability that the

3Since the array size may have to be grown and shrunk from time to time, these are amortized bounds for inser-
tions or deletions into the array. However, since the amortized nature of the bound does not affect our analyses, for
simplicity, we use them as worst-case bounds in the rest of the paper.
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7" bin gets exactly 1 request equals (r;/p - log p) - (1 — 1/p - log p)"<~!. Therefore,
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Recall that since p — r; processors are busy, each of them must execute a node, and may
own a non-empty deque. Further, in each timestep of the phase, at most p additional deques can
become empty (and be marked as dead). Therefore, the :** timestep of the phase must have at least
(plogp— (1 —1)-p—p+r;) = (plogp — 7 - p + r;) non-empty deques among the leftmost
p - log p deques. Because every non-empty deque that gets a steal request must result in a node
being executed, the expected number of nodes X; executed in the :** timestep of the given phase

is given by
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This value of X is minimized at r; = p. Therefore, we have
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Thus, the expected number of nodes executed in each phase is at least plog p/4e. Let Y be the
random variable denoting the number of nodes executed in each phase. Then, using Markov’s
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inequality (similar to the proof for Lemma 6.9), we get

El(p-logp — V)]
p-logp-(1—1/10¢)
p-logp-(1—1/4¢)
p-logp-(1—1/10€)

Prl(p-logp—Y)>p-logp-(1—1/10¢)] <

Therefore,
(1—1/4¢)
Y<p- (1=1/10¢)
Pr[Y < p-logp/10e] < (1—1/10¢)
19
20

Therefore, at least plog p/10e nodes are executed in a phase, that is, the phase is successful, with
probability greater than 1/20. Because an execution can have at most 10e - W/plog p success-
ful phases of type A, and each type A phase succeeds with at least constant probability, the
expected number of type A phases in the entire execution is O(W/plog p). Since each phase
has log p timesteps, the expected number of type A timesteps is O(W/p). Further, the type A
scheduling iteration itself takes O(n;/p + logp) timesteps (using Lemma D.1). The O(log p)
component of this value must be at most proportional to the type A worker timesteps. There-
fore, the expected number of scheduling timesteps for all type A scheduling iterations add up to
O(W/p) + ZR,‘Z'p-logp O(n,/p)
Type B: R; < p-log p, that is, at the end of the scheduling iteration R’ contains R; < p - log p live
deques. Since nascent deques are not added to R’ until the end of the next scheduling iteration,
the number of live deques in R’ remains under p - log p during the worker timesteps following the
i*" scheduling iteration. Using the potential function argument of Lemma 6.9, it can be shown
that the expected number of steals executed over all type B worker timesteps is O(D - p - log p).
This bound holds even when nascent deques exist, although they are not steal targets. This is
because for every nascent deque is created by a successful steal, which results in a drop in the
potential function®. Therefore, the expected number of total type B worker timesteps is at most
O(W/p + D - logp). Further, for every log p of these worker timesteps, one type B scheduling
iteration with O(n;/p + log p) timesteps is executed (using Lemma D.1). Therefore, such type B
scheduling iterations add up to O(W/p + D -logp + 35 . 10g, O(n:/p)) timesteps.

Finally, at most W deques may be deleted over the entire execution, i.e., Z Ri<plogp™i T
> Ri>plogp i < W. Therefore, the expected number of scheduling and worker timesteps required

to execute the computation is O(W/p + D - log p). x

Since dummy threads are introduced before large allocations, a computation with work 1V and
depth D that allocates a total S, space requires O(W/p + S, /pK + D - log p) timesteps to execute
on p processors. Finally, we prove the space bound (including scheduler space) for a computation
executed with the parallelized scheduler. '

“If ¢ is the total potential of all the deques at the end of of the i** scheduling iteration, then the argument is based
on showing that the total potential of all deques (including nascent deques) is at most a constant fraction of ¢ after
every O(p - log p) steals.
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Theorem D.3 Consider a computation with D depth and a serial space requirement of S;. The
expected amount of space (including scheduler space) required to execute the computation on p
processors using algorithm DFDeques with the parallelized scheduler is 51 + O(D - p - log p).
Further, for any € > 0, the space requirement is S, + O(p - log p - (D + In(1/€))) with probability
atleast1 — e.

