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Abstract

This document presents advanced spectral estimation methods for radar imaging and
target feature extraction. In the document we study problems involved in inverse synthetic
aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and
motion compensation, superresolution SAR image formation, three-dimensional (3-D) target

feature extraction via curvilinear SAR (CLSAR), and high resolution time delay estimation.

For the ISAR autofocus and imaging problems, we study both parametric and non-
parametric methods. For the parametric method, we present a robust autofocus algorithm,
referred to as AUTOCLEAN (AUTOfocus via CLEAN), for ISAR imaging. It is a paramet-
ric approach based on a very flexible data model that takes into account arbitrary transla-
tional and planar rotational motion. For the non-parametric methods, we study the general
forward-backward MAtch-Fllterband (MAFI) spectral estimation approaches including the
widely-used Capon as well as the more recently introduced APES (Amplitude and Phase
“EStimation) methods. We present an adaptive Capon spectral estimation algorithm and
apply it to the complex ISAR image formation of maneuvering targets. We also present a
recursive APES algorithm for time-varying spectral analysis and use it for ISAR imaging as
well as feature extraction of targets with complex maneuvering motion.

For the problems of SAR autofocus and motion compensation, and superresolution SAR
image formation, we study both semi-parametric and parametric methods. For the semi-
parametric method, we present a SPAR (Semi-PARametric) algorithm based on a flexi-
ble data model for target feature extraction and superresolution complex image formation
for SAR. SPAR exhibits better estimation resolution performance over non-parametric ap-
proaches and is more robust against data model errors than parametric ones. For the para-
metric methods, we propose a MCRELAX (Motion Compensation RELAX) algorithm and
a MCCLEAN (Motion Compensation CLEAN) algorithm for simultaneous target feature
extraction and cross-range phase error compensation in SAR imaging. Both MCRELAX
and MCCLEAN assume a two-dimensional (2-D) sinusoidal model for the target signal but

assume nothing (arbitrary unknown) for the phase error distribution, and are thus robust




algorithms against high-order phase errors. Compared to MCRELAX, MCCLEAN has bet-
ter convergence property and is computationally much more efficient when used in the SAR
imaging of a large scene.

For the 3-D target feature extraction problem, we study using CLSAR to extract target
features. An AUTOfocus algorithm based on the RELAXation-based optimization approach
(AUTORELAX) is proposed to compensate the aperture errors in CLSAR and to extract
3-D target features.

For the time delay estimation problem, we first present a Weighted Fourier transform and
RELAXation-based (WRELAX) approach for the time delay estimation of either complex-
 or real-valued signals. WRELAX is then extended to deal with the real-valued signals with
highly oscillatory correlation functions. Further,- by using MODE (Method Of Direction
Estimation) together with our efficient WRELAX algorithm, a novel MODE-WRELAX al-
gorithm is proposed for the time delay estimation of either complex- or real-valued signals

including those with highly oscillatory correlation functions to achieve superresolution.
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1. Introduction

This document presents advanced spectral estimation methods for radar imaging and
target feature extraction. In the document we study problems involved in inverse synthetic
aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and
motion compensation, superresolution SAR image formation, three-dimensional (3-D) target

feature extraction via curvilinear SAR (CLSAR), and high resolution time delay estimation.

For the ISAR autofocus and imaging problems, we study both parametric and non-
parametric methods. For the parametric method, we present a robust autofocus algorithm,
referred to as AUTOCLEAN (AUTOfocus via CLEAN), for ISAR imaging. It is a paramet-
ric approach based on a very flexible data model that takes into account arbitrary transla-
tional and planar rotational motion. For the non-parametric methods, we study the general
forward-backward MAtch-Fllterband (MAFI) spectral estimation approaches including the
widely-used Capon as well as the more recently introduced APES (Amplitude and Phase
EStimation) methods. We present an adaptive Capon spectral estimation algorithm and
apply it to the complex ISAR image formation of maneuvering targets. We also present a
recursive APES algorithm for time-varying spectral analysis and use it for ISAR imaging as
well as feature extraction of targets with complex maneuvering motion.

For the problems of SAR autofocus and motion compensation, and superresolution SAR
image formation, we study both semi-parametric and parametric methods. For the semi-
parametric method, we present a SPAR (Semi-PARametric) algorithm based on a flexi-
ble data model for target feature extraction and superresolution complex image formation
for SAR. SPAR exhibits better estimation resolution performance over non-parametric ap-
proaches and is more robust against data model errors than parametric ones. For the para-
metric methods, we propose a MCRELAX (Motion Compensation RELAX) algorithm and
a MCCLEAN (Motion Compensation CLEAN) algorithm for simultaneous target feature
extraction and cross-range phase error compensation in SAR imaging. Both MCRELAX
and MCCLEAN assume a two-dimensional (2-D) sinusoidal model for the target signal but

assume nothing (arbitrary unknown) for the phase error distribution, and are thus robust




algorithms against high-order phase errors. Compared to MCRELAX, MCCLEAN has bet-
ter convergence property and is computationally much more efficient when used in the SAR
imaging of a large scene.

For the 3-D target feature extraction problem, we study using CLSAR to extract target
features. An AUTOfocus algorithm based on the RELAXation-based optimization approach
(AUTORELAX) is proposed to compensate the aperture errors in CLSAR and to extract
3-D target features.

For the time delay estimation problem, we first present a Weighted Fourier transform and
RELAXation-based (WRELAX) approach for the time delay estimation of either complex-
or real-valued signals. WRELAX is then extended to deal with the real-valued signals with
highly oscillatory correlation functions. Further, by using MODE (Method Of Direction
Estimation) together with our efficient WRELAX algorithm, a novel MODE-WRELAX al-
gorithm is proposed for the time delay estimation of either complex- or real-valued signals
including those With highly oscillatory correlation functions to achieve superresolution.

This document contains 13 chapters. In Chapters 2-4, we study ISAR autofocus and
imaging methods. In Chapters 5-8, we present methods for SAR autofocus and motion
compensation, and superresolution SAR image formation. In Chapters 9-10, we study 3-D
 target feature extraction via CLSAR. The high resolution time delay estimation methods
are presented in Chapters 11-13.

In Chapter 2, we present the AUTOCLEAN algorithm for the motion compensation of
ISAR imaging of moving targets. It is a parametric algorithm based on a very flexible data
model which takes into account arbitrary range migration and arbitrary phase errors across
the synthetic aperture that may be induced by unwanted radial motion of the target as well
as propagation or system instability. The autofocusing is accomplished by minimizing a non-
linear least squares (NLS) fitting criterion by using an efficient relaxation-based optimization
approach. Compared to other existing algorithms, our method is more robust since it does
not rely on the existence of isolated prominent point scatterers for each range profile nor on
the precise modeling of the motion trajectory of the moving targets of interest. Significant

improvement on the image quality is observed with the NATO raw data.




In Chapter 3, we present an adaptive Capon spectral estimation algorithm for the com-
plex ISAR image formation of maneuvering targets. It has better resolution and lower
sidelobes than the short-time Fourier transform (STFT) method. The algorithm is an effi-
cient recursive implementation of the 2-D Capon complex spectral estimator, which involves
only fast Fourier transform (FFT) and simple matrix operations. ISAR imaging examples
of maneuvering targets are provided to illustrate the performance of the proposed method.

In Chapter 4, we apply the APES algorithm to sliding short-time data sequences with
maximal overlapping for the time-varying complex spectral analysis. A computationally
efficient recursive APES algorithm is developed, which involves only FFT and simple matrix
operations. It exhibits much better resolution than STFT. ISAR imaging examples show that

it can successfully circumvent the image blurring problem caused by target maneuvering.

In Chapter 5, we first establish a flexible data model, which models each target scatterer
as a 2-D complex sinusoid with arbitrary amplitude and constant phase in cross-range and
with constant amplitude and phase in range, and then present the SPAR algorithm for SAR
target feature extraction and superresolution image formation based on the established data
model. By taking advantage of both parametric and non-parametric spectral estimation
methods, SPAR exhibits better estimation and resolution performance over non-parametric
approaches and is more robust against data modeling errors than parametric methods. Both
numerical and experimental results demonstrate the performance of the proposed SPAR
algorithm.

In Chapter 6, we study the problem of extracting target features via SAR in the presence
of uncompensated aperture motion errors. A parametric data model for a spotlight-mode
SAR system is established. The Cramér-Rao bounds (CRBs) for the parameters of the data
model are also derived. The CRB analysis shows that the unknown motion errors can sig-
nificantly affect the accuracy of a common shift of the scatterer position in the cross-range
direction, but have little effect on other target parameters including the accuracy of the rela-
tive positions in range and cross-range direction. A relaxation-based MCRELAX algorithm
for estimating both target features and motion errors is devised. Simulation results show

that the mean-squared errors of the parameter estimates obtained by using the MCRELAX



algorithm can approach the corresponding CRBs. We also show that MCRELAX can simply
be used for motion compensation only and can give better performance than the well-known

Phase-Gradient Autofocus (PGA) algorithm.

In Chapter 7, We present the MCCLEAN algorithm for correcting synthetic aperture
phase errors in SAR. It is a parametric algorithm based on the same data model as used
in MCRELAX. The computational core of the algorithm is the CLEAN algorithm, which
involves only a sequence of 2-D FFT operations. MCCLEAN is robust against high-order
phase errors. Compared to MCRELAX, MCCLEAN has better convergence property (no
separate initialization step is required) and is computationally much more efficient when used
as an independent autofocus approach for the SAR imaging of a large scene. For certain
kinds of scene content and phase error distributiohs, MCCLEAN performs better than the
PGA algbrithm. We also present a modified relaxation-based algorithm, which has a simi-
lar structure as MCCLEAN, for simultaneous autofocus and superresolution target feature
extraction of a small scene or small region of interest (ROI) in a large scene. Experimen-
tal examples with a portion of the data collected by the ERIM’s DCS interferometric SAR
V(IFSAR) system show that the proposed algorithms are very effective.

In Chapter 8, we consider superresolution SAR image formation via sophisticated para-
metric spectral estimation algorithms. Parametric spectral estimation methods are devised
based on parametric data models and are used to estimate the model parameters. We use
the parameter estimates obtained with the parametric methods to simulate data matrices
of large dimensions and then use the FFT methods on them to generate SAR images with
sup‘erresoiution. Experimental examples using the MSTAR and ERIM data illustrate that
the robust spectral estimation algorithms can geherate SAR images of higher resolution than
the conventional FFT methods and enhance the dominant target features.

In Chapter 9, we consider using CLSAR for 3-D feature extraction of small targets
consisting of a small number of distinct point scatterers. CLSAR does not suffer from the
ambiguities suffered by IFSAR. Since CLSAR is a relatively new technology, a-self—contained
detailed derivation of the data model is presented. The CRBs of the parameter estimates

are also derived. We also describe how the RELAX algorithm can be used for 3-D target



feature extraction with CLSAR for different curvilinear apertures.

In Chapter 10, we present the AUTORELAX algorithm, which can be used to compensate
for the aperture errors in CLSAR and to extract 3-D target features. A self-contained
detailed derivation of the data model for the autofocus problem in CLSAR is presented.
Experimental and simulation results show that AUTORELAX can be used to significantly
improve the estimation accuracy of the target parameters.

In Chapter 11, we present the WRELAX algorithm for the time delay estimation prob-
lem. The method is a relaxation-based global minimizer of a complicated NLS criterion.
WRELAX involves only a sequence of weighted Fourier transforms and hence the superior
estimation performance of the NLS fitting approach is achieved at a much lower implemen-
tation cost. The new algorithm is successfully applied to detecting and classifying roadway
subsurface anomalies by using an ultra wideband ground penetrating radar. It is also ex-
tended to the case of multiple looks for different scenarios (i.e., fixed delays but arbitrary
gains and fixed delays and gains). CRB analysis and numerical and experimental examples
are provided to demonstrate the performance of the new algorithm. |

In Chapter 12, we propose two approaches based on WRELAX to deal with the prob-
lem of optimizing highly oscillatory cost functions. One approach (referred to as Hybrid-
WRELAX) uses the last step of the WRELAX algorithm to minimize the true NLS cost
function corresponding to the real-valued signal amplitudes. The other one (referred to as
EXIP-WRELAX) uses the extended invariance principle (EXIP). They are relaxation-based
global minimizers of a highly oscillatory NLS cost function. Both of the algorithms are shown
to approach the CRB and require only a sequence of weighted Fourier transforms.

In Chapter 13, we study estimating time delays and amplitudes (real- or complex-valued)
from the superposition of very closely spaced signals with known shapes. Particularly,
we modify the well-known high resolution MODE algorithm and use it with our efficient
WRELAX algorithm to deal with superresolution time delay estimation. The proposed new
method is referred to as MODE-WRELAX. MODE-WRELAX provides better accuracy than
MODE and higher resolution than WRELAX. Moreover, it can be used for both complex-

and real-valued signals including those with highly oscillatory correlation functions. Nu-




merical results show that the MODE-WRELAX estimates can approach the corresponding
CRB. Efficient implementation of the algorithm is discussed as well.

Bach of the aforementioned chapters is self-contained with its own introduction, for-
mulation of the problem of interest, detailed presentation of approaches, conclusions, and
references.

Those who have contributed to this report include Mr. Zhaogiang Bi, Dr. Victor C.
Chen, Dr. Kenneth Knaell, Mr. Hongbin Li, Dr. Jian Li, Dr. Zheng-She Liu, Dr. Petre
Stoica, Dr. Renbiao Wu, and Mr. Edmund G. Zelnio.




2. A Robust Autofocus Algorithm for ISAR Imaging of Moving Targets

2.1 Introduction

ISAR (inverse synthetic aperture radar) imaging [1] of moving targets is very important
for many military and civilian applications including ATR (automatic target recognition)
of non-cooperative aircrafts [2, 3, 4, 5, 6], battlefield awareness [7], development as well as
maintenance of low observable aircrafts [8] and target characterization [9, 10, 11], Moon and
planet imaging in radio astronomy [12], and the surveillance of ground traffic on airports 13,
14]. Compared to the conventional low-resolution wide area surveillance radar, ISARs offer
improved detection and tracking performance and exclusive target identification capability,
which is desirable for a modern radar. Because of this, many countries in the world are now
trying to shift this technology from laboratory to practice.

The principles underlying ISAR and SAR (synthetic aperture radar) can be unified
within the framework of turntable imaging [12]. Today, the SAR technology, producing
“high-resolution maps and images of stationary targets in real-time, is a well established
technology and nearly 30 spaceborne and airborne SAR systems are currently in operation
for a wide range of military and civilian applications and more are being built around the
world [15]. On the other hand, ISAR imaging is still at the R&D (Research and Devel-
opment) stage and only a few experimental systems have been built [8, 9, 10, 16]. The
reason to such an inbalanced development is that the relative motion between the radar and
the target is cooperative in SAR and hence is easier to be compensated out than the non-
cooperative relative motion in ISAR. In SAR imaging of stationary targets, the navigation
data available on the moving platform carrying the radar can be exploited to determine a
preliminary estimation of the motion parameters. Many sophisticated motion compensation
algorithms have been proposed for SAR imaging and it appears that the remaining problem
is how to make a better tradeoff between the image quality and the computational cost.
However, the motion compensation in ISAR imaging is much more complicated than in the

case of SAR imaging of stationary targets since the radar tracking data cannot achieve the




accuracy required to generate a recognizable image and the motion parameters can only be
obtained via data-based autofocus algorithms. How to devise robust and efficient autofocus
algorithms has become the major problem in ISAR imaging since once focused, the ISAR

images could be formed by using the well-established SAR imaging technology.

Unlike in SAR, the radar used for ground-to-air ISAR imaging is usually stationary. The
relative motion needed to obtain the synthetic aperture is induced by the moving target
itself. Usually, the target motion with respect to the radar line of sight (RLOS) can be
decomposed into a radial motion of an arbitrary reference point on the target and a tangential
motion about the reference point . The tangential motion can be used to form a synthetic
aperture to provide the needed high resolution in cross-range, whereas the radial motion
must be compensated out since it has nothing to do with ISAR imaging but can cause range
migration and phase errors across the synthetic aperture. Successful compensation of the
unwanted radial motion is crucial to ISAR imaging.

The diagram of conventional Range-Doppler (R-D) ISAR image processing is shown in
Figure 2.1. The phase history data (dechirped or demodulated step-frequency signal) re-
“ceived by the radar receiver is first range compressed. Next, radial motion is compensated
out via rough range alignment followed by fine cross-range phase correction. Finally, Fourier
transform or other super resolution spectral analysis methods [18, 19, 20] can be used to
generate the ISAR images of targets of interest. In the literature, algorithms for range align-
ment are fairly standard. It can be done either by envelope cross-correlation or tracking
the time history of a reference point (such as the peak or the centroid) in the range com-
pressed data and fitting it to a polynomial [1]. However, the requirement for cross-range

phase tracking is much more stringent than that for range alignment and the range errors

1For arbitrarily maneuvering targets with rigid bodies, the motion can be decomposed into

translational motion of a reference point on the target and rotational motion (yaw, pitch,
roll) with respect to that reference point [17]. In this chapter, we assume that the non-
planar motion can be ignored. This assumption is valid in most cases and is widely used
in the literature. Under this assumption, the target motion can be decomposed into radial
and tangential components. Herein tangential motion refers to the equivalent rotation
caused by the translational motion of the reference point as well as the target self rotation
with respect to the reference point.




must be controlled to within a small fraction of a radar wavelength. For example, for radar
working at X band with a wavelength of 3 centimeters, a range change of 3 millimeters would
produce a phase error of 72°. Because of this, much efforts have been put on the cross-range
phase estimation and many algorithms have been proposed. Most of the existing algorithms
obtain the cross-range phase errors via tracking the phase history of a single well-isolated
dominant scatterer on the target [1, 21, 22] (referred to as Dominant Scatterer Algorithm
(DSA) or Prominent Point Processing (PPP)), a synthesized scatterer such as the centroid
of multiple scatterers [23, 24, 25, 26] (referred to as Multiple Scatterer Algorithm (MSA)),
the statistic scattering centroid (SSC) [27], or the Doppler centroid [28, 29]. DSAs [1, 21, 22]
- perform very well when there is an isolated dominant scatterer on the target. However, this
requirement cannot be satisfied in most cases due to target scintillation and shadowing effect.
Centroid-based algorithms [23, 24, 25, 26, 27, 28, 29] can relax this requirement in some way
and hence are more robust than DSAs. However, phase averaging is needed by most of these
algorifhms. Without correct phase unwrapping (which is not an easy task), the averaging
procedure will do more harm than good. The well-known SAR autofocus algorithm, referred
to as the PGA (phase gradient autofocus) algorithm (30, 31], can also be used for the cross-
range phase compensation in ISAR imaging. However, we have found that its performance
depends on the quality of range alignment and on the choice of the threshold needed by the
automatic windowing step or the size reduction rate needed by the progressive windowing
scheme. Several variations of DSAs [32, 33] have also been proposed for cross-range phase
error estimation, which use low-order polynomials (usually quadratic) to model the phase
errors and then obtain the polynomial coefficients by optimizing the maximum likelihood
(ML) cost functions. All of the aforementioned methods attempt to achieve the range align-
ment and phase correction in separate steps and the range alignment quality may have a
significant impact on the phase estimation algorithms and the final image quality. Moreover,
many of the above algorithms are implicitly based on the assumption of the availability of

well-isolated dominant scatterers and hence cannot work effectively in most practical cases.

In addition to the above separate processing approaches, parametric motion estimation

algorithms for joint range alignment and cross-range phase tracking have also been proposed




in the literature [34]. In [34], low-order polynomials are used to model the phase variations
due to target motions in the phase history domain and then the polynomial coefficients are
obtained via optimizing image focus indicators such as the entropy measures [34]. Since the
image domain entropy method is computationally very intensive, a phase history domain
burst derivative algorithm was also proposed in [34]. The burst derivative algorithm is
computationally more efficient than the entropy method but the burst derivative is periodic
and there is no unique global minimum and hence can only be used in combination with
the entropy method for the fine adjustment of motion estimates. Moreover, like any other |
parametric motion estimation algorithms based on low-order polynomial phase error models

[32, 33], both the entropy and burst derivative methods are sensitive to system instabilities.

In this chapter, a robust autofocus approach, réferred to as AUTOCLEAN (AUTOfocus
via CLEAN), is proposed for the motion compensation in ISAR imaging of moving targets.
It is a parametric algorithm based on a very flexible data model, which takes into account
arbitrary range migration and arbitrary phase errors across the synthetic aperture that may
be induced by the unwanted radial motion of the target as well as propagation or system
Uinstability. AUTOCLEAN can be classified as an MSA, but it differs considerably from
other existing MSAs [23, 24, 25, 26] since it automatically selects multiple scatterers (not
necessarily well-isolated or very dominant) in the two-dimensional (2-D) image domain and
combines their phase and RCS (radar cross section) information in an optimal way, which
avoids the troublesome phase unwrapping step. Another good feature associated with AU-
TOCLEAN is that it can be easily configured for different ISAR applications. Numerical
and experimental results have shown that AUTOCLEAN is a very robust autofocus tool for
ISAR imaging.

The remainder of this chapter is organized as follows. Section 2.2 describes our flexible
data model for ISAR imaging and formulates the problem of interest. The AUTOCLEAN
algorithm is presented in Section 2.3. Several examples are provided in Section 2.4 to demon-

strate the performance of AUTOCLEAN. Finally, Section 2.5 concludes the chapter.
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2.2 Problem Formulation

For ground-to-air ISAR imaging systems, the radar is stationary and the relative motion
needed to obtain the synthetic aperture is induced by the moving target itself. When non-
planar motion is negligible, the target motion with respect to the RLOS can be decomposed
into radial motion of an arbitrary reference point on the target and tangential motion with
respect to the reference point. In this case, the geometry of the radar and the target is
illustrated by Figure 2.2. In Figure 2.2, Ry(t) denotes the distance from the reference point,
(Xo,Yp) in the X —Y coordinate system, which is the origin of the z —y coordinate system,
to the radar at time instant ¢, R(t) denotes the distance between an arbitrary point (z,y)
on the target and the radar, and 6(t) represents the relative angle of the target with respect
to the local £ — y coordinate system.

When the variation of () is small during the coherent processing interval (CPI), the
target can usually be viewed as consisting of a few point scatterers with constant RCS’s and
fixed locations [1] in the local z — y coordinate system. Assume that a normalized linear FM

“(chirp) signal is transmitted, which has the form

s(t) = CThot+1) 1t < (2.1)

_2—7
where f, denotes the carrier frequency, v is the chirp rate, and T is the pulse'width. Then

the signal received by a radar receiver after dechirping (or deramping) and A /D conversion

is [12, 35]:

k=1

K
'I"(TL, ’fl,) — {Z akej41rfn[a:k cos H(AT)+yx sinB(ﬁT)]/c} ej[47ranRo(ﬁT)/c] + 6(7’L, ’FL),
0<n<N-1, 0<a<N-1,

(2.2)
where K is the number of scatterers on the target; o, Zx, and y; are the complex amplitude
(RCS and phase), range, and cross-range locations of the kth scatterer, respectively; c denotes

the speed of light; N is the available sample points for each received chirp pulse and N is

the number of along track positions; T" is the pulse repetition interval; f, is the discretized
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frequency and can be related directly to the time samples as follows

fo= fo+ Tta, (2.3)

with %, denoting the nth sample of the fast time measured with respect to the tracked time
delay of the reference point; ARy (7T) denotes the range migration, which is the distance at
the along track position 7 between the true reference point (unknown) and the one tracked

by the radar; finally, e(n, ) denotes the clutter and noise.

In addition to linear FM chirp pulses, step-frequency signal waveform is also widely
used for ISAR imaging because of the simplicity of its design and implementation. It is a
discrete implementation of the linear FM waveform. The wide bandwidth of a linear FM
signal is obtained by transmitting a burst of narrow bandwidth pulses with different carrier
frequencies at each along track position. The above data model (2.2) is still valid for the
transmitted step-frequency signals. In this case, f, is just the center frequency of the nth
transmitted pulse within each burst and a burst of N pulses is compressed to form a range
profile at each along track position 7. The pulse repetition interval T in (2.2) now becomes
the burst period. '

Like most of the existing ISAR. autofocus algorithms, we assume that the CPI is short and
NG = |0 [(]V - 1)T] — 9(0)| is small and the tangential motion is approximately uniform.
Under this assumption, (2.2) can be simplified as

K
@) = [Z akej(wknwm)] a4 g(n, 7).

k=1
0<n<N-1, 0<a<N-1, (2.4)

where the frequency pair (wg, @) is proportional to the location (zk, yx) of the kth scatterer,
we(fi) is proportional to the range migration ARo(7T), and {gb(ﬁ)}fz_ol denote arbitrary

cross-range phase errors 2.

2If the phase errors are only caused by the target motion, then v(f) is also proportional to the range
migration ARo(AT) and is determined by (i) = 4r fo A Ro(AT)/c. In this paper, we assume {z/)(ﬁ)},_l:zo1

to be arbitrary to include other phase errors due to propagation or system instability.
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Our problem of interest herein is to estimate {wa(ﬁ),zp(ﬁ)}gz‘ol from the phase history
data {r(n,n)} received by the radar. Once the estimates {@q(7),%(R) N
of {we(71), () N1 are available, motion compensation can be done by simply multiplying
r(n,n) with e [ca(@)n+d(m)] and the remaining task is to apply, for example, the conventional
Range-Doppler imaging algorithm to the compensated phase history data, which can be

efficiently implemented by using 2-D FFT.

2.3 The AUTOCLEAN Algorithm

As pointed out previously, AUTOCLEAN is an MSA. It can also be used as a DSA and
the upgrade from DSA to MSA is very straightforward. For the sake of clarification, we first
derive below the AUTOCLEAN algorithm based on a single dominant scatterer and then

extend it to the case where multiple dominant scatterers are used.

2.3.1 AUTOCLEAN based on a Single Dominant Scatterer

Assume that there is a single dominant scatterer on the target with complex amplitude

and 2-D location (a1, w;,@;). We can rewrite (2.4) in the following form:

r(n,n) = si(n, 7)ele@ntd(®) 4 e (n,7),
0<n<N-1, 0<A<N-1, (2.5)
where
s1(n, 7)) = opef@mOn), (2.6)

and e;(n,7) denotes the unmodeled target return plus the clutter and noise component

e(n,n). Then the estimates of {wa(7),¥(R)}azo and (0q,w;, @) can be obtained via opti-

mizing the following nonlinear least-squares (NLS) criterion

_ . T _ =112
C1 (a1, w1, 1, {wa(@), (A=) = [r(n, ) — ayeitrm@m le®mv @I (2.7)




The above NLS problem can be solved by using an alternating optimization approach, which

iterates the two steps of motion estimation and feature extraction 3. The two steps are

outlined as follows.

Motion Estimation

Assume that the feature estimates {&1, w1, Lf)l} of {a1,ws,®:} are given. Let
§1(n, ’ﬁ) = 5516j(&1n+(ﬁ1ﬁ). (28)

Then minimizing Cy (al,wl,wl, {wa(R), ¥(7) ,-15';01) becomes minimizing

Zx

N-

({wa(n) r(’[) ﬂ.=0 ) ‘r(n’ ﬁ) - §1(n, ﬁ)ej[wa(ﬁ)n+¢(ﬁ)]|2 s (2.9)
n=0 7=0
or
N-1 o o
Cs (wo(R), ¥(R) = lr(n, 7i) — 81 (n, ﬁ)ef[wa<n>n+¢<n>1| : (2.10)
n=0
which yields
N-1
(.(R) = arg max 3 el (33 (n, n)r(n, A)]|, (2.11)
. Wa n=0
and :
~ N—l . -
¥(7) = angle { > e~I@a () (5% (n, R)r(n, ﬁ)]} , (2.12)
n=0 :

where angle(z) denotes the phase of z and (-)* the complex conjugate. Note that @.(R) can
be obtained via 1-D FFT with zero-paddings (for high accuracy) and &(ﬁ) can be calculated
easily as Well.

Feature Extraction

Now assume that the motion estimates {@, (%), ¥(71) }i=g of {wa( ), (A) I are given.

Then minimizing C; (al, w1, @1, {wa(R), 7,[)(7‘1)},-1:’;01) becomes minimizing

IF n, ) alej(“”"wlﬁ)lz, (2.13)

ﬁ'Mz'

N—-
C4 (al, U-)l)wl Z

3Feature extraction is a terminology widely used in pattern recognition. Many target recognition sys-
tems use the complex amplitudes and locations of target scatterers as features for classification. Herein
we borrow this terminology to represent the estimation of complex amplitudes and locations of target

scatterers.
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where
#(n,n) = r(n, ﬁ)e”j[@“(ﬁ)”“z(ﬁ)]. (2.14)

After simple mathematical manipulations [36], the feature estimates {(541, @, cf)l} of {a1, w1, @1}

can be determined as
2

(&)1,5)1) = arg max 7(n, n)e~dntam)| (2.15)

and B )
S S #(n, medGniiin

NN
Note that (&)1,5)1) are obtained as the location of the dominant peak of the scaled 2-D

(2.16)

& =

periodogram [Z,’l’;(} Nt (n, ﬁ)e'j(“’l"“’lﬁ)r, which can be efficiently computed by us-
ing 2-D FFT with zero-paddings. Then &; is simply the complex height of the peak of
YNA SN 5(, 7)e~i@nté17) INN.

AUTOCLEAN is an alternating optimization approach to -the NLS criterion in (2.7)
which iterates the above two steps. To speed up the convergence, we use the envelope cross-
‘correlation method [1] for the initial motion estimation. With the above preparations, we
now summarize the AUTOCLEAN algorithm based on a single dominant scatterer.

Step 0: Obtain the initial motion estimates via the envelope cross-correlation method.

Step 1: Compute the feature estimates {dl,wl,(f)l} of {a1,w;, @} by using (2.15) and
(2.16).

Step 2: Calculate the motion parameters by using (2.11) and (2.12).

Step 3: Repeat Steps 1 and 2 until the relative change of the cost function in (2.7)

between two consecutive iterations is less than some pre-determined threshold, say 1072.

2.3.2 AUTOCLEAN based on Multiple Scatterers

Like other existing DSAs [1, 21, 22], when there is a well-isolated very dominant scatterer
on the target, the above AUTOCLEAN algorithm works very well and the latter performs
slightly better than the former since the latter can track the range migration more accurately

than the former. However, the assumption about the availability of such an isolated dominant
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scatterer is more often than not violated in practice. This problem can be alleviated by
tracking the centroid of multiple strong but not necessarily very dominant scatterers. This
is the basic idea behind MSAs. Existing MSAs [23, 24, 25, 26] need troublesome phase
unwrapping and do not exploit the RCS information of each scatterer. Below, we avoid this

problem by extending the AUTOCLEAN algorithm to the case of multiple scatterers.

Assume that there are K strong scatterers with features {ok, wi, @k}, (selected auto-
matically by the AUTOCLEAN algorithm). (Note that K can be much smaller than the
true number K of the target scatterers.) Let K denote an intermediate number of strong
scatterers, i.e., K=1,2, -, K. By assuming K strong scatterers, we can, similarly to

(2.5), rewrite (2.4) as

r(n,7) = sg(n,n)e=®nHv®l 4 ep(n,n), (2.17)

0<n<N-1, 0<Aa<<N-1,

where

&
sp(n, @) = 3 cpel@Entorn), (2.18)
k=1

and ez(n,n) denotes the unmodeled target return plus the clutter and noise component
e(n,7). Both the motion estimates and the feature estimates of the K scatterers can be

obtained via minimizing the following NLS criterion

Zl

N-1N-1

Cs ({om, wi, @y, {wa(®), ¥(R) 1)

0

=
Il

n=0

r(n,7) [Z o ef @En o) eilwa(Bn+¥(R)]
= (2.19)

Before we present the AUTOCLEAN algorithm utilizing multiple scatterers, let us first
introduce the two steps (motion estimation and feature extraction), which constitute the
computational kernel of the proposed algorithm.
Motion Estimation

The motion estimation algorithm presented in the previous subsection can be directly
K

extended to the multiple scatterer case. Assume that the feature estimates {&k, G)k,tf)k}k_l
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of {ak,wk,wk},{{:l are given. Let
R . f A 2 -
Sg(n,n) =Y ayed @), (2.20)
k=1
denote the estimate of s z(n,72) in (2.18). By replacing the 3;(n, ) in Equations (2.9) through
(2.12) with 3z (n,n), we get

Z g3 [5% (n, )r(n, )], (2.21)

n=0

() = arg max

and Vet
() = angle{ ;) g I@e(Rn [.§§((n, a)r(n, ﬁ)] } : (2.22)

Feature Extraction

Once the motion estimates {d)a(ﬁ),lzv(ﬁ)}g:‘()l are available, the feature estimates
R ¢
{o”zk, Wk, &")k}k_l can be obtained via minimizing

2

Z Qe el j(win+@gfi)
k=1

(2.23)

ﬁ'Mz'

Ce ({akawbwk}kkzl) = g

where 7(n, 7i) is defined in (2.14). Relaxation-based optimization techniques including CLEAN
[36, 37] and RELAX [36] may be used to deal with the above NLS optimization problem.
We have found (see Appendix) that for our problem of interest, in which motion estimation
is of the major concern and feature estimates are only by-products of the optimization pro-
cess, CLEAN is computationally much more efficient than RELAX and can provide similar
motion estimation performance than the latter and hence is preferred.

Before we summarize t}le CLEAN algorithm, let us first present the following prepara-

- 1K )
tions. Assume {ai,wz-,wi}_ Listk are given. Let
1=1,3

K
ze(n,n) =F(n,a) — Y. 0l @mtan), (2.24)
i=1,i#£k

Then the estimates of (o, w, @k) can be obtained via minimizing

Zl

N-1
07 (ak,wk,wk = Z Z le —Olkej(wkn+wkn) (225)

n=0 =0
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which yields
2

(d)k,i)k) = arg max zx(n, m)e I @rnt@R)| (2.26)

and

~

L ENAe L s (n, A)e I @entonn)
= NN ‘

(2.27)

With the above preparations, we now summarize the CLEAN algorithm. Let K denote
the intermediate number of target scatterers.

Step (1): Assume K = 1. Obtain {(Dl,cf)l} and &; from 7(n,7) by using (2.26) and

(2.27), respectively.

| Step (2): Assume K = 2. Compute z;(n,7) with (2.24) by using {c“u,-, s, &i}izl obtained
in Step (1). Obtain {@2,@2} and &, from z(n,7n) by using (2.26) and (2.27), respectively.

Step (3): Assume K = 3. Compute z3(n, #) with (2.24) by using {wi, @, o“z,-}jzl obtained
in Steps (1) and (2). Obtain {(213,@3} and &3 from z3(n,7n) by using (2.26) and (2.27),
respectively.

Remaining Steps: Continue similarly until K=K.

The flow chart of the proposed AUTOCLEAN algorithm is shown in Figure 2.3, which
iterates the above motion estimation and feature extraction steps.

The proposed AUTOCLEAN algorithm can be summarized as follows.

Step 0: Obtain the initial motion estimates via the envelope cross-correlation method.

Step 1: Assume K=1.
Substep (a): Obtain {d)k,cf)k,&k}k:l by using Step (1) of CLEAN.
Substep (b): Calculate {&,(7), %(7)}3= by using (2.21) and (2.22).
Substep (c): Compute {cbk,cf;k, &k}k=l via CLEAN by assuming K strong scatterers.
Substep (d): If practical convergence (to be discussed later on) is achieved, then go to the
next step; otherwise, go back to Substep 1(b).

Step 2: Assume K =2
Substep (a): Obtain {cbk,tf)k,dk}k=2 by using Step (2) of CLEAN.
Substep (b): Calculate {&q(7), %(7)} =4 by using (2.21) and (2.22).
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Substep (c): Compute {d)k,cf)k, d"}2=1 via CLEAN by assuming K strong scatterers.
Substep (d): If practical convergence is achieved, then go to the next step; otherwise, go
back to Substep 2(b).

Step 3: Assume K =3.

Substep (a): Obtain {@k,ék,dk}kza by using Step (3) of CLEAN.
Substep (b): Calculate {@.(), $(7)}Y by using (2.21) and (2.22).
Substep (c): Compute {u”)k, Wk, dk}i:l via CLEAN by assuming K strong scatterers.
Substep (d): If practical convergence is achieved, then go to the next step; otherwise, go
back to Substep 3(b).

| Remaining Steps: Continue similarly until K =K.

The “practical convergence” in Step K of the above AUTOCLEAN algorithm may be
determined by checking whether the relative change of the cost function in (2.19) between
two consecutive iterations is less than some pre-determined threshold, say 1073.

We remark that the above AUTOCLEAN algorithm differs considerably from other MSAs
"[23, 24, 25, 26] in several aspects: a) dominant.scatterers are selected automatically in the
2-D image domain; b) scatterers may not be well-isolated or very dominant; c¢) complex
amplitude information from each selected scatterer is combined in an optimal way; d) the
troublesome phase unwrapping step is avoided. Compared to other parametric algorithms
[32, 33, 34], AUTOCLEAN is more robust since it is based on a more flexible data model
than the former and can more effectively mitigate the interference among different scatter-
ers. The computational kernel of AUTOCLEAN is CLEAN, which is computationally very
efficient and involves only a sequence of 2-D FFTs that can be easily implemented using
currently available FFT chips, such as TMC2310 [38], A41102 [39], and TM-66 swiFFT [40].
Hence it can be easily configured for real-time applications. Another good feature associated
with AUTOCLEAN is that its performance can be progressively improved by assuming a
reasonably larger number of strong scatterers, K, for the target. In other words, K can be

either pre-determined or increased until the autofocused ISAR image is satisfactory.
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2.4 Numerical and Experimental Results

We have tested AUTOCLEAN with a large confidential set of measured ISAR data
[41]. The proposed algorithm has proved to be very robust and significantly outperforms
other existing algorithms (including DSAs, MSAs, and PGA) [41]. Unfortunately, since
the data set is classified, we are not authorized to report the experimental results in the
open literature. Instead, we use numerical examples to demonstrate the performance of

AUTOCLEAN.
In the following examples, we use the simulated MIG-25 aircraft data provided by the

Naval Research Laboratory as the turntable target data and then add range migration and
phase errors to the turntable data to simulate a moving aircraft. The data matrix is 64 x
64 (e, N = N = 64). The @,(n) in (2.11) and (2.21) is obtained via 1-D FFT with
zero-padding to 128. The (@1,5)1) in (2.15) and (c?)k,tf)k) in (2.26) are obtained via 2-D
FFT with zero-padding to 128 x 128. We have used 1073 to test the practical convergence
of our algorithm. Windowed (Taylor window with parameter 4 and 50 dB sidelobe level
-[42]) 2-D FFT with zero-padding to 256 x 256 is used to form the ISAR images. The
performance of the proposed AUTOCLEAN algorithm is also compared with that of other
two popular autofocus approaches including Haywood and Evans’ MSA [24] and PGA [30].
(Other existing MSAs [23, 25, 26] perform similarly to Haywood and Evans’ method and
hence are not considered herein.) Since Haywood and Evans’ MSA and PGA can only be
used for phase correction, the conventional envelope cross-correlation method [1] is used first

for initial motion compensation, particularly for range alignment.

Let us first consider an example in which there is an isolated very dominant scatterer on
the target. The 2-D image and 3-D mesh plot of the target are shown in Figures 2.4(a) and
(b), respectively. Figure 2.4(c) shows the uncompensated image from which we can observe
severe image blurring due to the target motion. The ISAR images after autofocusing using
Haywood and Evans’ MSA, PGA, and AUTOCLEAN are shown in Figures 2.4(d), (e), and
(f), respectively. In this example, only one dominant scatterer is used by Haywood and

Evans’ MSA and AUTOCLEAN and hence both methods are in fact DSAs. Note that, as
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expected, all of the three algorithms produce well focused ISAR images and AUTOCLEAN
performs slightly better than the other two approaches since AUTOCLEAN can provide

much more accurate range alignment than the envelope cross-correlation method.

Now we consider an example where the target does not have a single very strong isolated
dominant scatterer. The 2-D image and 3-D mesh plot of the target are shown in Figures
2.5(a) and (b), respectively. Figure 2.5(c) shows the original uncompensated blurred image.
Five scatterers (i.e., K =5) are used by Haywood and Evans’ MSA and AUTOCLEAN to
extract the motion parameters. The ISAR images obtained via autofocusing using Haywood
and Evans’ MSA, PGA, and AUTOCLEAN are shown in Figures 2.5(d), (e), and (f), respec-
tively. Note that AUTOCLEAN significantly outperforms the other two methods. Haywood
and Evans’ MSA completely fails in this example since several strong scatterers share the
same range and they are not selected as the dominant scatterers used for motion estimation
according to the minimum variance criterion [24]. Instead, other less dominant scatterers
containing less accurate phase error information are selected and hence the phase averaging
procedure does more harm than good since the use of these less dominant scatterers makes
phase error estimation worse. Again, AUTOCLEAN gives the best result.

Now we compare the computational efficiency of Haywood and Evans’ MSA, PGA, and
AUTOCLEAN. Since both PGA and AUTOCLEAN are iterative algorithms, it is hard to
give explicit expressions for their computational complexities. Instead, we roughly compare
their computational times needed on an ordinary PC with a Pentium II 400 MHz CPU.
The computational times for Haywood and Evans’ MSA, PGA, and AUTOCLEAN are 0.39,
1.39, and 1.76 seconds, respectively, for the first example and 0.40, 8.59, and 10.38 seconds,
respectively, for the second example. Note that AUTOCLEAN and PGA require similar

computational times for our examples.

2.5 Conclusions

We have presented a robust ISAR autofocus algorithm, referred to as AUTOCLEAN,

which is an efficient parametric algorithm based on a very flexible data model. It is more ro-
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bust than other éxisting parametric autofocus algorithms since the former assumes arbitrary
range migration and arbitrary cross-range phase errors and does not rely on the availability
of a well-isolated very dominant scatterer. AUTOCLEAN is a multiple scatterer algorithm
(MSA). By utilizing phase as well as RCS information of each scatterer in an optimal way
and avoiding the troublesome phase unwrapping procedure, AUTOCLEAN significantly out-
performs other existing MSAs. AUTOCLEAN is computationally very efficient and requires
only a sequence of FFTs. Hence it can be easily implemented in real-time by using cur-
rently available high speed FFT chips. Numerical and experimental results have shown that

AUTOCLEAN is a very robust autofocus tool for ISAR imaging.
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-Appendix: Further Discussion on Feature Extraction Algorithms

For the feature extraction step discussed in Subsection 2.3.2, besides CLEAN, another
popular approach is RELAX [36]. CLEAN is computationally more efficient than RELAX
but its resolution and estimétion accuracy are inferior to RELAX [36]. Hence RELAX
is preferred in many applications where high resolution and high estimation accuracy of
individual scatterers are desired. However, for our problem of interest, motion estimation is of
the major concern and the feature estimates are only by-products of the optimization process.
By comparing (2.4) with (2.18), it can be observed that the accuracy of the motion estimates
is mainly det_efmined By the targét fitting error SN2 Y N-1155(n,A) — sk(n,n)|* rather
than by the accuracy of feature estimates {du, &k, (ﬁk}le. We have found that although the
resolution and accuracy of CLEAN are inferior to RELAX [36], the target fitting error of the
former is very close to that ‘of the latter. This is especially true when the number of scatterers

used for motion estimation (IE' ) is small as compared to the true number of scatterers on the

target (K). Below, we provide a simple example to illustrate this observation.
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Assume that a target consists of K = 8 scatterers with equal strength (ie., o = 1
for k =1,2,---,8). The eight scatterers are distributed in the pattern as shown in Figure
2.6(a). There are four pairs of scatterers with each pair having a spacing around 2/3 of the
conventional FFT resolution limit. Hence the scatterer pairs cannot be resolved by using
FFT, as can be seen from Figure 2.6(b), which shows the original windowed FFT image of
the target. Range migration and phase errors, which are the same as those used in Figures
2.4 and 2.5, are added to the simulated target. For the sake of clarification, no noise is added
(i.e., e(n,7n) = 0) in this example. This is a very tough situation for ISAR autofocusing since
all scatterers are of equal strength and spaced very closely.

Ambiguities exist for the data model in (2.4). Let Bo, B1, and 7o denote arbitrary con-

stants and define

$(7) = Bo + Bifi + (), (2.28)
@a(71) = Yo + wa(7), (2.29)
Gy = e 9P, (2.30)

W = Wk = Y0, (2.31)

By = @k — Pr. (2.32)

Then it can be easily verified that ({dk,d)k,izk},ﬁ(:l, {@a(R), B (R) ,—’?;01) also satisfy the data
model in (2.4). Nevertheless, these ambiguous solutions will only shift the original ISAR im-
ages and hence will not affect the image quality. However, we cannot evaluate the estimation
accuracy for most of the parameters based on this ambiguous data model.