Proof: Recall that we are now allowing steals to target the leftmost p - log p deques (instead
of the leftmost p deques). We first provide an informal extension to the proof for Lemma 6.3.
Consider any parallel prefix o, of the parallel schedule after the first j timesteps. As described in
Section 6.3.3, we split the first j timesteps into (6 + 1) intervals, where § < D is the depth of the
last non-premature node to be executed in the first ; timesteps. For any 1 < ¢ < 4, consider any
interval I;. When node u; (as defined in that section) is first put on a deque, in the worst case, its
deque may be a nascent deque. Then the deque will belong to the nlist of some entry in R/, rather
than in R’ itself. Therefore, it would not be a potential steal target even if it is among the highest
priority p - log p deques. However, the next scheduling iteration, which will put the deque in R/,
must start within the next log p timesteps; until then, p processors may perform p - log p steals
and therefore execute at most p - log p heavy premature nodes. After the next scheduling step,
however, the analysis is similar to that of Lemma 6.3. Timesteps in this case are split into phases
of O(p - log p) (instead of O(p)) steals. We can then show that the expected number of phases
during all the (§ + 1) intervals is O(D), and therefore, the expected number of steals executed
(or the number of heavy premature nodes in any prefix o,) is O(D - p - log p). Thus, using an
argument similar to that of Lemma 6.4, we can show that the expected space allocation of the
parallel computation is S; + O(D - p - log p). The high probability bound can be proved in a
manner similar to Lemma 6.3.

Next, we bound the total scheduler space, that is, the space required to store ready threads and
deques in R’, nascent deques in nlists, and the suspended threads. Each thread can be stored using
a constant amount of space (this does not include stack space), and each deque requires a constant
amount of space, plus space proportional to the number of threads it holds. Using Lemma 7.4,
there are at most O( D - p- log p) active threads, which is the total number of suspended threads and
ready threads in R'. The space for the nlists is proportional to the number of nascent deques. The
total number of deques (including nascent deques) is at most the number of active threads, plus the
total number of dead deques.

We now bound the total number of dead deques to be O(D - p - log p) using induction on
scheduling iterations. Again, this analysis is similar to that of Lemma B.5. At the start of the first
scheduling iteration, there can be at most p - log p dead deques. Let there be at most O(D - p - log p)
dead threads at the start of the :** scheduling iteration. If R’ contains less than p - log p live deques,
all dead threads in R’ are deleted by the end of the iteration. Else, let A be the leftmost live deque
in R’. After dead deques are deleted in this iteration, any remaining dead deques must have held
nodes that are now premature, since they had lower priorities than ready nodes in A (or, if A is
empty, then the node currently being executed by the processor that owns A). Since there are at
most O(D - p - log p) premature nodes, the expected number of dead thread remaining after the i**
iteration is at most O(D - p - log p). Further, at most another p - log p dead deques can be created
until the start of the next scheduling iteration. Therefore, the expected number of dead threads at
the start of the next scheduling iterationis O(D - p - log p).
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Thus, the total scheduler space requiredis O(D - p-log p). Therefore, the expected space bound
for a computation with D depth and S, serial space requirement using the parallelized scheduler
on p processors, is S + O(D - p - log p) on p processors, including scheduler space. a

D.2 An Asynchronous Version of the Scheduler

The parallelized scheduler described in Section D.1 requires all p processors to interrupt their
execution and synchronize every log p timesteps. This can be fairly expensive in real parallel ma-
chines, where the processors execute asynchronously. Therefore, similar to the scheme in Chap-
ter 3, we can instead dedicate a constant fraction ap of the processors (for 0 < « < 1) to the task
of maintaining R'; we call these processors the scheduling processors. The remaining (1 — a)p
worker processors always asynchronously execute the parallel computation as described in Fig-
ure 6.4. As with the parallelized scheduler presented in Section 3.4, the scheduling processors
synchronously execute a sequence of tasks repeatedly in a while loop; a scheduling iteration is
now used to denote each iteration of this loop.
I now briefly describe the implementation and analysis of such a scheduler.