Yet we note that no ambiguity occurs to the magnitude of the complex amplitude and
hence they can be used to evaluate the feature estimation performance. Figure 2.6(c) com-
pares the estimates of {|ox|}X; obtained via CLEAN (“x”) and RELAX (“o”) to the true
values (dot-dashed line) where the horizontal axis denotes the index of the scatterer (k).
Note that, as expected, the RELAX feature estimates of individual scatterers are unbiased
whereas the CLEAN estimates are not. To evaluate the motion estimation performance,

we use the entropy as an image focus indicator. Entropy is a terminology borrowed from
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information theory and was used for ISAR autofocus in [34] (see also the references therein).
Assume U(l,1), 1=0,1,---,L—1, [=0,1,--,L—1, denote the complex ISAR image after
autofocusing using the motion estimates. Then we calculate the entropy £ of the focused

image as follows:

L—

-
]
—

l [ logU(l l) (2.33)
=0 =0
where ~
oo U1, 1))
ul,l)= ——— —. (2.34)
Lo S U@, D)

In Figure 2.6(d), the entropy of the focused ISAR images obtained by using CLEAN (“x”)
and RELAX (“o”) as the feature extraction methods is compared to the original value (dot-
dashed line), which corresponds to the original image shown in Figure 2.6(b). In Figure
2.6(d), the horizontal axis denotes the number of scatterers used for motion estimation (I? ).
Note that, although CLEAN is inferior to RELAX in resolution capability and estimation
accuracy for feature extraction, they provide similar motion compensation performance.
As K is increased from 1 to 8, almost perfect motion compensation, as indicated by image
“entropy, is achieved via AUTOCLEAN. Figure 2.7 further illustrates this observation. Figure
2.7(a) shows the windowed FFT image after initial motion compensation using the envelope
cross-correlation method. Note that the image is still blurred due to uncompensated motion
errors. Figures 2.7(b) through (i) show the windowed FFT images after autofocusing via
AUTOCLEAN by increasing K from 1 to 8. Note that when K = 4, the image is basically
focused but there is still some blurring. When K = 8, the image is almost identical to the

true one shown in Figure 2.6(b).
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Figure 2.4: ISAR images of a simulated MIG-25 aircraft with one very strong isolated dom-
inant scatterer. (a) Original 2-D windowed FFT image. (b) Mesh plot of the original 2-D
windowed FFT image. (c) Windowed FFT image before motion compensation. (d) Win-
dowed FFT image after autofocusing using Haywood and Evans’ MSA based on a single
dominant scatterer. (¢) Windowed FFT image after autofocusing using PGA. (f) Windowed
FFT image after autofocusing using AUTOCLEAN based on a single dominant scatterer.
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Figure 2.5: ISAR images of a simulated MIG-25 aircraft with no very strong isolated dom-
inant scatterers. (a) Original 2-D windowed FFT image. (b) Mesh plot of the original
2-D windowed FFT image. (c) Windowed FFT image before motion compensation. (d)
Windowed FFT image after autofocusing using Haywood and Evans’ MSA based on K=5
dominant scatterers. (¢) Windowed FFT image after autofocusing using PGA. (f) Windowed
FFT image after autofocusing using AUTOCLEAN based on K = 5 dominant scatterers.

32




50 50
100 100)
-4
§ *
150 g150
200 200
250 - 20
50 100 150 200 250 50 100 150 200 250
Range Range
(a) (b)
s,
¥ b At 0= b x CLEAN
-] RELAX
0.9 4.4 cmeeee True
s
CLEAN 43
o7 o RELAX
“r == True
08 42,
g 3 . .
05 &
; 4 .
04
03 4 -] X
]
o2t e
29,
ot
s 3,
1 2 3 4 5 6 7 s 1 2 3 4 s 0 7 3
3 Assumed Number of Strong Scatterers
() (d)

Figure 2.6: Comparison of CLEAN and RELAX. (a) The true image. (b) Original windowed
FFT image of the simulated target. (c) Comparison of amplitude estimation accuracy. (d)

Comparison of image focus quality (entropy).
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Figure 2.7: Performance of AUTOCLEAN as K varies. (a) Windowed FFT image after initial
motion compensation by using the envelope cross-correlation method. (b)-(i): Windowed
FFT images after autofocusing via AUTOCLEAN by increasing K from 1 to 8.
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3. Complex ISAR Imaging of Maneuvering Targets
via the Capon Estimator

3.1 Introduction

Synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR) [1, 2] image
formation and target feature extraction are becoming increasingly important in many civilian
and military applications [3, 4]. In SAR/ISAR imaging, the high resolution in range is
obtained by transmitting a signal with a large bandwidth, whereas the high resolution in
~cross-range can be achieved by utilizing the relative motion between the target and the
radar to form a large synthetic aperture. SAR and ISAR are used to produce high resolution
images of stationary objects and moving targets, respectively. The princ.iple underlying
SAR (especially spotlight-mode SAR) and ISAR is extremely similar. The major difference
between SAR and ISAR lies in the nature of the relative motion. In SAR, the radar is moving
while the object to be imaged is stationary and hence the relative motion is cooperative.
‘This situation is reversed in ISAR. In ISAR, the radar is stationary (or moving) while
the target to be imaged is moving in a noncooperative way. This noncooperative motion
makes the ISAR imaging more difficult than the SAR imaging. Because of this, although
SAR technology is well established and nearly 30 spaceborne and airborne SAR systems
are currently in operation [3], ISAR technology is still at the R&D stage and only 2 few

experimental systems are reported under development in the literature [5].

High resolution complez SAR/ISAR image formation are very important for improving
the automatic target recognition (ATR) perforfnance. The conventional image formation
algorithms based on Fourier transform are known to be robust but suffer from poor resolution
and accuracy and high sidelobes. Many modern spectral estimation techniques have been
devised and applied to SAR/ISAR image formation to improve resolution and accuracy and
reduce sidelobes. In [6, 7], many parametric and nonparametric spectral estimation methods
are compared and discussed for their merits for SAR/ISAR imaging. Many of these methods
are used for high resolution intensity image formation or power spectral estimation. Recently,

complez image formation and analysis have attracted a lot of attention since extracting the
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desired information about targets from radar returns requires using both the amplitude and
phase of the complex image [8].

The Well—known Capon method [9] was proposed to estimate frequency-wavenumber
power spectral density. Since then, its principle has been widely applied to spectral esti-
mation, direction-of-arrival estimation, and‘adaptive temporal/spatial /spatial-temporal fil-
tering. It can also be used for complex spectral estimation. It has been shown recently in [10]
that the nonparametric Capon estimator belongs to the class of matched-filterbank spectral
estimators. Capon and its reduced-rank variations [11, 12] can produce high resolution SAR
images with low sidelobes and reduced speckles, which can be used to significantly improve
" the ATR performance [13, 14]. Moreover, since the Capon method is nonparametric, it is
more robust against data mismodeling errors than parametric algorithms.

Most ISAR imaging algorithms (including the aforementioned Capon) are based on the
range-Doppler processing, which implies that the Doppler shifts nearly remain constant dur-
ing the coherent integration time. Unfortunately, for maneuvering targets, this assumption
is more often than not violated. This observation has motivated the use of various time-
Jvarying spectral analysis methods on ISAR imaging of maneuvering targets [15]. In [15], the
popular Wigner-Ville Distribution (WVD) method [16] is applied for ISAR imaging of ma-
neuvering targets. However, quadratic time-frequency analysis algorithms including WVD
cannot be used for the complez image formation problem considered herein. Another pop-
ular approach is the Short-Time Fourier Transform (STFT) method [16], which is a linear
time-frequency signal representation method and can be used for complex image formation.
Major drawbacks associated with the STFT method include poor resolution and accuracy
and high sidelobes.

~ In this chapter, we present an adaptive Capon spectral estimzition algorithm for the
complex ISAR image formation of maneuvering targets. It has better resolution and lower
sidelobes than the STFT method. The algorithm is an efficient recursive implementation of
the two-dimensional (2-D) Capon complex spectral estimator, which involves only FFT and
simple matrix operations.

The reminder of this chapter is organized as follows. The problem of interest is formu-

36




lated in Section 3.2. In Sections 3.3 and 3.4, we present the recursive forward-only (F-O) and
forward-backward (F-B) Capon algorithms, respectively. ISAR imaging examples are pro-
vided in Section 3.5 to illustrate the performance of the proposed methods. Finally, Section

3.6 concludes this chapter.

3.2 Problem Formulation

For maneuvering targets with nonuniform rotational motion, the Doppler shift corre-
sponding to the cross-range of each scatterer is time-varying [15]. In this case, the direct
application of spectral estimation methods will produce blurred images. To mitigate this
problem, we can apply the STFT method to produce time-varying complex ISAR images.
However, the STFT method suffers from poor resolution and accuracy and high sidelobes.
In this paper, we will present an adaptive Capon algorithm for the complex ISAR imaging
of fnaneuvering targets. Similar to STFT, we will use a sliding rectangular window along
the cross-range dimension and the observed signal within the sliding window is assumed to
‘be approximately stationary. Then the Capon method is applied to the data within the
window to produce high resolution ISAR images. As the window slides along the cross-range
dimension, time-varying high resolution ISAR images can be obtained. This approach over-
comes the drawbacks of the STFT method and preserves the good features of the Capon
estimator, including high resolution, low sidelobes, reduced speckles, and robustness against
data mismodeling errors.

Let N denote the number of range samples and N denote the sliding window length along
the cross-range dimension. Let {z,4-4,7 =0,1,--:,N —-1,7=0,1,---, N — 1} denote the
phase history of a maneuvering target of interest within the sliding window ended at position
t in cross-range. For a frequency pair (w, @) of interest, which are proportional to range and

cross-range, respectively, 2, ;s can be written as

Znt—n — at(w, G))ej{"‘”+(ﬁ_l'ﬁ)‘:’} + en,t—ﬁ(wa (I)), n= 07 17 R N — la n= 0> 17 T N — 1,
(3.1)

where o4(w, ®) denotes the time-varying complex amplitude of a 2-D sinusoid with frequency
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(w,®) and ens_n(w, @) denotes the unmodeled noise and interference at frequency (w,®).
Note that o (w, @) is assumed to change little within the sliding window so that {z,¢—a,n =
o1,.---,N-1,2=0,1,-- ., N — 1} is approximately stationary.

Our problem of interest herein is to obtain the estimate of a;(w,®) from the 2-D data
sequence {2z, ¢—n,n=0,1,---,N-1,7=0,1,---, N —1} for all (w,®) of interest as ¢ varies.
More specifically, we want to devise an efficient recursive implementation of the 2-D Capon
method for this time-varying complex spectral estimation problem.

Both the nonparametric F-O and F-B Capon algorithms can be used for complex spectral
estimatioh. The former uses only the forward sample covariance matrix to calculate the
finite impulse response (FIR) filters adaptively while both the forward and backward sample
covariance matrices are used by the latter. It has been shown in [10] that F-B Capon
outperformé F-O Capon with smaller biases. However, for the recursive implementation, the
latter is computationally more efficient than the former. In the following two sections, we

will present the recursive implementations for both of them.

3.3 Forward-Only Capon

In this section, we first briefly review the 2-D F-O Capon algorithm. Then an efficient
batch-mode implementation scheme is presented for initialization. Next, we derive the re-
cursive F-O Capon algorithm. Finally, we analyze the computational complexity of the

proposed implementation.

3.3.1 Brief Review of F-O Capon

Capon is a nonparametric adaptive matched-filterbank approach (17, 10]. It follows two
main steps: (a) pass the data {zn4-s,n = 0,1,---,N — 1,2 =0,1,--- ,N — 1} through a
2-D bandpass filter with varying center frequency (w,@); (b) obtain the estimates & (w, )

of oy(w,®), for all w € [0,27) and @ € [0,27) of interest,l from the filtered data. Assume
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that the bandpass filter Hy(w, @) used is an (M X M)-tap 2-D FIR filter having the form -

B I
h0,0,t(wa 5’) hO,l,t (W, 51) ce hO,M—l,t(w’ 5’)
hy04(w, @) hapw,@) o hpgeip(w, @)
H,(w,@) = ’ - AT (3.2)
| har-104(w, @) haro114(w,@) o hayogiro1p(w, @)
Let
2y t-I—M+1 2y t—I—-N+2 e 2T
Zp41,t—-I-M+1 Zg-i-;M+2 0 Al
Zl,t—l_ = . . . . )
| ZeM-1-T-M+1 AeM-1g--M42 7 P M1l ] \
( l:O’la'”aL—l, Z-:Oa1’7ff—1) (33)

denote the (I, 1)th M x M forward data matrix constructed from the data sequence {zn,t—a,n =

0,1,---,N-1,a=0,1,---,N —1}, where L =N — M +1, L =N — M + 1. Define

hy(w, @) = vec {H:(w, @)}, (3.4)
and
Zyy-j = Vec {Zz,t—l'} ) (3.5)
T
where vec{X} = [ xT xF .- %% ] with x; being the kth column of X and (-)7 denoting
the transpose. Let
L-1L-1 °
P; = Z Z 241214 1> (3.6)
=0 [=0

denote the forward covariance matrix, where (-)# denotes the conjugate transpose, and
ap,ir(w, ) = aj7(@) ® am (), (3.7)
with ® denoting the Kronecker product [18],

T
aM(w)z[l i .. M- | (3.8)
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and
. - . "7 - T
ay (@) = [ 1 e ... /M3 ] - (3.9)
The adaptive Capon filter passes the frequency (w, ) without any attenuation, i.e., we let
b (w,®)ap g(w,@) = 1 and minimize the output power b (w,2)Pihy(w,). The F-O
adaptive Capon filter hpg ,(w,®) has the form [10]

P;lay, M(w @)

hpQ ,(w,®) = 3.10

FOu aﬁ (@ 0)P; ay, i (w, @)’ (310)
The F-O Capon estimate of the complex amplitude o;(w, @) is given by [10]
afl _ w,® P! ZL -1 E o 2 —]{lw+(L —1-la}

SpO 4w, @) = b DPE [ B Ticg ] (3.11)

LLay; (w,)Py aM,M(w,‘D)
3.3.2 Efficient Initialization Algorithm

Direct implementation of the 2-D Capon estimator in (3.11) is computationally demand-
ing since it involves the inversion of the large dimension matrix P; and the complex am-
‘plitudes oy(w,@) at different frequency points (w,@) are calculated independently. Next,
we present an efficient batch-mode implementation algorithm, which can be used as the
initialization step of the proposed recursive Capon algorithm.

Let |

Z;, = [ Zot-L+1 ' Zr-1t-L+1 " Zog 7 ZL-Lt ] ) (3-12)

denote the data matrix formed from the forward data vectors. Then (3.11) can be rewritten

as

ay z(w, @)P;'Z:a} 1 (w, @)

6704w @) LLaf (w0, 0)P; apu(@, @)’
ci(w, )
LLdy(w,®)’ (3:13)

(1>

where

all 1 (w,®)P; ' Zsa} 1 (w, @), (3.14)
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and

dy(w, @) £ all, g (w, ®)P;  ap g (w, ). (3.15)
Direct calculation of ¢;(w, @), di(w, @), and hence dFO,t(w,u‘)) is computationally intensive.
Below we present an efficient FFT based implementation that can be used to significantly

reduce the amount of computations.

Let D, be the Hermitian square root of P;* [19], i.e.,
P;! =D,D{. (3.16)

Then ¢;(w,®) and di(w, @) can be computed in the following way:

co(w, @) = Fo(w,®)Fp(w, @), (3.17)
and
dy(w, @) = ||Fa(w, )|, (3.18)
where
Fo(w,®) = all o (w, @)Dy, (3.19)
and
Fy(w,®) = (Df'Z:) a}, 1 (w, ). (3.20)

Note that Fo(w, @) and Fg(w, ®) can be calculated efficiently via 2-D FFT. By applying FFT
whenever appropriate, significant computational savings can be achieved in constrast to the

direct implementation. Quantitative results on the speedups will be given in Subsection

3.3.4.

3.3.3 Efficient Recursive Algorithm

After initialization, &pQ , +1(w, @) can be updated from 6RO (W, @) by updating ¢;41(w, @)
and dy,1 (w, @), respectively, from c;(w, @) and d; (w,@). Our problem, like the windowed least
squares estimation problem [20], requires both updating and downdating. (Updating and
downdating are used to adjust the solution to the problem of interest when a new observa-

tion is added (updating) or an old observation is deleted (downdating).) We have found that
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significant computational savings can be achieved by applying the Matrix Inversion Lemma
[21], which has been widely used in adaptive filtering [22] and recursive system identification
[23], to update and downdate P;}; from P;*. One major feature of our algorithm is to apply
FFT whenever appropriate to further reduce the amount of computations. Below we present
our recursive algorithm.

Let G1(w, @) and dyy1 (w, @) be defined similarly to cr41(w, @) and dey1(w, @) in (3.14) and
(3.15), respectively, except that {zp4+1-2,m=0,1---,N-1,n=0,1,-- -, N —1} is replaced
by an intermediate data sequence {zn,t+1_ﬁ‘,n =0,1---,N—1,72=0,1,---,N}, which is
obtained by adding a new observation vector {z,t41,m =0,1---, N — 1} to the former data.
" Then the recursive algorithm can be summarized into two steps: (a) update &1(w,®) and
dyy1(w, @) from ¢;(w, ) and dy(w, ), respectively,. from the intermediate data sequence; (b)
downdate c;41(w, @) and dy4;(w, @), respectively, from ¢41(w, @) and di41(w, @) by removing
the oldest observation vector {z,; si2,m = 0,1+, N — 1} from the intermediate data

sequence. Hence the Matrix Inversion Lemma is applied twice for updating d’FO,t +1(w,w)
from apQ ,(w, @).

We first consider how to update Ci41(w,®) and diys(w,®) from c(w,®) and di(w,®),

respectivély.
Let
Ziy1 = [ Zogr1 Zigtl Cc BL—1t+1 ] , (3.21)
Ziyr = [ Zy Zis ] , (3.22)
Py = ZenZE, = Py + Zon 28, (3.23)

~ ~ -1
and let the L x L matrix G;;1 be the Hermitian square root of (I + Zﬁ_lP{ 1Zt+1) , i.e.,
H 5H p-17 7!
Gt‘*‘th—l-l = (I + Zt—H.Pt Zt—H.) . (324)
By using the Matrix Inversion Lemma, P;}; can be updated from P as follows

P;{}l = Pt_l - ‘I’t+1‘1’ﬁ1» (3.25)
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where

11 = P;1Z11Gir. (3.26)

Let
fo(w, @) = B a4, (@, ©); (3.27)
fy(w,®) = (2, Z;)a} 1 (w, @), (3.28)

and
fo(w) = G, a} (w). (3.29)

Then it follows that

_ A NH_lF -
G1(w,@) = aAH,I,M(w,w)PtJrlltha"i’z_i_l(w,w),

= cw,®) + £ (w,) {fo(w)e ™ - fo (w, @)}, (3.30)
and
dit1(w, @) = aﬁ,M(w"D)P;{}laM,M(w7a’),
= di(w,®) — [fa(, @), (3:31)
where || - || denotes the Euclidean norm. Note that fo(w, @), fy(w,®), and fe(w) in (3.30)

and (3.31) can be calculated efficiently via FF'T.

Now consider downdating c41(w,@) and dgy1(w, @), respectively, from Cy1(w,w) and
di11(w, ). The derivation is very similar to the previous updating process and the down-

dating process is outlined as follows. From
P =Po1 — ZepnZiiph, (3.32)
and using the Matrix Inversion Lemma once again we have
-1 5—1 F =H
Pr =P+ @ 101 ®i 141 (3.33)

where

i:'t—IZ+1 = Pt_+11 Zt—I:+1Gt—f/+17 (3-34)
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with the L x L matrix G,_j,, satisfying
~ ~H S5H _ p-15 -1
GrpnGliy = (- 2F 1 PihZirn) (3.35)

Hence c;41(w, @) and dg41(w, @) can be downdated using the following equations

e (,0) = (B (0,0) — £ () [fo(w) — fu(w,@)]} €, (3.36)

and
duta (,@) = des (w,8) + (s (@, @) (3.37)

where

fp(w, @) = B;_18h 5w, @), ‘ (3-38)
f3(w,0) = (Bl pnZe1) 8L (@), (3.39)

and
fo(w) = Gl a1 (). (3.40)

‘Note again that f5(w,®), fg(w,®), and fz(w) in (3.36) and (3.37) can be calculated efficiently
via FFT.

Once ¢y41(w, @) and diy1(w, @) have been obtained, &pQ 414 (w, @) can be calculated using
(3.13). The F-O Capon algorithm is summarized in Table 3-1.

Now we compare our recursive implementation algorithm with other possible implemen-
tations. Since F-O Capon can be interpreted as an adaptive FIR filtering approach, one
possible method is to apply the existing efficient VLSI implementation algorithms, such
as the adaptive Capon beamforming (also called minimum variance distortionless response
(MVDR) beamformer) algorithms proposed in [24, 25, .26], to obtain the adaptive Capon
filters, which are then used to calculate the complex spectrum estimate. However, this is
computationally expensive since the adaptive filters hFO,t(“)"D) must be computed for ev-
ery frequency pair (w,@) of interest and the number of desired frequency pairs tends to be
very large (e.g., 256 x 256 or larger). Our approach avoids this problem by combining the
adaptive filter calculation with the complex spectral estimation together. Another possible

way is to directly update and downdate the Hermitian square root D; of P;*. This is the
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inverse updating and downdating concept discussed in [20]. However, even without consid-
ering the overhead of updating Dy from D,, the matrix multiplication DFZ; in (3.20) is
computationally more demanding than our recursive algorithm. We have also considered
other updating and downdating techniques for different matrix factorizations [19] and found

that they are also not very suitable to our problem of interest.

3.3.4 Computational Complexity

The computational complexity of the proposed algorithm depends on the following pa-
rameters: (a) N, the number of samples in range; (b) N, the sliding window length in
cross-range; (¢) M and M, the dimensions of the 2-D adaptive FIR filter; and (d) N, and
]V,,, the dimensions of the ISAR images. For the sake of simplicity, we assume N = N,
M=M,L=N-M+1,and N, = N,. The computational complexities for the direct
implementation (without using FFT) and the proposed efficient initialization method are
compared in Table 3-II, where one flop is defined as one complex multiplication plus one
‘accumulation. The computational complexity needed by F-O Capon to update an image
is also given in Table 3-II. From Table 3-1I, it can be noted that, for the batch processing
mode, the proposed initialization method is more efficient than the direct implementation
since typically N, > M and N, > N. This improvement is achieved due to the appropriate
use of FET. The larger the ratio of N, over M, the larger the speedup ratio. The recur-
sive implementation is more efficient than the efficient initialization method. Computational
savings of the recursive algorithm come from two aspects: (a) the appropriate application
of FFT, and (b) the recursive updating and downdating of the sample covariance matrix
inversion by using the Matrix Inversion Lemma. Compared to the STFT method, the F-O
Capon algorithms are computationally more expensive. However, better performance (high
resolution, low sidelobes, reduced speckles) can be achieved with the latter [10].

With the rapid development of DSP chips, it is not enough to only count the number
of flops as a measure of algorithm efficiency. The computational kernel involved is also
very important for the implementation using DSP chips. Matrix multiplications (includ-

. GH p-17 _ p-15 H H HBH  H-17 - & . . —
ing ZE | P;'Zs11, B0 = Py 21 G, B2, &1, 25 PenZe v, Ro-Lyn =
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PrhZe 141G & ;.1 Zey1, and &, 1,187 ;,,) and FFT are the dominant parts of
the updating and downdating processes of our recursive algorithm. They can be easily and
efficiently implemented using currently available DSP chips, such as the TM-66 swiFF'T chip
[27].

3.4 Forward-Backward Capon

In this section, we first briefly review F-B Capon with emphasis on pointing out its
difference from F-O Capon. Since the deriviations of the initialization and recursive imple-
mentation of F-B Capon is very similar to those of F-O Capon, we only outline the necessary

steps.

3.4.1 Brief Review of F-B Capon

The F-O adaptive weight vector in (3.10) uses only the forward sample covariance matrix

P,. It is commonly believed that using both the forward and backward sample covariance

“matrices will lead to enhanced statistical performance. Using both the forward and backward

sample matrices has the advantages of yielding a numerically better conditioned matrix [28],

which may be an important reason to prefer it when the forward sample covariance matrix is

ill-conditioned. The method so-obtained is referred to as F-B Capon. Further performance

analysis shows that F-B Capon has smaller biases than F-O Capon [10]. Below we briefly

review the F-B Capon algorithm.

Let

P, =P, +JPTJ, (3.41)

denote the forward-backward sample covariance matrix, where J denotes the exchange matrix
whose anti-diagonal elements are ones and all the others are zero. By replacing the P; in

(3.10) with P,, the F-B adaptive Capon filter has the following form [10]:

f);laM,M(waw)

hFB,t(w’ @) = (3.42)

al 7w, )P ay i (w, @)
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The forward and backward estimate of o;(w, @) is given by [10]

ﬁle (w w)P [ZlL 01 Zl 20 Zit— —e"J{lw+(L—1—f)cD}]

A w,w 54
aFB,t( ) LLaM’M(w,W)Pt aM’M(w,u—J) ( 3)

By comparing (3.43) with (3.11), we observe that the only difference between F-O and F-
B Capon is that the forward sample covariance matrix P, of the former is replaced by its
forward-backward counterpart P,. Since f’t can be calculated efficiently from P; by using
(3.41), for the batch processing mode, the amount of computations needed by F-O and F-B
Capon is basically the same. However, as shown next, for recursive implementation, F-O

Capon is more efficient than F-B Capon.

3.4.2 Summary of the F-B Capon Algorithm

The F-B Capon estimate of a;(w,®) in (3.43) can be rewritten in the following compact

form:
. _ (w, )
(8 W,W) = —T~v" " 3.44
“ FBWO) = 177 0.5) (3.44)
where
Et(w, (I)) = afLM(w, G})f’t_lzta*L,E(w, (I)), (345)
and
dy(w, @) = all 1 (w, @)P;  ay i1 (w, @). (3.46)

Similarly to the F-O Capon algorithm, &pp , (W) éan also be updated from Gpp , (w, @)
by updating &.1(w,®) and di11(w, @), respectively, from &(w,®) and Jt(w,w). This can be
done in two steps: (a) update &41(w,®) and §t+1(w @), respectively, from & (w,@) and
dy(w, @), where ct+1(w @) and dt+1(w @) are definéd similarly to &1 (w,®) and dj1(w, @) in
(3.14) and (3.15), respectively, except that the data sequence {#z441-1=0,1---,L—1, I=
0,1,---,L — 1} is replaced by {z41-5,{ = 0,1--+,L — 1,1 = 0,1,---,L}; (b) downdate

é41(w, @) and di1(w, @) from é(w,®) and ;it(w,w), respectively.
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Before we summarize the steps needed by F-B Capon, let us first define the following

notations. Let

IR A (3.47)

denote the ({,)th backward data vector where (-)* denotes the complex conjugate and z;; |

is defined in (3.5) as the (I,I)th forward data vector. Define

Ly, = [ Zot+1 Zig+l Zr-1,6+1 ]v (3-48)

and
Z1,‘+1 = [ Zt+1 iH_l ] 3 (349)

where Z;.1 is defined in (3.21). The recursive implementation steps of the F-B Capon
algorithm are summarized in Table 3-III. Note that there is no duality between the recursive
F-O and F-B Capon algorithmssince, although the latter uses both the forward and backward
~ sample covariance matrices to calaulate the adaptive weight vectors, it uses only the forward
data vectors for amplitude estimation [10].

As pointed out before, for the batch processing mode, both F-O and F-B Capon have the
same computational complexities. However, for the recursive implementation, F-B Capon is
less efficient than F-O Capon and O (4M2L3 +10M*L + 5LN?log, N,,) flops are required
by F-B Capon to update an image, which are about twice as much as those needed by
F-O Capon. Matrix computations and FFT are still the dominant parts of the recursive
implementation, which can also be easily and efficiently implemented by using currently

available DSP chips.

3.5 A Numerical Example

We present an example to illustrate the performance of using the Capon algorithms
for ISAR imaging of maneuvering targets. The signal phase history data of a simulated
fast rotating MIG-25 airplane was provided to us by the Naval Research Laboratory. The
numbers of range and cross-range samples are 32 and 512, respectively. In this example, we

choose the sliding window length in cross-range to be N = N = 32, the adaptive filter taps
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M = M = 12, and 2-D Kaiser windows [29] with shape parameter § = 4 for the windowed
FFT and STFT methods. Figure 3.1 shows the ISAR images obtained by applying the FFT
and windowed FFT methods (with zero-padding) to the entire 32 x 512 data matrix. Note
that the images are blurred due to the time-varying Doppler shifts in cross-range. Two
examples out of the 481 time-varying ISAR images of dimension 256 x 256 obtained by using
windowed STFT, F-O Capon, and F-B Capon are shown in Figures 3.2(a)(b), (c)(d), and
(e)(f), res.pectively. Comparing Figures 3.1 and 3.2, we note that the image blurring problem
is mitigated. From Figure 3.2, it can be concluded that both F-O and F-B Capon outperform
the STFT method and F-B Capon performs better than F-O Capon.

3.6 Conclusions

We have presented a computationally efficient approach of recursively implementing both
the forward-only and forward-backward Capon algorithms for time-varying complex spectral
estimation, which has applications in the complex ISAR imaging of maneuvering targets. By
‘applying the Matrix Inversion Lemma and FFT where appropriate, the proposed approach

is computationally much more efficient than the direct implementation of the algorithms.

Acknowledgement

The authors would like to thank Dr. V. C. Chen for providing us the simulated MIG-25

airplane data.

Reference

[1] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. Norwood, MA, USA: Artech House, Inc., 1995.

[2] C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson,
Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell, MA:
Kluwer Academic Publishers, 1996.

(3] R.—Klemm, «Current trends in SAR technology,” IEEE Aerospace and Electronic Sys-
tems Magazine, vol. 12, no. 3, pp. 3-8, March 1997.

49




[4] M. T. Fennell and R. P. Wishner, “Battlefield awareness via synergistic SAR and MTI
exploitation,” IEEE Aerospace and Electronic Systems Magazine, vol. 13, no. 2, pp. 39-
45, February.

[5] R. Voles, “Resolving revolutions: imaging and mapping by modern radar,” IEE Pro-
ceedings, Pt. F, vol. 140, no. 1, pp. 1-11, February 1993.

[6] S. R. DeGraaf, “SAR imaging via modern 2-D spectral estimation methods,” SPIE
Proceedings on Optical Engineering in Aerospace Sensing Orlando, FL, April 1994.

[7] S. R. DeGraaf, “SAR imaging via modern 2-D spectral estimation methods,” IEEE
Transactions on Image Processing, vol. 7, pp. 729-761, May 1998.

[8] A. W. Rihaczek and S. J. Hershkowitz, Radar Resolution and Complez-Image Analysis.
Artech House, Inc., 1996. '

[9] J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proceedings of
IEEE, vol. 57, pp. 1408-1418, August 1969.

[10] H. Li, J. Li, and P. Stoica, “Performance analysis of forward-backward matched-
filterbank spectral estimators,” IEEE Transactions on Signal Processing, vol. 46, no. 7,
pp. 1954-1966, July 1998.

[11] G. R. Benitz, “Adaptive high-definition imaging,” SPIE Proceedings on Optical Engi-
neering in Aerospace Sensing, Orlando , FL, April 1994.

[12] G.R. Benitz, “High definition vector imaging for synthetic aperture radar,” Proceedings
of the 81st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
November 1997.

[13] L. M. Novak, G. R. Nenitz, G. J. Owirka, and L. A. Bessette, “ATR performance
using enhanced resolution SAR,” SPIE Proceedings on Optical Engineering in Aerospace
Sensing, Orlando , FL, pp. 332-337, April 1996.

[14] L. M. Novak, G. R. Nenitz, and G. J. Owirka, “Classifier performance using enhanced
resolution SAR. data,” Proceedings of the IEE International Conference on Radar, Ed-
inburgh, UK, pp. 634-638, October 1997.

[15] V. C. Chen, “Time-frequency based ISAR image formation technique,” Proceedings of
SPIE:Algorithms for Synthetic Aperture Radar Imagery IV, pp. 43-54, April 1997.

50




[16] F.Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal
representations,” IEEE Signal Processing Magazine, pp. 21-67, April 1992.

[17] P. Stoica, A. Jakobsson, and J. Li, “Capon, APES and matched-filterbank spectral
estimation,” Signal Processing, vol. 66, no. 1, pp. 45-59, April 1998.

[18] A. Graham, Kronecker Products and Matriz Calculus with Applications. Chichester,.
UK: Ellis Horwood Ltd., 1981.

[19] G. H. Golub and C. F. Van Loan, Matriz Computations. Baltimore, MD: The John
Hopkins University Press, 1996.

[20] A. Bjorck, H. Park, and L. Eldén, “Accurate downdating of the least squares solutions,”
SIAM Journal on Matriz Analysis and Applications, vol. 15, no. 2, pp. 549-568, April
1994. '

[21] W. W. Hager, “Updating the inverse of a matrix,” SPIE Review, vol. 31, no. 2, pp. 221-
239, June 1989.

[22] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[23] L. Ljung and T. Soderstrém, Theory and Practice of Recursive Identification. Cam-
bridge, Massachusetts: The MIT Press, 1983.

[24] J. G. McWhirter and T. J. Shepherd, “Systolic array processor for MVDR beamform-
ing,” IEE Proceedings, Pt. F, vol. 136, no. 2, pp. 75-80, April 1989.

[25] M. Moonen, “Systolic MVDR beamforming with inverse updating,” IEE Proceedings,
Pt. F, vol. 140, no. 3, pp. 175-178, June 1993.

[26] S. M. Yuen, “Exact least squares adaptive beamforming using an orthogonalization net-
work,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, no. 2, pp. 311-
330, March 1991.

[27] TM-66 swiFFT chip, Texas Memory Systems, Inc., 1998.

(28] P. Stoica and T. Séderstrom, “On a novel subspace-based approach to parameter es-
timation,” Digital Signal Processing: A Review Journal, vol. 5, no. 4, pp. 237-242,
October 1995.

[29] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

51




TABLE 3-1
SUMMARY OF RECURSIVE F-O CAPON

Step 1: Initialization

Compute P; = ZlL 01 Y Z s 12 lHt_.p

Compute P;* and find its Hermitian square root Dy;
Compute:

Folw,@) = aM M w, @)Dy

Fy(w,®) = (D )azi :

cr(w, @) = Fo(w,@)Fp(w, 0 )

di(w, @) = ||Fa(w, )|

Step 2: Updating &1 (w,®) and dyy1(w,®)

Compute (I +ZE. Py 1Zt+1)—1 and find its Hermitian square root Ggy1;
Compute:

&41 = P; ' 241 Gry1;

P=P' - P11 9705

fo(w,®) = 87,1285 5 (W, @);

fo(w,®) = (871 Zs)ay 1 (w, @);

fo(w) = G aL(w);

Update:

et (w, @) = ci(w, @) + 17 (0, D) {fg(w)e il _ fy (w, w)}
di1(w, @) = di(w, @) — |[fa(w, D)I"

Step 3: Downdating ci41(w,®) and diys(w, )

~ — ~ -1 —
Compute (I - Z{f L +1P;}1Zt_i+1) and find its Hermitian square root G;_f11;

Compute:

@, 7.1 —Pt+1Zt L+1Gt I+1)

Pt = Pt+1 ~Z, L+1Zt L+1)

fa(w, ) = P, L+1aMM(w @);

fy(w,@) = (@5L+1Zt+l) aj 741 (@, @);

fa(w) = Gy aL (W)

Downdate:

e (@,@) = {1 (,0) — B (w,) lfo(w) — fa(w, B)]} %
11 (w, ®) = disa1(w, @) + [fz(w, @ )|

Step 4: Computing &pQ 4, (W, ) = 1% dt:"(’:’,w)

El
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TABLE 3-11
COMPARISON OF COMPUTATIONAL COMPLEXITIES

STFT or windowed STFT: O (%Ng log, Np) flops

Direct Implementation: O (M 2(M?+ L2)N3) flops

Efficient Initialization: O (7M 6+ 3M*L% + M?N} log, Np) flops
Recursive F-O Capon: O (2M 2[% + 4M*L + 2LN? log, Np) flops
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TABLE 3-111
SUMMARY OF RECURSIVE F-B CAPON

Step 1: Initialization ,
Compute P; = Ez " S g rzlt ; and P, = Pt—I—JPfJ;
Compute P;! and find its Hermitian square root D
Compute:

Fo(w,@) = alj ;(w,®)Dy ;

Fp(w,@) = (DtHZt)vaZ,E(W,D);

é(w,®) = Fo(w, w)Fﬁ(w @);

dy(w,®) = ”Fa(w w)ll

Step 2: Updatmg ry1(w, @) and dt+1(w @)

Compute (I + Zt +1Pt Zt+1) and find its Hermitian square root Gt+1,

Compute:

&, =P;! Zt+lG’t+17
5 —1

P, =P - ‘I’t+1‘1’t+1,
fy(w, ) = q)t+1aM (@, ®);

_ H 5
£y (0, @) = (<I>t+1zt+1) 11 (w0, 0);
f2(0,3) = (Z5.P77) ahy i (@, @);
ypdate: .
i1 (W, @) = &(w, @) + 1 (w, @)a} (w)e I — £f (w, 0)fy (w, @);
Toun (@) = di(, @)~ || T5(,3) 2.
Step 3: Downdating &1 (w,®) and di1(w, @)

1

= H 5—1 = - -
Compute (I —Zy 11 P12t +1) and find its Hermitian square root G;_z1;

"i

fz(w,(D) =
Downdate:
b1 (w,@) = {—ét+1(w @) — f1(w, @)a al (w) + fg(w,w)f&,(w,w)} e’?;
do11(0,8) = dos (0, @)+ | £, @) [

N _ & w,w
Step 4: Computing &pp, +1(w @) = —I:I—L%;_:i_(_w,%)-'
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Figure 3.1: Blurred ISAR images of a simulated moving MIG-25 airplane obtained by using
(a) the FFT and (b) the windowed FFT.
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Figure 3.2: Two examples out of the 481 time-varying ISAR images of a simulated moving
MIG-25 airplane obtained by using (a)(b) 2-D windowed STFT, (c)(d) 2-D F-O Capon, and
(e)(f) 2-D F-B Capon.
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4. Time-Varying Complex Spectral Estimation with
Application to ISAR Imaging

4.1 Introduction

Complex spectral estimation is very important for many applications including synthetic
aperture radar (SAR) and inverse synthetic aperture radar (ISAR) imaging and feature ex-
traction of stationary or moving targets [1]. Two widely used methods for this problem
are the fast Fourier transform (FFT) approach and the Capon method [2]. Recently, a
new approach, which is referred to as APES (Amplitude and Phase EStimation) was pro-
posed in [3]. Both APES and Capon make use of adaptive FIR (finite impulse response)
filters and belong to the class of matched filterbank spectral estimators. They can yield
spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT
method. Further analysis results show that the Capon estimates are always biased down-
ward whereas the APES estimates are unbiased (to within a second-order approximation)
[4]. The theoretical results therein supplemented with the empirical observation that Capon
usually underestimates the spectrum in samples of practical length while APES is nearly
unbiased are believed to provide a compelling reason for preferring APES over Capon.

In SAR/ISAR, the high range resolution can be achieved by transmitting signals with
large bandwidth, whereas high resolution cross-range discrimination is obtained through the
relative motion between the target and the radar to form a large synthetic aperture. As
pointed out in [5], in SAR/ISAR, motion is the solution and the problem. This statement
is especially true for ISAR imaging. In ISAR, the synthetic aperture is formed through the
noncooperative motion of the targets. Most ISAR imaging algorithms are based on the range-
Doppler processing, which implies that the Doppler shifts nearly remain constant during the
coherent integration interval. Unfortunately, for maneuvering targets, this assumption is
more often than not violated. This observation has motivated the use of various time-varying
spectral analysis methods to ISAR imaging of maneuvering targets [6].

Short-Time Fourier Transform (STFT) is the simplest way for time-varying complex

spectral analysis [7]. Major drawbacks associated with STFT include poor resolution and
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accuracy and high sidelobes. The Wigner-Ville Distribution (WVD) method [7] is another
popular time-frequency analysis approach which exhibits better resolution than STFT. How-
ever, it suffers from the the cross-term interference problem that occurs when multiple signals
exist together. Moreover, WVD, including its modifications {8, 9], belongs to the family of
quadratic time-frequency representation methods and hence cannot be used for the complex
spectral estimation problem considered herein.

In this chapter, we attempt to apply the APES algorithm to sliding short-time data se-
quences with maximal overlapping for the time-varying complex spectral analysis. The direct
‘application of APES to each data sequence is computationally prohibitive. A computational-
lly efficient recursive APES algorithm is developed in this chapter, which involves only FF'T
and simple matrix operations. It exhibits much better resolution than STFT. ISAR imaging
examples show that it can successfully circumvent the imaging blurring problem caused by
target maneuvering.

The remainder of this chapter is organized as follows. In Section 4.2, we formulate

_the problem of interest. Efficient recursive implementations of one- and two-dimensional
APES algorithms are given in Sections 4.3 and 4.4, respectively. In Section 4.5, we present
several numerical and experimental examples showing both the imaging quality and the
computational efficiency of the proposed implementations. Finally, Section 4.6 gives our

conclusions.

4.2 Problem Formulation

Let {y;_n}2- denote a one-dimensional (1-D) discrete-time data sequence within a slid-
ing window of length N ending at time instant ¢. For a frequency w of interest, y;_, can be

written as

Yoo = ()N gy (W), n=0,1,---,N -1, (4.1)

where o;(w) denotes the complex amplitude of a sinusoid with frequency w at time instant ¢
and w;_,(w) denotes the unmodeled noise and interference at frequency w. The problem of

interest herein is to estimate oy(w) from {y; ,}2=g for all w of interest as t varies.
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Let {zyt-a,n = 0,1,---,N -1, = 0,1,---,N — 1} denote a two-dimensional (2-D)
discrete-time data sequence within a sliding window of size IV X N ending at time instant ¢.
(In ISAR, ¢ is related to the position in cross-range and is referred to as slow time.) For a

frequency pair (w,®) of interest, z,t—» can be written as

Znpn = op(w, @) AT Loy o(w,@), n=0,1,---,N-1,2=01--,N—1,

(4.2)
where o (w,®) denotes the complex amplitude of a 2-D sinusoid with frequency (w,@) at
time instant ¢ and wy —»(w,®) denotes the unmodeled noise and interference at frequency
~ (w,®). The problem now is to obtain the estimate of o (w,@) from the 2-D data sequence
{#zap-2,m=0,1,---,N=1,7=0,1,-- ., N—1} forall (w, @) of interest as t varies. One of the
applications of this topic is ISAR imaging of maneuvering targets or wide-angle ISAR imaging
after standard motion compensation [10, 11]. In ISAR imaging applications, cx(w, @) would
be proportional to the RCS of a scatterer of a moving target located at a range proportional
to w and cross-range proportional to @ at time instant {.

STFT is the simplest method for estimating a;(w) from {yo—n} or ay(w,w) from
{zat-a,n=0,1,---,N-L = 0,1,---, N —1}, respectively. However, the STFT method is
known to suffer from poor resolution and accuracy and high sidelobes. The Capon and APES
algorithms are effective in reducing the sidelobes and improving the resolutions and APES
outperforms Capon in the estimation accuracy. We can apply APES to the short-time data
sequences for the purpose of time-varying complex spectral estimation. However, the direct
application of APES to each data sequence is computationallly intensive. We must exploit
the maximally overlapping features of the short-time data sequences to achieve significant
computational savings.

Two versions of the APES algorithms may be considered, i.e., the forward-only and
forward-backward APES. It is commonly believed that the forward-backward algorithms
have better performance than their forward-only versions, such as for Capon. However,
theoretical analysis of the estimation performance and empirical evidence show that the

forward-backward APES is not significantly better than the forward-only counterpart [4]
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and the recursive version of the former is not significantly faster than the direct use of the
former. Hence only the forward-only APES algorithm will be considered in this paper. We
shall consider efficient recursive APES algorithms for the aforementioned 1-D and 2-D data

sequences in the following sections.

4.3 1-D Recursive APES
4.3.1 Overview of the 1-D APES Estimator
‘Let M denote the number of taps used by the 1-D APES adaptive FIR filter and

T
Yi—l = | Ye—l-M+1 Yt—i-M+2 °°° yi—l] , 1=0,1,---,L—1, (4-3)

be the overlapping vectors of the 1-D data sequence, where L = N — M +1 and ()T denotes
the transpose. Let

R; = I?:,j Ye-1¥ii (4.4)
gw) = 3" 31 I, (45)

and -
Q:i(w) = R, — gi(w)ef (w)/L, (4.6)

where (-)¥ denotes the conjugate transpose. Then the APES estimate of o (w) has the form

[3]:

A | a0 Waw)
SAPES: () = Lol 0)Qr (@)au(w) )

where ,
T
aw@)=[1 & - ej(M—l)w] . (4.8)

4.3.2 Efficient Initialization Method

Now we consider how to efficiently calculate &ppgg,(w) in a non-recursive way [12).
It can be used as the initialization method for the recursive algorithm that follows or as a

separate time-varying APES estimator working at the batch mode.
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According to the matrix inversion lemma, we have

R;'g:(w)gf (w)R;*

Q'(w)=R;'+

Let
Yi=| yi-r+1 Yi-L+2 " Yt |>
b(w) = ap(W)R; am(w),
a(w) = ajr(w)Ry Y (W),
and

di(w) = al YFR; Y, a (w).
Then we can then rewrite (4.7) as

c(w)

L-gf(w)R; g(w)

&APES, W) = be(w) [L — dy(w)] + |es(@)*

(4.9)

(4.10)
(4.11)

(4.12)

(4.13)

(4.14)

The remaining problem is how to calculate b;(w), c;(w), and d;(w) in an efficient way. Let

-C, be the Hermitian square root of Ry, i. e.,

R;! = C,CI.

(4.15)

Then by(w), ¢;(w), and di(w) can be cauculated efficiently via FFT in the following way

by(w) = [Fa(@)|,
ci(w) = Fao(w)Fp(w),
di(w) = IFs()II",

where
F, (w) = af\I/I (w) Ci,

and
Fs(w) = (CI'Y,) ai().

Note that both F,(w) and Fg(w) can be computed via FFT.
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(4.17)

(4.18)

(4.19)

(4.20)




Compared to those intuitive implementation schemes that do not use FFT to calculate the
APES estimates, such as the one used in [4], the computational efficiency can be considerably
improved by the above implementation approach. The larger the number of frequencies of
interest in the complex spectrum, the larger the improvement. If we use the above scheme
as a separate time-varying APES estimator, it is still computationally expensive. Below we
describe how to calculate é4.1(w) from é&;(w) by taking advantage of the fact that the short-
time data sequences at t and ¢+ 1 are maximally overlapped to achieve more computational

savings.

' 4.3.3 Recursive Implementation

Note that by using (4.14), & pES ,4(w) can be updated from & APES,(w) by updating
bey1 (W), Cop1(w), and diy1(w), respectively, from by (w), ¢;(w), and di(w).

Below we discuss how to update by(w), ce(w), and dy(w) as ¢ varies. Let by (w), Eq1(w),
and dy;1(w) be defined similarly to byy1(w), ct41(w), and dzy1(w) in (4.11), (4.12), and (4.13),
-respectively, except that the data sequence {yer1-1}1= is replaced by {yes1-1}Eo- We first
consider how to update by 1(w), E1(w), and di1(w), respectively, from by(w), ci(w), and

di(w). We then update by1(w), ciq1(w), and diy1(w) from 5t+1(w),l Gry1(w), and dit1(w),

respectively.
Let
Y = [ Y: Vit ] , (4.21)
and
Riy =Y Yi, =R + Yet1Yer1- (4.22)

Then according to the matrix inversion lemma, 1_?1111 can be calculated from R;? as follows:

= _1 -1 . "?t+1"l{i1
R =Ry — Tt iy’ (4.23)
where
M1 = R;'Yer1s (4.24)
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and

_ WH p-1 B :
i1 = Yt+1Rt Yi+1 = Yitr1Tt+1-

Using (4.23) we obtain

- B
12 —ILe — Fy(w
Ei1(w) = crlw) + ) [i v ( )], ,

and

2 *
Jt-}-l(w) — dt(w) + Pi1 — |F‘¢'(w)| + 2Re{ F,/,(w) e._jLw} ’

1+ ¢p1 1+ ¢4

where Re(z) denotes the real part of z,

and
F¢ (w) = 1/’51132(“)):

with
¢t+1 = YtH'ﬂt+1-

Note that (4.29) and (4.30) can be computed efficiently via FFT.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Now consider how to update b1 (w), ci+1(w), and dip1(w), respectively, from b1 (w),

Zr41(w), and diq(w). Since

_n o
Riv1 = Rep1 — Ye-oa1¥Vior+1

we have
— —H
-1 _pH-1 N—r+1M—L+1
R, =Ry, + T—d
— 41

where

_ _ R_l

Ni—r+1 = N1 Yt-L+1H
and

- __H = 1 L H —
¢1-r+1 = ViR Y141 = YipaaMe—r1-
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(4.33)

(4.34)

(4.35)



Using (4.33), we obtain

b1 (w) = b (W) + %—1 (4.36)
ceri(w) = {ém(w) - Fﬁ(c:)_[l(g—t_ f‘i(w)] } e, (4.37)
and ) ,
dip1 () = di (W) + ¢t“i+igtl_i‘i(lw)| — 2Re {1—_%&%} (4.38)
where
Fy(w) = ajg(@)fy-r415 (4.39)
and
Fy(w) = 9710}, ), (4.40)
with
Yo = Yif-p- (4.41)

Note again that (4.39) and (4.40) can be computed efficiently via FF'T.

From the above derivations, we note that & A pgg ,,,(w) can be updated from & APES ;(w)
efficiently via simple matrix operations and FFT. Compared to the non-recursive implemen-
tation scheme discussed in the previous subsection, the computationally demanding matrix
inversion is avoided. The speed-up ratio of the recursive versus non-recursive implementa-
tions depends on M, the number Ny, of frequencies of interest in the complex spectrum,
and N. The larger the M, the larger the speed-up ratio. We will give some quantitative

results on the speed-up ratio in Section 5.
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4.4 2-D Recursive APES

4.4.1 Overview of the 2-D APES Estimator

Assume that APES uses an (M x M)-tap 2-D adaptive FIR filter. Let

2y t-T-M+1 2yt M+2 T 2y -1
241 - M+1 241, t—I—M+2 o gl
Zyy 1= _ _ (4.42)
| ZiyM-1-T-M+1 BlAM-L1g--M+2 T 24 M-1t-T |

be the overlapping matrices of the 2-D data sequence and

Zy 4 [ = VeC {Z,,t_g} , (4.43)
T
where vee{X} = [ xI' xI ... xk ] with x; (1 < k < K) being the kth column of X.
Let ' _
L-1L-1 u
P, = Z Z 2y 12yt (4.44)
=0 =0
I-1L-1 ‘ o '
g(0,0) = 3 3 7y ge G109, (4.45)
=0 =0
and
Qt(waw) = Pt - gt(w7&))gtH(w7(‘—))/(z’L)7 (446)

with ® denoting the Kronecker product [13], L=N — M +1,and L = N — M + 1. Then
the APES estimate of oy (w,®) is given by [3]

a M(U), ‘D)Qt_l(w? “_))gt(wv ‘D)

~ _ M
& w,w) == : " — —, 4.47
APES: (@) = Tl (6, 2)Q; (@, @) (@, @) (447)

where

apir(w, @) = ag () ® ap(w). (4.48)
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4.4.2 Efficient Initialization Method

Now we consider how to efficiently calculate &5 pEg,(w,®) in a non-recursive way [12].
It can be used as the initialization method for the recursive algorithm that follows or as a

separate time-varying APES estimator Working at the batch mode.

Let
Z,= [ Zot—Ff+1 zL—l,t;I:-H st Zog vt ZL-1t ] ) (4.49)
bi(w, @) = aﬁ’M(w,w)PglaM’M(w,w), (4.50)
ci(w,®) = aly (w,w)P;'tha’i,L(w,w), (4.51)
and
dy(w, @) = af ;(w,@)Z{ Py Zea], 1 (w, @) (4.52)
By using

_Pt—lgt(w,w)gfl(w,w)}');l
LL — gf (w,®)P; 'gi(w, @)’

Q! (w,@) =Py + (4.53)
we can then rewrite (4.47) as

ci(w, @) _
EL - dt(w’w)] + Ict(wiw)|2

& w,w) = 4.54
APES (@, ®) w3 | (4.54)

The remaining problem is how to calculate b;(w, @), ¢;(w, ), and d(w, ) efficiently. Let D,

be the Hermitian square root of P;7, i.e.,
P;! = DD (4.55)

Then bt(a), @), ¢;(w,@), and di(w,®) can be computed via 2-D FFT in the following way

bt(w>w) = I|Fa(w;w)|l2a (4'56)
ct(w, @) = Fo(w,0)Fg(w,w), (4.57)
dt(u)?‘:)) = ”Fﬂ(wa“-))W? (4'58)
where
Fa(w,cb) = aAH,I,M(w,cD)Dt, (459)
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and
Fy(w,) = (D Z;) a} 1 (w, ). (4.60)

Note that Fo(w,®) and Fg(w,®) can be calculated efficiently via 2-D FF'T.

4.4.3 Recursive Implementation

Similarly to the 1-D case, &APpPES; +1(w,‘c7)) can also be updated from &ppgg,(w,®)
by updating b1 (w, @), ce+1(w, @), and diy1(w, @), respectively, from bi(w, ), ct{w, @), and
di(w, @).

Let by1(w,®), Gs1(w,®), and diyq(w,@) be defined similarly to byt (w,®), c41(w,®),
and dyi1(w,®), in (4.50), (4.51), and (4.52), respectively, except that the data sequence
{2410 =0,1---, L - 1,1 = 0,1,---,L — 1} is replaced by {z;,1,_5,0 = 0,1--+,L, I =
0,1,---,L}. We first consider how to update b1 (w, @), Ep1(w,®), and dir(w, @) from
b(w, @), ¢;(w, @), and dy(w, ), respectively.

Let

Ziy = Zot+1 Zig+1l ZL—l,t+1]7 (4-61)

Pt_*.]_ - Pt + ZH—I Zt}_IH, (462)

and let the L x L matrix Gy be the Hermitian square root of

~ ~ -1
(I + Z{_I*_IP;IZH_l) 5 i.e.,
~ ~ -1
GGl = (T+ 28, P Zyy1) (4.63)

Then Py} can be updated from P;" as follows

P =P - &.u%0, (4.64)
where
‘bt—{—l = Pt_lthGtH. (465)
Let
Ziy = [ Zy Zipy ] : (4.66)
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Using (4.64) we have

b1 (w,0) = bi(w, @) — Ifa (@, @), (4.67)
Cor(w, @) = c1(w, @) + 15 (0,8) {GE 8] (w)e 7 — fu(w, @)}, (4.68)

and

Bopr (0, @) = do(w,®) +a] (W)L Pl Zenal (W) — [1fe (w, @)|* +
+2Re {fq, w, @) GtHaL(w)e"ﬁ"I’}, (4.69)
where

fo(w, @) = B7,,8}, 7w, @), (4.70)

and
fy(w, @) = ¥} p(w, ), (4.71)

with
U,y =87, Z,. (4.72)

Note that (4.70) and (4.71) can be efficiently calculated via 2-D FFT and other terms
appeared in Equations (4.67) through (4.69) can be calculated via 1-D FFT and simple
matrix operations.

Now consider updating b1 (w,®), cer1(w, @) and diy1 (w, @) from be (W, @), Ery1(w, @)

and dg41(w, @), respectively. From

Py =Py — Zt_i+1zﬁi+1, (4.73)
we get
- 5— = = H
P =P+ @ 111 ® 141, (4.74)
where
&, 111 =PiZ 141G 41, (4.75)

— -1
with the L x L matrix G,_j, being the Hermitian square root of (I Zt i +1Pt +1Zt L+1) ,
i.e.,

~ _ -1
Gt L+1Gt L+1— (I" Z£E+1Pt4}1zt—i+1) . (4.76)
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Hence we have

bist (@, @) = b (w, @) + |Ifis (0, @) I, (4.77)
ceir(w, @) = {Ca (w, @) — f (0,0) |G p 8L (W) - fy(w,@)]} e, (4.78)
and
dis1(w, @) = da(w, @) + a%‘(w)zg—i+1pt_-i-llZt—fl+1a2(w) + Ilf@(w,w)llz
~2Re {ff (w,®)G{ 12} W)}, (4.79)
where
f3(,0) = &,_pnaln(@,), (4.80)
and |
fy(w,@) = ‘i't_z+1a2,z+1(w,w), (4.81)
with
B, p =B 2o (4.82)

From the above derivations, we note again that &:1(w,) can be updated efficiently

from 64(w, ) via FFT and simple matrix operations.

4.5 Numerical and Experimental Examples

Now we present several numerical and experimental examples to illustrate the perfor-
mance of the proposed APES algorithm for 1-D and 2-D time-varying complex spectral
analysis. In the following examples, we choose M and M of APES, respectively, to be the
nearest integers of N/2 and N/2. We compare the performance of APES with that of the
STFT and the windowed STFT approaches. For the windowed STFT method, we use the
Kaiser window with parameter 3. All 1-D and 2-D sequences are zero padded to 256 and

256 x 256, respectively, before using FFT.
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EXAMPLE 1. First consider a 1-D simulated example. The data sequence is generated

as follows:

4
y=3 2O Ly, t=0,1,---,231, - (4.83)

i=1
where fi(t) = —0.08 — i Hz, folt) = —0.02 + s Hz, fi(t) = —0.02 — 5t Hz,
fa(t) = 0.08+ 4—X—t@ Hz, and w; is the zero-mean white complex Gaussian noise with variance
o? = 0.01.

Figures 4.1(a) through (d) show, respectively, the true spectrum of the signal as a function
of time ¢ and its estimates obtained by using 1-D STFT, 1-D widowed STFT, and 1-D APES
~ with maximally overlapping short-time data sequences of length N = 32. It can be noted

that the APES method gives much better spectral estimates than the STFT and windowed
STFT methods.

EXAMPLE 2. Now consider the ISAR imaging of a simulated fast rotating MIG-25
aircraft. The 32 x 512 data matrix was provided to us by the Naval Research Laboratory.
The two examples out of the 481 time-varying ISAR images obtained by using 2-D STFT,
-9-D windowed STFT, and 2-D APES with maximally overlapping short-time 32 x 32 data
matrices are shown in Figures 4.2(a)(d), (b)(e), and (c)(f), respectively. Note again that
APES outperforms the STFT and windowed STFT methods.

EXAMPLE 3. Finally consider the ISAR imaging of a moving helicopter. The 64 x 512
. experimental data matrix was also provided to us by the Naval Research Laboratory. The
one example out of the 449 time-varying ISAR images obtained by using 2-D STFT, 2-
D windowed STFT, and 2-D APES with maximally overlapping short-time 64 x 64 data
matrices are shown in Figures 4.3(a) through (c), respectively. The conclusions drawn from
this experimental example are similar to those from the previous simulated examples. Note
that there are horizontal blurred strips in the images, which are caused by the fast rotating
rotors of the helicopter.

The above three examples have demonstrated the estimation performance of the recursive
APES algorithm. Now we consider the computational benefit of the proposed recursive

APES algorithm. Since both the non-recursive (referred to as the efficient initialization
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discussed in Sections 4.3.2 and 4.4.2) and recursive APES algorithms proposed in this paper
fully utilize the efficient FFT for the spectral estimation, they can save a lot of computations
compared to those intuitive implementation schemes, such as the one used in [4]. The larger
the number of frequencies of interest in the complex spectrum, the more significant the
computational savings. Below we give some quantitative results for the speed-up ratios of
the recursive versus non-recursive algorithms in different scenarioes obtained by running our
MATLAB codes. |

For the 1-D case, we assume that N = 2M and the number of frequencies of interest
in the complex spectrum is denoted by Nmax- For the 2-D case, we use Npax and Noax as
the dimensions of the ISAR images and choose Npax = Voiax, N = 2M, N = 2M, and
M = M. The speed-up ratios are listed in Table 4.1. Note that the speed-up ratio goes
up as M becomes larger. Also, the smaller the Nmax, the larger the speed-up ratio. This
can be explained as follows. The entire computational cost of the non-recursive algorithm
is mainly composed of two parts, the matrix inversion and the FFT operations. The high
efficiency of FFT operations is shared by both the non-recursive and recursive algorithms
and the resursive algorithm is mainly used to reduce the computational overhead of the
matrix inversion. When M becomes larger or Nmax gets smaller, the computational cost of
matrix inversion becomes the dominant part and hence the speed-up ratio goes up.

Finally, we remark that like many other adaptive least-square filtering algorithms dis-
cussed in [14], the roundoff errors due to the use of finite-precision arithmetic may pose a
potential problem of numerical instability after a long recursive time interval. In this case,

a periodic reinitialization procedure can be used to cure this problem.

4.6 Conclusions

We have presented a computationally efficient way of implementing APES recursively for
time-varying spectral analysis, which involves only FFT and simple matrix operations and
great computational savings can be achieved by fully exploiting the maximally overlapped

short-time data sequences. Both numerical and experimental examples have shown that the
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recursive APES method can perform much better than the short-time FF'T' methods for

ISAR iamging and feature extraction of maneuvering targets.
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(c) (d)

Figure 4.1: Comparison of (a) the true spectrum as a function of time with its estimates ob-
tained by using (b) 1-D STFT, (c) 1-D windowed STFT, and (d) 1-D APES with maximally
overlapping short-time data sequences of length N = 32.
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(a) (b) (c)

(d) () . (f)

Figure 4.2: Two examples out of the 481 SAR images of a simulated moving MIG-25 airplane
obtained by using (a)(d) 2-D STFT, (b)(e) 2-D windowed STFT, and (c)(f) 2-D APES with
maximally overlapping short-time 32 x 32 data matrices.
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(a) (b)

Figure 4.3: One example out of the 449 SAR images of a moving helicopter obtained by using
(a) 2-D STFT, (b) 2-D windowed STFT, and (c) 2-D APES with maximally overlapping

short-time 64 x 64 data matrices.

Table 4.1: Speed-up ratios of recursive versus non-recursive APES algorithms for (a) the 1-D

case and (b) the 2-D case.
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Npax = 32 | Npax = 64 | Npax = 128 | Niax = 256
M =16 22 17 13 10
M =32 47 39 33
M =64 99 88
M =128 204
(a)
Niax = 32 | Npax = 64 | Npax = 128 | Nyax = 256
M =16 20 16 11 8
M =32 43 39 29
(b)




5. A Semi-Parametric Spectral Estimation Approach to SAR
Target Feature Extraction and Image Formation

5.1 Introduction

Synthetic aperture radar (SAR) image formation and target feature extraction play an
important role in many applications including the battlefield awareness [1]. The conventional
Fourier transform based methods are known to be computationally efficient and robust, but
suffer from poor resolution, poor accuracy, and high sidelobes. Many modern spectral esti-
mation methods have been devised and applied to target feature extraction and SAR image
formation to improve resolution and accuracy, while reducing sidelobes. In [2, 3], many para-
metric and nonparametric spectral estimation methods are compared and discussed for their
advantages and disadvantages for SAR image formation. The nonparametric methods that
have been used fof SAR image formation and target feature extraction include, for example,
the reduced-rank variétions of the Capon method [4, 5, 6], the adaptive sidelobe reduction

-approaches [7], and the matched-filter bank based complex spectral estimation methods [8]
including the Capon [9] and APES (Amplitude and Phase EStimation) [10] methods. The
parametric methods that have been considered include, for example, autoregressive (AR)
model based methods [11, 12], eigendecomposition based methods [4, 5, 6, 13] including
MUSIC [14] and ESPRIT [15], and nonlinear least squares (NLS) fitting based methods
[16, 17]. In general, parametric algorithms outperform their nonparametric counterparts in

resolution and accuracy but are more sensitive to data modeling errors.

Most of the parametric SAR target feature extraction algorithms are based on the two-
dimensionai (2-D) complex sinusoidal data model with constant amplitude and phase in
both range and cross-range by assuming that the target consists of several trihedral corner
reflectors (ideal point scatterers). This assumption is not always valid in practice. For
example, for many man-made targets, especially vehicles and buildings, much of the returned
energy is primarily caused by the dihedral, in addition to the trihedral, corner reflectors of
the target [18]. In general, the constant amplitude and phase complex sinusoidal data model

is basically valid in range. However, it is more difficult to establish a good parametric data
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model in cross-range. An ideal trihedral corner reflector can be modeled as a complex sinusoid
with a constant amplitude and phase in cross-range. An ideal dihedral corner reflector can
be approximately modeled in cross-range as a complex sinusoid with amplitude described
by a sinc (sin(z) /z) function and a constant phase. In [17], a mixed data model using
both constants and sinc functions in cross-range was considered and a parametric algorithm,
referred to as the RELAX-NLS (RELAXation based NLS) algorithm, was presented for
the feature extraction of targets consisting of both trihedral and dihedral corner reflectors.
Due to the sophisticated data models used, RELAX-NLS is computationally demanding. In
addition, like many other parametric spectral estimation algorithms, RELAX-NLS is not as
robust as nonparametric approaches against data modeling errors.

In this chapter, instead of using the aforementioned approximate dafa models in cross-
range, we use a more flexible data model, which models each target scatterer as a 2-D
complex sinusoid with arbitrary amplitude and constant phase in cross-range and with con-
stant amplitude and phase in range. Due to the arbitrary amplitude assumed in cross-range,
‘the data model is essentially semi-parametric and the algorithm based on such a flexible
data model is more robust against data modeling errors than parametric methods. A new
algorithm, referred to as the SPAR (Semi-PARametric) algorithm, is presented for the SAR
target feature extraction and high resolution image formation. By taking advantage of both
parametric and nonparametric spectral estimation methods, SPAR exhibits better estimation
and resolution performance over nonparametric approaches and is more robust against data
modeling errors than parametric methods. By attempting to deal with one corner reflector
at a time, SPAR can be used to effectively mitigate the artifact problem encountered in the
high resolution SAR image formation due to the flexible data model. Another advantage
of SPAR is that it can be used to obtain the initial conditions néeded by other parametric
algorithms, such as RELAX-NLS, to reduce the total amount of computations required to
extract target features.

The remainder of this chapter is organized as follows. Section 5.2 formulates the problem
of interest. Section 5.3 discusses the possible ambiguity problems of the flexible data model

and their effects on SAR target feature extraction and high resolution image formation. In
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Section 5.4, the SPAR algorithm is presented. A modified RELAX-NLS algorithm is pre-
sented in Section 5.5. Section 5.6 illustrates the performance of the proposed algorithm with

both numerical and experimental examples. Finally, Section 5.7 contains our conclusions.

5.2 Problem Formulation

It is necessary to establish a proper data model for target scatterers to obtain super reso-
lution SAR images of targets of interest. However, as pointed out in the previous section, it
is difficult to establish a good parametric model in cross-range for target scatterers. Instead,

we model herein the received signal reflected from a target scatterer as:

s(n,n) = x(ﬁ)ej¢ej2”(f"+f’-‘), n=01,---,N-1, #=0,1,---,N—1, (5.1)
where N and N denote the dimensions of the available data samples in range and cross-range,
respectively; z(7) is an arbitrary unknown real-valued function of A determined by the radar
cross section (RCS) of the scatterer; ¢ is a constant phase; finally, {f, f} is the frequency

“pair proportional to the 2-D location (range and cross-range) of the scatterer. This data

model is essentially semi-parametric since little parameterization is done in cross-range.

Assume that a target consists of K scatterers. Then the target data model in the presence

of noise has the form:

y(n,n) = i xk(ﬁ)ej¢kej2"(fk”+f'°ﬁ) +e(n,n), n=0,1,---,N—-1, a=0,1,---,N—1,
< (5.2)
where {z;(7)})=" denotes the real-valued amplitude function of 7 for the kth scatterer; b
and { f, fi}, respectively, are the constant phase and the frequency pair of the kth scatterer;
finally, {e(n,n)} denotes the unknown 2-D noise and clutter sequence.

Since SAR images are often used in SAR applications [19, 20, 21], our problem of interest
herein is to estimate the target parameters {d, {zx(7) ,1-:7:_01, fe, fr}, from the 2-D data
sequence {y(n,7)} and then to form high resolution SAR images with the estimated target

parameters.
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5.3 Effects of the Semi-Parametric Data Model on SAR Image Formation

Target feature extraction methods devised based on the data model in (5.2) are robust
against data modeling errors due to the model flexibility. However, there are ambiguity
problems associated with the semi-parametric data model. In this section, we first analyze
the possible data model ambiguities and then illustrate their effects on SAR target feature
extraction and image formation. The discussions below will motivate the introduction of the

SPAR algorithm, which will be presented in detail in Section 5.4.

5.3.1 Model Ambiguities

Due to the flexibility of the data model in (5.2), there are various types of ambiguities
that may impact the feature extraction of each scatterer. Below we list several types of the
ambiguities inherent in the data model.

Type 1: Single scatterer

From (5.1), we note that ambiguity exists between ¢ and z(7) since

2(R)e!® = —z(R)&Ot £ #(m)e?, (5.3)
where Z(7) = —z(7) and ¢ = ¢ +m. Ambiguity also exists between f and x(7) since
m(ﬁ)ejZWfﬁ _ (_1)ﬁx(n)ej27r(f_~0.5)ﬁ A i(,ﬁ)ej%r}—ﬁ, (5.4)

where (A1) = (—1)"z(7) and }T = f — 0.5. The above two types of ambiguities cannot be

resolved.
Type 2: Two identical scatterers located in the same range

Let f, and f;, respectively, denote the cross-range locations of two identical scatterers and

let ¢, and ¢, respectively, denote their phases. Then

z(R) [e(J¢a+127rfan) + e(J¢b+J2vrfbn)] = 2z(7) cos [ (f. — fo)a+ ¢a Po ]%_;'f.hej,r(fa_i_fb)ﬁ’
(5.5)
which indicates that two identical corner reflectors (trihedrals or dihedrals) located in the

same range but different cross-range positions f. and f,, respectively, can be modeled by (5.1)
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as one “scatterer” located at (f, + f,)/2 in cross-range with z(7) modulated by 2 cos[m(f, —
fo)it+ (¢a — ¢5)/2]. Thus the data model in (5.1) cannot be used to describe each of the two
corner reflectors in this case.
Type 3: Two different scatterers located in the same range
Assume that two different corner reflectors with parameters {(bi,{xi(‘)}n o+ > fi}e, are
located in the same range. Then the target model in the absence of noise has the form:
2 r —
r(n,n) = in(ﬁ)ej¢*ej2"(fn+f"ﬁ), n=01---,N-1, 7=0,1,---,N—1. (5.6)
i=1
With straightforward calculations, we can rewrite (5.6) as
2 .7 . r3 F - ‘
r(n, i) = 3 &;(R)el#elrtfintlin) (5.7)
i=1
where ¢o = ¢, + 7/2 with $: denoting an arbitrary phase, fi=fo=f, f1 = fz = f with }F

denoting an arbitrary cross-range location,

#(n) = ;;u-(ﬁ) cosf2n(F; — P+ (& — #1)], (5:9)
and
Z zi(m) sinf2n (f; — F)i+ (¢ — 6u)]. (5.9)

Note from (5.7) that {¢,,{xz(n) N fZ ', are the ambiguous features of
{¢zv {mz(n)}n-—0>f fz

Type 4: Multiple scatterers located in the same range
When more than two scatterers are located in the same range, the data model in the absence

of noise can still be written as (5.7) except that

#(7) = 3. () coslom(fo ~ P+ (8 = ), (5.10)
and .
Fa () = z: (A) sin2r (f; — F)a + (¢ — 61)], (5.11)
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where I > 2 denotes the number of scatterers located in the same range. Thus the L
scatterers located in the same range are considered as two “scatterers” when using the data
model in (5.2).

Before we discuss the impact of the model ambiguities on SAR image formation, we first

describe how the image formation is done if we have the estimated model parameters.

5.3.2 Image Formation

Assume for now that we have extracted the target features based on any of the ambiguous
data models. For notational convenience, we will use the notation used in (5.2). Since the
target data model in range is a sum of several complex sinusoids with constant amplitudes
and phases, we can use the estimated sinusoidal parameters to simulate a data matrix with
a larger dimension in range and then use FF'T to demonstrate the super resolution property
of the feature extraction algorithm we shall present. Yet we cannot extrapolate the estimate
{2¢(R)} of {xx(7)} since it is assumed to be an arbitrary unknown real-valued function of
7 and hence FFT cannot be used to obtain SAR images with enhanced resolution in cross-
range. Instead, we use 1-D APES [8, 10, 22] in cross-range when forming SAR images.
APES is a nonparametric complex spectral estimator making use of adaptive finite impulse
response (FIR) filterbanks to suppress interference and noise. APES belongs to the class
of matched filterbank spectral estimators and provides lower sidelobes, narrower 'spectral
peaks, and more accurate spectral estimates than FFT.

Let {3,(n, 71)} denote the simulated data sequence with a larger dimension in range based
on the estimated target features {dx, {3:(A) Y, fk,}_k},{{zl of {ox, {z @)Y, frs A

where K denotes the estimate of the scatterer number K. Then
R . . 2 = - —
s,(n,n) = 3 dy(R)elrel Ut - p=0,1,---,(N-1, a=0,1,---,N -1, (5.12)
k=1

where ¢ denotes an extrapolation factor (¢ > 1) and is a parameter of user choice. Note
that the super resolution property of the so-formed SAR images is determined by the feature

extraction algorithm and ¢ > 1 is only used to demonstrate the super resolution property of
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the target feature extraction algorithm. The estimated noise and clutter data matrix is

é(nvﬁ'):y(naﬁ)“gs(naﬁ’), Tl:O,l,"',N-l, ﬁ':O)l;“"N—'l) (513)
which is also important in many SAR applications since, for example, important target infor-
mation such as the target shadow information is contained in é(n, n). We cannot extrapolate

é(n,7) in either range or cross-range since no parametric data model is available for é(n, 7).

To obtain SAR images with low sidelobes in range via 1-D FFT, we apply 1-D windows

to 3,(n, ) and é(n,7) in range. We obtain a new ((N ) x N data matrix Y as follows:

{ i(n,7) = 85(n, A)wg(n) + (é(n, R)we(n), n=0, 1,---,N—-1, n=0, 1,---,N—1,

g(n,ﬁ):'gs(n)ﬁ)ws(n)ﬂ n=N7N+17"'1C‘N—1a ’fLIO,l,"-,N—l,
(5.14)

where §j(n,7) denotes the (n,7)th element of Y and w,(n) and we(n) are 1-D windows of
lengths (N and N, respectively, satisfying

¢N-1

> wi(n) =N, (5.15)

n=0
and
N-1

> we(n) = N. (5.16)

n=0

The window functions w;(n) and w,(n) are selected according to the desired sidelobe levels.
Note that scaling é(n,7) in §(n, ) by a factor of ¢ is necessary since the range dimension
of 3,(n,7n) is ¢ times of that bf é(n,7n). The steps needed for SAR image formation are as
follows:

Step (1): Form Y from §j(n,7) by using (5.12), (5.13), and (5.14).

Step (2): Apply the normalized 1-D FFT to each column of ¥ to obtain an intermediate
matrix and then apply 1-D APES to each row of the intermediate matrix. (See [22] for the
efficient implementation of APES.) Note that the normalized 1-D FFT has the form

1 N-1 . _
(N 3 g(n,n)e ", 7=0,1,--+,N—1. (5.17)
n=0
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5.3.3 Model Ambiguity Effects on SAR Image Formation

All of the aforementioned types of ambiguities will have no effect on the SAR image
formation if no parameter estimation errors exist since the scatterers will be perfectly recon-
structed by using any of the possible ambiguous data models. For example, when there are
two identical scatterers located in the same range, the data model in (5.2) can still be used
for SAR image formation since the two scatterers are now described as one “scatterer” with
(5.5), which still fits the data model of (5.2) with K = 1. Hence the original SAR image can
still be reconstructed by using the parameters of the one “scatterer” described by the right
side of (5.5).

In the presence of parameter estimation errors due to the presence of noise and clutter,
however, Types 1 and 2 ambiguities discussed in Section 5.3.1 will have little effect on SAR
image formation, whereas Types 3 and 4 ambiguities can result in artifact problems for the
high resolution SAR image formation. Generally speaking, the higher the signal-to-noise
ratio (SNR), the more accurate the parameter estimates and hence the less significant the
‘artifact problem. The effect of Type 3 ambiguity on SAR image formation in the presence of
estimation errors is demonstrated by comparing Figures 5.1 and 5.2. (The effects are similar
for Type 4 ambiguity.) Figure 5.1 is obtained by assuming no parameter estimation errors.
Figure 5.1(a) shows the FFT image of a target consisting of two dihedrals of different lengths

located in the same range. We use
zx(R) = ogsinelben(n — 1)}, k=1,2, n=0,1,---31, (5.18)

to simulate the dihedrals, where a; and by, respectively, are proportional to the maximal
RCS and the length of the kth dihedral corner reflector and 7 denotes the peak location of
the data sequence and is determined by the orientation of the kth dihedral. The size of the
simulated data matrix is 32 x 32 (i.e., N = N = 32). The parameters for the two dihedrals
are given in Table 5.1. An ambiguous set of target features can be obtained by choosing
fi=fo=01,F, =Ff,=F=02 ¢ =0, and §, = 7/2 in (5.8) and (5.9). The windowed
FFT SAR images of the two “scatterers” are shown in Figures 5.1(b) and (c), respectively,

which differ considerably from the two dihedral scatterers in Figure 5.1(a). The combined
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k {og || fe | fo | 06| T
k=196 0 {01]-0.3]0.3]|18.6
k=2164| 0101|0102 186

Table 5.1: True parameters of thé two dihedrals used in Figures 5.1 and 5.2.

SAR image of the two “scatterers” is given in Figure 5.1(d), which is exactly the same as
the true image shown in Figure 5.1(a). However, due to the presence of noise and clutter,
parameter estimation errors are inevitable. The errors in range are the main cause of the
artifact problem in the high resolution SAR image formation. In Figure 5.2, we assume
that all parameters are accurate except that }2 = f, 4+ 0.01 = 0.11. Figures 5.2(a) and
(b), respectively, show the windowed FFT images of the two aforementioned “scatterers”
in the presence of estimation errors and Figure“5..2(c) shows the combined SAR image. By
comparing Figures 5.1(a) and 5.2(c), we note that an extra line (artifact) shows up next to
the short dihedral. The reason is that due to the estimation errors, j%l #* }2. Hence the
two “scatterers” in Figures 5.2(a) and (b) are not exactly in the same range and cannot be
“combined” perfectly to obtain the two dihedral lines in Figure 5.1(a). This problem becomes
even worse when SAR images are formed via data extrapolation in range. The larger the
extrapolation factor ¢, the more significant the artifact problem since the difference between
}1 and ]%2 is exaggerated ¢ times. Figures 5.2(d) shows the SAR image obtained with ¢ = 2.
By comparing Figures 5.2(d) and (c) (here { =1 and hence no data extrapolation), we note
that the artifact next to the short dihedral becomes more significant. Severe artifacts may
exist at low SNR since the accuracy of the parameter estimates is poor. The SPAR algorithm
we present below attempts to avoid this problem by using windows to isolate the multiple

scatterers located in the same range.
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5.4 The SPAR Algorithm

Figure 5.3 shows the block diagram for the SPAR algorithm, which can be summarized
by the following two steps:

Step 1: Scatterer Isolation based Target Feature Extraction: See Section 5.4.1 below for
details.

Step 2: SAR Image Formation: See Section 5.3.2 for details, where the estimated target

features are obtained by using Step 1.

5.4.1 Target Feature Extraction

The basic idea behind SPAR is to extract the features of each scatterer separately. Before
we present the target feature extraction algorithm, we first summarize the steps needed
for the feature extraction of a single scatterer as a preparation. The generalized Akaike

information criterion is also introduced to estimate K, the number of scatterers, at the end

of this subsection.

Feature Extraction of a Single Scatterer

The data model of a single scatterer in the presence of noise has the form:
ys(n,7) = s(n,A) +es(n,@), n=0,1,---,N—-1, 7= 0,1,---,N—1, (5.19)

where s(n,7) is given in (5.1) and {es(n,7)} denotes the unknown 2-D noise and clutter

sequence. Let
i 1T
wn(f)=|1 e2rf ... e2nfN-1) | , (5.20)

and
B - . o \T
we(F)=|1 e ... e f@-1 | | (5.21)

where (-)T denotes the transpose. Let D(f) denote the following diagonal matrix:

D(f) = diag{ 1, &, -, &TED } (5.22)
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Define

T
x=|z(0) z(1) --- z(N-1)| - (5.23)
Let Y, be an N x N matrix with its (n,n)th element being y,(n,7). Then we can rewrite
(5.19) as:
Y, = eG(x, f, f) + Es, (5.24)
where

G(x, f, f) = wn(f)x"D(f), (5.25)

and E, denotes an N x N matrix with e;(n,7) being its (n,7)th element. Let y,,, 7 =
0,1,---, N — 1, denote the 7ith column of Y and define

¥s(f) = wa‘&(f)a (5.26)
where (-)* denotes the complex conjugate. Then the NLS estimates {

£, 7ot {x.4.5. 7}
are (see Appendix A for the detailed derivations):

% = TRe[e5,(f) 0 wi(P)], (5:27)

where Re(z) denotes the real part of z and © denotes the Hadamard matrix product or the
element-wise product of two matrices;

¢= —arg { Y [hwn(h)] eee ’"} ,

(5.28)
where arg(z) denotes the argument of a complex variable z; finally,
{f,f} = argmax Gy(f, f), (5.29)
where
N- 2 N2 2 oo B
Cul Z Yasn (f | +|3 [yrwn(f)] e ehm. (5.30)
=0 =0

The steps needed to obtain the NLS estimates of a single scatterer are summarized as follows

Step (I): Use (5.26) to obtain ¥,(f) and obtain the cost function Cy(f, f) according to
(5.30). Determine { f, _}T} by maximizing Cy(f, f) using the method given in Appendix A
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Step (II): Calculate é according to (5.28) with {f, f} replaced by { 7, ]%} obtained in
Step (I).

Step (III): Calculate % via (5.27) with {#, f, f} replaced by {qAB, f, ]%} determined in
Steps (I) and (II), respectively.

Feature Extraction of Multiple Scatterers

When a target consists of multiple scatterers, we can obtain the NLS estimates of the

target features based on (5.2) by using a relaxation-based optimization approach. Let
_ T
Xi = [ 2(0) o) - z(V-1) ] , (5.31)

and let Y and E be N x N matrices with their (n,71)th elements being y(n,7) and e(n, %),

respectively. Then we can rewrite (5.2) as
K B
Y = &% Gy(xk, fi, fr) + B, (5.32)
k=1

where Gy, (Xx, fx, fx) has the same form as the G(x, f, ) in (5.25) except that x, f, and f are
replaced by xg, fi, and fi, respectively. Let yz, 7 =0,1,---, N —1, be the fith column of Y.
Then the estimates {qgk,ik, fe, ;’_k}f:l of {dk, Xk, fr, fe}E., can be obtained by minimizing

the following NLS cost function:

(5.33)

?

F

K
C‘5 ({¢k; Xk, fk, .fk}li(:l) = HY - z ej¢k G‘k(xk, fk, ﬁc)
k=1

where ||-||» denotes the Frobenius norm [23]. The minimization of Cs ({qﬁk, Xk frs fk}kK___l) in
(5.33) is a very complicated optimization problem. The proposed SPAR algorithm performs
a complete relaxation-based search by letting only the parameters of one scatterer vary at a
time while freezing the parameter values of all other scatterers (K — 1 in number) at their
most recently determined values for each assumed number of scatterers K. Let

K . PO
Y=Y - Y &%Gi(%, fi, f2), (5.34)
i=lizk
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and assume that {¢;, %i, i, fi}ikzl,i;ék are given. Then the NLS estimates {q@k,ik, Fes ]%,c}kf{:l

of {dx, Xk, fr, fx}1<; can be obtained by minimizing Co(bk, Xk, fi fr), where

06(¢k>xk, frs fk) = ”Y’C - ejd)ka(xk’ Je> fk)";’ (5'35)

and using the method presented in the previous subsection for the feature extraction of
a single scatterer. However, when multiple scatterers are located in the same range, the
minimization of Cg(dk, Xk, fk, fr) has numerous ambiguous solutions that may lead to ‘the
artifact problem in the high resolution SAR image formation.

SPAR attempts to avoid the ambiguity problem by isolating out the most dominant
scatterer in Y} by using a 2-D rectangular window, which i‘s determined from and applied
to the 2-D FFT of Y. The isolation process has the following steps:

~ Step (i): Obtain Vy, the 2-D FFT of Yj, without zero padding.

Step (ii): Determine the 2-D window w(n, i) from V. We first locate the peak location
(nt,7t) of the magnitude of V. We then fix @ to At and search for the interval ny < nt <
5 so that the magnitude of V is above a certain threshold, say T}, within the interval.
Similarly, we can fix n to nt and search for the interval fi; < fit < fip. Then the N x N
rectangular window w(n, ) has unit value for n; < n < ny and Ai; < 71 < 7ip and zero value
elsewhere. The threshold 7; we use in our numerical and experimental examples is 10% of
the peak value of the magnitude of V.

Step (iii): Determine Y by applying 2-D inverse FFT (IFFT) to Vy © W, where the
(n,7)th element of W is w(n, 7).

Instead of minimizing Cs (ks Xk, frs ft), we now minimize

Cr(bk, Xk, frr fr) == "Yk — %Gy (X, frs fk)”;, (5.36)

where Yk is used to replace Yy in Cs(¢k, Xk, fx, fk), by using the method presented in Section
5.4.1.
With the above preparations, now we provide the steps of the scatterer isolation and

relaxation based optimization algorithm, which are the substeps of Step 1 of SPAR.
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Step I: Assume K = 1. Calculate Y from Y by using the isolation process. Obtain
{ Bk, %, fr, Fitoer from Y.

Step II: Assume K = 2. Compute Y, with (5.34) by using {q@k,fck, fk,]%k}k:l ob-
tained in Step I. Calculate Y, from Y,. Obtain {q’;k,fck, f, }-k}k;=2 from Y,. Next compute
Y, with (5.34) by using {br, %, fk,]%k}k:z, calculate Y, from Y;, and then redetermine
{8k, %, fr, Fi}rer from Y.

Tterate the previous two substeps until “practical convergence” is achieved (to be dis-
cussed later on).

Step III: Assume K = 3. Compute Y3 with (5.34) by using {&k,fck, F, fk}izl obtained
in Step II. Calculate Y; from Y;. Obtain {qgk,ik, fk,?k}k=3 from‘Y3. Next, compute
Y; with (5.34) by using {q@k,ik, fk,]%k}ﬁ:z, calculate Y; from Y;, and then redetermine
{qgk,ik,fk,]%k}k:l from Y;. Then compute Y, with (5.34) by using {ék,ik,fk,ﬂ}k:w,
calculate Y5 from Y, and then redetermine {(;3,;, %k, Fe, J%,c}k:z from Y.

Iterate the previous three substeps until “practical convergence”.

Remaining Steps: Continue until K is equal to the desired or estimated number of
scatterers. ‘

The “practical convergence” in the iterations of the above relaxation-based optimiza-
tion algorithm may be determined by checking the relative change € of the cost function
Cs ({ék,fck, Fer ]?k},lc?:l) in (5.33) between two consecutive iterations. Our numerical and
experimental examples show that the algorithm usually converges in a few iterations.

We can determine K, the number of scatterers in (5.2), by extending the generalized
Akaike information criterion (see [24] for details). By assuming that the noise is white, the
estimate K of K is determined as an integer that minimizes the following cost function:

1

GAIC; = NNIn (% i{‘l Iék(n,ﬁ”?) + yIn[In(NN)|[K (N + 3) + 1], (5.37)

where  is a constant of user choice and is usually determined by empirical experience,

R e K3 £ K3 - —
ék(nﬁ ’ﬁ) = y(’l’l, ﬁ) - Zﬁk(n)ej¢kejzwukn+fkn)a n= 07 1,-- '7N -1, n= 0,1,---, N -1,

k=1
| (5.38)
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and K (N +3) +1 is the total number of real-valued unknown parameters (of which K(N+3)

is for the scatterers and 1 is for the white noise variance).

Note that the NLS estimates of {¢g, Xk, fk, fx} 1=y can also be obtained from {Y}E,
determined in (5.34), rather than {¥}}{,, via the above relaxation-based optimization
algorithm. We refer to this approach as the hybrid method. When multiple scatterers are
located in the same range, the hybrid method may be computationally more efficient than
SPAR since the hybrid method does not isolate the scatterers so that multiple scatterers
located in the same range can be more efficiently described as at most two “scatterers”.
However, the hybrid SAR images may suffer from more severe artifact problem than SPAR,
especially at low SNR. When no multiple scatterers are located in the same range, SPAR

and the hybrid method perform similarly.

5.5 Modified RELAX-NLS Algorithm

RELAX-NLS [17] is a parametric approach for the feature extraction of targets consist-
“ing of both trihedrals and dihedrals. It is based on a mixed data model in which z(7) is
modeled as a real-valued constant for a trihedral or a sinc function of 7 for a dihedral. Like
SPAR, RELAX-NLS extracts the target features by minimizing an NLS cost function via
a relaxation-based approach. However, RELAX-NLS is computationally expensive since a
4-D search over the parameter space is required for dihedral corner reflectors. Since SPAR is
more robust and computationally more efficient than RELAX-NLS, the former can be used

to provide the initial conditions needed by the latter.

Let {d;k, ' fk, J%k}f:l denote the parameter estimates obtained via SPAR according to
the data model in (5.2), where K is the estimated number of scatterers obtained via the afore-
mentioned generalized Akaike information criterion. The SPAR estimates {d;k, Xk, fk, ]%k}kfil
cannot be used directly as initial conditions for RELAX-NLS. The initial conditions are

obtained by applying the first step of RELAX-NLS [17] to each Uy, k=1,2,--, K, where
R e A~

Uk‘—-"Y—- Z ejéiGi()A(i,fi,fi), k:1,2,---,K. (539)
i=1,i#k
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Once we have the initial conditions, we can use the last step of RELAX-NLS [17] to obtain
the dihedral and trihedral parameter estimates, which are then used for SAR image formation

[25]. We refer to this approach as the modified RELAX-NLS algorithm.

5.6 Numerical and Experimental Results

We demonstrate and compare the SAR image formation performances of SPAR and the
modified RELAX-NLS with both numerical and experimental examples. The algorithms are
also compared with the hybrid method and RELAX-NLS. In the following examples, the di-
mensions of the original SAR phase history data matrix are N = N = 32 and the generalized
Akaike information criterion with v = 5.5 is used to determine K for the relaxation-based
feature extraction algorithms of SPAR and the hybrid method. The threshold 7; used in the
isolation process of SPAR is 10% of the peak value. The maximization of Cy(f, f) in (5.30)
is done in two steps. First, initial frequency estimates f and ]% are obtained via 1-D FFT
with zero-padding to a total length of 128 in range and to a total length of 64 in cross-range.
Next, these initial estimates are refined by using the FMIN function in MATLAB alternately,
i.e., by updating f while fixing ]% at its most recently determined value and vice versa, un-
til “practical convergence”, which is determined by checking the relative change of the cost
function Cy( f , ?) We have used 10~2 to determine the convergence of this fine search as well
as the relaxation-based algorithm. The extrapolation factor ¢ = 8 is used in range for SPAR
and the hybrid method and in both range and cross-range for both RELAX-NLS and the
modified RELAX-NLS algorithm. Both 1-D and 2-D Kaiser windows with shape parameter
B = 6 are used whenever needed. (We will be happy to provide the MATLAB codes to the
interested readers.)