Data structures. In addition to the array R’ of deques, the asynchronous scheduler maintains an
array £ of length p - log p. At the end of each scheduling iteration, the :** entry in £ points to the
i*" live deque in R’ (from left to right); £ may contain null pointers if there are fewer than p - log p
live deques in R'. Thus, when a worker processors needs to perform a steal from the m®* deque,
looks up the m* entry in £. The array £ is not strictly required, but simplifies the scheduling
operations, because it allows workers to continue accessing the deques while R’ is being updated
by the scheduling processors.

Instead of allowing multiple entries in an nlist for every element (deque) in R/, we now allow
at most one entry in each nlist. Thus, the ncount value for each deque may be 0 or 1. If a deque is
chosen as a steal target, and the stealer finds the ncount value to be 1 (due to some previous steal
from the same deque), the steal fails. Thus, between consecutive scheduling iterations, at most one
thread can be stolen from each deque. The nlist entries are emptied out (i.e., inserted into R’) and
the ncount values are reset to 0 during some subsequent scheduling iteration. Limiting the number
of entries in the nlist to 1 (or some constant) allows the nascent deques to be collected and inserted
into R"”” without a list-ranking operation.

Scheduling iterations. In each scheduling iteration, the ap scheduling processors first delete all
dead deques to the left of the leftmost p - log p live deques. Then they scan the ncount entries of
the leftmost p - log p live deques, empty out their nlist entries and insert them in the appropriate
positions in R’. Finally, they update the entries in £ to point to the leftmost p - log p live deques
in R’. Each individual entry is updated atomically, so that the workers never see an inconsistent
pointer in £. Note that while the updates are being performed, some deque may have two entries
in £ (the old entry and the new entry) pointing to it. This does not affect out space or time bounds.



136 APPENDIX D. A PARALLELIZED SCHEDULER FOR ALGORITHM DFDEQUES

Analysis

This section briefly describes the analysis of the space and time bounds for the asynchronous
version of the scheduler, without stating the proofs formally.

Space bound. Because we allow only one thread to be stolen from each deque between consec-
utive scheduling iterations, at most p - log p threads may be stolen in that interval. Therefore, the
analysis of the space bound remains the same as that for the synchronous scheduler (see Theo-
rem D.3). The space required by the nlists is proportional to the number of deques in R/, and the
space required for £ is ©(p-log p). Thus, the expected space requirement for a parallel computation
with depth D and a serial space requirement of .5; on p processors is S; + O(p - logp - D).

Time bound. The time bound can be proved using arguments similar to those of Lemmas B.3
and 6.9. A scheduling iteration now does not require a list-ranking operation, but needs to update
L; this update requires O(log p) time on the ap scheduling processors. Hence, the bound on
the time required to execute a scheduling iteration remains the same as that for the synchronous
scheduler (see Lemma D.1). The restriction that at most one thread may be stolen from each
deque between consecutive scheduling iterations does not affect the argument for the time bound
in Lemma D.2. However, due to this restriction, worker processors may be idle (i.e., their steal
attempts will fail) for a large number of timesteps while the scheduling processors are updating
R' and L. Therefore, these additional idling steps must be accounted for (similar to the proof of
Lemma B.3). For a dag with W nodes, the scheduler may delete a total of at most W deques.
Therefore, we can show that the total number of such idling steps is O(W/p + D - log p). The
expected time required to execute a parallel computation with with W work and D depth (assuming
all space that is allocated is touched) on p processors is therefore O(W/p + D - log p).
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