First consider a numerical example with high SNR. The SAR phase history data matrix
is simulated by assuming that there are four trihedrals and three dihedrals in the presence of
zero-mean white complex Gaussian noise with variance 02 = 0.6. The amplitude functions

for the four trihedrals are generated as follows:

n@ =1 k=123 @a=01--,N-1, (5.40)




and

z4(A) =2, A=0,1,---,N—1 (5.41)

The amplitude functions for the three dihedrals are
z5(R) = 9.6sinc[0.37(7 — 18.6)], 7 =0,1,---,N—1, (5.42)

and

z4(R) = 6.4sinc[0.27(7 — 18.6)], k=6,7, A=0,1,---,N -1, (5.43)

where sinc(z) = sin(z)/z. Figure 5.4(a) shows the modulus of the true SAR image. Note
that two of the dihedrals are located in the same cross-range and are closely spaced in range
and two of them are located in the same range. Of the four trihedrals, two of them are closely
spaced in range and the other two are located in the same range. In this example, the hybrid
method and SPAR have the same estimated number of scatterers, K = 7. Figure 5.4(b)
shows the windowed 2-D FFT SAR image obtained by applying the normalized 2-D FFT
" to the windowed data matrix. SAR images formed via the hybrid method, SPAR, RELAX-
"NLS, and the modified RELAX-NLS algorithm are shown in Figures 5.4(c) through 5.4(f),
respectively. We note that at high SNR, the hybrid image is similar to the SPAR image. Both
of the parametric RELAX-NLS and the modified RELAX-NLS algorithms outperform their
semi-parametric counterparts SPAR and the hybrid method since the data model used by the
parametric methods is correct rather than approximate. For this example, our simulations
show that the ratios between the MATLAB flops needed by the hybrid method, SPAR,
the modified RELAX-NLS, and RELAX-NLS over the flops needed by the windowed FFT
method are 27.4, 28.4, 50.1, and 70.8, respectively. Note that both SPAR and the hybrid
method are computationally more efficient than RELAX-NLS and the modified RELAX-NLS
algorithm, with the modified RELAX-NLS being more efficient than RELAX-NLS.
Consider next a numerical example with low SNR. The SAR phase history data are the
same as in the above example except that the noise variance is increased to o2 = 6. SAR
images obtained by using the windowed 2-D FFT, the hybrid method, SPAR, RELAX, and
the modified RELAX-NLS algorithm are shown in Figures 5.5(a) through 5.5(e), respectively.
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Note that the artifact problem starts to show up in the SAR image obtained via the hybrid
method in Figure 5.5(b) due to large parameter estimation errors. By comparing Figures
5.5(c) with (b), it can be seen that SPAR can effectively mitigate the artifact problem.

Finally, consider an experimental example of SAR image formation by using the Moving
and Stationary Target Acquisition and Recognition (MSTAR) Slicy data collected by imaging
an object consisting of both trihedral and dihedral corner reflectors, which is shown in Figure
5.6. The data were collected by the Sandia National Laboratory using the STARLOS sensor.
The field data were collected by a spotlight-mode SAR with a carrier frequency of 9.559 GHz
and bandwidth of 0.591 GHz. The radar was about 5 kilometers away from the ground object.
The data were collected when the object was illuminated by the radar from approximately
the azimuth angle 0° and elevation angle 30°. To cross-validate the experimental results
given below, XPATCH [26], a high frequency electromagnetic scattering prediction code for
complex 3-D objects, was used to generate very high resolution phase history data for the
object shown in Figure 5.6. Note that the computer-aided design (CAD) model used in
XPATCH may have slightly different dimensions as the object used to collect the Slicy data.
4The data generated by XPATCH has a resolution of 0.038 meters in both range and cross-
range, and the corresponding windowed FFT SAR image is shown in Figure 5.7(a). (We have
used the log scale for all of the images shown in Figure 5.7.) The original experimental Slicy
data have a resolution of 0.3 meters in range and 0.32 meters in cross-range. The 32 x 32 data
maitrix we used to demonstrate the performance of our algorithms has a spoiled resolution of
0.51 meters in range and 0.54 meters in cross-range. The windowed 2-D FFT SAR image of
this data matrix is shown in Figure 5.7(b). Figures 5.7(c) and (d), respectively, show the SAR
images obtained via the hybrid method and SPAR with K = 7 (obtained via the generalized
Akaike information criterion). Figures 5.7(e) and (f) show the SAR images obtained via
RELAX-NLS and the modified RELAX-NLS algorithm with K =7, respectively. Note that
the hybrid method has a more severe artifact problem than SPAR. Note also that the SPAR
image shown in Figure 5.7(d) appears to fit Figure 5.7(a) and the characteristics of the
object in Figure 5.6 well. However, the parametric algorithms are not as robust as SPAR

since the parametric images shown in Figures 5.7(e) and (f) do not fit Figure 5.7(a) as well
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with one of the scatterers mis-identified and mis-located. For this experimental example, the
ratios between the MATLAB flops needed by the hybrid method, SPAR, RELAX-NLS, and
the modified RELAX-NLS over the flops needed by the windowed FFT method are 29.2,
16.7, 32.8, and 43.1, respectively. Note that SPAR can sometimes be faster than the hybrid
method!

5.7 Conclusions

We have presented a semi-parametric spectral estimation algorithm, referred to as SPAR,
for SAR target feature extraction and image formation based on a flexible data model. SPAR
can be used to effectively mitigate the artifact problem encountered by the hybrid algorithm
for SAR image formation due to the flexibility of the data model. SPAR can also be used to
provide initial conditions needed by other parametric algorithms to reduce the total amount
of computations needed to form SAR images. Due to the flexible data model used by SPAR,
this semi-parametric algorithm is more robust and computationally more efficient than the

-existing parametric algorithms.
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Appendix A: Feature Extraction of a Single Scatterer via SPAR

The estimates of {¢,x, f, f } can be obtained by minimizing the following NLS cost

function:
Cvl (¢7 X, f7 f_) = Ile - 6j¢G(X, f’ f)“;

N-1
= _Z |

A=0

Yo — 2ROy (1) (5.44)
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After simple calculations, we can rewrite (5.44) as

, Nl 1 (2 i ?
Gr (0 10) = 3 { Iyl N o) e (79T ()
=0
—_JIVReQ [e‘j(z"fm‘ﬁ)yf:_iw’fv(f)]} ) (5.45)

Minimizing (5.45) with respect to z(7) yields

1 o Ee
#(7) = - Re [e77Cm ™y wir( n], a=01--,N-1 (5.46)

Hence
% = %[_Re{e—f‘” [YIwy ()] o wi(f )}

~ Lo [#y.() 0 wi()]. (5.47

Inserting (5.46) into (5.45), we obtain the NLS estimates {d, J%} of {¢, f, f} by equivalently

maximizing the following cost function:

= {R [ ’_';F_ * (f)e—j(27rfﬁ+¢)] }2
1 ]V

- {lySan (DI +Re | (vwh(D)” eEremd] ] (5.49

MZ'

C3(¢1f1f) =

S
Il

[\

31

Let (71, f) denote the Aith element of ¥,(f), 7 =0,1,--- N —1. Then ¢ is given by

{Ni yZwn(D] e“”"‘zf)"‘} . (5.49)

=0

~

¢=

l\')l:—t

Inserting (5.49) into (5.48) and ignoring the scaling factor, we can simplify (5.48) to

_ N— N-1 9 . ~
Culf. ) = Z Yo wi(f \ +|3 [PLwn(f)] et
n=0 =0
= |l§s(H)? + 2(m, —J%W)nl. (5.50)

Then the NLS estimates {7, }%} of {f, f} are determined by
{f.f}= argmax Culf, f)- (5.51)
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Note that ¥,(f) in (5.26) can be obtained by applying 1-D FFT to each column of Y, and
the second term in (5.50) can also be readily obtained by applying 1-D FFT to the sequence
{7, £)}T= with 2f as the frequency variable. Hence { s }_} can be obtained via a 2-

=0

D search for the location corresponding to the peak of Cy(f, f), which can be computed
efficiently via 1-D FFTs. Note also that padding with zeros for the 1-D FFTs is necessary
to achieve high accuracy for the frequency estimates. An alternative approach is to find an
approximate location corresponding to the global maximum with 1-D FFT without much
zero-padding and then use the approximate location as the initial condition to find a more

accurate position via, for example, alternately using the FMIN function in MATLAB.
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(c) (d)

Figure 5.1: Ambiguity effect on the SAR image formation in the absence of range estima-
tion errors. (a) True windowed FFT SAR image. (b) Windowed FFT image of the first
“scatterer”. (c) Windowed FFT image of the second “scatterer”. (d) Combined windowed
FFT image of the two “scatterers”. (The vertical and horizontal axes are for range and

cross-range, respectively.)
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(a) (b)

(c) (d)

Figure 5.2: Ambiguity effect on the SAR image formation in the presence of range estimation
errors. (a) Windowed FFT image of the first “scatterer”. (b) Windowed FFT image of the
second “scatterer”. (c) Combined windowed FFT image of the two “scatterers” with ¢ =1
(without extrapolation). (d) Combined windowed FF'T image with ¢ = 2. (The vertical and

horizontal axes are for range and cross-range, respectively.)
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Figure 5.3: Block diagram for SPAR.
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(a) (b)

() (d)

(e) (®)

Figure 5.4: Comparison of SAR images formed using different algorithms for simulated data
at high SNR (02 = 0.6). (a) True SAR image. (b) Windowed 2-D FFT SAR image. (c)
The hybrid SAR image. (d) SPAR SAR image. (¢) RELAX-NLS SAR image. (f) Modified
RELAX-NLS SAR image. (The vertical and horizontal axes are for range and cross-range,
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(c) (d)

(e)
Figure 5.5: Comparison of SAR images formed using different algorithms for simulated data
at low SNR (02 = 6). (a) Windowed 2-D FFT SAR image. (b) The hybrid SAR image. (c)
SPAR SAR image. (d) RELAX-NLS SAR image. (e) Modified RELAX-NLS SAR image.
(The vertical and horizontal axes are for range and cross-range, respectively.)
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Figure 5.6: Target photo taken at 45°
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(2) (b)

() (d)

(e) (f)

Figure 5.7: Comparison of SAR images obtained via different algorithms for the Slicy data
hb15533.015 (0° azimuth and 30° elevation angles). (a) Windowed 2-D FFT SAR image from
the data generated by XPATCH with resolution 0.038 x 0.038 meters. (b) Windowed 2-D
FFT SAR image from the Slicy data with resolution 0.51 x 0.54 meters. (c) The hybrid SAR
image obtained from the data used in (b). (d) SPAR SAR image obtained from the data
used in (b). (¢) RELAX-NLS SAR image obtained from the data used in (b). (f) Modified
RELAX-NLS SAR image obtained from the data used in (b). (The vertical and horizontal
axes are for range and cross-range, respectively.)
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6. Synthetic Aperture Radar Motion Compensation and Feature
Extraction via a Relaxation Based Algorithm

6.1 Introduction

Synthetic aperture radar (SAR) can be used to form radar target images and extract
target features with high resolution in both range and cross-range directions. For an airborne
SAR system, phase errors occur along the synthetic aperture (cross-range direction) due to
uncompensated platform motion. These errors can significantly degrade the SAR image
- quality. Many algorithms have been proposed to compensate these unknown phase errors
[1]. Most existing motion compensation algorithms are non-parametric and hence are robust.
Among these algorithms, the phase-gradient autofocus (PGA) algorithm [1, 2, 3, 4, 5] is one
of the most well-known and competitive algorithms.

In many applications including automatic target classification, however, it is convenient
to describe a small radar target via several parameters, which are the features of the target.
High resolution parametric algorithms, such as the RELAX algorithm, have been derived to
extract the target features [6]. Yet these algorithms assume that the motion errors do not
exist. It appears that extracting target features via parametric methods in the presence of

motion errors has not been addressed before.

In this chapter, we establish a data model for the feature extraction of point scatterers in
the presence of uncompensated aperture motion errors and unknown noise. We also propose
a parametric relaxation-based algorithm to estimate the target features as well as the motion
errors based on the data model. This algorithm is referred to as the motion compensation
RELAX algorithm or MCRELAX in this chapter. MCRELAX minimizes a complicated
nonlinear least-squares cost function and is performed by an alternating procedure, which
iteratively updates the estimates of the target features by fixing the estimates of the phase
errors and then updates the estimates of the phase errors by fixing the estimates of the
target features. The initial estimates of the phase errors in the MCRELAX algorithm can
be obtained by using the PGA algorithm to speed up the convergence rate of the former.

MCRELAX can also used for motion compensation only and is still computationally simple
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since it requires a sequence FFTs (fast Fourier transforms) and vector products and hence
can be implemented in hardware easily.

The remainder of the chapter is organized as follows. In Section 6.2, we describe the data
model and formulate the problem of interest. Section 6.3 presents the MCRELAX algorithm.
In Section 6.4, we derive the Cramér-Rao bound (CRB) for the target features and phase
errors. Section 6.5 shows the results of several numerical and experimental examples. Section
6.6 contains our conclusions. Finally, to make this chapter self-contained, the computational

steps of the PGA algorithm are summarized in the appendix.

6.2 Data Model and Problem Formulation

We first describe how one can obtain 1-D target features via a high range resolution
radar. The range resolution of a radar is determined by the radar bandwidth. To achieve
high resolution in range, the radar must transmit wideband pulses, which are often linear

frequency modulated (FM) chirp pulses. A normalized chirp pulse can be written as
s(t) = cos [(27rf0t + 7t2)] .t < To/2, | (6.1)

where fo denotes the carrier frequency, 2y denotes the FM rate, and T, denotes the width
of the pulse. We assume that fo, 7, and Ty are known. The signal returned by a scatterer

of a target has the form (after mixed with the cosine and sine terms)
r(t) =6, exp{ 27rf0 t—r)+’y(t—¢)2]} (6.2)

where &, is determined by the radar cross section (RCS) of the scatterer and 7 denotes
the round-trip time delay. The demodulated signal d(t) is obtained by mixing r(t) with
exp {—j [27 fo(t — 7o) + ¥(t — 70)*]} for some given 7 (to be defined later on), where (-)*

denotes the complex conjugate,
d(t) = 6, exp [j(2 fo — 2y70) (7 — o) exp [—j7(r — 70)*| exp [129(7 — 7)1 (6-3)

The term exp [—57(T — 70)? in (6.3) is usual close to a constant and can also be partially

removed [7] as follows. Let D(w) denote the Fourier transform of d(t). Then the inverse
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Fourier transform of D(w) exp (j %) will have the term exp [—jv(T — 70)?] removed. Yet this
removal can only be approximate since d(t) is not known for all ¢ and hence D(w) is not
known exactly. The closer exp [—jv(T — 70)?] is to a constant for Timin < 7 < Tinax, Where Tiax
and 7, correspond to the maximum and minimum values, respectively, of the round-trip
time delays between the scatterers of a target and the radar, the better its removal. With

this removal, we have

d(t) = &, exp [§(27 fo — 2770)(T — To)] exp [127(7 — 70)t], (6.4)

which is a sinusoidal signal with frequency 2y(r — 7) and complex amplitude
6, exp [§(27 fo — 2970) (T — To)]. We know Tmax and 7min approximately since we assume that
the altitude, antenna beamwidth, and grazing angle of the radar are known. We also assume
that (Tmax — Tmin) < To. Then for —T4/2+Tmax <t < T /2+ Tmin, the scatterers of the target
at different ranges correspond to different frequencies of the signal d(t), while the RCS’s of
the scatterers are proportional to the amplitudes of the corresponding sinusoids. The ranges

and RCS’s of the target scatterers are the one-dimensional (1-D) target features.

We now describe how one can obtain two-dimensional (2-D) target features via a spotlight-
mode SAR. The cross-range resolution of an ordinary ranging radar is limited by its antenna
beamwidfh. For an airborne or spaceborne system, a narrow antenna beamwidth requires
an antenna that may be too large to be carried on board of the airplane or the spacecraft.
Spotlight-mode SAR avoids this requirement by collecting coherent radar returns while view-
ing a target from many different angles [7]. By properly processing the return signals, we
can also achieve high resolution in cross-range.

A broadside data collection geometry in a spotlight-mode SAR is shown in Figure 6.1.
The XY Z coordinate system is centered on a small patch of ground, where a target is
located. The angle # and ¢ denote the azimuth and elevation angles, respectively, of the
radar relative to the XY Z coordinate system. The distance between the radar and the
coordinate origin of the XY Z coordinate system is Ro. The ground is illuminated by a
narrow radio frequency (RF) beam from the moving radar that moves along the ¢ direction

but with ¢ and R, fixed. In Figure 6.1, R denotes the distance between the radar and a
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scatterer at the position (z,y, z). We assume that 6, ¢, and Ry are known.
The range R of the scatterer located at (z,y, z) can be written as

R = [(R0C089C05¢—x)2+ (RoSiH@COS(]ﬁ——y)z—}— (Rosinqﬁ—z)?]l/z,

Under the conditions & < 1, # <1, and £ <1, we have
0 0 0

2

1
R = Ro[1—Q%COSOCOS¢—Q%SiHOCOSQS—Q-;—OSinqﬁ_}_g%%i’&] /2

22+y2+22—(z cos § cos ¢-+y sin f cos ¢+2 sin $)?

Ro[l—-icosﬂcos¢—%sin&cos¢—-§—5sin¢+ 2R2

Ro
. . ) 24,24 ,2_ . e
= Ry — zcosfcosd — ysinfsin g — zsin ¢ + THLFE (“080C°§£:'ysm0°°s¢+zsm¢) .

R

(6.6)
For the broadside data collection geometry, 8 is very small [31, 7] . For very small 6, we have
sin 20 =~ 2sinf and cos@ ~ 1. Then
22 + 42 + 22 — (z cos 0 cos ¢ + ysinf cos ¢ + zsin ¢)?
~ x2sin® ¢ + y® + 2% cos® ¢ — zysin 20 cos® ¢ — xz cos Osin 2¢ — yz sin Osin 2¢ (6.7)

(zz sin? g-+y?+2? cos? $—zasin 2¢) cos @ cos ¢ — 2 (zycos ¢ + yzsin @) sin b cos ¢,

cos ¢
and
zsin ¢ = (ztan ¢) cos d cos ¢. (6.8)
Then
R~ Ry — Z cosfcos ¢ — §sin b cos ¢, (6.9)
where
z2sin? ¢ + y? + 2% cos® ¢ — zzsin 2¢
T = t - .10
Z=z+ztan¢ 5Racos 6 , (6.10)
and
=t xycosqﬁ;— yzsmqﬁ. (6.11)
0

Note that the second term of the right side of (6.10) is due to the range layover of the
scatterer with non-zero height z [5]. The third term of the right side of (6.10) and the

second term of the right side of (6.11) are due to the range curvature effect [5].

Let 7o = 2B Since 7 = 2&, then from (6.4), we have

d(t,8) = 6. exp [1(Zts + Tty)], (6.12)
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where d, . is proportional to the RCS of the scatterer located at (z,y, 2),

_Almfo+ (¢~ To)]cosd o
c

tp =

: (6.13)

and

4 fo+(t — 7o) cos ¢ sind.

ty = p

(6.14)

Note that d(t,6) in (6.12) is a 2-D sinusoidal signal. The frequency pair of the 2-D sinusoid
corresponds to the 2-D location {%,7} of the scatterer, while the amplitude is proportional
to its RCS. Note that (%,§) is the location due to the layover and range curvature effects
~[5] and is not the true location (z,y, ) of the scatterer. The range curvature effect can be
neglected for large Ro. However, this SAR system cannot distinguish the scatterers located
at (z,y,2) and (%, §,0) and combines these scatterers into one scatterer. The scatterers we
referred to below are those resulted from such combinations. When a target has multiple
scatterers with distinct (,§), d(t,6) in (6.12) will be a sum of sinusoids. The 2-D locations
and RCS’s of the target scatterers are the 2-D target features. Since usually the samples on
‘the ¢ and 6 axes are uniformly spaced, the samples of ¢; and ¢, occur at the points of a polar
grid. Hence Polar-to-Cartesian interpolation is needed for the samples of t; and ¢, to occur
at rectangular grid points [7].

Thus after Polar-to-Cartesian interpolation and sampling, the signal reflected by a radar

target that consists of K 2-D point scatterers in an ideal SAR system can be described as:

§(m,m) = i&kexp [i2m(m fi +mfi)], m=0,1,---,M-1, m=01,---,M-1,

= (6.15)

where the complex amplitude & and the 2-D frequency pair {fx, fs} € [-0.5 0.5] Hz,

respectively, are proportional to the radar cross section (RCS) and the 2-D location (range

and cross-range) of the kth scatterer of the target, and M and M denote the numbers of
available data samples.

In the derivations of the above data model, we have assumed that the radar moves along

the 0 direction with R, known exactly. For a practical airborne SAR system, however, the

distance between the moving radar and the coordinate origin of the XY Z coordinate system
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may not be known exactly due to platform position uncertainty [5]. Also, the round-trip
time delay between the radar and the target may be somewhat random due to atmospheric
turbulence [5] and the randomness has the same effect on SAR imaging as when Ry is in error.
For a given 6, let ARy(f) denote the distance error between the radar and the coordinate
origin. Then the time delay error has the form Ar(6) = %@. As we can see from (6.4),
this A7(#) mainly causes a phase error exp [j27 foA7(6)] because exp [j2yAT(6)(t — 7o)] & 1
for |t — 79| < Ty, which is due to yTp < 7 fo. Since 6 is usually very small [31, 7] , we neglect
the phase errors caused by the errors in  and ¢. Note that the phase errors are independent

of t. Hence, by neglecting the effect of Polar-to-Cartesian interpolation, the signal obtained

by a realistic SAR system can be described as
y(m,m) = 5(m, m) exp (jhn) + e(m, M), (6.16)

where {&m}g;& are the phase errors due to the uncompensated aperture motion and
e(m,m), m=0,1,---,M—1, m=0,1,---,M —1, denote the unknown noise.

~ We note that for any real scalars $; and f,, Equation (6.16) still holds when {éx, fx, fk}ff:l
and {zpm},f‘.,"{;(}, respectively, are replaced by {dxexp (j61) , fx, fi + B Y, and {¢m — B —
21r,82m},4,_’f="01. Hence the data model in (6.16) has ambiguities. That is, we cannot uniquely
determine { fk}kK_l and the phases of {Gx}1—,. To avoid these ambiguities, let

ak:dkexp (.7'{[;0)7 k:1727"°,K7 (617)
Y = Pm — Yo — (1 — o), m=0,1,---, M —1, (6.18)
and L
: 7 1 — %o
Je=fe + (———% ) : (6.19) |
Note that 1o = 11 = 0. Hence we can rewrite (6.16) as
y(m, 7’77,) = 3(m7 ’1’7’1,) exp (.71/)771) + e(m’ m)) (6'20)
where «
s(m,m) = agexp [j27r(mf,c + mfk)] . (6.21)
k=1
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" Let Y and E denote the matrices whose mmth elements are y(m,m) and e(m,m), respec-

tively. Let
P :dla'g{ 1, ]-, eETp (}QPQ)) cec, €Xp (]¢M—1) }’ (622)

and
wrm(fe) = [ 1 exp(j2mfy) --- expli2n(M —1)fi] ]T, (6.23)

where (-)T denotes the transpose. Then (6.20) can be written in the following matrix form:

K
Y = Z akwM(fk)wf;I(fk)P + E. (624)
k=1

Our problem of interest herein is to estimate {ax, fi, fitiey and {9 M-l from Y in

(6.24).

6.3 The MCRELAX Algorithm

K

The MCRELAX algorithm obtains the estimates {c"vk, fk, ;fk} and {&m}z__zl, respec-

k=1

tively, of {ak, frs fk}kK_l and {1&,71}23:_21 by minimizing the following NLS criterion:
1 X M-1 X T (7 2
Gy ({ak, Jr; fk}k=1 ; {lbm}m:z) = “Y — > awn (fe)wi (fe)P| (6.25)
k=1 F
where || - | denotes the Frobenius norm. When the noise e(m,m) is the zero-mean white

Gaussian random process, the NLS estimates of the unknown parameters obtained with
MCRELAX coincide with the maximum likelihood (ML) estimates of the parameters. When
the noise is colored, the NLS estimates are no longer the ML estimates, but they are still
statistically very accurate. The minimization of (6.25) is a very complicated optimization

problem. Before we present MCRELAX, let us consider the following preparations.
. R < .
Assume first that {&k, fe, f k} are given. Let S denote the matrix whose mmth element

is 8(m, m), where 5(m,n) is the same as s(m, ) in (6.21) except that {ax, fx, fe}E, are

replaced by {d, o J% « H<,. Let ym and 8, respectively, denote the mth columns of Y and
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S. Then minimizing C in (6.25) with respect to {%},’?{; ! becomes minimizing

_ M-1
Co ({¥m}nzs) = X lym — Smexp Gym)Il” (6.26)
m=2
where || - || denotes the Euclidean norm, which gives the estimates of {wm}g;zl:
¥m = angle {s,’fnym} . m=23,---,M—1, (6.27)

where angle(z) denotes the phase of z and (-)” denotes the complex conjugate transpose.

Assuming next that {«ﬁm}g;; are given. Let Z be the data matrix motion compensated

by using P, where P is the same as P in (6.22) except that {Ym}¥=} are replaced by

{'&ﬁl}ﬁzm;%, i'e-7

Z=YP. (6.28)

Since P is a unitary matrix, matrices Z and Y have the same Frobenius norm. Thus we can
K

equivalently minimize the following cost function to obtain the estimate {&k, fk, ]%k} of

{ak,fk,fk}le‘

2

K
-y K —
0 ({ons o Y,) = 2= S owomtifi( (629
k=1 F
Let B
K ~ ~
Zi=2—- Y. &Gwu(fi)wiz(f:)- (6.30)
i=1,i#k
Then minimizing ”Z;c — agw fk)w}l( fk)“; with respect to oy, fx, and fi yields [6]
A A - 12
(fir i) = max |wi (o) Zewig ()] (6.31)
(fr>fx)
and
H x (f
by = “’M(f’“;f]’“\;’M(f’“) . (6.32)
fe=Fe.Fe=F%

Note that fi and fk in (6.31) can be obtained as the location of the dominant peak of the

— 12 _
2-D periodogram |wf{4( fe)Ziewiy( fk)‘ /(M M), which can be efficiently computed by using
a 2-D FFT (fast Fourier transform) with the data matrix Z; padded with zeros. Then é; is

easily computed from the complex height of the peak of wif(fk)Zrwiy( f)/(MM).
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It has been shown in [6] that the minimization of C3 in (6.29) can be efficiently achieved
by using the RELAX algorithm which requires a sequence of FFTs. Let K denote the
intermediate number of scatterers. Then RELAX is described by the following steps:

Step (1): Assume K=1. Obtain { A, fl} and &; from Z (instead of Zj) by using (6.31)
and (6.32), respectively.

Step (2): Assume K = 2. Obtain Z; with (6.30) by using 1, 7., and & obtained in
Step (1). Obtain { fz,}_z} and &y from Z, by using (6.31) and (6.32), respectively. Next,
compute Z; with (6.30) by using fa, ]%2, and Gy and redetermine { 11, ]%1} and &; from Z;.

Iterate the previous two substeps until “practica} convergence” is achieved (to be dis-
~ cussed later on).

Step (3): Assume K = 3. Compute Z3 with (6.30) by using {fi fi,&i}f____l obtained in
St.ep (2). Obtain { s, }—3} and @ from Zs. Next, compute Z; with by using { fi }_,-, a3,
and redetermine { fl,}_l} and & from Z;. Then compute Zy by using { fi, J%i, &;}i=1,3 and

redetermine { fa, ]%2} and &, from Z,.
“ Iterate the previous three substeps until “practical convergence”.

Remaining Steps: Continue similarly until K = K. (Whenever K is unknown, it can
be estimated from the available data, for instance, by using generalized AIC rules which are
particularly tailored to the RELAX method of parameter estimation. See, e.g., [6].)

The “practical convergence” in the iterations of the above RELAX algorithm may be
determined by checking the relative change of the cost function Cj ({ fk,}_k,&k}K ) in
(6.29) between two consecutive iterations. In our numerical examples, we terminka?cle the
iterative process in each of the above steps when the aforementioned relative change is less
than €; = 1073. Our numerical examples show that the iterations, with this convergence
criterion, usually converge in a few steps.

To speed up the convergence rate of MCRELAX, we use the PGA algorithm (see the ap-
pendix) to provide the initial estimates of fhe motion errors. A flow chart of the MCRELAX
algorithm is shown in Figure 6.2. MCRELAX can be described with the following steps:

Step 1: Obtain the initial estimates of {t)»}¥_, by using the PGA algorithm.
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Step 2: Compensate the motion errors by using (6.28).

Step 3: Estimate {d, e, ;‘—k},ﬁ;l from Z by using the RELAX algorithm.

Step 4: Redetermine {5 }¥_, by using (6.27).

Step 5: Check for practical convergence (see later on). If so, stop; otherwise go to Step
2, but only perform Step (K) of the RELAX algorithm in Step 3.

The practical convergence of the above iterations may be determined by checking the
relative change of the cost function C; in (6.25) between two consecutive iterations. In our
numerical examples, we terminate the iterative process when the aforementioned relative
change is less than &5 = 10~3. Our numerical examples show that the iterations, with this
convergence criterion, also usually converge in a few steps.

Since a minimization is performed at every iteration, the value of the cost function Cy
in (6.25) cannot increase. As a result, under mild conditions, the MCRELAX algorithm is
bound to converge to a local minimum of C; [8]. Depending on the data parameters, the
Jocal minimum may or may not be the global one. To achieve better performance, we could
.also go to Step (1) instead of Step (K) of Step 3 for the first few iterations of MCRELAX.
Doing so does not change the convergence property of MCRELAX.

When only the first three steps of MCRELAX are used for parameter estimation, we refer
to the approach as PGA-RELAX. We will show in Section 5 that the parameter estimates
obtained by using MCRELAX is more accurate than those by using PGA-RELAX.

6.4 The CRB of the Parameter Estimates

We sketch below the derivation of the CRBs for the parameter estimates of the data
model in (6.24) when the additive noise is assumed to be a zero-mean colored Gaussian

random process with an unknown covariance matrix.

Let
y = vec{Y}, ' (6.33)

and |
e = vec{E}, (6.34)
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where vec[X] denotes the vector [ xT xI --- xk ¥ with {xx}£, being the columns of

1
X. Then (6.24) can be written as

y =3 o [Pwy(fi)] ®wn(fi) +e £ Qa+e, (6.35)
k=1 .

where ® denotes the Kronecker product,

Q= [ {PwM(fl)} Qwu(fi) - {PwM(fK)} ® wi(fx) ] , (6.36)

and
T
o = I: al Qg -*- aK ] . (637)

Let Q = E{eef} be the covariance matrix of e, where E{-} denotes the expectation. The
unknown variables in the likelihood function of y are the elements of Q, the real and imag-
inary parts of the amplitudes, the frequency pairs, and the phase errors. The extended
Slepian-Bangs’ formula for the ijth element of the Fisher information matrix has the form
[9, 10]:
" {FIM},; = tr (Q'Q;Q'Q;) + 2Re [(aHQH); Q! (na)’j] , (6.38)
where X denotes the derivative of X with respect to the ith unknown parameter, tr(X)
denotes the trace of X, and Re(X) denotes the real part of X. Note that FIM is a block
diagonal matrix since Q does not depend on the parameters in (Qa), and (f2a) does not

depend on the elements of Q. Hence the CRB of the estimates of the target features and

phase errors can be determined from the second term of the right side of (6.38).

Let ,
T
7}=[ReT(a) ImT(a) 7 f7 ¢T] , (6.39)
where Im(X) denotes the imaginary part of X,

T
f:[f1 fr o fK] , (6.40)

_ o T
f=[f1 A fK] , (6.41)
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and .
¢=[¢2 by - ¢M—1] . (6.42)

Let
F:[Q i@ D; Dj D,,,], (6.43)

where the kth columns of D and Dy, respectively, are o0 { [Pw i fk)] ® wps( fk)} /0fr and
o0 { [ng(fk)] ® wM(fk)} /0fs, E = 1,2,---,K, and the mth column of D, is
0 { LA an[Pw i ()] ® wr(fx)} /0%, 7 =2,3,-++,M — 1. Then

CRB(n) = [2Re(F¥Q'F)] . (6.44)

6.5 Numerical and Experimental Examplés

We first present an experimental example comparing the performance of the MCRELAX
algorithm with that of the PGA algorithm. The data matrix is 256 x 256, which is a portion
of the data collected by one of the two apertures of the ERIM’s (Environmental Research

“Institute of Michigan’s) DCS IFSAR (interferometric SAR). These data have already been
motion cbmpensated by some unknown means. Figure 6.3(a) shows the modulus of the
image (in dB and scaled to be between 0 and 255) obtained by applying FFT with Kaiser
window and shape parameter 6 to the original data matrix. To test the performance of
the MCRELAX and the PGA algorithms, we added phase errors to the data matrix. The
phase errors are shown in Figure 6.4 and are generated by an 8th-order polynomial and are
similar to the phase errors used in [1]. The SAR image obtained from the data with the added
phase errors is shown in Figure 6.3(b). Figures 6.3(c) and (d) show the images obtained after
motion compensation by PGA and MCRELAX, respectively. In the MCRELAX algorithm,
we assume that there are 50 dominant point scatterers in the image. (We have also tried
30 and the results are similar.) The images in Figures 6.3(c) and (d) are very close to the
original one in Figure 6.3(a), which shows that PGA indeed works very well. The comparison
of the added phase error estimates obtained by PGA and MCRELAX with the true values
is shown in Figure 6.4, which again shows that the phase errors are well estimated by

PGA and MCRELAX. However, for perhaps rare cases where strong closely spaced point
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scatterers occur in the same range, PGA may not work as well as MCRELAX since PGA
is a nonparametric spectral estimation method while MCRELAX is a parametric one and
has better resolution than nonparametric methods. To illustrate this point, we embedded
three strong point scatterers in one range. The powers of the added scatterers relative to
the power of the strongest pixel in Figure 6.3(a) are 14.0, 14.2, and 14.0 dB. We then added
the same motion error as in Figure 6.3(b). The so-obtained images with and without the
- added motion errors are shown in Figures 6.5(a) and (b), respectively. Figures 6.5(c) and
(d), respectively, show the images obtained after motion compensation by applying the PGA
algorithm and the MCRELAX algorithm to the data used in Figure 6.5(b). We note that
the image obtained with the MCRELAX algorithm is better than that obtained with PGA.
The comparison of the added phase error estimatés obtained by PGA and MCRELAX with
the true values is shown in Figure 6.6. We see that the phase errors estimated by using
MCRELAX are better than those obtained by using PGA. Yet the number of MATLAB
flops required by MCRELAX is about 2 X 103 times as much as that required by PGA.
Moreover, if we remove the range line where the strong embedded scatterers are located,
“PGA works as well as in Figure 6.3, which shows that PGA is indeed a very good motion
compensation algorithm.

We next consider an example of a simulated tank. The true features of the simulated
tank are shown in Table 6.1, which are obtained from an XPATCH [11] simulated tank.
Figure 6.7(a) depicts the modulus of the true RCS’s of the scatterers as a function of range
and cross-range. The motion errors are identically and independently distributed random
variables with uniform distribution between 0 and 2w. The noise sequence is zero-mean
circularly symmetric white Gaussian random processes that are uncorrelated with the target
parameters and have variance o2 = 20. The modulus of the RCS’s of the scatterers obtained
via FFT without windowing but with zero-padding in the presence of the phase errors and
noise are shown in Figure 6.7(b). Figure 6.7(c) shows the modulus of the RCS’s obtained
by applying FFT to the data that is motion compensated by PGA. Figures 6.7(d) and (e),
respectively, show the modulus of the RCS’s obtained by PGA-RELAX and MCRELAX.

We note that PGA can reduce the motion errors significantly and is very robust. Note also
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that both PGA-RELAX and MCRELAX can correctly resolve all eight scatterers, including
those that cannot be resolved by FFT. Moreover, the parameter estimates obtained with
MCRELAX are closer to the true ones than those obtained with PGA-RELAX. (Note, for
example, the two largest scatterers.)

Let us now consider the CRBs of the target parameters. In target classification appli-
cations, it is often the relative positions of the scatterers that are more important than a

common shift in range or cross-range. Let § be a common shift of {fi}i,, i.e.,

fo=fu=34, (6.45)
such that
kK .
Y fi=0. (6.46)
k=1
Then
1 K
5= % kgzjl fe. (6.47)
Hence f =[ f, --- fx |7 isrelated to f by the following linear transformation
f = Tf, (6.48)
where } i
K-1 -1 -1
1 -1 K-1 -1
T=— .49
= (6.49)
-1 -1 K1)
Similarly, let
f = T¥, | (6.50)
and
S o (65)
b=— - : 6.
K k=1

Then the CRB matrix of f is related to f by
CRB(f) = TCRB(f)T7, (6.52)
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and
_ 1

CRB(6) = e 1TCRB(f)1, (6.53)
where
1=[11 - 1]" (6.54)
Similarly,
CRB(f) = TCRB(F)T7, (6.55)
and
- 1 _
CRB(¢) = -ﬁlTCRB(f)l. : (6.56)
K Ay K v K ~ K ol K ~
Table 6.2 compares the CRBs of {Gu}_1> {fk} , {fk} , {f,c} , {fk} , 0, and
k=1 k=1 k=1 k=1

§ for the aforementioned simulated tank example for both the case of known and the case
of unknown motion errors. Note that the case of known motion errors is equivalent to the

case of no motion errors. We note that as compared to the case of known motion errors,
K

the unknown motion errors have the most significant impact on the CRBs of {]%k} and
k=1

"3, which are almost the same. The unknown motion errors have little effect on other target

A

parameters, including the relative cross-range positions { f k} . Hence when the motion
k=1
K

errors are unknown, the main errors in {}_k}k . are due to the error of a common shift.
Finally, Table 6.3 shows the comparison:; of the CRBs and the mean-squared errors
(MSEs) of the parameter estimates obtained by using PGA-RELAX and MCRELAX for
the simulated tank example. Note that only relative positions and the common shifts are
considered. The MSEs are obtained from 100 Monte-Carlo trials. We note that the MSEs
of the parameter estimates obtained with MCRELAX are very close to the corresponding
CRBs, while those obtained with PGA-RELAX are not. Thus, iterating Steps 2 through
5 in MCRELAX can improve the accuracy of the parameter estimates. Yet the number of

MATLAB flops required by MCRELAX is only about twice as much as that required by
PGA-RELAX for this example.
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6.6 Conclusions

We have studied the problem of extracting target features via SAR in the presence
of uncompensated aperture motion errors. A parametric data model of a spotlight-mode
SAR system has been established. The Cramér-Rao bounds for the parameters of the data
model have also been derived. The CRB analysis shows that the unknown motion errors
can significantly affect the accuracy of a common shift of the scatterer positions in cross-
range direction, but have little effect on other target parameters including the accuracy of
the relative positions in the range direction. A relaxation-based MCRELAX algorithm for
estimating both target features and motion errors has been devised. Simulation results have
shown that the MSEs of the parameter estimates can approach the corresponding CRBs. We
have also shown with a couple of examples that MCRELAX can simply be used for motion

compensation only and can give good motion compensation results.

Appendix - The PGA Algorithm

To make this paper self-contained, we briefly describe the PGA algorithm. The algorithm
we describe below is slightly different from the original PGA algorithm presented in [4] in
that we avoid the ambiguity problems described in Section 2 by imposing P = P = 0.
The PGA algorithm can be summarized with the following steps (with Steps 2 to 4 being
iterative):

Step 1: Obtain V, the 2-D FFT of the data matrix Y.

Step 2: For each row v,, of V, m =0,1,---, M — 1, perform the following operations:

(a) Select the dominant peak of the modulus [vm| of vr, and shift it to the origin (to

remove its frequency offset). More specifically, let

|’Um,ﬁﬂ'l = max{ |Um,0‘, lvm,ll’ T lvm,M—ll } ) V (657)

where 7! denote the cross-range position of the dominant peak. Then the shifted vector has
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the form

Vm = [ Um0 Um1 *°° Umir-1 } = [ Unmt Ummt+1 " UmM-1 Um0 Uml " Ummt- ]
(6.58)
(b) Window the circularly shifted imagery. Let 2d' + 1 be the window length. Then the

windowed data vector has the form

v

Vm=[«7m,o Uma o vm,M-l]:['ﬁm,o 0 Upat 0 0 0 Uppgoar o 5m,M—1]'
(6.59)

Here the window length is identical for all range bins {Gm}%;ol and is determined from
M-1 ,
Sm = Z |'5m,ﬁz|27 m=0,1,---,M—1, (660)
m=0 ‘
by thresholding sy, at the point 10 dB down from its peak, sg, then increasing this width by
50% [4].
(c) Form an M x M matrix G whose mth row contains the 1-D inverse FF'T of the

~windowed data vector V,,,. Let G =[ g, gi7-1 ], where g, is the mth column of G.

Step 3: Compute the difference estimates Adg = gﬁm — $m_1 of the motion phase errors
{qﬁﬁl}g; (of the current iteration) according to

Adm = Adm — Apy, m=1,2,---,M —1, (6.61)

where
A = angle {gg_lgm} : (6.62)
Obtain ¢, by using ¢y = 0, i =1,2,---,M — 1. (Note that we guarantee $o =1 =0.)

Step 4: Compensate for the motion errors (of the current iteration)
§(m, ) = y(m, m) exp (~jdm), m=0,1,--,M =1,m=0,1,---,M —1.  (6.63)

Step 5: Iterate Steps 1 through 4 with y(m, m) being replaced by §(m, ) until conver-

gence.
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Note that the estimate @m of the motion error ¥m, m = 2,3,---, M — 1, is obtained
by summing the ém obtained from all iterations. We remark that the PGA algorithm is
robust since it searches for a single peak for each row vector v,,. Even if a peak location
is mistakenly determined, it only causes a constant shift in Ad,, in (6.62), which may be

corrected by (6.61).

ACKNOWLEDGMENTS

The authors thank Maj. T. Burns for providing us with the ERIM data. The authors
are also grateful to Dr. P. H. Eichel for his helpful comments on the PGA algorithm.

Reference

[1] P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, Jr., “Speckle processing methods for
synthetic-aperture -radar phase correction,” Optics Letters, vol. 14, pp. 1-3, January

1989.

[2] P. H. Eichel and C. V. Jakowatz, Jr., “Phase-gradient algorithm as an optimal estimator
of the phase derivative,” Optics Letters, vol. 14, pp. 1101-1103, October 1989.

[3] C. V. Jakowatz, Jr. and D. E. Wahl, “Eigenvector method for maximum-likelihood
estimation of phase errors in synthetic-aperture-radar imagery,” Journal of the Optical
Society of America, vol. 10, pp. 2539-2546, December 1993.

[4] D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, Jr., “Phase gradient
autofocus-a robust tool for high resolution SAR phase correction,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 30, pp. 827-835, July 1994.

[5] C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson,
Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell, MA:
Kluwer Academic Publishers, 1996.

[6] J. Li and P. Stoica, “Efficient mixed-spectrum estimation with applications to tar-
get feature extraction,” IEEE Transactions on Signal Processing, vol. 44, pp. 281-295,
February 1996.

123




[7] D. C. Munson, Jr., J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation
of spotlight-mode synthetic aperture radar,” Proceedings of the IEEE, vol. 71, pp. 917
-925, August 1983.

[8] V. G. Karmanov, Programmation Mathematique. Editions Mir, Moscow, 1977.

[9) W. Bangs, Array processing with generalized beamformers. Ph.D. dissertation, Yale
University, New Haven, CT, 1971.

[10] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

[11] D. J. Andersh, M. Hazlett, S. W. Lee, D. D. Reeves, D. P. Sullivan, and Y. Chu,
“XPATCH: a high-frequency electromagnetic scattering prediction code and environ-
ment for complex three-dimensional objects,” IEEE Antennas and Propagation Maga-
zine, vol. 36, pp. 65-69, February 1994.
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Re{ax} 0.2643 | -3.5000 | 4.4339 | -2.1447 | -1.4363 | 1.7064 | 1.1555 | 1.2068

Im{ox} -4.9633 | -9.6967 | -1.4916 | 0.3269 | -1.2229 | -0.6923 | -0.7064 | -0.6122
fr 0.1016 | 0.1406 | 0.1016 | 0.0078 | 0.1016 | 0.0312 | -0.1328 | 0.0938
I -0.0293 | 0.0488 | -0.0059 | -0.0059 | 0.1191 | -0.0215 | -0.0371 | -0.0684

Table 6.1: True parameter values of the simulated tank.
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Figure 6.1: Data collection geometry in a spotlight-mode SAR.

125




Table 6.2: Comparison of the CRBs (in dB) of the target parameters for the simulated
tank example. (a) CRBs of {a;} obtained by assuming the motion errors unknown (CRB1)
and known (CRB2). (b) CRBs of {fx} and { fk}, obtained by assuming the motion errors
unknown (CRB1 and CRBS3, respectively) and known (CRB2 and CRB4, respectively). (c)
CRBs of { fk} and {?k}, obtained by assuming the motion errors unknown (CRB1 and
CRB3, respectively) and known (CRB2 and CRB4, respectively). (d) CRBs of ¢ and 5,
obtained by assuming the motion errors unknown (CRB1 and CRB3, respectively) and

known (CRB2 and CRB4, respectively).

126

kth scatterer 1 2 3 4 5 6 7 8
CRB1 2131 -7.78 1-2.28|-9.58 | -9.85 | -9.48 | -11.15 | -8.62
CRB2 -3.321-11.19|-3.13 | -9.72 | -11.04 | -9.58 | -11.24 | -9.54

(a)
kth scatterer 1 2 3 4 5 6 7 8

CRB1 7471 | -75.49 | -67.94 | -58.38 | -60.77 | -56.66 | -57.97 | -57.61

CRB2 -74.80 | -75.53 | -67.98 | -58.39 | -60.85 | -56.67 | -57.98 | -57.92

CRB3 -68.31 | -68.84 | -66.75 | -58.70 | -61.30 | -57.23 | -58.92 | -58.54

CRB4 -68.43 | -68.97 | -66.88 | -58.71 | -61.38 | -57.24 | -58.94 | -568.81

(b)
kth scatterer 1 2 3 4 5 6 7 8

CRB1 -44.20 | -44.25 | -44.16 | -44.14 | -43.87 | -44.09 | -44.07 | -43.85

CRB2 -67.11 | -75.58 | -59.51 | -60.03 | -60.52 | -58.46 | -57.98 | -55.27

CRB3 -65.83 | -68.27 | -57.61 | -60.41 | -60.19 | -59.01 | -58.81 | -54.72

CRB4 -66.10 | -68.97 | -58.71 | -60.55 | -61.23 | -59.07 | -58.88 | -56.02

(c)
CRB1 | CRB2 | CRB3 | CRB4
-69.75 | -69.86 | -44.22 | -69.88
(d)




kth scatterer 1 2 3 4 5 6 7 8
MSE1 503 | 6.58 | 1.76 | -5.64 | -2.29 | -5.36 | -8.44 | -7.86
MSE2 -2951-6.71 | -2.56 | -9.39 | -8.72 { -9.45 | -11.50 | -9.20

CRB 213 | -7.78 | -2.28 | -9.58 | -9.85 | -9.48 | -11.15 | -8.62
(a)
kth scatterer 1 2 3 4 5 6 7 8
MSE1 -58.67 | -58.53 | -59.18 | -54.83 | -52.04 | -44.88 | -56.04 | -57.68
MSE2 -69.72 | -70.14 | -67.11 | -58.65 | -61.44 | -56.85 | -59.05 | -58.45
CRB -68.31 | -68.84 | -66.75 | -58.70 | -61.30 | -57.23 | -58.92 | -58.54
(b)
kth scatterer 1 2 3 4 5 6 7 8
MSE1 -57.04 | -56.37 | -54.64 | -54.81 | -51.48 | -47.00 | -54.50 | -49.15
MSE2 -65.82 | -68.49 | -57.77 | -60.86 | -60.12 | -58.56 | -59.21 | -54.92
CRB -65.83 | -68.27 | -57.61 | -60.41 | -60.19 | -59.01 | -58.81 | -54.72
(c)
b) 5

MSEL1 | -59.21 | -10.54
MSE2 | -63.69 | -42.36
CRB | -69.75 | -44.22

Table 6.3: Comparison of the CRBs (in dB) of the parameters of the simulated tank with
the MSEs obtained by PGA-RELAX (MSE1) and MCRELAX (MSE2). (a) For {ax}- (b)

For {fk} (c) For {}-k} (d) For ¢ and 4.
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Figure 6.2: The flow chart of the MCRELAX algorithm.
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(d)

Figure 6.3: Comparison of (a) the original image with (b) the image with added motion
errors before motion compensation and the images with added motion errors after motion
compensation obtained by (c) the PGA algorithm and (d) the MCRELAX algorithm by

using the dashed lines in Figure 4.
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Figure 6.4: Comparison of the true phase errors (solid line) with their estimates (dashed
line) obtained by (a) PGA and (b) MCRELAX.
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(d)

Figure 6.5: Comparison of (a) the original image (with three embedded point scatterers)
with (b) the image with added motion errors before motion compensation and the images
with added motion errors after motion compensation obtained by (c) the PGA algorithm
and (d) the MCRELAX algorithm by using the dashed line in Figure 6.
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Figure 6.6: Comparison of the true phase errors (solid line) with their estimates (dash line)
obtained by (a) PGA and (b) MCRELAX.
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Figure 6.7: The simulated tank example with M = M = 32 and o2 = 20. (a) True |ox| vs.
fr and fi. (b) |&(f, f)| with added motion errors vs. fand f. (c) |a(f,f)| vs. f and f
obtained by PGA. (d) |&| vs. fi and F . obtained by PGA-RELAX, (e) || vs. fi and fk

obtained by MCRELAX. 133




7. Autofocus and Super Resolution SAR Image Formation

7.1 Introduction

Synthetic aperture radar (SAR) can produce high resolution images of targets or scenes
of interest by transmitting signals with large bandwidths and utilizing the relative motion
between the radar and the objects to be imaged. Since its invention in the early 1950’s [1],
SAR imaging technology has now been widely used in many military and civilian applications
[2]. Conventional SAR has two common imaging modes, i.e., stripmap vs. spotlight modes.
The stripmap mode is more efficient when used for coarse-resolution mapping of large regions,
while the spotlight mode is a practical choice for fine-resolution imaging of localized areas.
Major technical issues associated with SAR imaging include motion compensation and image
formation. In this chapter, we will address the issue of autofocus and super resolution image
formation from spotlight-mode SAR data in the presence of uncompensated phase errors
across the synthetic aperture.

The ideal data collection geometry for the spotlight-mode SAR imaging is called “turntable
imaging” where a stationary radar illuminating a uniformly rotating object [3] at a fixed dis-
tance. Fine cross-range resolution is obtained by utilizing the Doppler frequency gradient
generated by the relative rotational motion between the object and the radar. In turntable
imaging, the distance between the radar and the rotational axis of the object to be imaged is
fixed. However, for airborne or spaceborne SAR, it is not easy to keep the distance between
the radar and the scene center (or the reference point used for dechirping) a constant or
to have an exact knowledge about their relative distances. Any uncertainty in the relative
distance will produce a demodulation timing error which will result in a range shift and
a phase error in the range-compressed data. With modern advanced onboard integrated
navigation systems, including inertial measurement units (IMUs), the Global Positioning
System (GPS), and the ring laser gyro technology, the amount of range shift is typically a
small fraction of a range resolution cell [4] and hence can be ignored. However, the phase er-

ror across the synthetic aperture is uSually large enough to blur SAR images. In addition to
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the platform position uncertainty, propagation through atmospheric turbulence [5] or system
phase instability will also produce phase errors across the synthetic aperture. Usually, the
platform position uncertainty will produce low-frequency phase errors while the propagation
and system instability will induce phase errors that generally have a high-frequency content.

Improving the accuracy of the navigation systems is cost expensive and can only deal
with phase errors due to the platform position uncertainty. Instead, autofocus algorithms,
which derive phase errors directly from collected phase history data, offer an attractive
alternative to remove the phase errors independent of the error source. Many autofocus
algorithms have been proposed in the SAR literature, (see, for example, [6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]), for correcting phase errors across the synthetic aperture. A
two subaperture-based approach, referred to as Map Drift, was proposed in [6] to estimate
quadratic phase error coefficients by finding the peak of the cross-correlations between the
two low-resolution intensity images formed using the two subapertures. Map Drift is very
simple and computationally efficient but can only compensate quadratic phase errors. Mul-
tiple subaperture-based approaches were proposed in [7, 8, 9], which are the extensions of
Map Drift to estimate high-order polynomial phase errors. However, the order of the phase
error polynomials is still very limited because the higher the order, the more the subaper-
tures needed, and hence the narrower the subapertures, and in turn, the cross-correlations
of the resulting low-resolution images yield less accurate estimates of the polynomial coef-
ficients. Another subaperture-based algorithm, referred to as the the phase difference (PD)
algorithm, was proposed in [10] to compensate quadratic phase errors. PD and Map Drift
differ in the manner in which they manipulate the subaperture data to yield the estimates of
phase polynomial coefficients. PD obtains the error estimates from the non-coherent average
(across range) of the Fourier transform of the conjugate product of the range—compreséed
data from the two subapertures. Unlike other subaperture-based algorithms 6, 7,8, 9], PD
is non-iterative. PD can also be extended to multiple subapertures in the way similar to that
used in (7, 8, 9]. However, like [7, 8, 9], its capability to handle high-order phase errors is
still very limited. A very robust algorithm, referred to as phase gradient autofocus (PGA),

was first proposed in [11] and later refined in [12, 13]. PGA is based on inverse filtering
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[4] but takes advantage of the redundancy of the phase error function by averaging across
many range cells. Unlike the above subaperture-based algorithms 6, 7, 8,9, 10], PGA is
not model-based and hence can be used to estimate any high order phase errors. It has
been shown in [14] that PGA is very robust over a variety of scene content and phase er-
ror distributions. However, fully automatic SAR image autofocus using PGA may be risky
in some special cases [16] since the performance of PGA is sensitive to the choice of the
threshold needed by the automatic windowing step or the size reduction rate needed by the
progressive windowing scheme. Moreover, PGA suffers from error accumulation across the

aperture. Prominent point processing (PPP) was also proposed for the autofocus of SAR

" images [15, 18). Like PGA, PPP is not based on the modeling of phase errors. However,

PPP relies heavily on the existence of isolated dominant scatterers, which is rarely met in
practice. A good review of the above algorithms can be found in [18]. As pointed out in [18],
comparison and evaluation of the above algorithms are made difficult by the fact that per-
formance generally varies with scene content and phase error characteristics. For example,

the single PPP algorithm is more robust than any other aforementioned algorithms against

high-order phase errors but is more sensitive than any other algorithms to the scene content.

It seems that PGA makes a good tradeoff between the robustness over scene content and
phase error distributions.

In [17], a fully parametric algorithm, referred to as MCRELAX, was proposed for simul-
taneous autofocus and target feature extraction. MCRELAX assumes a two-dimensional
(2-D) sinusoidal model for the target signal but assumes nothing (arbitrary unknowns) for
the phase error distribution. MCRELAX is an alternating optimization approach to a nonlin-
ear least-squares (NLS) fitting criterion that uses RELAX [19] for target feature extraction.
To speed up the convergence, PGA is used in MCRELAX to provide the initial phase er-
ror estimates. When PGA fails to provide a reliable initial condition, MCRELAX may not
converge or converge very slowly to a good solution. In addition, since MCRELAX uses all
target scatterers to estimate both the phase errors and target features, when the size of the

scene to be imaged is large, MCRELAX becomes computationally too expensive.

In this chapter, an autofocus algorithm, referred to as MCCLEAN, is proposed for cor-
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recting synthetic aperture phase errors in SAR. It is a parametric algorithm based on the
same data model as used in MCRELAX. The computational core of the algorithm is the
CLEAN algorithm [20, 19], which involves only a sequence of 2-D FFT operations. Like
the single PPP algorithm, MCCLEAN is more robust than any other algorithms against
high-order phase errors. However, MCCLEAN does not rely on the existence of isolated
dominant scatterers as the single PPP algorithm does. Compared to MCRELAX [17], MC-
CLEAN has better convergence property (no separate initialization step is required) and
is computationally much more efficient when used as an independent autofocus approach
for the SAR imaging of a large scene. For certain kinds of scene content and phase error
 distributions, MCCLEAN performs better than the well-known PGA algorithm. We also
present a modified relaxation based algorithm, Which has a similar structure as MCCLEAN,
for simultaneous autofocus and super resolution target feature extraction of a small scene
or small region of interest (ROI) in a large scene. Super resolution SAR images can then be
formed from these estimated target features by using data extrapolation and FFT [21].
The remainder of the chapter is organized as follows. In Section 7.2, we derive the
data model and formulate the problem of interest. Some preparations and the MCCLEAN
algorithm are presented in Sections 7.3 and 7.4, respectively. Several experimental examples
are provided in Section 7.5 to illustrate the performance of MCCLEAN. Finally, Section 7.6

contains our conclusions.

7.2 Data Model and Problem Formulation

A broadside data collection geometry in a spotlight-mode SAR is shown in Figure 7.1.
The XY Z coordinate system is centered on a small patch of ground, where a target is l()cated.'
The coordinate origin is referred to as the scene center or reference point. The angle 6 and
¢ denote the azimuth and elevation angles, respectively, of the radar relative to the XY Z
coordinate system. The distance between the radar and the scene center is denoted by Rp.
The ground is illuminated by a narrow beam from the moving radar that moves along the

direction but with ¢ and Ry fixed. In Figure 7.1, R denotes the distance between the radar

and a scatterer at the position (z,y, 2).
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The range R of the scatterer located at (z,¥, z) can be written as
R= [(Rg cosfcos ¢ — z)? + (Rosinfcos ¢ — y)* + (Rosin ¢ — z)2] 2 (7.1)

When the distance from the radar to the target is much larger than the size of the target
(ie., ‘1?2:.7 <1, —RLO <1, £ <K 1) and @ is very small, a good approximation of R can be found

by using the Taylor series expansion, which has the form [17]

R~ Ry — % cosf cos ¢ — §sinfcos @, (7.2)
where
. z2sin? ¢ + y? + 22 cos? ¢ — zzsin 2¢
T=1x+ztan¢g — SRocos ¢ , (7.3)
and
. zy cos ¢ + yzsin qS. (7.4)

Ry
Note that the second term of the right side of (7.3) is due to the range layover of the scatterer

with non-zero height z [4]. The third term of the right side of (7.3) and the second term of

‘the right side of (7.4) are due to the range curvature effect [4].

The range resolution of a radar is determined by the radar bandwidth. To achieve
high resolution in range, the radar must transmit wideband pulses, which are often linear

frequency modulated (FM) chirp pulses. A normalizéd chirp pulse can be written as
s(t) = exp [ji(2r fot + myt?)], [t < To/2, (7.5)

where f, denotes the carrier frequency, v denotes the chirp rate, and Ty denotes the pulse

width. At look angle 6, the signal returned by a scatterer located at (z,y, z) has the form

r(t,0) = 6,y €XD {j [27r o (2~ 3?-) by (6 %@)2]} , (7.6)

where t denotes the fast time, 0, , is determined by the radar cross section (RCS) of the

scatterer; and c denotes the speed of light.

In practice, a dechirp-on-receive approach is used to considerably reduce the sampling rate

requirement of the A /D converters [4, 18]. The dechirped signal d(t, §) is obtained by mixing
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r(t,0) with a reference signal exp {— j[2m fo(t — 280) + 7wy (t - 2%1)2]}, which is the conjugate
of the normalized received signal of the scene center. Since the term exp [j%l(R — RO)2] is

usually close to a constant, hence it can be ignored or partially removed [22, 18]. In this

case, d(t,6) has the form
d(t,0) = b2y, exp{ j4—' [fo + (t — &)] (R - Ro)} (7.7)

Inserting R in (7.2) into (7.7), we have

(t,6) = Sa exp [j(3ts + )], (73)
where _
[ 2
t,= 4% fo+y(t— -—?—)] cos ¢ cos b, (7.9)
and
t, = flg fo+y(t— -2—CR—0)] cos ¢ sin 6. (7.10)

Note that d(t,6) in (7.8) is a 2-D sinusoidal signal. The frequency pair of the 2-D sinusoid
corresponds to the 2-D location {Z,§} of the scatterer, while the amplitude is proportional
to its RCS. Note that (Z, §) is the ambiguous location due to the layover and range curvature
effects [4] and is not the true location (z,y,z) of the scatterer. The range curvature effect
can be neglected for large Ry. However, this 2-D SAR imaging system cannot distinguish the
scatterers located at (z,y, z) and (%, 7, 0) and combines these scatterers into one scatterer.
The scatterers we referred to below are those resulted from such combinations.

When a target has multiple scatterers with distinct (Z, ), d(t,6) in (7.8) will be a sum of
sinusoids. The 2-D locations and RCS’s of the target scatterers are the 2-D target features.
Since usually the samples on the ¢ and 8 axes are uniformly spaced, the samples of ¢, and
t, occur at the points of a polar grid. Hence Polar-to-Cartesian interpolation (referred to as
polar reformatting) is needed for the samples of ¢; and t, to occur at rectangular grid points

[22]. After polar reformatting, the signal reflected by a radar target that consists of K 2-D
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point scatterers in an ideal SAR system can be described as:

s(m,m) = iakexp [j27r(mfk+mfk)], m=0,1,---,M-1, m=0,1,---,M -1,
= (7.11)
where the chplex amplitude oy and the 2-D frequency pair {f, fx}, respectively, are pro-
portional to the radar cross section (RCS) and the 2-D location (range and cross-range) of
the kth scatterer of the target, and M and M denote the numbers of the available data
samples in range and cross-range, respectively.

In the derivations of the above data model, we have assumed that the radar moves along
the 6 direction with R, known exactly. For a practical airborne or spaceborne SAR system,
however, the distance between the moving radar and the reference point may not be known
exactly due to platform position uncertainty [4]. Also, the round-trip time delay between
the radar and the target may be somewhat random due to atmospheric turbulence [5], which
has the same effect on SAR imaging as when Ry is in error. For a given 6, let ARy(0)
denote the unknown distance error between the radar and the reference point. ARy(6) will

‘result in a shift and a constant phase error in the range compressed data corresponding to
the look angle . The shift amount is typically a small fraction of the range resolution cell
[4] and hence can be ignored. However, since fo tends to be very large in practical SAR
systems, even a small ARy(f) would cause a large phase error across the synthetic aperture.
By neglecting the effect of polar reformatting, the signal obtained by a realistic SAR system
can be described as

y(m,m) = s(m, ™) exp (j¥m) + e(m,m), (7.12)

where {wm}mM;(} are the phase errors due to unknown ARy(f) and system instability and
e(m,m) denotes the unknown noise. Let Y and E denote the M x M matrices whose mimth

elements are y(m,m) and e(m,m), respectively. Let

P(®) = ding { exp (), exp(ith), -, exp (W) | (713)

and

wM(fk):[l exp (j2rfi) - exp[j2m(M — 1) fi] ]T, (7.14)
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where ()T denotes the transpose and

T
U= [ Yo Y1 o Vw1 | o (7.15)
Then (7.12) can be written in the following matrix form:
K -

k=1
Our problem of interest herein is to estimate ¥ from Y in (7.16) for autofocus or both ¥

and {ay, fi, fi} K, for simultaneous autofocus and super resolution SAR image formation.

7.3 Preparations
. ~K - 1K
The estimates {dk, e, f k} and ¥, respectively, of {ak, frs fk}k . and ¥ can be ob-
k=1 =
tained by minimizing the following NLS criterion:

2

, (7.17)
F

-y K K —
6 ({ow B 2) = |¥ = L onon( FP(®)

where || - || denotes the Frobenius norm. It has been shown [19] that the NLS estimates so-
obtained are statistically very accurate for both white and colored noise e(m,m). However,
the minimization of (7.17) is a very complicated optimization problem. The alternating min-
imization approach can be used for the above optimization problem, which repeats the two
steps of phase error estimation as well as compensation and target feature extraction. Below
we briefly describe the above two steps, which will lay down the basis for the presentation
of our MCCLEAN algorithm.

Phase Error Estimation and Compensation
~ ~ K A
Assume that {&k, fe> f k} are given. Let S denote the matrix whose mmth element
k=1 : _
is 4(m, ), where §(m,m) is the same as s(m, ) in (7.11) except that {o, fx, fe}i, are

replaced by {6y, fx, J%k}szl' Let y., and &, respectively, denote the /mth columns of Y and

S. Then minimizing C; in (7.17) with respect to ¥ becomes minimizing

=

-1

Co () = lym — 8m exp Gea)l, (7.18)
0

3
Il
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i

-1,

where || - || denotes the Euclidean norm, which gives the estimates of {mtm—o:

¥m = angle {sgym} , m=0,1,---,M -1, (7.19)

where ¢, is the (7 + 1)th element of &, angle(z) denotes the phase of z, and (-)¥ denotes
the conjugate transpose.
Once the phase error estimates ¥ are obtained, phase error compensation can be done

very easily. Let Z be the data matrix phase compensated by using P(¥), where P(¥) is the
same as P(¥) in (7.13) except that W is replaced by ¥, ie.,

Z = YP1(). (7.20)

Since P(¥) is a unitary matrix, minimizing C; in (7.17) is equivalent to minimizing the

following cost function

2

, (7.21)

K
k=1

G ({ow fu A, = “z - éakwm)wﬁ(ﬁ)

‘which becomes a standard NLS target feature extraction problem.

Feature Extraction

~ ~ K _
The target feature estimates {&k, e, f k} of {ak, fr fk}f_l can be obtained by mini-
} k=1 = .
mizing Cj in (7.21) via the relaxation-based approaches, such as CLEAN [19, 20] or RELAX

[19]. Before we summarize the two algorithms for later use, let us first present the following

preparations. )
Assume {di, fi, ]%Z}K ~ are given, where K denotes the intermediate numbér of scat-
terers. Let e R
Zy =7 - 12# Giwn(f)wT (F)- (7.22)
=1,

Then minimizing HZk — apwpr(fie)w ( fk)”; with respect to o, fi, and fj, yields [19]

~ A — 12
(Fur i) = arg max |wh (fe)Zewl (Fe)] (7.23)
(Fx:fr)
and
H * (F
&y = “’M(f’“])\?;;M(f’“) . (7.24)
fe=Fio,Fx=Fr
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Note that fi and fk in (7.23) can be obtained as the location of the dominant peak of the
2-D periodogram wa,,( Tk)Zw iy ( f_k)‘2 /(M M), which can be efficiently computed by using
2-D FFT (fast Fourier transform) with the data matrix Z; padded with zeros. Then é&; is
easily computed from the complex height of the peak of Wi (fr)Zewy (Fe) /(M M).

With the above preparations, now we summarize the CLEAN and RELAX algorithms.

Summary of the CLEAN Algorithm
Step (1): Assume K=1. Obtain {fl,]%l} and &y from Z by using (7.23) and (7.24),

respectively.

Step (2): Assume K = 2. Obtain Z, with (7.22) by using fi, ]%l, and @&; obtained in
Step (1). Obtain { o, f2} and & from Z, by using (7.23) and (7.24), respectively.

Step (3): Assume K = 3. Compute Z3 with (7.22) by using { £, E,&i}f:l obtained in
Step (2). Obtain { fs, E} and &3 from Zs.

Remaining Steps: Continue similarly until K = K.
Summary of the RELAX Algorithm

Step (1): Assume K=1. Obtain {fl,]%l} and &; from Z by using (7.23) and (7.24),

respectively.

Step (2): Assume K = 2. Obtain Z, with (7.22) by using £, f., and & obtained in
Step (1). Obtain { fg,%} and &y from Z, by using (7.23) and (7.24), respectively. Next,
compute Z; with (7.22) by using fz, JAF2, and &, and redetermine { fl, _?1} and é&; from Z;.

Iterate the previous two substeps until “practical convergence” is achieved (to be dis-
cussed later on).

Step (3): Assume K = 3. Compute Z; with (7.22) by using { fi,]%,-,ézi}?:l obtained in
Step (2). Obtain { fs, ]%3} and &3 from Zs. Next, compute Z; with by using { fi,}_i,&i}f’zz
and redetermine { fl, ]%1} and &; from Z,. Then compute Z, by using { fi, }—i,&i}i—_-l,g and
redetermine { fz, j%g} and &9 from Zs.

Tterate the previous three substeps until “practical convergence” .

Remaining Steps: Continue similarly until K =K.
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The “practical convergence” in the iterations of the above RELAX algorithm may be de-
termined by checking whether the relative change (¢) of the cost function Cs ({ Fe, fk, &k}K )
in (7.21) between two consecutive iterations is less than some threshold (say, 1073). =

We remark that CLEAN is not a super resolution algorithm but RELAX is [19]. CLEAN
is computationally more efficient than RELAX but its resolution and estimation accuracy
are inferior to RELAX [19]. Yet we have found that for the purpose of autofocus of a large
scene by using a small number of dominant scatterers only, using CLEAN and RELAX yields

similaﬂy focused SAR images. Hence we choose to use CLEAN in the autofocus algorithm

to be presented in Section 7.4.

7.4 The MCCLEAN Algorithm

Usually, the number of scatterers needed to provide satisfactory phase error estimates is
much smaller than the true number of scatterers in a SAR image, especially for a large scene.
For a large scene, we can assume a small K to estimate the phase errors. The focused SAR
‘image of the whole scene can then be formed by applying FFT to the phase compensated
data. Since the FFT image of the so-obtained whole scene is usually well focused, we can cut
out some small regions of interest (ROIs) for further autofocus and super resolution image

formation. This two-layer processing scheme seems more reasonable in practice.

The flow chart of the proposed algorithm is shown in Figure 7.2, which is quite different
from that of MCRELAX [17]. Note that in Figure 7.2, instead of two separate steps of
| phase error estimation and compensation and feature extraction of all K scatterers as used
in MCRELAX, the new algorithm estimates both the phase errors and target features via
an incremental refinement procedure; In other words, the estimates of both the phase errors
and target features are steadily improved by increasing the number of intermediate scatterers
K from 1 to some desired number (automatically determined by the algorithm). Before we

present the steps of MCCLEAN, let us copy and define some notations:

K counter of the number of outer iterations (also the number of intermediate scatterers);

I: counter of the number of inner iterations;
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7. M x M matrix denoting the compensated phase history data;

AW (I): M x 1 vector denoting. the incremental phase error estimates for the Jth inner
iteration of the Kth outer iteration;

AT iz M x 1 vector represeﬁting the incremental phase error estimates accumulated
within the Kth outer iteration.

With the above preparations, the MCCLEAN algorithm can be summarized as follows:
Step 0: Let Z=Y.

Step 1: Assume K=1.
Substep (a): Obtain { i, fk,&k} by using Step (1) of CLEAN and then let I=1.

Substep (b): Estimate the incremental phase error AW, (I) and then let Z = ZP~ (A (I)).
Substep (c): Re-estimate { Fer }Tk,&k} via CLEAN by assuming K = K.

Substep (d): If the inner convergence (to be discussed later on) is achieved, then let
A¥, = ©L, A¥,(5) and go to the next step; otherwise, let I = I+ 1 and then go to
Substep 1(b).
Substep (e): If the outer convergence (to be discussed later on) is achieved, then go to the
Final Step; otherwise, go to the next step.

Step 2: Assume K =2.
Substep (a): Obtain { fe, f k,ak} by using Step (2) of CLEAN and then let I=1.
Substep (b): Estimate the mcreme;Ltal phase error AW, (I) and then let Z = ZP- (AW, (])).
Substep (c): Re-estimate { feo f k,ak}z via CLEAN by assuming K = K.
Substep (d): If the inner convergence 1; 1achleved then let AY, =T AW, (6) and go to
the next step; otherwise, let / = I + 1 and then go to Substep 2(b).
Substep (e): If the outer convergence is achieved, then go to the Final Step; otherwise, go
to the next step.

Step 3: Assume K =3.
Substep (a): Obtain { i, ]%kadk} by using Step (3) of CLEAN and then let I = 1.

Substep (b): Estimate the mcremental phase error A% (T) and then let Z = ZP~1(A¥;(1)).
Substep (c): Re-estimate { frs f k,ak} via CLEAN by assuming K = K.
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Substep (d): If the inner convergence is achieved, then let A¥, =L A¥s(6) and go to
the next step; otherwise, let = I + 1 and then go to Substep 3(b).
Substep (e): If thé outer convergenée is achieved, then go to the Final Step; otherwise, go
to the next step. ’

Continuing Steps: Continué similarly by increasing K until the outer convergence is
achieved..

Final Step: Form the focused SAR images of the whole scene by applying FFT to the
phase compensated data.

The number of scatterers used by MCCLEAN to estimate the phase errors is determined
by the algorithm automatically as follows. After the convergence of MCCLEAN at Step K,

the phase error estimate ¥ z of W is
~ k A ’
V=) AV, (7.25)
k=1

The inner or outer convergence can be determined by checking the contribution of the current
incremental phase error estimates to the current phase error estimates for each inner or outer
iteration, respectively. Consider, for example, Step K of the above MCCLEAN algorithm.
After I inner iterations, we calculate

| A% (D) P _
I ‘i’i{—1 + ZZI_=1 A‘i’f{@ ”2, -

eg(D) = (7.26)

which is the ratio of the norm of the vector denoting the current incremental phase error
estimates to that of the current phase error estimates. If ez (I) is less than some threshold
value, say €y, then we declare that the inner convergence is achieved. (In our experimental
examples, we use a variable threshold ez = 0.1/ K to speed up the convergence of MC-
CLEAN.) After the inner convergence with I inner iterations, the accumulated incremental

phase error estimates for Step K is

A¥ L (3), (7.27)

M~

AT =
1

2
I

and the ratio of the norm of the vector denoting the accumulated incremental phase error
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estimates within Step K to that of the current phase error estimates is

o 1A% |

e(K) = TR (7.28)

If e(f( ) is less than some threshold value, say €,, then we declare that the outer convergence
is achieved. (In our experimental examples, we use ¢, = 0.01.)

We remark that MCCLEAN is a highly automatic approach and it is more robust than
any other existing algorithms against high-order phase errors. When the target contains
several dominant scatterers (not necessarily well isolated strong dominant scatterers), MC-

CLEAN is a very effective autofocus algorithm.

Other algorithms can also be constructed from Figure 7.2 by changing the feature extrac-
tion methods and converge control strategies for the inner and outer iteration loops. If we
use the same converge control strategy but only replace the CLEAN algorithm in Substep
(c) of each step of MCCLEAN with RELAX, we obtain a new algorithm. Yet we prefer
using CLEAN since CLEAN is computationally more efficient than RELAX and when only
a small number of scatterers are used for estimating the phase errors, CLEAN has simi-
lar performance as RELAX. This does not contradict the fact that RELAX outperforms
CLEAN in estimation accuracy and resolution capability since when there are closely spaced
scatterers, RELAX usually will revisit those unresolved scatterers when the assumed num-
ber of scatterers is quite large or close to the true number of scatterers. Hence, when the
number of scatterers used for autofocus is much smaller than the true number of scatterers
in a large scene, using CLEAN and RELAX yields similar results. The smaller the number
of scatterers we use, the faster the autofocus algorithm.

For some applications, we may wish to achieve simultaneous autofocus and super reso-
lution SAR image formation of a small scene or small ROI in a large scene. For this case,
we will extract the target features with RELAX rather than CLEAN. Also, instead of using
the ad hoc criterion of checking the phase error estimates to determine the inner and outer
convergences, we check the NLS fitting criterion in (7.17) to test practical convergences [19].
This is because the goal of the relaxation based methods is to minimize the NLS fitting

criterion in (7.17). The algorithm we present below is referred to as MCRELAX1, whose
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structure resembles MCCLEAN rather than the original MCRELAX algorithm presented in
[17]. The steps of MCRELAX1 are as follows:

Step 0: Let Z =Y.

Step 1: Assume K=1.
Substep (a): Obtain { i, fk, &k} via RELAX by assuming K = 1.
Substep (b): Estimate the phase ezrror ¥ and then let Z = YP1().
Substep (c): Re-estimate { Fr, }?k, &k}k 1 via RELAX by assuming K = K.

Substep (d): If the practical convergence is achieved (to be discussed later on), then go to

the next step; otherwise, go to Substep 1(b).

Step 2: Assume K = 2. ‘
| Substep (a): Obtain { fk, f,c,c“vk} by using the first substep of Step (2) of RELAX.
Substep (b): Re-estimate the pha’::g error W and then let Z = YP1().
Substep (c): Re-estimate { oo frs o‘zk}2 via RELAX by assuming K = K.
Substep (d): If the practical convergerﬁ:é is achieved (to be discussed later on), then go to
the next step; otherwise, go to Substep 2(b).
Step 3: Assume K =3.
Substep (a): Obtain { Fer }—k, &k} by using the first substep of Step (3) of RELAX.
Substep (b): Re-estimate the phas=: error W and then let Z = YP1(¥).
Substep (c): Re-estimate { Fr, ]%,c, &k}3 via RELAX by assuming K = K.
Substep (d): If the practical convergerli:é is achieved (to be discussed later on), then go to
the next step; otherwise, go to Substep 3(b).

Continuing Steps: Continue similarly until K = K, where K is the estimate of K and
may be estimated with the following generalized Akaike information criterion (GAIC) (see
[19]). .

Final Step: Use the super resolution target feature estimates to extroplate the target

signal [21] and then apply FFT to form super resolution SAR image.

The practical convergences of RELAX and MCRELAX1 may be determined by checking
K
) in (7.21) and the

whether the relative changes of the cost function Cs; ({ fk, ?k,&k}
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cost function C) ({&k, fk, fk}K ,\il) in (7.17) (where K is replaced by. K ), respectively,
between two consecutive iteratlizrts are less than some threshold (say, 107%).

We consider using MCRELAX1 with the GAIC (see [19] and the references therein for
details) to determine K, the number of target scatterers, by assuming the unknown noise
and clutter being white. The estimate K of K is determined as an integer that minimizes

the following GAIC cost function:

GAIC; = MMIn (Af A:Jf lé(m, m)[?) + ylnfln(MIM)](4K + M + 1), (7.29)

m=0 m=0

where é(m,m) is determined by
I? ~ ~ ~
é(m,m) = y(m,m) — Y _ Gy exp [j?w(mfk + mfk)] exp(j¥m), (7.30)
k=1

4K + M + 1 denotes the total number of unknown real-valued parameters (of which 4K are
for the target features, M are for the phase errors, and 1 is for the white noise), and +y is a
parameter of user choice.

We remark that, although MCRELAX1 looks more complicated than MCRELAX, the
former has better convergence property than the latter since the former does not depend on

other methods to generate initial conditions.

7.5 Experimental Examples

In this section, we present two experimental examples to illustrate the performance of
the proposed MCCLEAN and MCRELAXI1 algorithms. The imaged scene is the Michigan
Stadium and the experimental data is a portion of the data collected by one of the two
apertures of the ERIM’s (Environmental Research Institute of Michigan’s) DCS IFSAR
(interferometric SAR). These data have already been motion compensated by some unknown
means and phase errors are artificially added to them so as to test the autofocus performance
of the proposed algorithms. All of the windowed FFT images given below are obtained by
applying 256 x 256 point 2-D FFT with Kaiser window and shape parameter 6 to the original

or compensated phase history data.
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First, we show the autofocus capability of MCCLEAN for a large scene. The original
phase history data Y is a 256 x 256 matrix (i.e., M = M = 256). The added phase error
distribution is Y = 10532 (7 — %)* 4 TW (), where M =0,1,---, 8 — 1 and W (i)
is uniformly distributed on the interval [~1 1]. Note that the phase errors are composed
of a low-frequency content (quadratic) and a high-frequency content (white). The original
and corrupted windowed FFT images are shown in Figures 7.3(a) and (b), respectively. The
windowed FFT image after autofocus via MCCLEAN is shown in Figure 7.3(c), which is
very close to the original image shown in Figure 7.3(a). For the MCCLEAN algorithm, we

have used ez = 0.1/ K and ¢, = 0.01 to test the inner and outer convergences, respectively,
and the number of scatterers used for estimating the phase errors is 46.

Next, we show the simultaneous autofocus and super resolution imaging capability of
MCRELAX1. A small region of interest was cut out from the top left corner of Figure
7.3(c), which has already been focused by using MCCLEAN. The RO is 2-D inverse Fourier

transformed and then dewindowed to generate the corresponding phase history data. The

‘phase history data Y of the ROI is now a 40 x 40 matrix (ie., M = M = 40). For the

purpose of comparison, a corresponding ROI was also cut out from Figure 7.3(a) to serve
as the original image to be compared with. The original unwindowed and windowed FFT
images and the corresponding super resolution image obtained via RELAX [21] are shown
in Figures 7.4(a), (b), and (c), respectively. Figure 7.4(d) shows the focused windowed
FFT image of the ROI from Figure 7.3(c). The super resolution images corresponding to
Figure 7.4(d) obtained via RELAX and MCRELAXI are shown in Figures 7.4(e) and (f),
respectively. Note that both Figures 7.4(e) and (f) have higher resolution than the image
shown in Figure 7.4(d) and Figure 7.4(f) is closer to the original super resolution image ‘
shown in Figure 7.4(c) than Figure 7.4(e). In this example, we have used the GAIC criterion
[19] with v = 4 to estimate the number of scatterers K of this ROI, which yields K = 59,
and for the super resolution image formation, we have used 2.0 for the data extroplation
factor [21]. |

We have also tried the well-known PGA algorithm for the above two examples and found

that its performance is very sensitive to the choice of the threshold needed by the automatic
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windowing step or the size reduction rate needed by the progressive windowing scheme. We
must also make a choice between automatic windowing and progressive windowing. When
appropriate windowing scheme and proper parameters are selected, PGA can also be used

to generate very good focﬁsed SAR images.

7.6 Conclusions

In this chapter, a parametric algorithm, referred to as MCCLEAN, is proposed for the
autofocus of SAR image of a large scene, which can handle arbitrary phase errors. It is
highly automatic and no separate initialization step is needed. We also present a similarly
structured algorithm for the simultaneous autofocus and super resolution image formation
of a small scene or small region of interest in a large scene. Experimental examples have

been used to demonstrate the effectiveness of the proposed algorithms.
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Figure 7.1: Data collection geometry in a spotlight-mode SAR.
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Figure 7.3: SAR image of the Michigan Stadium. (a) Original windowed FFT image. (b)
Image corrupted by phase errors. (c) The windowed FFT image after autofocus via MC-

CLEAN.
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Figure 7.4: SAR image of a small region of interest out of the Michigan Stadium data.
(a) Original unwindowed FFT image. (b) Original windowed FFT image. (c) Original
super resolution image obtained via RELAX. (d) Windowed FFT image after autofocus via
MCCLEAN (for large scene autofocus). (e) Super resolution image obtained via MCCLEAN
(for large scene autofocus) plus RELAX. (f) Super resolution image obtained via MCCLEAN
(for large scene autofocus) plus MCRELAX1.
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8. Super Resolution SAR Imaging via Parametric
Spectral Estimation Methods

8.1 Introduction

The conventional fast Fourier transform (FFT) method is a nonparametric spectral es-
timation approach and is robust and computationally very efficient for synthetic aperture
radar (SAR) image formation. However, the FF'T method generates SAR images with high
sidelobes and poor resolutions due to the limited phase history data collected from a finite
length synthetic aperture with a finite bandwidth radar. To reduce the sidelobes, different
window functions can be applied to the SAR phase history data before FF'T processing.
Yet this is achieved at the cost of worsening the resolution. In {1, 2], many nonparametric
and parametric spectral estimation methods are compared and discussed for their merits
for SAR image formation. The nonparametric methods that have been used for SAR image
formation and target feature extraction include, for example, reduced-rank variations of the
Capon method [1, 2, 3, 4], the adaptive sidelobe reduction approaches [5], and the matched-
filterbank based complex spectral estimation methods [6] including the Capon [7] and APES
[8] methods. Yet the resolution of these nonparametric methods is not significantly better
than that of the FFT based methods due to their nonparametric nature.

Parametric spectral estimation algorithms, which can be attractive alternatives to non-
parametric methods, have been used extensively for SAR target feature extraction. The
parametric methods that have been considered include, for example, auforegressive (AR)
model based methods [1, 2, 9, 10], eigendecomposition based methods [1, 2, 3, 4, 11] in-
cluding MUSIC [12] and ESPRIT [13], and nonlinear least squares fitting based methods
[1, 2, 14, 15]. The parametric spectral estimation methods are devised based on certain
parametric data models, mostly on sinusoidal data models to model ideal point scatterers.
Robust parametric methods offer the promise of significantly improving the resolution and
accuracy of the FFT methods. Since SAR images rather than target features are often used
in SAR applications, we consider herein first extracting the target features from the SAR

phase history data with the parametric methods and then forming SAR images by applying
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‘the FFT methods to the simulated phase history data matrices of large dimensions. The

simulated data matrices are based on the extracted features and the assumed data models.
The dominant target features of the so-obtained SAR images can have a much better reso-
lution than those obtained with the FFT based methods. Since the parametric data models
are usually approximate, parametric methods robust against model errors should be used to

extract target features.

In this chapter, we extend robust and high resolution relaxation-based parametric spectral
estimation algorithms RELAX [14] and RELAX-NLS [15], which have been used effectively
for SAR target feature extraction [14, 15, to SAR image formation and evaluate their per-
formances with experimental data including the MSTAR and ERIM data. The RELAX
algorithm assumes that SAR targets consist of oﬁly point scatterers, i.e., trihedral corner
reflectors. The RELAX-NLS algorithm assumes that the SAR targets consist of both trihe-
dral and dihedral corner reflectors. Although sinusoidal point scatterer data model tends to
work well in range, it is more difficult to establish an approximate parametric data model
in cross-range. The RELAX algorithm assumes a sinusoidal data model in cross-range as

“well while the RELAX-NLS algorithm assumes a data model consisting of both sinusoids
and sinc (sin(z)/z) functions in cross-range. These models work well for many man-made
targets. We will show with experimental exaniples that compared with the FFT methods,
these more sophisticated parametric spectral estimation methods can provide SAR images
with higher resolution even though the data models used by the parametric methods are
only approximately correct.

The remainder of this chapter is organized as follows. Section 8.2 describes how to
form SAR images via RELAX and RELAX-NLS. Section 8.3 presents experimental exam-
ples showing their SAR image formation performances. Finally, Section 8.4 contains our

conclusions.
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8.2 SAR Image Formation via Spectral Estimation Methods

We consider below forming super resolution SAR images using the robust relaxation

based optimization algorithms including RELAX and RELAX-NLS.

8.2.1 RELAX

When the dominant features of a target, such as many man-made targets, can be ap-
proximated as point scatterers, the RELAX algorithm [14] can be used to form the SAR
images and improve the resolutions of the dominant target features. Assume that there are

K dominant scatterers in a target. Then the parametric data model used by RELAX has
the form [16]:

y(n,n) = EK: apel @t e(n 7)), n=0,1,---,N-1, =01, L N-1, (81)
k=1
where N and N, respectively, denote the numbers of the available data samples in range and
_cross-range; {ax }<, and {wy, @k }r—,, respectively, denote the unknown complex amplitudes
and 2-D unknown frequencies of the K sinusoids or point scatterers; finally, e(n,7) denotes
the unknown noise and clutter. The sinusoida,l frequencies wy, and @y correspond to the 2-D
location of the kth scatterer of a radar target; y is determined by its radar cross section
(RCS). It has been shown in [14] that RELAX can be implemented with a sequence of
Fourier transforms and is robust against errors in the data model and the assumed number
of scatterers due to its simplicity. The SAR images obtained via RELAX are referred to as
RELAX SAR images or simply RELAX images. The steps of using RELAX for SAR image
formation are given below.
Step 1: Obtain the estimates of {0, w, Dk 1, via RELAX by using the measured phase
history data. See [14] for details.

Step 2: From the estimated parameters and based on the data model in (8.1), generate the

simulated phase history data of large dimensions:

K = - —
ys(nwﬁs) = z&kej(akns+wkn8)a Tis :0717"'7:8]\’_11 N :Oala“')ﬂN— 17 (82)
k=1
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where B (8 > 1) denotes an extrapolation factor and dy, W, and @y, respectively, denote
the estimates of oy, wg, and @k, £ =1,2,---, K.

Step 3: Form RELAX SAR images containing only the dominant target features by applying
the normalized FFT to the simulated phase history data {ys(ns,7s)}, i.e., by computing

BN—1BN-1 :
i 23 e 9

nsg=0 fz=0
If we wish to suppress the sidelobes, we apply the normalized FFT to the windowed sequence
{ws(ns, is)ys(ns, 7is) }, where the window sequence ws(ns, 7is) satisfies

BN—1B8N-1

> > ﬁzN N. (8.4)

ne=0 f,=0
We rhay also wish to form RELAX SAR images containing both the dominant target features
and background clutter since, for example, the shadow information may be desired for au-
tomatic target recognition. If so, we apply the normalized FFT to the sum of the simulated
phase history data {y;(ns,ns)} and {8%é(n,7n)} with zero padding to have dimensions SN
and BN, where é(n,7) denotes the estimated background clutter and is determined by
K
é(n,m) =y(n,n) — 3 @@ n=0,1,....N-1, a=0,1,---,N-1 (85)
k=1
Note that scaling the é(n,7) by a factor of 8% is needed when the background clutter is
included in the RELAX SAR images since both of its dimensions are 1/ times of those of the
simulated phase history data. If we wish to suppress the sidelobes, we apply the normalized
FFT to the sum of {w;(n,, 7s)ys(ns, ns)} and {B*we(n, 7)é(n, )} with zero padding to have

dimensions BN and BN, where the window sequence w,(n,7) satisfies

Note that since we cannot model the clutter effectively, its resolution cannot be improved. |

= NN. (8.6)

ﬁ'MZ'

We remark that 3 does not determine the resolution of the RELAX SAR images since
the resolution is determined by RELAX. We need to choose § > 1 to demonstrate the
super resolution property of the RELAX algorithm for target feature extraction and 3 is a

parameter of user choice.
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We consider using the generalized Akaike information criterion (GAIC) (see [14] and the
references therein for details) to determine K, the number of sinusoids, by assuming the
unknown noise and clutter being white. The estimate K of K is determined as an integer
that minimizes the following GAIC cost function:

N-1N-1

GAICy = NNIn (z 3 lé(n, ﬁ)|2) + yIn[ln(NV)] (4K +1), (8.7)

n=0 n=0

where é(n, 72) is determined by (8.5) with K replaced by K, 4K +1 denotes the total number
of unknown real-valued parameters (of which 4K are for the sinusoids and 1 is for the white

noise), and vy is a parameter of user choice.

8.2.2 RELAX-NLS

The RELAX-NLS algorithm [15] can be used to form the SAR images of the dominant
target features when the targets consist of both trihedral (point scatterers) and dihedral
corner reflectors. In [15], a data model consisting of sinc functions in cross-range has been
used to model dihedrals and has the form:

Kd o - . —
ya(n, i) = Z ag,sinc[mbg (7 — Tk)]e’(“’dk"+‘”dk"), n=201---,N-1, #=0,1,---,N -1,

k=1

(8.8)
where N and N, as before, denote the numbers of the available data samples in range
and cross-range, respectively; aq,, {wa,,@q,}, and by, k = 1,2,---, Kq, are, respectively,
proportional to the maximal RCS, the central location, and the length of the kth dihedral
corner reflector; 7, k = 1,2, - -, K4, denotes the peak location of the data sequence in cross-
range and is determined by the orientation of the kth dihedral corner reflector; finally, K,
is the number of the dihedral corners. Assume that there are K, dihedral corner reflectors
and K; trihedral corner reflectors in a target and K = K, + K;. Then the parametric data

model used to describe both trihedrals and dihedrals in the presence of noise and clutter has

the form [15]:

y(n,ﬁ)=yd(n,ﬁ)+yt(n,ﬁ)+e(n,ﬁ), n=20,1,---,N -1, a=0,1,---,N—1, (8.9)
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where
K ; .
y(n,n) =Y oy /@@ p=0,1,---,N-1, 72=0,1,--+,N-1, (8.10)
k=1
with {oy, }re, {wi,, @1, } K¢, Tespectively, denoting the unknown complex amplitudes and
2-D unknown frequencies of the K, trihedral corner reflectors. The RELAX-NLS algorithm
proposed in [15] can be used to identify the types of the corner reflectors in a target and
effectively estimate the target features
{atk,wtk,wtk},f__‘_l and {adk,bk,wdk,wdk,'rk}fil by utilizing an alternating optimization
method [17] to minimize a nonlinear least squares cost function. Like other alternating
optimization algorithms [18], the RELAX-NLS is not guaranteed to converge to the global
minimum, while it is guaranteed to converge to at least a local minimum under mild con-
ditions. The SAR images obtained via RELAX-NLS are referred to as RELAX-NLS SAR
images or simply RELAX-NLS images. To form the RELAX-NLS SAR images, the dom-
inant target features are first extracted by using the RELAX-NLS algorithm (see [15] for
) details) and then Steps 2 and 3 discussed in Section 2.1 are used except that the simulated

phase history data of large dimensions used in Step 2 is now determined by

Kd A sf A 2 = Kt .t A F - -
ys(ns, is) = ,BZ &g, sinc[mbg (R, — fk)]ej(“"’k"“L“’dk”s) + Z dtke’(“"k""J"‘“kns), (8.11)
k=1 k=1

where n; =0,1,---,8N — 1 and 3, =0,1,---, BN — 1 with (3 being an extrapolation factor
(B > 1); b4y, Qay» Dags bk, and 7%, respectively, denote the estimates of gy, W4, @y, bk, and

Tk, k= 1,2, -+, Kg; finally, &, , @, and {y,, respectively, denote the estimates of oy, , wy,

and @, k =1,2,---, K;. The clutter estimate é(n, ) used in Step 3 is now determined by
K, R . . K o .
() = y(m,7) — 3 dysinclrby (7 — 7)|eTOATHT) — 3" Gy, SEnnHSD,  (3.12)
k=1 k=1

withn=0,1,---,N—land 4 =0,1,---, N—1. Note that scaling the simulated data for the
dihedral corner reflectors by a factor of 8 in (8.11) is needed since the sinc function goes to
zero as m, increases or decreases away from 7. Note also that § > 1 is used to demonstrate
the super resolution property of the RELAX-NLS algorithm for target feature extraction and

- B is a parameter of user choice. Finally, since the Fourier transforms of the sinc functions of
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sufficient lengths do not result in sidelobes, when y,(n;, ;) in (8.11) is windowed, the second
term of ys(ns, i) is multiplied by w;(ns, 7is) and the first term is multiplied by wi(n;), where
wy(n,) is a 1-D window sequence satisfying

BN-1

> =pN. (8.13)

ns=0
We can also determine K, the total number of trihedral and dihedral corners, by extending

the GAIC discussed in Section 2.1 and assuming white noise and clutter. The estimate K of

K is determined as an integer that minimizes the following extended GAIC cost function:

N-1N-1
GAIC; = NNIn (Z > |é(n,ﬁ)|2) + 4In[In(NN)](4K; + 6K, + 1), (8.14)
n=0 A=0 ' ‘

where 1 is a parameter of user choice; K=K, + Iu{d with f{t and I?d denoting the numbers
of trihedral and dihedral corners, respectively, determined by RELAX-NLS given K ; é(n, )
is determined by (8.12) with K; and K, replaced by K, and K, respectively; finally, 4K, +
6K, + 1 is the total number of unknown real-valued parameters (of which 4K, and 6Ky,

“respectively, are for the trihedral and dihedral corners and 1 is for the white noise).

8.3 Experimental Results

In this section, we demonstrate the SAR image formation performances of the RELAX
and RELAX-NLS methods by using the experimental data. In the following examples,
the extrapolation factor § = 2 is used and GAIC with v = 4 is used to determine K for
both RELAX and RELAX-NLS. Kaiser windows with shape parameter 6 are used to obtain
windowed SAR images.

First consider SAR image formation via 2-D FFT and RELAX by using a portion of
the 2-D data corresponding to some roof rims collected by one of the two apertures of
the ERIM’s (Environment Research Institute of Michigan’s) DCS interferometric synthetic
aperture radar (IFSAR). Figures 8.1(a) and (b), respectively, show the unwindowed and
windowed 2-D FFT images obtained by zero-padding the 40 x 40 phase history data. GAIC
gives K = 59. Figure 8.2 shows the unwindowed and windowed RELAX images with and
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without the background clutter and the corresponding clutter images with K = 59. (The
unwindowed and windowed clutter images are obtained by applying the normalized FFT to
{é(n,n)} and {w.(n,n)é(n,7n)}, respectively.) Note that the RELAX images have a higher
resolution than the FFT images for the dominant scatterers. Utilizing only 25% of the
40 x 40 phdse history data, i.e., using a 20 x 20 phase history data, we form the 2-D FF'T
SAR images shown in Figure 8.3. Figure 8.4 shows the RELAX images as well as the the
clutter images with K = 41 determined by the GAIC. Comparing Figures 8.4(f) and 8.1(b),
we note that the two images are quite similar although the former uses only 25% of the data

used by the latter.

Consider next two examples of MSTAR target chip image formation, where the field
data was collected by the Sandia National Laboratory (SNL) using the STARLOS sensor.
The data was collected by a spotlight-mode SAR with center frequency 9.6 GHz, bandwidth
0.591 GHz, elevation angle 15°, and range about 4.5 kilometers. Figures 8.5 and 8.6 show the
photos of a tank taken from the azimuth angles 0° and 90°, respectively. Figures 8.7(a) and

(b), respectively, show the unwindowed and windowed 2-D FFT SAR images of the target
at 0° azimuth angle. We next form SAR images with and without background clutter by
using the RELAX and RELAX-NLS methods. Figure 8.8 shows the SAR images, including
the correéponding clutter images, of the target at 0° azimuth angle obtained via RELAX
with K = 27 determined via GAIC. For this example, RELAX-NLS and RELAX yield
identical images since all reflectors are identified by RELAX-NLS as trihedrals. Note again
that the SAR images obtained via RELAX and RELAX-NLS have a higher resolution than
those obtained via FFT methods for the dominant target scatterers. Figures 8.9(a) and (b),
respectively, show the unwindowed and windowed 2-D FFT SAR images of the target at 90°
azimuth angle. Figure 8.10 shows the RELAX SAR images with and without background
clutter and the corresponding clutter images with K = 37 determined via GAIC. Figure
8.11 shows the RELAX-NLS SAR images with and without background clutter and the
corresponding clutter images obtained with K = 36 determined via GAIC. We note that
although RELAX considers all reflectors as trihedrals, the RELAX images still resemble the
FFT images, which shows the robustness of the RELAX algorithm.
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Finally, we consider an example of the MSTAR Slicy data consisting of both trihedral and
dihedral corner reflectors collected by the SNL using the STARLOS sensor. The field data
was collected by a spotlight-mode SAR with a carrier frequency 9.559 GHz and bandwidth
0.591 GHz. The radar was about 5 kilometers away from the ground target shown in Figure
8.12. The SAR images are obtained when the target is illuminated by the radar from
the azimuth angle 0° and elevation angle 30°. The unwindowed and windowed 2-D FFT
images are shown in Figures 8.13(a) and (b), respectively. We have also applied RELAX
and RELAX-NLS to this 32 x 32 phase history data matrix and determine K via GAIC.
Figure 8.14 shows the unwindowed and windowed RELAX SAR images with and without
background clutter and the corresponding clutter images with K = 36 determined via GAIC.
We note that RELAX images have a better resolution than the FFT images for the dominant
trihedrals even though the data model in the cross-range dimension used by RELAX is not
correct for this example. Figure 8.15 shows the unwindowed and windowed RELAX-NLS
SAR images with and without background clutter and the corresponding clutter images with
K = 24 determined via GAIC. We note again that the RELAX-NLS images have a better

resolution than the 2-D FFT images and the corner reflector types are mostly identified

correctly.

8.4 Conclusions

In this chapter, we have demonstrated how to form super resolution SAR images via so-
phisticated parametric spectral estimation algorithms including RELAX and RELAX-NLS.
Experimental examples have shown that the robust RELAX and RELAX-NLS algorithms

offer significant advantages over the FFT methods to better resolve the dominant target
 scatterers.
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(a) (b)

Figure 8.1: SAR images obtained via 2-D FFT by using the 40 x 40 ERIM data. (a)
Unwindowed 2-D FFT image. (b) Windowed 2-D FFT image.
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Figure 8.2: SAR images obtained via RELAX by using the 40 x 40 ERIM data with K = 59.
(a) Unwindowed clutter image. (b) Windowed clutter image. (c) Unwindowed RELAX image
without background clutter. (d) Windowed RELAX image without background clutter. (e)
Unwindowed RELAX image with background clutter. (f) Windowed RELAX image with
background clutter.

(o) (b) |
Figure 8.3: SAR images obtained via 2-D FFT by using the 20 x 20 ERIM data. (a)
Unwindowed 2-D FFT image. (b) Windowed 2-D FFT image.
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Figure 8.4: SAR images obtained via RELAX by using the 20 x 20 ERIM data with K = 41.
(a) Unwindowed clutter image. (b) Windowed clutter image. (c) Unwindowed RELAX image
without background clutter. (d) Windowed RELAX image without background clutter. (e)
Unwindowed RELAX image with background clutter. (f) Windowed RELAX image with

background clutter.
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Figure 8.6: Tank photo taken at 90° azimuth angle.
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Figure 8.7: SAR images obtained via 2-D FFT from the MSTAR data hb03353.015 (0°
azimuth and 15° elevation angles). (a) Unwindowed 2-D FFT image. (b) Windowed 2-D
FFT image.
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(d) (e) - (f)

Figure 8.8: SAR images obtained via RELAX by using the MSTAR data hb03353.015 (0°
azimuth and 15° elevation angles) with K = 27. (a) Unwindowed clutter image. (b) Win-
dowed clutter image. (c) Unwindowed RELAX image without background clutter. (d) Win-
dowed RELAX image without background clutter. (e) Unwindowed RELAX image with
background clutter. (f) Windowed RELAX image with background clutter.
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Figure 8.9: SAR images obtained via 2-D FFT from the MSTAR data hb03365.015 (90°
azimuth and 15° elevation angles). (a) Unwindowed 2-D FFT image. (b) Windowed 2-D

FFT image.
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Figure 8.10: SAR images obtained via RELAX by using the MSTAR data hb03365.015
(90° azimuth and 15° elevation angles) with K = 37. (a) Unwindowed clutter image. (b)
Windowed clutter image. (¢) Unwindowed RELAX image without background clutter. (d)
Windowed RELAX image without background clutter. (e) Unwindowed RELAX image with
background clutter. (f) Windowed RELAX image with background clutter.
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Unwindowed RELAX-
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Figure 8.11: SAR images obtained via RELAX-NLS by using the MSTAR data hb03365.015
(90° azimuth and 15° elevation angles) with K = 36. (a) Unwindowed clutter image. (b)
Windowed clutter image. (c) Unwindowed RELAX-NLS image without background clut-
ter. (d) Windowed RELAX-NLS image without background clutter. (e) Unwindowed RE-
LAX-NLS image with background clutter. (f) Windowed RELAX-NLS image with back-

ground clutter.
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Figure 8.12: Target photo taken at 45° azimuth angle.

Unindowed FFT Image Windowed FFT image

(a) (b)

Figure 8.13: SAR images obtained via 2-D FFT from the Slicy data hb15533.015 (0° azimuth
and 30° elevation angles). (a) Unwindowed 2-D FFT image. (b) Windowed 2-D FFT image.
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Figure 8.14: SAR images obtained via RELAX by using the Slicy data (0° azimuth and 30°
elevation angles) with K = 36. (a) Unwindowed clutter image. (b) Windowed clutter image.
(c) Unwindowed RELAX image without background clutter. (d) Windowed RELAX image
without background clutter. (¢) Unwindowed RELAX image with background clutter. (f)
Windowed RELAX image with background clutter.
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Figure 8.15: SAR images obtained via RELAX-NLS by using the Slicy data (0° azimuth and
30° elevation angles) with K = 24. (a) Unwindowed clutter image. (b) Windowed clutter
image. (c) Unwindowed RELAX-NLS image without background clutter. (d) Windowed
RELAX-NLS image without background clutter. (¢) Unwindowed RELAX-NLS image with
background clutter. (f) Windowed RELAX-NLS image with background clutter.
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9. Using Curvilinear SAR for Three-Dimensional
Target Feature Extraction

9.1 Introduction

Three-dimensional (3-D) features of a target scatterer include the radar cross section
(RCS), the two-dimensional (2-D) location (range and cross-range), and the height (the
third dimensional parameter) of the scatterer. In [1], we described how to extract the 3-D
target features via an interferometric synthetic aperture radar (IFSAR) system [2, 3], which
 uses a pair of vertically displaced antennas to obtain two coherent and parallel measurement
apertures. The IFSAR system can be used for both 2-D and 3-D SAR imaging and 3-
D target feature extraction. However, the IFSAR system suffers from ambiguity problems
since it provides only two vertical parallel apertures. For example, the system cannot resolve
more than one target scatterer at the same projected range and cross-range but at different
heights [1].

In this chapter, we describe how to extract the 3-D target features via a curvilinear
synthetic aperture radar (CLSAR) system [4, 5, 6]. The CLSAR system uses a single antenna
to obtain a curved measurement aperture. The 3-D SAR images obtained via using FFT
(fast Fourier transform) with CLSAR suffer from severe high sidelobes and hence are of little
practical use. Hence CLSAR may not be suitable for the imaging of distributed targets. Yet
CLSAR can be used with spectral estimation methods [4, 5, 6] to extract 3-D features of
small targets consisting of a small number of point scatterers and can avoid the ambiguity
problems suffered by IFSAR.

In [4, 5, 6], relaxation-based methods have been used with 3-D backprojection [7] for 3-D
target feature extraction via CLSAR. The relaxation-based methods have been proved to
be quite useful also in several other applications such as in radio astronomy (8], microwave
imaging [9], spectral estimation [10], and in both 1-D (one-dimensional) and 2-D line spectral
estimation and target feature extraction [11]. As explained in [11], these methods may have

different implementation forms and structures and the implementation structure used in
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[11] makes the method converge to the global minimizer of a nonlinear least squares (NLS)
criterion with a high probability and in a fast manner.

In this chapter, a self-contained detailed derivation of the data model in a Cartesian
coordinate is presented. The Cramér-Rao bounds (CRBs) of the parameter estimates are
also derived. We describe how the RELAX algorithm [11] can be used for 3-D target feature
extraction with CLSAR for different curvilinear apertures.

The remainder of the chapter is organized as follows. In Section 9.2, the data model is
derived and the problem of interest is formulated. Section 9.3 discusses how the RELAX
~ algorithm can be extended for 3-D target feature extraction via CLSAR. In Section 9.4,
we derive the CRBs for the parameter estimates. Section 9.5 shows the results of several
examples illustrating the performances of different curvilinear apertures and the RELAX

method. Finally, Section 9.6 contains our conclusions.

9.2 Data Models and Problem Formulations

We start with establishing 1-D data models for point scatterers and then extend the

discussions to 3-D data models and problem formulations.

9.2.1 High Range Resolution Radar

We first describe how one can obtain 1-D target features via a high range resolution radar
as a preparation for the analysis in the following subsections. The range resolution of a radar
is determined by the radar bandwidth. To achieve high resolution in range, the radar must
transmit wide band pulses, which are often linear frequency modulated (FM) chirp pulses

[12, 13] . A normalized chirp pulse can be written as
s(t) = e~I@mH) 1] < Ty /2, | (9.1)

where fo denotes the carrier frequency, 2 denotes the FM rate, and T, denotes the width

of the pulse. We assume that fy, v, and Ty are known. The signal returned by a scatterer
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of a target has the form

r(t) = 6, Rmfolt=ry+r (=) (9.2)

where &, is determined by the RCS of the scatterer and 7 denotes the round-trip time delay.
The demodulated signal d(¢) is obtained by mixing r(t) with s*(t — 7o) for some given 7o (see

Section 9.2.2, where (-)* denotes the complex conjugate,

d(t) = 5T€j2(7'f° —170)(r=70) g =37(r=70)? gi2Y(7=T0)¢ (9.3)

The term e~37 (=™ in (9.3) is usually close to a constant f(_)r all Toin < 7 < Tiax, Where Tpax

and Ty, correspond to the maximum and minimum values, respectively, of the round-trip
| time delays between the scatterers of a target and the radar and Tmin < 7o < Tmax. Lhis term
can also be partially removed [12]. Let D(w) denote the Fourier transform of d(t). Then
the inverse Fourier transform of D(w)ej % will have the term e~#7("=™)* removed. Yet this
removal can only be approximate since d(t) is not known for all ¢ and hence D(w) is not
known exactly. The closer e=#(7=™)" is to a constant for Tmin < 7 < Tmax, the better its

removal. With this removal, we have
d(t) = 51_61'2(7#0—’770)(7‘—"0)eﬂ’v(‘f—fo)t’ (9.4)

which is a complex sinusoid with frequency 2v(7 — 7p) and amplitude 4, gi2(mfo—7m0)(7=70)  We
KNOW Tipay and Tmin approximately since we assume that the altitude, antenna beamw1dth
and grazing angle of the radar are known. We also assume that (Tmax — Tmin) < To. Then for
—To/2+Tmax St <Th /2 + Tmin, the scatterers of the target at different ranges correspond to
different frequencies of the signal d(t), while the RCS’s of the scatterers are proportional to
the amplitudes of the corresponding sinusoids. The ranges and RCS’s of the target scatterers

are the 1-D target features.

9.2.2 Full Synthetic Aperture Radar

We now describe how one can obtain 3-D target features via the full synthetic aperture
shown in Figure 9.1(a), which prepares the ground for the discussions on CLSAR in the

next subsection. The cross-range and height resolutions of an ordinary ranging radar is
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limited by its antenna beamwidth. For an airborne or spaceborne system, a narrow antenna
beamwidth requires an antenna that may be too large to be carried on board of the airplane
or the spacecraft. Spotlight-mode SAR avoids this requirement by collecting coherent radar
returns while viewing a target from many different azimuth and elevation angles, as shown in
Figure 9.1(a). By properly processing the return signals, we can also achieve high resolution
in both cross-range and elevation.

A broadside data collection geometry in a spotlight-mode synthetic aperture radar (SAR)
is shown in Figure 9.2 [13]. The XY Z coordinate system is centered on a small patch of
ground, where a target is located. The ground is illuminated by a narrow radio frequency
(RF) beam from the moving radar that rotates (with radius Ro) around the coordinate
origin. In Figure 9.2, R denotes the distance bétween the radar and a scatterer at the
position (z,v, z), and @ and ¢ are the azimuth and elevation angles of the radar relative to
the XY Z coordinate system. We assume that 8, ¢, and Ry are known.

The range R of the scatterer located at (z,y, z) can be written as

1/2

R= [(Ro cosfcos ¢ — z)? + (Rysinfcos ¢ — y)* + (Rosing — z)z] (9.5)

It has been shown in Appendix A that under the conditions given in Appendix A, R can be

simplified as

R~ Ry — Zcosfcos¢ — jjsinfcos¢d — Zsin @, '(9.‘6)
where
oo = Ro + [(z2 — 2%) sin ¢ cos o — 2z cos® Bo (4 — o) 9.7)
2Ry
2 1 2 .
Fezt (y +z)cos¢o+2xzs1n¢0, (9.8)
2R,
i=y+ xy cos ¢ + yzsin ¢0’ (9.9)
Ry
and

(z® + y*) sin do
2R, '
Note that the second terms of the right sides of (9.8), (9.9), and (9.10) are due to the range

(9.10)

Z=z—

and elevation curvature effects and can be neglected for large Ry. Let 7o = %1 Since T =
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2R then from (9.4), we have

d(t,0,¢) = 0zy,. €XD J4{rfo —chTO + 1) (Ry — Ry — Fcosfcos ¢ — fsinf cos ¢ — Zsin d))} ,
(9.11)
where 0,,, is proportional to the RCS of the scatterer located at (z,y,z). For
A(m fo — 7o + 7t)(Ro — Ro)/c < 27, where [t — To| < To, we can write (9.11) as

d(t, 0, 9) = 8y y €3 @letTutEt), (9.12)
where
b = _Amfo — 70 +c'yt) cos 0 cos ¢, (9.13)
b = _A(mfo — 170 -|—cfyt) sin 6 cos ¢, (9.14)
and
— t 1
¢ = _A(mfo—yT0 + )smgb- (9.15)

c

Note that d(t, 8, ¢) is a 3-D complex sinusoid. The frequencies of the 3-D sinusoid correspond
to the 3-D location (%, §, Z) of the scatterer, while the amplitude is proportional to its RCS.
Note that (%, 7, Z) is not the true location (z, v, 2) of the scatterer, but is close to (z, y, 2) for
large Ry. (See the Appendix B on how to calculate (z,y,2) from (Z,7, 2).) When. a target
has multiple scatterers, d(t,0, ¢) in (9.12) will be a sum of sinusoids. The 3-D loca,ﬁons and
RCS’s of the target scatterers are the 3-D target features. Since usually the samples on the
t, 8, and ¢ axes are uniformly spaced, the samples of ¢z, ty, and t, occur at the points of a
polar grid. Hence Polar-to-Cartesian interpolation may be needed for the data samples to

occur at rectangular grid points. (See Section 9.5 for an alternative approach.)
After Polar-to-Cartesian interpolation and sampling, the signal obtained by the 3-D full
aperture SAR can be Written as:
K
y(n,f,n) = 3 pel @ntORTON) 4 e(n, i, 71), (9.16)
k=1
wheren = 0,1,---,N—1,4a=0,1,---,N—1, and & = 0,1,---,N — 1 with N, N, and

N denoting the numbers of available data samples in the three dimensions; K denotes the
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number of sinusoids; o, k =1,2,---, K, denotes the unknown complex amplitude of the

kth sinusoid; wg, @, and &, £ = 1,2, -+, K, denote the 3-D unknown frequencies of the kth

sinusoid; finally, e(n, #,7), n=20,1,---,N-1,2=0,1,---,N—1,and n =0,1,---, N — 1,
denotes the unknown noise. The sinusoidal frequencies wy = 27 fi, Wy = 27 fk, and @y =
om fi, correspond to the 3-D location of the kth scatterer of a radar target; oy is determined

by its radar cross section.

Let
y = y(0,0, O)a y(laoa O)a Ty y(N— 17Oa0)a
y(oa 1) O)a y(1> la 0)) R y(N - 17 11 0),
"""" y(O,N—l,O), y(l,ﬁ/’—l,O), T y(N_]-’N—]-)O)a
y(07 0’ 1), y(]-’ 07 1)7 Ty y(N - 1’ 07 1),
""" y(0107N— 1)’ y(l,O,]V— 1)a Tt y(N_ 1)07N_ 1)a
T
------ yO,N-1,N-1), yQ,N-1,N-1), ---, y(W=1,N-1,N—-1) | .
(9.i7)
Let e be defined similarly from e(n, i, %) as y from y(n, 7, 7). Let
1] 1] [ 1]
ejwk ej‘:’k eja)k .
a, = ) , A= ) , = ) . (918)
eI (N—1)wy eI(N—1)x eI (N—1)ay
Then
‘ y=Aa+e, (9.19)
where
T
o = [ al az oo aK ] N (9.20)
and
A=[51®€11®a1 5K®5K®ax], (9.21)

where ® denotes the Kronecker product [14].
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9.2.3 Curvilinear SAR

Since it is not practical to use the full aperture shown in Figure 9.1(a) to extract 3-D
target features, a curvilinear aperture consisting of M different radar vievﬁng angles, such ask
the one shown in Figure 9.1(b), may be an alternative. In the curvilinear SAR, the received
data vector y, is an (M N) x 1 subvector of y. Let I, denote an M X (NN) matrix with each
column and row containing only one non-zero unit element corresponding to the locations

of the available data samples. Then
Ve =Aca+e, | (9.22)

where

A= [ {Ic(ﬁl ® 5«1)} ®a; --- {IC(EK ® 5.[{)} ® ag ] . (9.23)

The unknown sinusoidal parameters {wk, Ok, @k, Ok, },Ile are our features of interest and
are to be estimated from the y, collected by CLSAR.

CLSAR, however, suffers from severe high sidelobes when used with FFT to form SAR
images. We show this observation by using a simple simulated example as shown in Figure
9.4. Figures 9.4(a) and (b) show the mesh plots of the modulus of the RCS of a single scatterer
obtained by using 2-D FFT (range information suppressed for the illustration purpose only)
when the full aperture in Figure 9.1(a) and the curved aperture in Figure 9.3(a) are used,
respectively. Note that the SAR images formed by using the nonparametric FF'T method
with CLSAR can be of little practical use due to the severe high sidelobes. In the following

sections, we consider parametric 3-D target feature extraction methods for CLSAR.

9.3 The RELAX Algorithm

The RELAX algorithm [11] can be extended to extract the 3-D target features. We first
consider using RELAX with the full aperture for 3-D target feature extraction and then

extend the approach to the case of curvilinear apertures.
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9.3.1 Full Aperture

The RELAX algorithm [11] minimizes the following nonlinear least squares (NLS) cost

function:
C =y - Aal?, (9.24)

where ||-|| denotes the Euclidean norm. When the noise e(n,, fi) is the zero-mean white
Gaussian random process, the NLS estimates obtained with RELAX coincide with the max-
imum likelihood (ML) estimates of the target features. When the noise is colored, the NLS

estimates are no longer the ML estimates, but they still possess excellent statistical perfor-
mance [11].

The minimization of the cost function C' in (9.24) is a complicated optimization problem.
We present below the relaxation-based (RELAX) minimization approach that leads to a
conceptually and computationally simple method. For each fixed K, we perform a complete
relaxation-based search by letting only the parameters of one scatterer vary and freezing all
others at their most recently determined values. In this way, we will also take advantage of
the fact that the parameter estimates for the first K — 1 scatterers can be used to initialize
the search for the parameters of the Kth one.

To make the paper self-contained, let us now briefly prepare for the RELAX approach.
Let

K
vi=y— Y Gi(a®ae4a), (9.25)
i=1,i£k
where &;, 4;, and 4; are formed, similarly to those in Equation (9.18), from &;, @;, and ;,
respectively, and {@;, @;, 0, 6; 1<, ;4 are assumed to have been estimated. Then minimizing

C in (9.24) with respect to ay yields the estimate &y of a:

_ [a, ® 8, ® ak]H Vi

O ; (9.26)
NNN W =0k D=0 D=0
and
s 4 _ 2
{0, W, Wi} = argwﬂg}ék ‘[ék ®a, ® ak]H ykl . (9.27)
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Hence {@x, W, @r} can be obtained as the location of the dominant peak of the 3-D peri-

odogram,

. 2
l[ik ®a; ® ak]H Ykl
NNN
which can be computed efficiently with 3-D FFT. Note that padding with zeros for the 3-D

?

FFT is necessary to achieve high accuracy. An alternative approach is to find an approximate
location corresponding to the global maximum with the 3-D FFT without much zero-padding
and then use the approximate location as the initial condition to find a more accurate position
via a multidimensional search method, such as the FMINV function in PV-WAVE. We used
 the latter approach in our examples presented in Section 9.5. Note that dy is easily computed
from the complex height of the peak of [a; ® 8; ® ar)? yi/(NNN).

With the above preparations, we now proceed to present the steps of the RELAX algo-
rithm for 3-D target feature extraction with the full aperture SAR.

Step (1): Assume K = 1. Obtain {Gok, @, Ok, Gk }r=1 from y by using (9.27) and (9.26).

Step (2): Assume K = 2. Compute y; with (9.25) by using {(Dk,ﬁ)k, W,y G br=1
obtained in Step (1). Obtain {a“)k,cf;k, Wk, G }k=2 from y,. Next, compute y; by using
{&k, @k, Ok, G }r=2 and then redetermine {&k, @k, Dk, G Yr=1 from yy.

Iterate the previous two substeps until “practical convergence” is achieved (to be dis-
cussed later on).

Step (3): Assume K = 3. Compute y3 by using {&ok, Or, W, G }2_, obtained in Step
(2). Obtain {&k, Ok, Ok, G }x=3 from y3. Next, compute y; by using {Or, Ok, Ory Gk Fims and
redetermine {&y, @k, Ok, O }r=1 from y;. Then compute y, by using {d)k,ef)k, Wk, Ok te=13 and
redetermine {@y, Ok, Ok, G pr=2 from ys. '

Iterate the previous three substeps until “practical convergence” .

Remaining Steps: Continue similarly until K is equal to the desired or estimated
number of sinusoids. (Whenever K is unknown, it can be estimated from the available data,
for instance, by using generalized AIC rules which are particularly tailored to the RELAX
method of parameter estimation. See, e.g., [11].) |

The “practical convergence” in the iterations of the above RELAX method may be de-
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termined by checking the relative change € of the cost function C ({G)k,cf)k,@k,&k}kkzl) in

(9.24) between two consecutive iterations. Our numerical examples show that the iterations

usually converge in a few steps.

9.3.2 Curvilinear Aperture

The RELAX algorithm for this case of curvilinear aperture is similar to that of the full
aperture except that Equations (9.26) and (9.27) above are replaced by

. {L@Eea))ealy.,

Qp = MN (928)

)

WE=Wk Dk =W Dk =W

and

‘) (9.29)

{@,on, G} = arg max |[{Te(8 ® ax)} @ 24" ¥,

respectively, where
K

Yo =Ye— 12# & [{L(3: ® &)} @ &) (9.30)

Let ¥, be similar to y; except that the elements in y; that are missing in y,, are replaced

with zeros in ¥.,. Then the right hand side of (9.29) can also be computed by applying 3-D
FFT to y.,-

For the special case where the curvilinear aperture consists of the orthogonal subapertures

such as those shown in Figure 9.3, the aforementioned zero-filling and 3-D FFT can be

avoided. Note that the analysis based on Figure 9.3(a) also holds for Figures 9.3(b) and

(c) since they are the rotations of the coordinate system in Figure 9.3(a). Hence we only

consider Figure 9.3(a) below. For this case, A, becomes

a, ag
A = | ®a; .- | ®ag |, (9.31)
b b
where by, is a subvector of &, without its first element. Then
7 H
{[ & B | ®ak} Vou
Oy = (9.32)

(N+N-1)N

WE =W Wk =W Wk =Wk
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and
2

T H
{@r, Wi, wx} = arg max [ al bf ] Qar Y
W ,Wk Wk
~ H T H, |

= arg max (8 ® a) " ye,, + (b ® ak) " Yepo| > (9.33)

where
c NN) x 1
yo 2|7 (N) (9.34)
Ve (N-1)N x 1.

The right hand side of (9.33) can be calculated efficiently with the 2-D FFT’s, which con-
sists of applying 2-D FFT to y.,, and [ of yz;z ]T, where 0 here denotes the N x 1 zero
vector. Then & is easily computed from the complex height of the peak of [(&; ® ar)Tye,, +
(br ® ax)Hye,,)/[(N + N — 1)N]. Hence using the apertures in Figure 9.3 can significantly

reduce the amount of computations needed for target feature extraction.

9.4 Cramér-Rao Bound of the Paramaeter Estimates

We derive the CRB matrix for the parameter estimates when the noise covariance matrix
is arbitrary and unknown.

Consider first the case of the full aperture. Let Q = E{ee} be the noise covariance
matrix. The extended Slepian-Bangs formula for the ijth element of the Fisher information

matrix has the form [15, 16]:
{FIM},, = tr (Q'Q/Q'Q}) + 2Re [(aHAH); Q! (Aa);.] , (9.35)

where X denotes the derivative of X with respect to the ith unknown parameter, tr(X)
denotes the trace of X, and Re(X) denotes the real part of X. Note that FIM is block
diagonal since Q does not depend on the parameters in (Aa), and (Aa) does not depend
on the elements of Q. Hence the CRB matrix for the target features of intefesf can be

calculated from the second term on the right side of (9.35). Let

n= [ Re' (o) ImT(a) w? &7 &T ] ) (9.36)
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T T
where w = Wy Wy - WK] ,G):[&;l @2 CDK] ,andw:[wl Wy -+ Wg
Let

F= [ F, F, F; F, Fy ] ) (9.37)
where

Fi=A, (9.38)
Fy, = jA, (9.39)
F; =D,®, (9.40)
F, =D;®, (9.41)
and
Fs =D;®, (9.42)

with A being defined in (9.21), the kth columns of D,, Dg, and Dy being Olar ® 8 ®
ag]/Buwy, O]a; ® 4 ® ag)/0w, and d[a; ® & ® ax)/0wy, respectively, and

¢I>=diag{ oy, O, *°° O } (9.43)
Then the CRB matrix for the parameter vector 7 is given by:
CRB(n) = [2Re(FEQ'F)] .. (9.44)

For the case of curvilinear aperture, the CRB matrix for the target parameters is similar

to the one in (9.44) except that the A in (9.44) is now replaced by A..

9.5 Numerical and Experimental Results

We use CRBs to study the performances of different curved apertures for target feature
extraction. We also present several examples showing the performances of the RELAX

algorithm presented in this paper for 3-D target feature extraction with a CLSAR.
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9.5.1 Performance Analysis of Different Curvilinear Apertures via CRBs

Since the CRBs are the best unbiased performance any aéymptotic estimator can achieve,
we compare the CRBs of the target features when different curved apertures are used for
3-D target feature extraction and compare them with the CRB of the full aperture. Without
loss of generality, let us consider the case of a single scatter witha=landw=w0=0=0.
The additive noise is assumed to be zero-mean white Gaussian with variance 0% = 40. The

full aperture data is generated according to (9.16) with N = N =N =32

Consider first the example of M = 63. The curved apertures we consider include the
parabolic one in Figure 9.1(b), the L-shaped one in Figure 9.3(a), and the ones in Figure
9.5. For the arc apertures, the Arc-1 aperture is a quarter of a circle whose center is at the
upper right corner of the full aperture in Figure 9.1(a) and whose radius is 31, as shown in
Figure 9.5(b), and the Arc-2 aperture is one half of a parabolic aperture whose vertex is at
the lower right corner of the full aperture and who starts at the upper left corner of the full
aperture in Figure 9.1(a), as shown in Figure 9.5(c). These curvilinear apertures are subsets
of the full aperture in Figure 9.1(a) and are made to be as large as possible. For example,
the radius of the circular aperture is 15.5 in this example. Table 9.1 shows the CRBs of
the target parameters. As expected, the CRB for w is the same for all of the curvilinear
apertures since w is in the range direction, which is normal to the plane of the curvilinear
apertures. Comparing the CRBs for the L-shaped, Arc-1, and Arc-2 apertures, we note that
as expected, the more curved the aperture is, the lower the CRBs for the target features.
Since the Arc-2 aperture is the least curved, it has the largest CRBs. When the aperture
becomes one straight line and hence no longer curved, the CRBs go to infinity since we can
no longer extract 3-D target features. Note also that from the left to right of Table 9.1, the
CRB:s for @ and @ decrease since the aperture length decreases. The CRB for «, however,
does not always decrease.

Consider next the circular aperture in Figure 9.5(a) when w = @ = @ = 0. Figure 9.6
shows the CRBs of the target parameters as a function of the radius of the circular aperture

for different M. Note that as expected, the larger the radius and/or M, the lower CRBs of
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the target parameters. Note also that, as expected, the CRB for w does not change with
the radius for the fixed M since again w is in the range direction, which is orthogonal to the

plane of the curvilinear aperture.

9.5.2 Experimental Examples

We now present two experimental examples to demonstrate the performances of the RE-
LAX algorithm for 3-D target feature extraction with a CLSAR. In the following examples,
we use € = 0.01 to test the convergence of the RELAX algorithm.

We first consider an experimental example, where the indoor data was obtained by the
Radar Signature Branch, Naval Air Warfare Center, Mugu, California. The radar carrier
frequency is 9.968 GHz and the bandwidth 1.524 GHz. The 32 x 32 x 32 data set was
obtained with the full aperture shown in Figure 9.1(a) with 32 samples in each dimension
and the angular increments were 0.28°. The target consists of K = 8 corner reflectors with
a cubic configuration and was about 15 meters away from the radar. The scatterers were
about 0.5 meters apart.

Instead of Polar-to-Cartesian interpolation, we created an N X N x N rectangular grid
and mapped the data sample at each (t,1y,t;) to the nearest grid point, where t, t,, and
¢, are functions of ¢, 6, and ¢ (see Equations (9.13) to (9.15)). Let N denote the number of
available data samples. Then for both full and curvilinear apertures, the data model can be

written as
v, =L Aa+e, (9.45)

where I. denotes an N x (N NN ) matrix with each column and row containing only one
non-zero unit element corresponding to the locations of the available data samples in the
rectangular grid. Note that the larger the dimensions of the rectangular grid, the more
accurate the mapping approximation. For large enough dimensions, however, the noise
will become the dominant source of error. For our examples, we chose N = N =N =
128. As compared to Polar-to-Cartesian interpolation, the grid mapping approach avoids

the interpolation step needed by the former, which could be complicated for an arbitrary
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curvilinear aperture. The former approach, however, is computationally more efficient due
to its smaller data dimensions. '

The steps of applying RELAX to y, are similar to those for the case of full aperture
except that Equations (9.26) and (9.27) above are replaced by

= I.(ar ® éik]? ap)]” v, A , (9.46)
W=k D=k D=0k
and
{&r, g, Wr} = arg max I(a ® 4 ® ak)]H Vry 2 , (9.47)
respectively, where p
Ve =¥r— 12# 61, (8 @8 ®4;). (9.48)

Let ¥,, be similar to y, except that the elements in y; that are missing in y,, are replaced
with zeros in ¥,,. Then the right hand side of (9.47) can also be computed by applying 3-D
FFT to ¥,,. Since the dimensions of the rectangular grid are larger than the dimensions of
the original data due to zero-filling, thé 3-D FFT of ¥,, is approximately periodic and we
should limit our attentions to only one period. For our examples, the former is four times
as large as the latter and hence the peak searching in (9.47) is limited to the frequency
intervals [ 27 x (—0.125) 27 x 0.125 ]. Note that the computational advantages of FFT
over DFT (discrete Fourier transform) and backprojection diminish as the dimensions of the
rectangular grid increases, especially for curvilinear apertures.

We remark that for the special case of the curvilinear apertures consisting of orthogonal
subapertures shown in Figure 9.3, we can still use 2-D FFT with the rectangular grid mapping
approach and we omit the details here for the interest of brevity. For this special case, though,
the Polar-to-Cartesian interpolations needed are 2-D and hence are much easier to implement
than for an arbitrary curvilinear aperture.

For the data model in (9.45), the CRB matrix for the target parameters of interest
is similar to the one in (9.44) except that the A in (9.44) is now replaced by I,A. The

CRB analysis results for this data model should also be similar to those observed in the
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previous subsection. Hence the CRB analysis is omitted for this data model for the interest

of conciseness.

Figure 9.7 shows the extracted scatterers when K = 8 is used with RELAX. Figure 9.7(a)
is obtained when the full aperture shown in Figure 9.1(a) is used to extract the 3-D target
features and Figure 9.7(b) is obtained when the L-shaped aperture shown in Figure 9.3(a) is
used. The centers of the circles denote the locations of the extracted scatterers in 3-D space
and the radius of each circle is proportional to the modulus of the RCS of the corresponding
scatterer. The triangles show the projections of the scatterer locations onto the horizontal
plane and their sizes are also scaled according to the RCS’s of the scatterers. Note that
Figure 9.7(b) is similar to Figure 9.7(a) even though the former is obtained by using only
0.19% amount of data used by the latter.

Consider next an experimental example, where the field data was obtained by the Deploy-
able Signature Measurement System (DSMS), Carderock Division, Naval Surface Warfare
Center, Bethesda, Maryland. The radar was carried on board of a helicoptor. The radar
carrier frequency is 9.449 GHz and the bandwidth 0.498 GHz. The data set was obtained
with the curved aperture shown in Figure 9.8 where there are 64 look angles and 64 samples
per look angle. The radar was about 300 meters away from the ground target. The ground
target consists of 13 corner reflectors on the ground plane and 7 corner réﬂectors mounted
on a wooden tripod that is about 2.65 meters tall. The true distribution of the scatterers is
shown in Figure 9.9(a), where the centers of the squares denote the locations of the scatterers
in 3-D space and the length of each square is proportional to the modulus of the RCS of
the corresponding scatterer. The triangles show the projections of the scatterer locations
onto the ground plane and their sizes are also scaled to be proportional to the RCS’s of the
scatterers.

For this example, we also use the rectangular grid mapping with N = N = N = 128.
Figure 9.9(b) shows the scatterers obtained by using RELAX with K = 20. We note that
among the 20 scatterers, we got 18 of them approximately correct. The two that are missing

could be because they are in the shadows of the other scatterers.
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9.6 Conclusions

The main subject of this chapter has been to extract the 3-D target features via a curvi-
linear synthetic aperture radar (CLSAR). Since CLSAR itself is a relatively new technology,
a self-contained derivation of the data model has been presented. The Cramér-Rao bounds
(CRBs) on the parameter estimates have also been derived. We have used the CRBs to study
the performances of different curvilinear apertures for target feature extraction. Finally, the
RELAX parameter estimation method has been extended to extract the 3-D target fea-
tures with a CLSAR. We have presented several experimental examples showing the feature

extraction performances of the RELAX algorithm.
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Appendix A - The Approximation of the Range R

The range R in (9.5) can be approximated as follows. Under the conditions B <1,

£ <1,and £ <1, we have

R = Ryl|l 9~ cosfcos¢p — 2 fracyR sint9cos<jb—2—i—sin¢+932+y2+'z2 1(/;49)
24,20 52
T y . z . ¢ty + 2
R 1 — —cosfcos¢p — —sinfcos¢p — —=singp+ ————
. . 2
_(;vcos@cos¢+ysm6’cos¢+zsm¢) - (9.50)
2R3

Let 1) = ¢ — ¢, where ¢y is the average of all ¢ used to form the synthetic aperture. For

very small ¥, we have
cos ¢ =2 cos ¢ — (sin ¢o)¥, (9.51)

sin ¢ = sin @ + (cos ¢o) V. (9.52)
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For very small 8, we have cos =~ 1, sinf ~ . Then keeping first-order terms yields

z?sin? ¢ + 2% sin? 0 cos® ¢ + y* sin? ¢ + y* cos? 6 cos® ¢ + 2% cos® ¢
~ z%sin ¢[sin ¢y + (cos do)1] + y* sin ¢[sin ¢y + (cos Bo )] + y* cos P[cos ¢y — (sin ¢ )1Y]
+2? cos ¢[cos ¢ — (sin ¢o )]

[(z2 + ) sin ¢g) sin ¢ + [(y? + 22) cos o] cos § cos ¢ + [(z? — 2%) sin g cos dolep. (9.53)

Q

We also have

22y cos 0 sin 0 cos? ¢ + 2yz sin 0 cos ¢ sin ¢ + 2xz cos O cos P sin ¢
~ 2zysinf cos ¢[cos gy — (sin @g)] + 2yz sin B cos P[sin ¢y + (cos ¢o))
+2z2 cos 0 cos P[sin ¢ + (cos ¢o)Y)

~~ 2(zycos gy + yzsin ¢g) sin f cos ¢ + (222 sin ¢p) cos 6 cos ¢ + (22 cos? ¢ )1.(9.54)

Hence R is simplified to (9.6).

Appendix B - Calculating (z,y, z) from (%, 7, Z)

Given Ry, ¢, and (%, 9, Z), (z,y, 2) can be determined from (9.8), (9.9), and (9.10) as

follows:

iy + 2mRo [ (1+12) (Ro + 2me2) + m Ro — 20} o° + RS [2n3 (1 + ) 4
+dn? (nd +1)" 2 + 403 + 4Rorfim (5 + 1) 2 — 8y (1 +n3) &2

+4Ry (20} — 3n}) & + Rin? (=8 +n3)| v* — 8mR3 (mRo + 2mme% — 2m3%) gy’
+2mRY [22 (1+73) +Rome (3+n3) + 2m3m&| iy — 8m3REF°y + mimj Ro*

=0, (9.55)

1 _ _
v = —5 {mngy' + Ro [Rom(2 + 1) — 2037 + 2mmZ(1 + )] v’

~2gm Ry — Rimm3i?} /| Ro(nfy + imd)y] , (9.56)
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and

1 N ~
2 =3 {nimay® + Rom [2mZ(L +n3) +ma(mRo — 2n3)| °

—om, Ry + Ramai(1+12) } / [Ro(mdy + im3)y] (9.57)

where 11 = cos¢o and 72 = sindy. Note that the left side of (9.55) is an eighth-order
polynomial, and hence has eight zeros. We pick the root that is closest to y as the solution
for y.

We now present two examples. First, let Ry = 15, ¢o = 7/5, and (z,9,%) = (0.5,0.4,0.3).
We obtain (z,y,2) = (0.5005,0.3849,0.3078). (We remark that the other seven possible
solutions for y are either complex or far away from 7.) Next, let Ry = 300, ¢p = 7/4,
and (%,7,%) = (5,4,2). We obtain (z,y,2) = (4.9991,3.9346, 2.0477). Note that in both

examples, (&, §, ) are very close to (z,y, 2) and hence can be used to approximate (%, v, 2).
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0 0
(a) (b)
Figure 9.1: Possible apertures for a 3-D SAR system. a) Full aperture. b) Parabolic aperture.
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Figure 9.2: Data collection geometry.
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Figure 9.3: Apertures consisting of orthogonal subapertures.
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Aperture | CRB() | CRB(w) | CRB(@) | CRB(@)
Full -5.9875 | -51.4511 | -51.4511 | -51.4511
Circular 5.3663 | -39.3415 | -40.8469 | -40.8788
Parabolic || 5.8693 | -39.3415 | -40.4915 | -39.6521
L-shaped | 4.8584 |-39.3415 | -38.2414 | -38.2414
Arc-1 11.7482 | -39.3415 | -31.7272 | -31.7272
Acr-2 17.2473 | -39.3415 | -26.8015 | -27.4636

Table 9.1: Comparison of the CRBs (in dB) of the target features for the cases of the full, circular,
parabolic, L-shaped, Arc-1, and Arc-2 apertures when M =63, K=, w=0=w=0,a=1,and
o? = 40.

Height

(a) (b)

Figure 9.4: Mesh plots of the modulus of the RCS obtained by using 2-D FFT with different
apertures (range information suppressed). (a) Full aperture as shown in Figure 9.1(a). (b) Curved

aperture as shown in Figure 9.3(a).

(a) (b) ()

Figure 9.5: Curvilinear apertures. a) The circular aperture. b) The Arc-1 aperture. c) The

Arc-2 aperture.

199




20 T T T T T

- Full Aperture

..................................

o
- e P et = — Full Aperture .
z s|- See.allTITL A 3, M=32
@ = <=re M=64 |
3] 2 -~ M=80
o
0 -1 o« n
[ 5
5 i
A 1 1 1 1 1 i 1 L I 1
4 6 8 10 12 14 16 6 8 .10 12 14 16
Radius Radius
(a) (b)
-25, T T T T 25 T T T T T
.......... — Full Aperture L — Full Aperture
L’ """""""""" M=32 i B, M=32
B0R"-«, L . 30 O e M=64 7
’ SSlsl == M=80
S
z o Sea e
—_ o -
g = See i
@ - 3 4o RPN T -
« = ~T0
o «
]
45| - -45|- -
.501— - -soL E
1 1 1 1 1 1 1 1 1 1
55 6 8 10 12 14 16 55 6 8 10 12 14 16
Radius Radius

(c) )]

Figure 9.6: The CRBs of the target parameters as a function of the circular aperture radius
when K =1, a=1,w=& = =0, and 0> = 40. a) The CRB of the complex amplitude
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Figure 9.7: 3-D plots of K = 8 scatterers extracted by using RELAX with the indoor
experimental data. (a) Obtained with full aperture as shown in Figure 9.1(a). (b) Obtained

with curved aperture as shown in Figure 9.3(a).
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Figure 9.9: 3-D plots of K = 20 scatterers extracted by using RELAX with the field exper-
imental data (DSMS data). (a) True scatterer distribution. (b) Obtained with RELAX.
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10. Autofocus and Feature Extraction in Curvilinear SAR

10.1 Introduction

Synthetic aperture radar (SAR) can be used to form images and extract target features
with high resolution in range, cross-range, and elevation directions. Strip-map and spotlight-
mode SAR systems are two commonly used systems. The former is often used for large area
terrain imaging and feature extraction. The latter is used to image a relatively small patch
of the earth with high resolution. Both the strip-map and spotlight-mode SAR provide
only two-dimensional (2-D) target features including the radar cross section (RCS) and 2-D
location (range and cross-range) for each scatterer. ‘Several other SAR systems can be used to
obtain three-dimensional (3-D) target features, which include the radar cross section (RCS),
the 2-D location, and the height for each scatterer. An interferometric synthetic aperture
radar (IFSAR) system [1, 2, 3], which uses a pair of antennas displaced in the cross-track
plane to obtain two coherent and parallel measurement apertures, can be used for both 2-D
and 3-D SAR imaging and 3-D target feature extraction. However, the IFSAR system suffers
from ambiguity problems since it provides only two vertical parallel apertures. For example,
the systefn cannot resolve more than one target scatterer at the same projected range and
cross-range but at different heights [3]. A curvilinear synthetic aperture radar (CLSAR)
system [4, 5, 6, 7] can be used with spectral estimation methods to extract the 3-D target
features and avoid the ambiguity problems suffered by the IFSAR system.

For a practical SAR system, however, aperture errors exist due to atmospheric turbulence
and platform position uncertainty. These errors can significantly degrade the SAR image
quality and the estimation accuracy of target parameters. Hence SAR imaging and target
feature extraction algorithms must be combined with effective motion compensation methods
to obtain the best results in practice.

Many algorithms, such as the phase-gradient autofocus (PGA) algorithm (8,9, 10] and the
motion compensation RELAX (MCRELAX) algorithm [11], have been proposed to compen-

sate for the unknown motion errors in 2-D SAR imaging by assuming that the motion errors
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mainly result in phase errors in the cross-range direction. The purpose of this chapter is to
address the autofocus problem in CLSAR. The problem herein is much more complicated
since the aperture errors can no longer be approximated as phase errors in the cross-range
direction.

In this chapter, we present a relaxation-based autofocus method to compensate for the
curvilinear aperture errors in CLSAR. This method is referred to as the autofocus RELAX
or AUTORELAX algorithm. The AUTORELAX algorithm can be used to compensate for
the curvilinear aperture errors and extract 3-D target features. This chapter is an extension
of [7], in which we described how to extract the 3-D target features via CLSAR with a

relaxation-based algorithm without considering the existence of the curvilinear aperture

€rTors.

The remainder of this chapter is organized as follows. In Section 10.2, the data model is
given and the problem of interest is formulated. In Section 10.3, we present the relaxation-
based autofocus algorithm. Section 10.4 shows the experimental and numerical examples

illustrating the performance of AUTORELAX. Finally, Section 10.5 contains our conclusions.

10.2 Data Model and Problem Formulation

10.2.1 High Range Resolution Radar

We first describe how one can obtain 1-D target features via a high range resolution radar
as a preparation for the analysis in the following subsections. The range resolution of a radar
is determined by the radar bandwidth. To achieve high resolution in range, the radar must
transmit wideband pulses, which are often linear frequency modulated (FM) chirp pulses

[12, 13] . A normalized chirp pulse can be written as
s(t) = e‘i(21rfot+"/t2), It| < To/2, (10.1)

where fo denotes the carrier frequency, 2y denotes the FM rate, and Ty denotes the width

of the pulse. We assume that fo, 7, and Ty are known. The signal returned by a scatterer
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of a target has the form

r(t) = 5T€—j[277f0(i—7)+7(t—7)2], (10.2)

where &, is determined by the RCS of the scatterer and 7 denotes the round-trip time delay.
The dechirped signal d(t) is obtained by mixing r(t) with s*(t — 7o) for a reference 7o (see

Section 10.2.2), where (-)* denotes the complex conjugate and

d(t) = 8, Hmfomo)(r=m0) e Ir(T=0)? gi27(T=T0)t (10.3)

The term e=37("—7)* in (10.3) is usually close to a constant for all Tmin < 7 < Timax; where Tmax
and T, correspond to the maximum and minimum values, respectively, of the round-trip
time delays between the scatterers of a target and the radar and Tyin < 7o < Tmax- This term
can also be partially removed [12]. Let D(w) denote the Fourier transform of d(t). Then
the inverse Fourier transform of D(w)e’ % will have the term e=97"=™)* removed. Yet this
removal can only be approximate since d(t) is not known for all ¢ and hence D(w) is not
known exactly. The closer e—31(7=10) is to a constant for Tmin < T < Tmax, the better its

removal. With this removal, we have
d(t) = 5, e 2(mfo=7mo) (770} i27(r -0}t (10.4)

which is a complex sinusoid with frequency 2y(7 — 7o) and amplitude 8, ei2(mfo=rm0)(T—70) e
KNOW Tpax and Tmin approximately since we assume that the altitude, antenna beamwidth,
and grazing angle of the radar are known. We also assume that (Tmax — Tmin) < Tp. Then for
—T0/2+ Tmax < t < To/2+ Trin, the scatterers of the target at different ranges correspond to
different frequencies of the signal d(t), while the RCS’s of the scatterers are proportional to
the complex amplitudes of the corresponding sinusoids. The ranges and RCS’s of the target

scatterers are the 1-D target features.

10.2.2 Curvilinear Synthetic Aperture Radar

We now describe the 3-D data model for the curvilinear synthetic aperture radar. The
cross-range and height resolution of an ordinary ranging radar is limited by its antenna

beamwidth. For an airborne or spaceborne system, a narrow antenna beamwidth requires
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an antenna that may be too large to be carried on board of the airplane or the spacecraft.
Curvilinear spotlight-mode SAR avoids this requirement by collecting coherent radar returns
while viewing a target from many different azimuth and elevation angles. (A possible curvi-
linear aperture is shown in Figure 10.1.) By properly processing the return signals, we can
also achieve high resolution in both cross-range and elevation.

A broadside data collection geometry in a spotlight-mode synthetic aperture radar (SAR)
is shown in Figure 10.2 [13]. The XY Z coordinate system is centered on a small patch of
ground, where a target is located. The ground is illuminated by a narrow radio frequency
(RF) beam from the moving radar that rotates (with radius Rp) around the coordinate
origin. In Figure 10.2, R denotes the distance between the radar and a scatterer at the
position (z,9, z), and 6 and ¢ are the azimuth and elevation angles of the radar relative to
the XY Z coordinate system. We assume that 6, ¢, and Ry are known.

The range R of the scatterer located at (z,y, z) can be written as

R= [(RO coscosd — z)? + (Rosinfcos ¢ — y)? + (Rosin g — z)z] vz, (10.5)
Under the conditions #- < 1, '1% < 1, and ﬁ < 1, we have

24 2 2

< Yy . z . ety +z

R = 1— —cosfcos¢p — —sinfcosd — —sinQ@+ ———7;——

o [ Ra R A S T
_(a: cosBcos¢+y;i£)20 cosg+z sz’nd))z} . (10.6)
0

Let 1) = ¢ — ¢, where ¢ is the average of all ¢ used to form the synthetic aperture. For

very small 9, we have
cos ¢ ~ cos g — (sin ¢ )9, (10.7)

sin ¢ = sin @g + (cos ¢o)¥. (10.8)

For very small 6, we have cosf ~ 1 and sinf ~ 6. Then keeping first-order terms yields

22 sin? ¢ + 22 sin? 0 cos® ¢ + y2sin® ¢ + 4% cos® @ cos® ¢ + 2° cos? ¢

~ [(z? + y?) sin go] sin ¢ + [(y° + 2%) cosgo cosfcos ¢ + [(x® — 22) sin ¢ cos ¢o]10.9)
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We also have

~ 2zy cosfsinf cos® ¢ + 2yzsinf cos¢sin ¢ + 2zz cos 6 cos ¢ sin ¢

~ 2(xycos ¢o + yzsin o) sinf cos ¢ + (2zzsin ¢o) cos fl cos ¢ + (232 cos® ¢g)%(10.10)

Hence R can be simplified as

R ~ Ry — % cosfcos ¢ — §jsinf cos ¢ — Zsin ¢, (10.11)

where
Ry = Ro+ [(z® — %) sin ¢ cos ¢20R—0 222 cos® ¢o] (¢ — ¢o) (10.12)

(a2 1 2 :
§=gt (v*+ =2 )co;é);ﬂ-.‘zwzsmgb(,, (10.13)
j=y+ ZY cos ¢01—%+- yzsin qbo, (10.14)
0
and
2 a2\

PP k. ;’Igosm %0, (10.15)

Note that the second terms of the right sides of (10.12), (10.13), (10.14), and (10.15) are due

to the range and elevation curvature effects and can be neglected for large Ry.

Let 7o = 222, Since 7 = 2%, then from (10.4), we have

d(t,0,¢) = 0z, €XP [j4(7rf0 —CryTo +7t) (Ry — Ry —  cosf cos ¢ — §jsinf cos ¢ — Zsin ¢)] ,
(10.16)
where d,,, is proportional to the RCS of the scatterer located at (z,y,z). For
A(m fo — 7o + 7t)(Ro — Ro)/c < 2, where |t — 79| < To/2, we can write (10.16) as

d(t,0,d) ~ 8y &0 EetTvTEE) (10.17)

where
;= _4(7Tf[] — Y7o +c'yt) cos @ cos ¢, (10.18)
ty:_4(7rf0—77'0 +c'yt)sin0cos¢, (10.19)
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and -
4 fo — Ym0 +t)sing
. :

(10.20)

t, =

Note that d(t, 6, ¢) is a 3-D complex sinusoid. The frequencies of the 3-D sinusoid correspond
to the 3-D location (%, 7, Z) of the scatterer, while the amplitude is proportional to its RCS.
Note also that (%, j, Z) is not the true location (z, y, 2) of the scatterer, but is close to (z,y,2)
for large Ry [7]). When a target has multiple scatterers, d(t,8, ) in (10.17) will be a sum of
sinusoids. The 3-D locations and RCS’s of the target scatterers are the 3-D target features.
(Usually the samples on the ¢, 6, and ¢ axes are uniformly spaced and hence the samples of
tz, ty, and ¢, occur at the points of a polar grid.) /

Assume that a curvilinear aperture consists. of M different viewing angles and let
{bm, 0}, denote the elevation and azimuth angle pairs of the M look angles of the
radar. Let y(n,m), n = 0,1,---,N — 1, denote the one-dimensional (1-D) data samples

obtained after dechirping from the mth viewing angle of the radar. Let

v 4(m fo — tn
§=— (7 fo 17'0+’Y ), n=0,1---,N—1, (10.21)

where t,, denotes the time samples. Let t5,,(n), ty,,(n), and ¢, (n) denote the time samples

of the mth look angle, where

te,. (n) = tn c0s(6m) cos(dm), (10.22)
tym () = L 5in(0m) cos(dm), : (10.23)

and
ty. (n) = tnsin(¢m), (10.24)

withm =1,2,---,M andn=0,1,---,N — 1. Then y(n,m) has the form
y(n,m) = z(n, m) + e(n,m), (10.25)
where e(n,m) denotes the noise and clutter and

K " -
) = 3 apei2mlfitem )+ fitym (m)+Hixtem ()], (10.26)
k=1

z(n,m
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with K being the number of scatterers.

10.2.3 Aperture Errors

For the above CLSAR data model, we have assumed that {0, ¢m 2, and Ro(m) = Ry,
m =1,2,---, M, are known exactly. For a practical curvilinear SAR system, however, the
radar positions relative to the XY Z coordinate system may not be known exactly due to at-
mospheric turbulence and platform position uncertainty. In 2-D SAR imaging, it is generally
assumed that the errors in {0, ¢}, are negligible and the errors in {Ro(m)}}_; cause
phase errors along the synthetic aperture. In CLSAR, however, the errors in {6m, D},
may no longer be negligible since the aperture shape is critical for 3-D target feature extrac-
tion. |

Our problem of interest herein is to compensate for the curvilinear aperture errors in
{Ro(m)}M_, and {6, b} M, and extract the 3-D target parameters {a, fr, Fi» e HE, from
{y(n,m)},n=0,1,---,N=1,m=1,2,---, M.

Before we present the AUTORELAX algorithm, let us first consider the approximations
and the ambiguity problems in our data model in the presence of aperture errors. For the
broadside data collection geometry shown in Figure 10.2, 6,, is very small. For very small
0,., we have sin(6,,) ~ 0, and cos(6,,) ~ 1. These approximations also hold for the true

look angles of the radar. Then according to (10.22), (10.23), and (10.24), respectively, we

have '
me t(cos q?)m), (10.27)
%ym% {(COS ¢m) 577” (1028)
and
4, ~i(sin 6,,), (10.29)

where {;m, ;)m}fn’f:l denote the true look angles of the radar and

i A fo— 70 + 7t)
. c M
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Consider first the errors in {¢m}_; when 0, =0, and Ro(m) = Ry, m =1,2,---, M.
Let

b =6 +Abm. (10.30)
Let
. —4
f) = :f °. (10.31)

Then for very small A¢,, and 7 fo > 7(t — 7o), where |t — 70| < To/2, we have

ty,, = t(cosdm)
~ tcos Jsm —t(sin ;Sm)Aqu

~ Tcos ¢, —Lo(sin ¢o)Adm, (10.32)

ty, = f(cos Om) Om

f(cos ) 5,,,

Q

~ #5(cos dg) Om, (10.33)
and
t, = t(singm)
~ tsin ;5,,, +#(cos :;)m)Aqﬁm
~ tsin ¢, +1(cos @) Adm, (10.34)
where ;SO is the average of all ;Sm, m=1,2,---,M, and hence is a constant. Then

~ - o o ~ ° o v . ©
Qy exp {j27f (fetom + fityn + F ktzm)} A agexp {j27f [fkt o8 ¢y, +frto cos dofm +fktsin ¢m] }

exp { j2m [— frtosin f;’so + frto cos ¢o] A¢m} . (10.35)

Equation (10.35) shows that if A¢n, is a constant, then the phase error due to A¢,, and the
phase of oy are ambiguous. Hence the phase of o, can never be determined exactly in the
presence of A¢y,. If A¢p, is a linear function of Em, then fk and the linear phase error due

to A¢,, are ambiguous and cannot be determined exactly.
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Similarly, we can analyze the errors in {6 })_; when ¢y, :q?)m and Ro(m) = Ry, m =
1,2,---, M. Let
O, =6um +0p,. (10.36)

For very small 5m and Ad,, and for 7 fy > y(t — 1), where |t — 79| < Ty/2, we have

t, = 1icos é,, (10.37)
£y & Lo S By (Bm +A0m), (10.38)
and
t, = isin ¢, . (10.39)
Then

Qy, exp {j27r(fktzm + fktym + fktzm)} ~  opexp {j27r [fkfcos Om +fkfg cos ¢dghm +fkfsin ¢m] }

exp {j27rfkfo cos ;50 A0m} , (10.40)

which shows that a constant A6, also results in the ambiguity between the phase error due
to AG,, and the phase of aj. Hencé the phase of oy can never be determined exactly in the
presence of Af,,. Also, if Af,, is a linear function of 5m, then fi and the linear phase error
due to Af,, are ambiguous and cannot be determined exactly.

Finally, consider the errors in Ro(m) when 6, :ém and @, =<Zm, m=12,---,M.
Let

Ry(m) = Ry + ARy(m). (10.41)

Replacing Ry in (10.12) with Ro(m) and for small ARy(m), large Ro(m), and 7 fo > Y(t—7o),
where |t — 7| < Tp/2, we have from (10.16)

d(t,0, §) = b,y p67 ElatTtytits) eTloARa(m) (10.42)

Hence the errors in {Ro(m)}_, result in phase errors along the synthetic aperture, which

is consistent with the analysis in [13, 11]. Then the z(n,m) in (10.25) should, for this case,
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be replaced by

K
LE(’I’L m {Z a eJ2W[fktxm(")‘l'fktym(")'i'fktzm(n)]} eJ’lm (1043)
k=1

where 7, = {eARy(m) is the phase:'erfor caused by ARO(m) Note that this phase error
differs from the phase errors in (10.35) and (10.40) since it does not depend on the parameters
of the kth scatterer and is easier to deal with. If ARy(m) is a constant, then the phase error
due to ARy(m) and the phase of o) are ambiguous. Hence the phase of o can never be
determined exactly in the presence of ARg(m). If ARy(m) is a linear function of 5m, then fi
and the linear phase error due to ARy(m) is ambiguous and cannot be determined exactly.

We again assume that such linear errors in ARy(m) are negligible in practice.

10.3 The Relaxation-Based Autofocus Algorithm

The AUTORELAX algorithm obtains the estimates {ém,$m,ﬁm}%=1 and
{6, Fr, fk,fk}ff:l, respectively, of the true values {5m,¢m,77m},1‘,{=1 and {ox, fr, fr, fe oy
by minimizing the following nonlinear least squares (NLS) criterion:

M N-1

- K
& ({ots o FooFihyy s Ot = 2 3 Wl m) = a(mym)P', (1049
=1 n=0
where
a:(n m {Z akeﬂ‘lf[fktzm(")+fktym(n)+fktzm(n)]} eJ'lm (10_45)
k=1

with t,,, (n), t,..(n), and t,,,(n) defined in (10.22), (10.23), and (10.24), respectively. Note
that as shown below, we will determine 6,, and ¢y, via a search method. Hence there is
no need to use the approximations such as those in (10.32), (10.33), and (10.34) for i, (n),
ty.. (1), and t, (n), respectively. When the noise e(n,m) is a zero-mean white Gaussian
random process, the NLS estimates of the unknown parameters coincide with the maximum
likelihood (ML) estimates of the parameters. When the noise is colored, the NLS estimates
are no longer the ML estimates, but they still possess excellent statistical performance [14].
The minimization of (10.44) is a very complicated optimization pfoblem. AUTORELAX is
a relaxation-based optimization method that can be used to minimize (10.44). Before we

present the AUTORELAX algorithm, let us consider the following preparations.
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Assume first that the target feature estimates {d, Fe» ]A?k, fk}kkzl are given. Then 8,,, ¢,
and A, m = 1,2,---, M, can be determined by minimizing the following C,, with respect
t0 Oy Gm, and Ny, m =1,2,---, M, where

N-1

Cm (ema' Orms nm) = Z Iy(na m) — i (’I’L, m)|2 ) (10'46)

n=0
where 21 (n, m) has the same form as z(n,m) in (10.45) except that {c, fi, i, fe ., are re-
placed by {dx, Fe, ?k, }Tk}kK=1' To simplify the optimization of Cy,, we determine {ém, qgm}ﬁle
and {f, }M_, iteratively as follows:
Step (1): Obtain 6,, and $m, m = 1,2,---, M, by minimizing the following C,, with
respect to 0, and ¢,,, where ‘ ‘ ’
N-1

Cry Oy bm) = Y ly(n,m) — 21(n,m)[, (10.47)

n=0
where 2;(n,m) has the same form as z(n,m) in (10.26) except that {o, f, Fir Fu}E| are
replaced by {6, fi. fr. F s

When there are errors in both the elevation and azimuth directions, we can estimate %m
and ém by the alternating minimization approach, i.e., by iteratively fixing the estimate bm
of ;Sm and minimizing Cp,, With respect to 0, and then fixing the estimate 6y, of é’m and
minimizing C,,, with respect to ¢, until “practical convergence”. The “practical conver-
gence” in the alternating minimization approach is determined by the relative change of the
cost function Cp,,. In the numerical examples, we terminate the iteration when the relative
change of the cost function C,, between two consecutive iterations is less than 103, When
there are errors in only one angular direction, i.e., either 0., OT ¢?m is to be determined, then
the minimization of Cp, is a simple one-dimensional search problem.

Step (2): Determine {f,,}*_; by minimizing the following cost functions Cp,:

N-1

Cona (1) = 3 [y(n,m) — 2o, m)er™ |, (10.48)

n=0
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where

K - X -
Hn,m) =3 &kej27r[fktmm(n)+fktym(n)+fktzm(n)], n=01---N-1, m=12,--- M
k=1
(10.49)
and &, (n), t,.(n), and i,,(n) are the same as t;,(n), ty, (n), and t,,(n), respectively,
except that {0, ¢m}1_, are replaced by {0m, ¢ }M_,, obtained in Step (1). This step is

similar to [11] and we have

fim = angle(2Y y,), m=1,2,---, M, (10.50)
where
. v T
Ym = [y(O,m) y(l,m) --- y(N—-1,m) ] ) (10.51)
and
T
Z2y = [ 2(0,m) 2(1,m) --- Z(N-1,m) ] : (10.52)

Note from (10.50) that we do not need the search over parameter space to determine {m 1M,
and hence the errors in {Ro(m)}!_, are easier to deal with than those in {6, Gm}M_,.

Step (3): Repeat Step (1) by replacing y(n,m) with §(n,m) = y(n,m)e~m m =
1,2,---, M, where {i,}}{_; are determined in Step (2).

Step (4): Repeat Steps (2) and (3) until “pracf,ical convergence”, which is determined
by the relative change of the cost function Cp, in (10.46) between two consecutive iterations.
In the numerical examples, we terminate the repetition of Steps (2) and (3) when the relative
change of C,, is less than 10~3 between two consecutive iterations.

If the errors in {Ro(m)}X_, are known to be negligible, then Step (1) alone is sufficient
for the autofocusing.

Assume next that the aperture parameter estimates {ém, q@m,ﬁm}%zl are given. Then
the problem becomes the target feature extraction problem considered in [7]. As shown in

[7], the estimates {du, fe, }AF,C, }Fk}kK=1 of {ou, fr, fr» Fr}i<1 can be obtained with the RELAX

algorithm by equivalently minimizing the following NLS criterion [7]:

K M N-1
F ({Olk,fk,fk,fk}kzl) = Z Z |g(n, m) — 23(n,m)|2, (10.53)
m=1 n=0
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where §(n,m) = y(n,m)e~?" and 23(n, m) has the same form as z(n,m) in (10.26) except
that t, (n), t,.(n), and t,,(n) are replaced by tg. (n), ty.(n), and %, (n), respectively,
which are determined by {0, dm}X_, instead of {Om, dm o=,

The RELAX algorithm minimizes the cost function F' in (10.53) efficiently by letting
only the parameters of one target scatterer vary and fixing all others at their most recently

determined values. Let

M N-1 ) . .
F, (ak, Fi, F ﬁ) =3 l@k(n, m) — akej27r[fktzm(Tl)+fktym(n)+fktzm(n)]\2’ (10.54)

m=1 n=0
where £,,_(n), £,..(n), and £, (n) are the same as t;,,(n), ty,(n), and t,, (n), respectively,
except that {6,,, dm }M_, are replaced by {0, dm}_,, and

K . o .
) — Z &iejz'”[fitzm (n)+fitllm (n)+fit=m (n)]’ (1055)
i=1,i#k

gk(na m) = @(na m

Then minimizing Fy in (10.54) with respect to oy yields the estimate Gy, of ay:

M_ N1 ()32l ibem () futum (0)+ il ()

A 2um=1 o
= MN fk:fk’szfk,fk=fk 3 (1056)
and
~ ~ A M N-1 ‘ ) B B )
{fka fk? fk:} = arg max Z g}c (n, m)e—JZW[fktmm (n)+ Febym (R)+ Fibzm ()] (1057)
FeafiesTk jm=1 n=0

To speed up the RELAX algorithm via utilizing FFT, we proposed in [7] a Cartesian
grid mapping approach by approximating {fs,, (n), ty,. (n), ts,n (n) 1L, on a Cartesian grid.
Whén the Cartesian grid is fine enough, the errors introduced by the approximation are
negligible. In this paper, we use a crude Cartesian grid and the FFT method to obtain an
initial estimate of the parameters and then minimize (10.57) via a multidimensional search
method, such as the FMINV function in PV-WAVE. The latter approach uses less computer
memory and is more accurate.

Let K denote the intermediate number of scatterers. Then the steps of the RELAX
algorithm for 3-D target feature extraction via the curvilinear SAR are:

Step [1] : Assume K = 1. Obtain {071,131,1%1,}?1} from §(n,m), n = 0,1,---,N — 1,
m=1,---,M.
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Step [2] : Assume K = 2. Obtain {f(m,n)} with (10.55) by using {dl,fl,fl,fl}
obtained in Step [1]. Obtain {dz,fz,}z,ﬁ} from {§z(n,m)}. Next, compute {f;(n,m)}
with (10.55) by using {do, fa, ]AFQ, ]%2} and redetermine {dl,fl, }1, fl} from {§;(n,m)}.

Iterate the previous two substeps until “practical convergence” is achieved (to be dis-
cussed later on).

Step [3] : Assume K = 3. Compute {fis(n,m)} by using {dx, s _;Fk, fk},zczl ob-
tained in Step [2]. Obtain {as, fg,;:,.,]%s} from {§3(n,m)}. Next, compute {f:(n,m)} by
using {é, fk,]%k, }—k}iz2 and redetermine {&;, fl,]%l,]%l} from {g;(n,m)}. Then compute
{f2(n,m)} by using {éx, e, }%k, ?k}k=1,3 and redetermine {&s, fa, ]%2,]%2} from {g2(n, m)}.

Iterate the previous three substeps until “practical convergence”.

Remaining Steps: Continue similarly until K = K. (Whenever K is unknown, it can
be estimated from the available data, for instance, by using generalized AIC rules which are
particularly tailored to the RELAX method of parameter estimation. See, e.g., [14].)

The “practical convergence” in the iterations of the above RELAX method may be deter-
mined by checking the relative change of the cost function F’ ({&k, i ;k, J%,c},{{:l) in (10.53)
between two consecutive iterations. In our numerical examples, we terminate the iterative
process in each of the above steps when the aforementioned relative change is less than 1073.
Our numerical examples show that the iterations usually converge in a few steps.

Finally, the relaxation-based autofocus (AUTORELAX) algorithm can be described with
the following steps:

Step 1: Extract the target features {dx, Fe, }k, fk}szl with the RELAX algorithm from
an initial curvilinear aperture by assuming that {7, = 0}M_,.

Step 2: Update the curvilinear aperture {0, dm }M_, and the phase error {nm}M_, with
Steps (1) — (4). (If {n,}M_, is known to be negligible, then only update {0, b }M_, with
Step (1).)

Step 3: Redetermine the target parameters with the RELAX algorithm by using the
curvilinear aperture {fm, ¢m}Y_, and {fA,}2_; obtained in Step 2.

Step 4: Repeat Steps 2 and 3 until “practical convergence”.
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The “practical convergence” of AUTOREL?AX is determ;ﬁéd similarly to that of the
RELAX algorithm. Since a minimization is performed at every iteration, the value of the cost
function C in (10.44) cannot increase. As a result, under mild conditions, the AUTORELAX
algorithm is bound to converge to at least a local minimum of C' [14]. The local minimum
may or may not be the global one depending on the data parameters. Our examples below

show that AUTORELAX can be quite effective for autofocusing and feature extraction.

10.4 Experimental and Numerical Results

We first present an experimental example to show the performance of the AUTORELAX
algorithm. The field data was obtained by the Deployable Signature Measurement System
(DSMS), Carderock Division, Naval Surface Warfare Center, Bethesda, Maryland. The
radar was carried on board of a helicopter. The radar carrier frequency is 9.449 GHz and
the bandwidth 0.498 GHz. The data set was obtained with a curved aperture not exactly
known but is roughly the same as the one shown in Figure 10.4(a), where there are 64 look
angles and 64 samples per look angle. The radar was about 300 meters away from the ground
target. The ground target consists of 13 corner reflectors on the ground plane and 7 corner
reflectors mounted on a wooden tripod that is about 2.65 meters tall. The true distribution
of the scatterers is shown in Figure 10.3, where the centers of the squares denote the locations
of the scatterers in 3-D space and the length of each square is proportional to the modulus of
the RCS of the corresponding scatterer. The triangles show the projections of the scatterer
locations onto the ground plane and ﬁheir sizes are also scaléd to be proportional to the
RCS’s of the scatterers.

Figure 10.4(b) shows the scatterer distribution obtained with the RELAX algorithm from
the initial aperture shown in Figure 10.4(a). Figure 10.5(b) shows the scatterer distribution
obtained with the RELAX algorithm from a manually adjusted aperture shown in Figure
10.5(a). (This manually adjusted aperture was used in [7].) We note that as compared to
Figure 10.3, the results in Figure 10.5(b) are obviously better than those in Figure 10.4(b).

We now first consider autofocusing only in the elevation direction by assuming that
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1o errors exist in both the azimuth angles {f,}Y_, and the distances {Ro(m)}}¥_,. The
AUTORELAX algorithm converges after 6 iterations. Figure 10.6 shows the target scatterers
extracted by AUTORELAX with the search interval for {Ady } i, being £0.34°. Comparing
Figures 10.4(b) and 10.5(b) with Figure 10.3, we find that AUTORELAX works well and
the AUTORELAX results are slightly better than those obtained by using the manually
adjusted aperture. Figure 10.7 shows that the manually adjusted and autofocused apertures
fit quite well after adding a line to the former. Since the results in Figure 10.6(b) are better
than those in Figure 10.5(b), it appears that a linear phase error (in ¢n, as a function of 6,,)
was introduced in the manually adjusted aperture. The linear phase error can cause shifts in

fi and the amount of shift is different for different scatterer k, as can be seen from (10.35).

Consider next autofocusing in both the elevation and azimuth directions by assuming that
no errors exist in {Ro(m)}¥_,. The AUTORELAX algorithm converges after 7 iterations.
Figure 10.8 shows the results obtained with the search intervals for {Agy }ni—; and (A0 M,
being +0.34° and +0.006°, respectively. Compared with the results obtained by autofocusing
only in the elevation direction, we find that autofocusing in both directions provides little
further improvement to the accuracy of the estimated target parameters in this example.
Hence for this example, it appears that the aperture errors mainly occur in the elevation
direction.

For this experimental example, we have also used AUTORELAX to extract target fea-
tures when we assumed that errors exist in both {6, ¢ }M_; and {Ro(m)}}_,. Again, as
compared with Figure 10.6(b), we have noticed little change in the extracted target param-
eters. It could be that DSMS has already done a good job compensating for the errors in
{Ro(m)}M_, with some traditional method so that they are now negligible as compared with
the errors in {¢m }2L;.

Finally, we use a simulation example to show that the accuracy of target feature extrac-
tion via CLSAR is very sensitive to the accuracy of the curvilinear aperture. We assume
that there are 20 scatterers with a similar distribution to that in the experimental example
above. The true aperture is shown in Figure 10.9(a) and the scatterer distribution is shown

in Figure 10.9(b). Here we consider the case where the aperture errors exist only in the ele-
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vation direction. Figure 10.10(b) shows the scatterer distribution obtained with the RELAX
algorithm from the initial aperture shown in Figure 10.10(a). We note that the scatterer
distribution in Figure 10.10(b) is quite different from the true one in Figure 10.9(b).

When used with the simulation data, AUTORELAX converges after four iterations.
Figure 10.11 shows the autofocused aperture and the scatterer distribution obtained with
AUTORELAX. We see that the scatterer distribution obtained by AUTORELAX is almost
the same as the true one. We also notice that the shape of the autofocused aperture is closer
to the true one than the initial aperture. The constant difference between the autofocused
and the true apertures will cause phase errors in {ax}f—;, which cannot be eliminated due

to the ambiguity problems discussed in Section 10.2.3.

10.5 Conclusions

This chapter introduces a relaxation-based autofocus (AUTORELAX) algorithm to es-
timate the aperture errors in CLSAR. The AUTORELAX algorithm can be used to extract
the 3-D target features more accurately via CLSAR in the presence of unknown curviiinear
aperture errors. The experimental and numerical results have shown that AUTORELAX is

quite an effective method for autofocusing and 3-D target feature extraction.
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Figure 10.1: A possible curvilinear aperture for CLSAR.
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Figure 10.2: A broadside data collection geometry.
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Figure 10.3: True scatterer distribution for the experimental example.
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Figure 10.4: (a) Initial curvilinear aperture for the experimental example. (b) 3-D plot of
K = 20 scatterers extracted from the initial aperture in (a) with RELAX.
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Figure 10.5: (a) Manually adjusted aperture for the experimental example. (b) Scatterer
distribution obtained by using RELAX with K = 20 and the aperture in (a).
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TORELAX by autofocusing only in the elevation direction and using K = 20 for the exper-
imental example. (a) Autofocused curvilinear aperture. (b) Scatterer distribution.
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for the experimental example. (a) Autofocused curvilinear aperture. (b) Scatterer distribu-
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Figure 10.10: (a) Initial curvilinear aperture for the simulation example. (b) Scatterer
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Figure 10.11: Autofocused curvilinear aperture and scatterer distribution obtained by us-
ing AUTORELAX with K = 20 for the simulation example. (a) Autofocused curvilinear
aperture. (b) Scatterer distribution.
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11. An Efficient Algorithm for Time Delay Estimation

11.1 Introduction

Suppose that we have a single sensor receiving a superimposition of attenuated and de-
layed replicas of a known signal plus noise. From the received data we want to estimate
the arrival times of the various replicas and their (complex or real ) attenuation coefficients
(gains). This is the well-known time delay estimation problem which occurs in many fields
including radar, active ‘sonar, propagation modeling in wireless communications, nondestruc-
tive testing, geophysical/seismic exploration, and medical imaging. Another related problem
is Time Difference of Arrival (TDOA) estimation of a signal that has been intercepted by
multiple sensors where the signal waveform is unknown or random in nature, which occurs
in passive source localization systems. In this paper, we will concentratelonly on time delay
estimation based on one sensor with known signal shapes.

The rhost well-known time delay estimator is the matched filter approach. If there is
only one signal or the overlapped signals are separated in time by an interval that is much
greater than the width of the signal autocorrelation function, then the matched filter is
the optimal estimator when the noise is white Gaussian [1] . The resolution capability
of the matched filter approach depends on the signal bandwidth and the larger the signal
bandwidth, the better the resolution. However, in many situations there exist some practical
limitations on increasing the bandwidth of the transmitted signals. How to resolve closely
spaced overlapping noisy echoes has attracted the attention of researchers from many fields
for several decades.

Several approaches have been suggested for this problem and many of them benefit from
the'recent development of high resolution sinusoidal frequency estimation and Direction of
Arrival (DOA) estimation techniques. For example, MUSIC [2] is employed in [3] to estimate
time delays with multiple experimental data and the approach requires that the signal gains
be random in order to get a nonsingular covariance matrix. Sinusoidal frequency estima-

tion techniques such as MUSIC [2], Linear Prediction [4], and MODE (5] are applied to the
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time delay estimation problem in [6, 7, 8]. However, these appfdaches are only applicable
to signals with flat (rectangular) band-limited spectra. Several Maximum Likelihood (ML)
approaches have also been suggested for this problem. Multidimensional global optimization
algorithms are presented in [9, 10, 11] to analyze a special class of ocean acoustic data that
has very oscillatory autocorrelation functions. An efficient approach based on the Expecta-
tion Maximization (EM) algorithm [12] is proposed in [13] that decouples the complicated
multidimensional optimization problem into a sequence of multiple separate one-dimensional
optimization problems. However, its convergence depends highly on the initialization method

used and no systematic initialization method is given in [13].

In this chapter, we first formulate the time delay estimation problem as a nonlinear
least squares (NLS) fitting problem in the frequéncy domain. Then a weighted Fourier
transform based relaxation method (referred to as WRELAX) is presented for finding the
global minimum of the complicated multimodal NLS cost function. The most striking feature
~ of the WRELAX algorithm is that it decouples the multidimensional optimization problem
into a series of one-dimensional optimization problems in a conceptually and computationally
simple way. Compared with other existing algorithms, WRELAX is more systematic and
efficient and has less limitations on the signal shapes. The WRELAX algorithm is also
extended to the case of multiple looks for different scenarios (i.e., fixed delays but arbitrary
gains and fixed delays and gains). Simulation results show that the mean square error (MSE)
of WRELAX is very close to the corresponding Cramér-Rao bound (CRB) for a wide range
of signal-to-noise ratios (SNRs). The new algorithm is also successfully applied to detecting
and classifying roadway subsurface anomalies by using an ultra wideband-g'found penetrating
radar.

The remainder of the chapter is organized as follows. In Section 11.2, we describe the data
model and formulate the problem of interest. Section 11.3 presents the WRELAX algorithm.
In Section 11.4, we extend the WRELAX algorithm to two cases of multiple looks. Some
numerical and experimental results are given in Section 11.5. Section 11.6 concludes the

chapter. The CRB analysis is included in the appendix.
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11.2 Problem Formulation

Time delay estimation is a well-known traditional problem occurring frequently in radar,
active sonar, and many other fields.. In this problem, the waveform received at a single
sensor consists of delayed replicas of the transmitted signal with different gains. The gains
reflect the scattering property of the targets or multipath channel transmission features. The
received signal waveform y(t) can be described as

L
y(t) = ous(t—m) +e(t), 0<t<T, (11.1)
1=1
where s(t), 0 < t < Ty, represents the known transmitted signal, y(t) denotes the received
signal, which is composed of L replicas of s(t) with different (complex or real valued) gains
{oy}E., and real valued delays {r}L,, and e(t) is the receiver noise, which is modeled as a
zero-mean Gaussian random process.

Usually, the above received analog signal is sampled for digital signal processing. To
avoid aliasing, we must sample y(¢) according to the bandwidth of s(t). Let B, denote the
double-sided bandwidth of s(¢). Then y(t) must be sampled with the sampling frequency fs
satisfying

fs 2 Bs . (11.2)
After A/D conversion, the sampled received signal has the form
L
y(nT,) =Y ays(nTs — 7)) +e(nTs), n=0,1,---,N—1, (11.3)
1=1
where T} is the sampling period and is equal to the reciprocal of the sampling frequency f;.

Our problem of interest herein is to estimate {ou, 7}, from {y(nTs)}2=) with known
s(t), 0 < t < Ty, or {s(nT) o -

Although we could solve the estimation problem in the time-domain [3, 9, 10, 13], we shall
consider below solving the problem in the frequency domain and propose a relaxation based

algorithm that requires a sequence of Fourier transforms on some weighted data vectors.

This algorithm is referred to as the WRELAX algorithm.
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Let Y (k), S(k), and E(k), k = —N/2,-N/2+1, ..., N/2 — 1, denote the discrete Fourier
transforms (DFT’s) of y(nTy), s(nT), and e(nTy), respectively. Provided that aliasing is
negligible, then Y (k) can be written as :

L
Y(k) = S(k) > e + E(k), (11.4)
=1
where
N 27(7'[
wp = NTS . (115)

Note that the time delay estimation problem is similar to the sinusoidal parameter es-
timation problem except that the exponential signals are weighted by the known signal
spectrum. If we divided both sides of (11.4) by S(k), the problem would become identical
to the sinusoidal parameter estimation problem. Yet we should not do so for the following
reasons: first, S(k) could be zero for some k; second, the noise E(k)/S(k) will no longer be a
white noise even when E(k) is white; third, when E(k) is a white noise, the larger the S(k)
at sample k, the higher the signal-to-noise ratio (SNR) of the corresponding Y (k) and hence
dividing Y (k) by S(k) will de-emphasize those Y (k)'s that have high SNRs. Because of this,
many well-known sinusoidal parameter estimation algorithms, such as MUSIC [2], ESPRIT
[14], PRONY ([15), are not directly applicable to our problem of interest. Using MODE (5]
would require a multidimensional search over a parameter space because we can no longer

reparameterize the MODE cost function via the coefficients of a polynomial.

11.3 The WRELAX Algorithm

We consider below estimating the unknown parameters by minimizing the following NLS

criterion:

Nj2-1

Ci({a,wll) = >, [Y(k) - S(k)lz_:oqej‘”‘k . (11.6)

k=—N/2
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When e(nT}) is a zero-mean white Gaussian random process, E(k) is also white since DFT
is a unitary transformation. For this white noise case, the NLS approach is the same as
the ML method. When E (k) is not white, however, the NLS approach is no longer the ML
method. However, it has been shown in [16] that the NLS approach can still have excellent
statistical accuracy.

Minimizing C;({cy,w;}£) with respect to the unknown parameters is a highly nonlinear
optimization problem. The cost function has a complicated multimodal shape with a very
small attraction domain, which makes it very difficult to find the global minimum. Below, we
present a relaxation based optimization algorithm to obtain the NLS parameter estimates.

Before we present our approach, let us consider the following preparations. Let

Y=[vng venpey - Yo2-n | (11.7)

S=diag{ S(-N/2) S(—N/2+1) --- S(N/2-1) } (11.8)

E=[BCNR) BEN2+D - B2 (119)
and

a(w,):[ejwl(—N/m Ga(-N/ZHD) L. gin(N/2-1) ]T, (11.10)

where (-)T denotes the transpose. Denote

L
1=1,2#l

where {6, @}, ;,, are assumed to be given. Consider first the case where {oy}f, are

complex valued. Let
b(wl) = Sa(wl)7 l= 1527“',[/' (1112)
Then (11.6) becomes

C’g(al,wl) =|| Y[ — alb(wl) ”2, (11.13)
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where || - || denotes the Euclidean norm. Minimizing C (a4, wl)-\-ﬁ/.ith respect to a; yields the

estimate &; of o
& _ bH(wl)Yl
l bH (w;)b(w)
af (w)(S*Yy)
sl

where (-)¥ represents the conjugate transpose and || - || denotes the Frobenius norm [17].

(11.14)

Then the estimate @; of w; is obtained as follows:

b(w)b? (W) . |

~ bF(w) bbf(w)

Y/ b(w)bH (w) Y,
bH (w;)b(w)

= arg rr(l‘)&ll,x'aH(wl)(S*Yl)lz, (11.15)

~

w; = argmin
wy

Y, Y,

= argm
arg max

where we have used the fact that b (w;)b(w;) =|| S ||% and hence is independent of w;.
Hence & is obtained as the location of the dominant peak of the magnitude squared of
the Fourier transform, |aff(w;)(S*Y/)[?, which can be efficiently computed by using the
fast Fourier transform (FFT) with the weighted data vector S*Y; padded with zeros. An
alternative scheme to zero-padding FFT is to find an approximate peak location first by using
FFT without much zero-padding and then perform a fine search nearby the approximate
peak location by, for example, the fmin function in MATLAB, which uses the Golden
section search algorithm. With the estimate of w; at hand, & is easily computed from the
corresponding complex height:

__ a(w)(8°Y)

o) = .
IS1IF  lu=s

(11.16)

With the above simple preparations, we now present the WRELAX algorithm.

Step (1): Assume L = 1. Obtain {&;, &}=1 from Y by using (11.15) and (11.16).

Step (2): Assume L = 2. Compute Y, with (11.11) by using {&, &4 }i1=1 obtained in
‘Step (1). Obtain {dy, & }i=2 from Y,. Next, compute Y; by using {&, & }1=2 and then

redetermine {&;, & }1=1 from Y.
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Iterate the previous two substeps until “practical convergence” is achieved (to be dis-
cussed later on).

Step (3): Assume L = 3. Compute Y3 by using {&, & }2_, obtained in Step (2). Obtain
{&n, du}1=3 from Y3. Next, compute Y, by using {&n, 61}3_, and redetermine {&y, &, };=; from
Y,. Then compute Y, by using {&;, &}i=1,3 and redetermine {d, 6;}i—2 from Ys.

Iterate the previous three substeps until “practical convergence”.

Remaining Steps: Continue similarly until L is equal to the desired or estimated
number of signals. (Whenever L is unknown, it can be estimated from the available data, for
instance, by using the generalized AIC rules which are particularly tailored to the WRELAX
method of parameter estimation. See, for example, [16].) '

The “practical convergence” in the iterations of the above WRELAX method may be
determined by checking the relative change of the cost function Cy({&,&};) in (11.6)
between two consecutive iterations. The algorithm is bound to converge to at least some
local minimum point [18]. The convergence speed depends on the time delay spacing of the
signals. If the spacing between any two signals is larger than the reciprocal of the signal
bandwidth, the algorithm converges in a few steps. As the spacing of the signals becomes
closer, the convergence speed becomes slower.

Once we have obtained the estimates {&;}%,, the estimates {7}, of {n}{, can be
determined by using (11.5).

At this point, we would like to point out the relationship between WRELAX and the
conventional matched filter approach. The matched filter approach can also be formulated

in the frequency domain. Let

F(w) = [a” (0)(S*Y) (11.17)

‘2
The matched filter method searches for the L largest peak positions of F'(w) as the estimates

of {w;}f£,, and then the gains are determined as follows

a () (S*Y)
IS 117

Hence when there is only one signal, this one-dimensional matched filter approach is equiv-

~

6y = 1=1,2,---,L. (11.18)

b
W=y
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alent to the WRELAX algorithm. However, when there are multiple signals that are not

well separated, this conventional matched filter approach will perform poorly. In this case,

a multidimensional matched filter method [9] could be used and the method is equivalent
to the NLS fitting approach [9]. The WRELAX algorithm decouples the multidimensional

matched filters into a sequence of one-dimensional matched filters. Thus the excellent pa-

rameter estimation performance of the NLS fitting approach can be achieved at a much lower

implementation cost.

Similar to the WRELAX algorithm, the EM algorithm proposed in [13] also transforms
the multidimensional optimization problem into a series of one-dimensional optimization
problems. The detailed implementations of the algorithms, however, are quite different. The
EM algorithm consists of two steps, the E (Estimate) step and the M (Maximize) step. The
idea is to decompose the observed data into their signal components (the E step) and then
to estimate the parameters of each signal component separately (the M step). The algorithm
is iterative, using the current parameter estimates to decompose the observed data. At each
E step, the residue error corresponding to the current estimates is also decomposed among
different signal components. Although initial conditions are needed by EM, no systematic
initialization method is given in [13]. We have also found that the performance of EM is very
sensitive to the initial conditions used. Even with the same initial conditions, our numerical
examples show that the convergence speed of EM can be much slower than the last step of
WRELAX. Further, WRELAX does not require any initial condi tions before its iterations
and the first L — 1 steps of WRELAX can provide an excellent initial condition for Step L.

Consider next the case where {oq}~, are real-valued. Minimizing Cy(cy,w;) with respect

to oy and w; yields

Re [a¥ (w))(S"Y,)]
& = , 11.19
TS E |, (11:19)
where Re(X) denotes the real part of X, and
@ = arg max Re’ [af (w)(8"Y)]. | (11.20)

The WRELAX algorithm could also be implemented in the time domain, which is based
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on the correlations. However, we prefer to use the frequency’idomain version of WRELAX.
For the time domain version, we could be restricted to using the discrete values of {m}E, if
we only know the sampled version of s(t). For this case, if a more accurate delay estimate
is required, then one has to resort to interpolation [9]. This inconvinence can be avoided by
transforming the problem to the frequency domain, where {m }£, can take on a continuum of
values. Even without considering the additional interpolation cost, the computational load
of the time domain correlation-based WRELAX is heavier than that of the frequency domain
WRELAX, which can be easily implemented by using the currently available dedicated high
performance FFT chips, such as TMC2310 [19] and A41102 [20].

11.4 The Extended WRELAX Algorithms for Multiple Looks

Next we extend the above WRELAX algorithm to the case of multiple looks. Two scenar-
ios will be considered, which include 1) fixed delays but arbitrary gains and 2) fixed delays

and fixed gains. In radar applications, the two cases correspond to two target fluctuation

models [21].

11.4.1 Fixed Delays but Arbitrary Gains

Consider the case where multiple pulses are transmitted and the ranges of target scat-

terers remain the same but their gains change randomly during the observation interval.
Let Y be the DFT of the received vector due to the mth pulse. Then
L .
Y™ =5 o™ [Saw)] +E™, m=1,2,..,M, (11.21)
=1

where al(m) denotes the gain of the Ith scatterers due to the mth pulse and the noise vectors

{E(}M_, are assumed independent of each other. Our problem of interest is to estimate

(m) m\M
{al ,wl}l=1,..,L;m=1,...,M from {Y }
We now extend the WRELAX algorithm to this multiple look case. The extended WRE-

m=1"
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LAX algorithm minimizes the following NLS criterion:

L 2
YO -5 a™b(w)| , (11.22)

=1

M
03({al(m)’wl}l=1,..,L;m=1,...,M) =2

m=1
where b(w;) is defined in (11.12).
Before we present the extended WRELAX algorithm, let us consider the following prepa-

rations. Let

L
Y™ =ym™ — 3 a™b@), m=1,..,M, (11.23)
i=1,i#l
where {&gm)"Di}i=1,...,L,i;él,m=1,...,M are assumed given.. Then the cost function
Ca({al(m), w’}l=1,..,L;m=1,...,M) becomes
(m)y M T N G T
Col{af™PLw) = 3 Y™ - of™bw)| - (11.24)
m=1

Minimizing Cy({oy}f,,w:) with respect to the complex-valued {o{™}M_ and w, yields

H (M)

Jmy _ A (w)(S*Y;™)
& = , 11.25
! IS | (11.25)

wy=wy
and
by = argmax [Z |aH(wl)(S*Yl(m))' ] : (11.26)
m=1

‘ ' M
Minimizing Ca({o{™}M_,,w;) with respect to the real-valued {a,(m)} , and w; yields
m=

Re [a (w))(S*Y{™))]
~(m) l
q = , 11.27
CETUTSE | (120
wy=wy
and

M
@y = argmax { S Re? [aH (wl)(S*Yl(m))]} . (11.28)

. - im=1
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11.4.2 Fixed Delays and Gains

When both the delays and gains of the target scatterers remain the same during the
multiple look interval, we can derive an ML estimator when the noise is assumed to be a
zero-mean colored Gaussian noise with an unknown covariance matrix Q. Note that although
we could continue to use the NLS approach for the current problem, we prefer to take the
noise statistics into account since we will show below that doing so in this case introduces
little difficulties for sufficiently large M. For the former problems, modeling the noise with an
unknown covariance matrix Q makes the ML approach ill-defined due to too many unknowns
[22].

Let Y™ be the DFT of the received data vector due to the mth pulse which can be
written as

Y™ = ZL:alb(wl) +E™, m=1,.,M, (11.29)
1=1
where the noise vectors {E(}M_; are assumed to be zero-mean colored Gaussian random

vectors with an unknown covariance matrix Q that are independent of each other. Let

B=[b(w) bw) - blws) (11.30)

and
a=[a, a - o |- (11.31)

Then
Y™ =Ba+EM™, m= 1,2, M. (11.32)

The log-likelihood function of Y™ is proportional to (within an additive constant):

—In[det(Q)] — tr {Q‘l—]‘l? é [Y™ - Ba| [Y™ - Ba]H} (11.33)

where det(-) denotes the determinant of a matrix and tr(-) denotes the trace of a matrix.

Consider first the estimate of Q and the unstructured estimate of C = Ba. It is easy to
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show that the estimate Q of Qis

1 M

Q=4 3 [ -] [vim -’

where C may be obtained by minimizing the following cost function:

Cs = det [-;7 ij (Y™ —c) (Y™ - C)H] .

m=1
Let
: 1 % (m)
RYl =37 Y™ )
M m=1
and
R — L S ylm (ymyE
Yy = 77 > (Y ™)H,
m=1
Then

G- Lty [y -] [y -c]”
- M m=1

= Ryy — CRE —Ry,C¥ +CCH

= [C - Ry1] [C - f{,}q]H + RYY - RYlf{'gl'

To minimize det(G), we have
C =Rwi.
Then using the € in (11.39) to replace the C in (11.34) yields
Q =Ryy - RviR{:-
With these notations, the above C5 can be rewritten as

Cs = det[Ryy — CRE — Ry, C¥ + CC7|

= det

— p—

Ryy — RyiRE, +(C - €)(C - ©)F]
= det(Q)det [I+Q7'(C - C)(C - C)"]
= det(Q) [1+(C-O)FQ(C- ),
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(11.35)

(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)




where we have used the fact that det(I+ AB) = det(I+ BA) if the dimensions of A and B

permit. Hence minimizing Cs is equivalent to minimizing

Col{anwiily) = [c-6]" Q' [c-¢]
= [Ba-¢]" Q" [Ba-¢], (11.42)

which is again a highly nonlinear optimization problem.
We consider below using the relaxation based approach to minimize Cs({au, w },). Let
X R L
Ci=C- Y a&b@), (11.43)
1=1,i#l

where {&;, @;}2, ;. are assumed given. Then minimizing Cs becomes minimizing
A H A 12
Cr(au,w) = [C1 — arb(w)] Q [C1 = aub(wy)] (11.44)

Consider first the case of complex-valued {o;}Z ;. Minimizing C7(oy,w;) with respect to
oy and w; yields:
bHQ_lcl
bH (w)Q'b(w1) |y,
a(w) (8*Q1Cy)
|aisate]

(11.45)

)

wy=w;

and

laH (wl)S*Q‘lél !2

@ = argmax ——— 5 (11.46)
! Q‘ESa(w;)H

Consider next the case of real-valued {oy}~,. Minimizing C7(y,w;) with respect to o
and w; yields
~ Re [aH(wl)S*Q‘lél]

& = HQ’%Sa(wz)lf (11.47)

)

wy=0y
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and

Re? [aH (wl)S*Q“lél]
(v, = argmax '

— 11.48
wi ”Q‘fSa(wl)”2 ( )

In the above derivations, Q! plays the role of whitening the noise. A good estimate of
Q requires a large number of independent data vectors (i.e., M should be large enough as
compared with N). When M is small, the noise covariance matrix estimated from (11.40) is
singular or near singular. At least N data vectors are needed to guarantee that the matrix
Q is non-singular with probability one.

Usually, the receiver noise e(t) in (11.1) can be modeled as a zero-mean stationary and
ergodic Gaussian stochastic process. Let the covariance matrix corresponding to the sampled
noise vector
[e(0), e(Ts) -+ e((N — 1)T,)]" be Q:, where the subscript “¢” represents the covariance
matrix of the noise in the time domain. Then Q; is a Hermitian and Toeplitz matrix. The

frequency domain noise covariance matrix Q is related to Q; as follows

Q=rQ,r”, (11.49)
where I' is the DFT matrix,
1 H
r= - [ a(-m) a(-m+21/N) - a(r—2x/N) | (11.50)
and
T
aw) = [ G(-N[2)  Gio(-N/2HY) .. Qiu(N/2-1) ] , (11.51)

It can be shown that, in general, Q is no longer a Toeplitz matrix. However, we can use the
Toeplitz property of Q; to improve the estimation performance. First, we can obtain Q by

using (11.40). Then the estimate Q. of Q; can be obtained by using (11.49), which is

~

Q=r?Qr. | (11.52)

Due to a finite number of data vectors, Q; is no longer a Toeplitz matrix. Although there

are many ways to to modify Q. to obtain a Toeplitz matrix QF’, in this paper we use the
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following simple approach. Let ¢,(7,j) be the (i, 7)th element of Qt. Define

1 N—-k
i(k) = — > @, i+k), k=0,1,---,N—1 (11.53)
N - k 1=1
Then i )
7(0) #(1) F(N —1)
) (1 : ~
@ = ( ) (11.54)
(1)
| AN -1) - (1) #(0)
Using Q) instead of Q in (11.45)-(11.48), where
Q™ =rQ"r*, (11.55)

we obtain a new algorithm referred to as TWRELAX. The TWRELAX algorithm can greatly
improve the estimation performance of WRELAX, especially when M is small as compared

with N, as can be seen from the numerical examples below.

11.5 Simulation and Experimental Results

In this section, we will present numerical and experimental examples to demonstrate
the performance of the proposed WRELAX algorithm. We first present several numerical
examples for both single look and multiple look cases. The performance of the proposed
algorithms is compared with the EM algorithm [13] and the CRB, which gives the minimum
attainable variances for any unbiased estimators. Next, we test the new algorithm with the

experimental data collected to analyze the subsurface structures of highways.

In the numerical examples below, we use a windowed chirp signal,
s(t) = w(t)e®- ", 0<t< T, (11.56)

where [ is the chirp rate and
0.5 — 0.5cos(nt/Ty), 0<t<Ty,
w(t) =<1, Ty <t <Tp— Ty, (11.57)
0.5 — 0.5cos[n(t — T0)/Tw), To—Tw <t<Tp,
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with T, = Tp/10.

In the following simulations, we use N = 64, § = 7 x 10", the signal bandwidth B, =
BTy /7, and the samf)ling frequency fs = 2B; (to avoid aliasing). Tj is chosen in such a way
that Ty = (N/2 — 1)T;. In this case, it can be shown that Tp = \/TV—L—{—L;—" =3937 us, T =
8.001 us, T, = 0.127 ps, B, = 3.937 MHz, fs = 7.874 MHz, and the resolution limit of
the conventional matched filter method is generally considered to be around 7. = 1/B, =
0.254 ps.

In all of the examples below, we have used e = 0.001 to test the convergence of WRELAX.
All data sequences are zero-padded to the nearest power of 2. For the simulation examples,
we have N = 64, so zero-padding is not used. The one-dimensional search is performed in
two steps, a coarse search using FFT followed by a fine search using the fmin function of
MATLAB. In all of the simulation examples, complex valued gains are assumed. Real valued
gains are used for the experimental example. The SNR of each signal replica is defined to
be 10log;,(|a|?/02) for the case of fixed gains, where o7 denotes the average noise power.
For the case of arbitrary gains, {ozl(m)}n]‘;’=1 are assumed to be independent complex Gaussian
random variables with zero-mean and variance o2 (they are fixed for all Monte-Carlo trials)
and the SNR is defined to be 10log;q [02/52]. The MSE is obtained through 100 Monte-Carlo
trials.

Case A: Single Look

Assume L = 2 signals are superimposed together with oy = e/8, 0y = e/t 1 =
Ty/8, 72 = Ty/8 + 7. The additive noise is zero-mean white Gaussian and SNR = SNR; =
SNR, = 10 dB. Hence the time delay spacing between the two signals is . Even in
this case, the conventional matched filter method fails to resolve the two signals, as can be
seen from Figure 11.1(a), where the horizontal axis denotes the normalized time delay T/T
and the two vertical lines indicate the true time delays of the two signals. However, using
WRELAX we can resolve them very well. As pointed out before, the WRELAX algorithm
can be viewed as transforming the multi-dimensional matched filters into a sequence of one-
dimensional matched filters. The outputs of the two matched filters for all iterations are

plotted in Figure 11.1(b), which illustrates the convergence process of WRELAX. At the
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beginning of the iteration, the peak positions and the corréspbnding gain estimates obtained
from the filter outputs differ from their true values (one gain estimate is larger and the other
is smaller than the corresponding true gains). After several steps, they converge to the true
time delays and gains.

Now we change the time delay spacing of the two signals to 0.57, with the same gains as
above. The MSEs using WRELAX are compared with the corresponding CRBs in Figure
11.2, where SNR = SNR; = SNR,. From Figure 11.2, it can be noted that the MSEs
obtained by using WRELAX approach the corresponding CRBs as the SNR increases.

We have also tested the EM algorithm for this situation and found that it is very sensitive
to the initial conditions used. If we use the conventional matched filter approach to obtain
the initial conditions, EM will converge to some local minimum instead of the global one and
the estimation performance is very poor. When we skip the first L — 1 steps of WRELAX
and use the same initial values used for EM, WRELAX converges much faster than EM.
The speedup ratio is 2.5 for the same signal used in Figure 11.2. If we add one more signal
that is separated from the above two signals by 7. and 1.57, then the speedup ratio goes up
to 4.0.

Case B: Multiple Looks with Fixed Delays but Arbitrary Gains

Consider the case of multiple looks with fixed time delays but arbitrary gains when
the noise is a zero-mean white Gaussian noise with variance o2. In this example, L = 2,
n = Ty/8, and 7 = Tp/8 + 0.57.. We use two data vectors obtained by M = 2 looks to
estimate the fixed delays. The gains of the signals are generated randomly but fixed from

trial to trial and o2 = 1.0. This case is similar to the data model used by the deterministic
(or conditional) ML method for DOA estimation in array signal processing [5]. We assume
SNR = SNR; = SNR; and the generated arbitrary gains in this example are agl) = -0.5111+
0.39227, agl) = 0.9157 — 0.49587, a&z) = (.3268 + 0.6921; and agz) = —1.8936 — 0.32205. We
use the extended WRELAX algorithm presented in Section 4.1 to estimate the delays and
the MSEs are compared with the corresponding CRBs in Figure 11.3. It can be noted that
the MSEs again approach the CRBs as SNR increases.

Case C: Multiple Looks with Fixed Delays and Gains
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Now we consider the problem of estimating fixed delays and gains of two signals from
multiple data vectors collected by multiple looks in a colored Gaussian noise environment.
In this example, the colored noise is modeled as a first-order autoregressive (AR) process
with coefficient a;=-0.85. The delays and gains of the two signals are the same as those in
Figure 11.2 and SNR = SNR; = SNRp = 0 dB. The MSEs of WRELAX and TWRELAX
are shown and compared with the CRBs in Figure 11.4 as a function of the normalized
multiple look numbers log,(M/N). From Figure 11.4, it can be noted that the improvement
of TWRELAX over WRELAX is significant, especially for small M as compared to N. For
this example, when M = N/2, the MSEs of TWRELAX are very close to the CRBs, while
M = 4N is required before the MSEs of WRELAX approach the CRBs.

Case D: Application to Ultra Wideband Ground Penetrating Radar

The detection and classification of roadway subsurface anomalies are very important for
the design and quality evaluation of highways. Ultra wideband ground penetrating radar
is very suitable for this application because of its extremely large bandwidth (several GHz)
and high range resolution (on the order of several centimeters). The returned echoes of
the ultra wideband ground pe;letrating radar are superimposed signals reflected from the
boundaries of different media (layers, voids, etc.), which can be described by (11.1). Unlike
the data models used in the above simulations, the pfobing signal s(t) and the gains here
are all real. Both the delays and gains are very useful for the detection and classification of
roadway subsurface anomalies. The delays can be used to determine the layer thickness or
anomaly location and the gains can be used to classify the type of media because the gains
are related to the reflection coefficient at the boundary between two media with different
dielectric constants. Once we get the estimates of the media dielectric constants, we can
judge the type of the media.

‘The current method of detecting and classifying roadway subsurface anomalies requires
manual inspection of each radar trace by a qualified engineer or technician. This method is
neither accurate nor practical. Although the range resolution of the ultra wideband ground
penetrating radar is pretty high, it is still very difficult, if not impossible, to identify closely

- spaced echoes from different layers by visual examination. Yet the closely spaced echoes

248



may be more important for the detection and classification of the anomalies. Diue to the
voluminous amount of data collected, manual inspection seems not feasible. However, using
the proposed WRELAX algorithm, the detection and classification can be implemented
automatically with high accuracy. In this paper, we will only consider the estimation of
the delays and gains from the experimental data collected by an ultra wideband ground
penetrating radar. The classification and many other practical issues (such as end reflection

removal and sensor motion compensation) are beyond the scope of this paper.

The sampled version of the signal waveform s(t) is depicted in Figure 11.5(a) as a function
of the sample points, where the sampling interval is 7,=0.07 ns. No explicit expression is
available for the transmitted signal s(t), which can only be measured by specially designed
experiment. The discrete time Fourier transform (magnitude) of the signal in Figure 11.5(a)
is shown in Figure 11.5(b), where f, = 1/T,=14.28 GHz. From Figure 11.5(b), it can be
seen that the signal spectrum covers a wide range (from 0 to 2.5 GHz). Figure 11.5(c) shows
the autocorrelation function (magnitude) of the signal s(t) in Figure 11.5(a), from which
high sidelobes can be observed. These high sidelobes will greatly degrade the performance
of the conventional matched filter approach, as can be seen from the matched filter output
(shown in Figure 11.5(d)) of the sampled version of the observed signal y(¢) (shown in Figure
11.5(e)). We assume that there are L = 5 reflected signals coming from five layers. Using
WRELAX we get the estimates of the delays (0.035 ns, 0.109 ns, 0.464 ns, 0.716 ns, 4.5 ns)
and the gains (1.1644, -0.2883, 0.4171, 0.2711, -0.0460). The reconstructed signal returned by
each layer is shown in Figures 11.5(f) through (j). The reconstructed superimposed signals
obtained by using the estimates of WRELAX and those of the matched filter approach
are compared with the observed signal in Figures 11.5(k) and (1), respectively. Note that
WRELAX significantly outperforms the conventional matched filter approach. |

11.6 Conclusions

In this chapter, we have proposed a weighted Fourier transform based WRELAX algo-
rithm for the well-known time delay estimation problem. By avoiding the computationally

demanding multidimensional search over the parameter space, WRELAX minimizes the NLS
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criterion at a much lower implementation cost. It is more efficient and systematic than the
somewhat similarly structured EM algorithm. The WRELAX algorithm is also successfully
applied to the detection and classification of roadway subsurface anomalies and extended to

two cases of multiple looks.

Appendix: Derivation of CRBs

We sketch below the derivation of the CRBs for the parameter estimates of the following

data model
Y™ = Qa™ +E™, m=1,2,.., M, (11.58)
where
Q=SA ' (11.59)
a=lam) atm) -~ am) | (11.60)
\ T
a(n) = [ exp [~ 2 ( (-¥)] exp [-s3m (-5 + )] - exp [-iE (5 ~1)] ] )
(11.61)
and
T
o™ = [ o™ o ... o™ ] . (11.62)
In (11.58) the additive noise vectors EM™, m=1,2,---,M, are assumed to be zero-mean

Gaussian random vectors with an unknown covariance matrix Q that are independent of each
other. For convenience, we denote the three data models (11.4), (11.21), and (11.29) by Cases
A, B, and C, respectively. Cases A and C can be viewed as special cases of the above data

model, which corresponds to Case B. For Case A, we have M =1, Y® =Y, E®W = E, and

T
o) =a= [ ap oy - op ] . For Case C,wehave '™ = o =, m=1,2,---, M.
Let

~ T

¥ = [ (YO (YO)T ... (yOo)yr ] , (11.63)
and

~ T

B= [ (EOY (EG)T ... (BOO)T ] _ (11.64)
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Then

Y = Q& +E, (11.65)
where
= 1,y ® Q, for Cases A and C,
e { (11.66)
I, ®9, for Case B,
and
% for Cases A and C,
o = T
a = { [ (Otl)T (a2)T (aM)T _ for Case B, (11.67)

with Iy = [1 1 -+ 1]7, Ip denoting the M x M identity matrix, and ® denoting the
Kronecker product [17). Let Q = E{EE"} be the covariance matrix of E. It follows that

Q=Iy®Q. (11.68)

The unknown variables in the likelihood function of Y are the unknown elements of Q,
the real and imaginary parts of the gains (for complex valued gains) or simply the gains
(for real valued gains), and the delays. The extended Slepian-Bangs’ formula for the zjth

element of the Fisher information matrix has the form [23, 24]:

(FIM},, = tr (Q' QI Q) + 2Re [(aHQH) g ((w);]  (11.69)
where X denotes the derivative of X with respect to the ith unknown parameter. Note that
FIM is a block diagonal matrix since Q does not depend on the parameters in (ﬂ&), and
(£2&) does not depend on the elements of Q. Hence the CRBs of the estimates of the delays
and gains can be determined from the second term of the right side of (11.69).

Next we derive the CRBs for the case of complex valued gains (which correspond to
our simulation examples), and the CRBs for the case of real valued gains can be derived
similarly. Let

= [ReT(&) ImT (&) TT}T, (11.70)

where Im(X) denotes the imaginary part of X and

T
T:[ﬁ S TL] . (11.71)
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Let

F = [ Q iQ D@ | (11.72)
where
. 1,y ® D,, for Cases A and C,
D, = { (11.73)
I, ® D,, for Case B.
with
— da(r da(T2 da(T
D =8 | dam) dam) .. o) |, (11.74)
and
- P, for Cases A and C
5 T
@ = { [ (@)T (@D ... ()T ] . for Case B, (11.75)
with
&= diag[ o ay oo o ] , (11.76)
and
3™ = diag| of” of” - o |, m=12- 0 (11.77)
Then
CRB(n) = [2Re(F7Q'F)] . (11.78)

After some simple manipulations, we obtain the following more compact forms of the

CRBs for Cases A, B, and C.

-1

Re(Al) —Im(Al) RG(AQ)
CRB(n)=| Im(4A;) Re(A;) Im(Ay) | (11.79)
Re"(A,) —Im"(Az) Abfs

where
2MQEQQ, for Cases A and C,
- (11.80)
21y ® (27Q1Q), for Case B,
oMQEQ'D, P, for Cases A and C, )
_ i 11.81
272 [ ® (Q7Q'D,)| &, for Case B, (
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and
2MRe (@HDfQ‘lDT@) , for Cases A and C.
Az = g (11.82)
25M_ Re [(2™)"DFQ'D, &™), for Case B .
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Figure 11.1: Illustrative comparison of WRELAX with the matched filter method. The
vertical lines denote the true time delays. (a) The output of the matched filter. (b) The
outputs of the two decoupled matched filters associated with WRELAX for all iterations.
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Figure 11.5: Application of WRELAX to the experimental data acquired by an ul-
tra-wideband ground penetrating radar to analyze roadway subsurface structure . The data
is assumed to be a superimposition of five reflection signals coming from five layers. (a)
Waveform of the known signal s(nT}). (b) Discrete Fourier spectrum (magnitude) of s(nT}).
(c) Matched filter output of the known signal s(nTy). (d) Matched filter output of the ob-
served signal y(nT;). (e) Waveform of the observed signal y(nTs). (f)-(j) Reconstructed
signals reflected by Layers 1 through 5, respectively, by using WRELAX. (k) Comparison of
observed signal (solid line) with reconstructed signal using WRELAX (dashed line). (1) Com-
parison of the observed signal (solid line) with reconstructed signal using the conventional
matched filter method (dashed line).
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12. Time Delay Estimation via Optimizing
Highly Oscillatory Cost Functions

12.1 Introduction

Time delay estimation is a well known problem in the field of underwater acoustic signal
processing. For the purpose of passive localization, two or more spatially separated sensors
are often used to measure the time difference of arrivals of a radiating source whose transmit-
ted signal waveform is usually unknown [1, 2]. Another problem is to estimate time delays
and amplitudes from the superposition of multiple signals with known waveforms plus noise
received at a single sensor (or a beamformed array of sensors). This problem occurs in many
applications, including multipath separation [3, 4, 5, 6, 7] and target feature extraction and
classification [8] and is considered herein.

The most well-known time delay estimation technique is the matched filter approach. In
the case of white Gaussian noise, it performs like the Maximum Likelihood (ML) method
when the overlapping signals are well separated in the arrival times and is identical to the
ML approach when there is only one signal present. The matched filter approach can be
easily implemented using dedicated fast Fourier transform (FF'T) chips or correlator chips.
However, its resolution is limited to the reciprocal of the signal bandwidth. High resolution
sinusoidal frequency estimation techniques such as MUSIC [9], Linear Prediction [10], and
Maximum Likelihood (ML) approach are applied to the time delay estimation problems in
[11, 12, 13], respectively. However, due to the spectral-division operation involved, these
approaches should be applied to signals with flat (rectangular) or almost flat band-limited
spectra. Further, they assume that the signals have complex-valued amplitudes. Hence they
are usually not optimal when the signals have real-valued amplitudes. A computationally
efficient approach based on the Expectation Maximization (EM) algorithm [14] is proposed in
[15] that decouples the complicated multidimensional optimization problem into a sequence
of multiple separate one-dimensional optimization problems. However, the EM method is

very sensitive to initial conditions and no systematic initialization method is given in [15].
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For active sonar systems, the most commonly used signal waveforms are bandpass signals.
For some propagation environments {3, 4, 16}, the received signal can be modeled as the sum
of amplitude scaled and time shifted replicas of the known transmitted bandpass signal. Since
the transmitted signal is bandpass, the correlation function between the received signal and
the known transmitted signal will oscillate near the carrier frequency of the transmitted
signal. For this case, many existing time delay estimation algorithms perform poorly due
to converging to local optimum points [3, 3, 6, 7). One way that can be used to avoid this
oscillation problem is to first model the received signal as the sum of time shifted replicas of
a known transmitted signal with different complex-valued amplitudes to obtain good initial
estimates of the unknown parameters [5, 6]. This idea is based on the observation that the
nonlinear least-squares (NLS) cost function for signals with complex-valued amplitudes is
much smoother than the one for signals with real-valued amplitudes. Hence good initial
estimates can be obtained by assuming the signal amplitudes to be complex-valued and
minimizing a much smoother cost function. However, due to the parsimony principle [17],
the initial estimates are not as accurate as those obtained by using the original real-valued
data model. Hence the initial estimates can be refined next by optimizing the original highly
oscillatory true cost function corresponding to real-valued amplitudes. The algorithms we
propose in this chapter are inspired by this idea first proposed in [5, 6].

In our previous paper [18], a weighted Fourier transform based relaxation method (re-
ferred to as WRELAX) is presented for finding the global minimum of the frequency domain
NLS cost function. The most striking feature of the WRELAX algorithm is that it decou-
ples the multidimensional optimization problem into a series of one-dimensional optimization
problems in a conceptually and computationally simple way. Compared with other existing
algorithms, WRELAX is more systematic and efficient and has less limitations on the signal
shapes. WRELAX can be used for signals with either real- or complex-valued amplitudes by
minimizing slightly different cost functions. Unfortunately, just like many other algorithms,
WRELAX is likely to converge to the local minimum instead of the global one when the
NLS cost function is highly oscillatory.

In this chapter, enlightened by the idea used in [5, 6], we propose two approaches based on
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WRELAX to deal with the problem of optimizing highly oscillatory cost functions. First we
assume that the signal amplitudes are complex-valued and use WRELAX to obtain the initial
estimates of the delays and the amplitudes of the superimposed signals by minimizing a much
smoother NLS cost function. Then the initial estimates are refined with two approaches. One
approach (referred to as Hybrid-WRELAX) uses the last step of the WRELAX algorithm
to minimize the true NLS cost function corresponding to the real-valued signal amplitudes.
The other approach (referred to as EXIP-WRELAX) uses the extended invariance principle
(EXIP) [17, 19]. For Hybrid-WRELAX, the refinement step is iterative, while it is not for
EXIP-WRELAX. Both of the algorithms are shown to approach the Cramér-Rao bound
(CRB) as the signal-to-noise ratio (SNR) increases.

The remainder of this chapter is organized as follows. In Section 12.2, we describe the data
model and formulate the problem of interest. The Hybrid-WRELAX and EXIP-WRELAX
algorithms are presented in Sections 12.3 and 12.4, respectively. Numerical examples are
provided in Section 12.5 to illustrate the performances of the new algorithms. Section 12.6 |

concludes the chapter. The CRB analysis is included in Appendix A.

12.2 Problem Formulation
The data model used in this chapter has the form [3, 4, 5, 6, 7, 16]
L
yt)=> as(t—n)+e(t) 0<t<T, (12.1)
=1

where s(t), 0 < t < Ty, represents the known real-valued transmitted signal (usually
bandpass), y(t) denotes the real-valued received signal, which is composed of L replicas of
s(t) with different real-valued amplitudes {oy}}2, and real-valued delays {m}E,, and e(t) is
the real-valued receiver noise, which is modeled as a zero-mean Gaussian random process.

The above data model applies to some multipath propagation envirénments [3, 4, 16]. In
practice, many problems can be described by this model. As pointed out in [4], this model
applies to any problems where a known probe signal s(t) excites a linear time-invariant filter

whose output is observed in the presence of noise and where the impulse response of the
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filter is a finite sum of the scaled and time-shifted Dirac deltg functions.

The sampled received signal can be written as
L .
y(nTs) = ays(nTy — ) +e(nTs), n=0,1,---,N-1, (12.2)
=1
where T}, is the sampling period and is equal to the reciprocal of the sampling frequency f;.

Our problem of interest herein is to estimate {ay, 71}/, from {y(nT. o)} with known
s(t), 0 <t < T, or {s(nT. ) }V-! when the signals are closely spaced. More specifically, we
are interested in the high resolution time delay estimation problem in which the probe signal
s(t) has highly oscillatory correlation function (such as bandpass signals).

Although we could solve the estimation problem in the time-domain [3, 7, 15, 20], we
prefer to do it in the frequency domain. This is because for the time domain processing
methods, we could be restricted to using the discrete values of {m}£, if we only know the
sampled version of s(t). For this case, if a more accurate delay estimate is required, then one
has to resort to interpolation [3]. This inconvenience can be avoided by transforming the
problem to the frequency domain, where {n}, can take on a continuum of values. Another
advantage comes from the simple implementation structure. As will be seen in the next two
sections, our frequency domain algorithms are based on a sequence of Fourier transforms,
which can be easily implemented by using the currently available dedicated high performance
FFT chips, such as TMC2310 [21] and A41102 [22].

Let Y (k), S(k), and E(k), k = —N/2,—N/2+1,..., N/2 — 1, denote the discrete Fourier
transforms (DFT’s) of y(nTs), s(nT), and e(nT;), respectively. Provided that aliasing is
negligible, then Y (k) can be written as:

L
Y (k) = S(k) Y e + E(k), (12.3)
=1
where
_ 2mT
wp = NTS . (124)

Note that the time delay estimation problem is similar to the sinusoidal parameter es-

timation problem except that the exponential signals are weighted by the known signal
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spectrum. If we divided both sides of (12.3) by S (k), the problém would become identical
to the sinusoidal parameter estimation problem. Yet we should not do so for the following
reasons: first, S(k) could be zero for some k: second, the noise E(k)/S(k) will no longer be
a white noise even when FE(k) is white; third, when E(k) is a white noise, the larger the
S(k) at sample k, the higher the SNR of the corresponding Y (k) and hence dividing Y (k) by
S(k) will de-emphasize those Y (k)'s that have high SNRs. Because of this, many well-known
sinusoidal parameter estimation algorithms, such as MUSIC [9], ESPRIT [23], and PRONY
[24], are not directly applicable to our problem of interest. Further, since these algorithms
are designed for complex-valued amplitudes, they do not take advantage of the real-valued

amplitudes and hence cannot provide the best possible performance.

12.3 The Hybrid-WRELAX Algorithm

We consider below estimating the unknown parameters by minimizing the following NLS

criterion:

N/2—1 L . 2
C’l({al, wl}lL=1) = Z Y(k) - S(k) Z OzzClek . (125)
k=-N/2 =1

Since both the transmitted signal s(t) and the received signal y(t) are real-valued, their
Fourier transforms are conjugate symmetric, i.e., Y (—k) = Y*(k) and S(~k) = S*(k), k=
1,2,---, N/2—1, where (-)* denotes the complex conjugate, and Y (—N/2), Y(0), S(—N/2),
and S(0) are real-valued. It can be readily shown that the above cost function is equivalent
to

Co({oa, wi ;) Z W2(k) Y (k) — Zae]“"k : (12.6)
k=—N/2

where {W(k) = 1};1_ _N/241 and W (=N/2) = W(0) = 1/v/2. We assume that e(nTj) is a
real-valued zero-mean white Gaussian random process with variance o®. Yet E(k) will not
be a circularly symmetric complex-valued zero-mean white Gaussian random process since

E(—k) = E*(k), k=1,2,---,N/2—1. (The circularly symmetric assumption on the noise
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is widely used in the literature [25].) Nevertheless, it is shown in Appendix A that for this
white noise case, the above NLS approach is the same as the ML method.

The cost function Cy({y,w;}z;) in (12.6) with {ay}E, being real-valued is referred to as
the true cost function. Minimizing Cy({au,wi},) with respect to the unknown parameters
is a highly nonlinear optimization problem. For narrowband transmitted signals, the cost
function is highly oscillatory and have numerous closely spaced local minima, which makes
it very difficult to find the global minimum. By assuming the real-valued amplitudes {oy}E;
to be complex-valued, a much smoother cost function can be obtained. This is equivalent
to formulate the original time delay estimation problem in its complex analytic signal form.
Since the analytic signal of the transmitted signal is lowpass, its autocorrelation function is
no longer oscillatory. This is the conventional complex demodulation process and is widely
used in practice. Although it is much easier to find the global minimum of the cost function
corresponding to complex-valued amplitudes, the so-obtained estimates can be much less
accurate than those obtained by minimizing the true cost function. The two cost functions
share the same global minimum only when there is no noise. However, as suggested in [5, 6],
we can minimize the cost function associated with complex-valued amplitudes to obtain the
initial conditions needed to minimize the true cost function. Below, we present a relaxation
based global minimizer of the NLS criterion based on this idea. The algorithm is referred
to as the Hybrid-WRELAX algorithm. It simply requires a sequence of weighted Fourier
transforms.

Before we present our approach, let us consider the following preparations. Let

W = diag{ W(-N/2), W(=N/2+1), ---, W(-1), W(O)}

= ding{ 4, 1 -, 1, Ty (12.7)
T

Y=W [Y(—N/z) Y(=N/2+1) - Y(O)] ; (12.8)

S=W diag{ S(-N/2), S(-N/2+1), ---. S(0) } (12.9)
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and

T
alw) = l iwt(=N/D)  giw(-N/2H) L] | (12.10)
where (-)T denotes the transpose. Denote
L
Y =Y - ) &lSa(@)] (12.11)
1=1,i#l
where {&;,®;};_, ;, are assumed to be given. Let
b(wl) = Sa(wl)? l= 172)“',[“ (1212)
Then (12.6) becomes
Cs(ay, w) =|| Y1 — ayb(wy) |7, (12.13)
where || - || denotes the Euclidean norm. Minimizing C3(cy,wr) with respect to the real-
valued o yields the estimate &; of oy
. Re [bH(wl)Yl]
Q =
l bH (w)b(w)
Re [aH(w,)(s*Y,)]
= 12.14
TS T (1214
where (-)¥ denotes the conjugate transpose, Re(Z) represents the real part of Z,and || - ||F

" denotes the Frobenius norm [26]. (More specifically, || S [|r= \/ZO=_N/2 |W (n)S(n)[2.)

Then the estimate @, of w; is obtained as follows:

. . v Re [bH (wz)Yl] b 2
W = argminX;— W (wr)
= argmaxRe? [aH(wl)(S*Yl)] . (12.15)
wy
where we have used the fact that b¥ (w;)b(w;) = X9-_n/2 [W(n)S(n)|* and hence is indepen-

dent of w;. Hence & is obtained as the location of the dominant peak of Re? [aH (wl)(S*Yl)] ,

which can be efficiently computed by using FFT with the weighted data vector S*Y; padded
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with zeros. An alternative scheme to zero-padding FFT is to find an approximate peak lo-
cation first by using FFT without much zero-padding and then perform a fine search nearby
the approximate peak location by, for example, the fmin function in MATLAB, which uses
the Golden section search algorithm. With the estimate of w; at hand, &; is easilv computed
from the corresponding complex height by using @, to replace w; in (12.14).

Similarly, minimizing C3(ay,w;) with respect to w; and the complex-valued ¢, respec-

tively, yields the estimates @; of w; and &; of oy,

2
O = argrrba}xlaH(wz)(S*Yl)l , (12.16)
and
aH(wl)(S*Yz)
g = 2B T 12.17
TS s (217

where (; can also be found via FFT with the weighted data vector.

With the above simple preparations, we now present the Hybrid-WRELAX algorithm.

Step 1: Obtain the initial conditions for Step 2 by assuming that {oy}E, are complex-valued

and using the WRELAX algorithm as follows:

Substep (1): Assume L = 1. Obtain {&, & }i=1 from Y by using (12.16) and (12.17).
Substep (2): Assume L = 2. Compute Y with (12.11) by using {@;, &4 }1=1 obtained
in Substep (1). Obtain {@y, &4 }1=2 from Y. Next, compute Y; by using {@n, duti=2
and then redetermine {&;, & }i=1 from Y.
Tterate the update of {@s, &} and {@, &:} until “practical convergence” is achieved
(to be discussed later on).

Substep (3): Assume L = 3. Compute Y3 by using {&, & }2_, obtained in Substep
(2). Obtain {d&, &}i=3 from Ys. Next, compute Y; by using {&r, 64}, and
redetermine {¢;, & }i=1 from Y;. Then compute Y, by using {&n, & }i=1,3 and
redetermine {@;, & }i=2 from Ys.

Tterate the update of {3, &3},{@w1, &1}, and {@g, &2} until “practical convergence”.
g
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Remaining Substeps: Continue similarly until L is equal to the desired or estimated

number of signals.

Step 2: Refine the estimates obtained in Step 1 with the last step of the WRELAX algo-
rithm (i.e., the last substep of Step 1 above) by using Equations (12.14) and (12.15)
derived for the real-valued {a;}~, and using {&}£, and the real parts of {&}/-, ob-
tained in Step 1 as initial conditions. Iteratively update {&y, &}, = 1,2,---,L,

until “practical convergence”.

The “practical convergence” in the iterations of the above method may be determined
by checking the relative change of the cost function Cy({@;, &:}{;) in (12.6) between two
consecutive iterations. The algorithm is bound to éonverge to at least a local minimum point
[27]. The convergence speed depends on the time delay spacing of the signals. If the spacing
between any two signals is not too much smaller than the reciprocal of the signal bandwidth,
the algorithm converges in a few steps. As the spacing of the signals becomes closer, the
convergence speed becomes slower.

Note that WRELAX can be used directly for signals with real-valued amplitudes. For
this case, the approach would consist of the substeps of Step 1 above except that (12.14)
and (12.15) will be used instead of (12.16) and (12.17), respectively. We will use a numerical
example in Section 5 to show the problem encountered by the direct use of WRELAX when
the cost function is highly oscillatory.

Once we have obtained the estimates {@;}%,, the estimates {#}/=; of {n}[, can be

readily calculated by using (12.4).

12.4 The EXIP-WRELAX Algorithm

The Invariance Principle (IP) of ML estimators is well known in the estimation theory
[28]. The invariance principle gives a simple answer to the relationship between the mini-
mizers of a given cost function parameterized in two different ways in some special cases.
By appropriately reparameterizing the original cost function and enlarging the supporting

domain of the parameter space, less accurate estimates can be obtained from this simple data
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model. These estimates may be refined to asymptotically achieve the performance available
using the original data model. This is the basic idea behind the Extended Invariance Princi-
ple (EXIP) proposed in [17, 19} for the purpose of achieving some computational advantages.
In this section, we present an EXIP based algorithm, referred to as the EXIP-WRELAX al-
gorithm, that avoids dealing with the highly oscillatory true cost function entirely.

By using (12.8) and (12.12), the cost function (12.6) with {a}E, being real-valued can

be written in the following vector form

2

L
Cn(n) = ”Y — > ab(w)| , (12.18)
=1 2
where
T
n= { aof Wl ] ; (12.19)
with
T
Ol-——[al Qg - OlL] 3 (1220)
T
w=[w1 Wy e wL] . (12.21)

By replacing the real-valued amplitudes {oy}{~, with the complex-valued amplitudes {a}E,

(notations introduced for the sake of clarity) in (12.18), we obtain the following cost function:

L 2
Cp(n) = ”Y - IX; ab(w)|l (12.22)
= 2
where
T
n= [ Ref(a) ImT(&) wT ] : (12.23)
with Im(Z) denotes the imaginary part of Z, and
T
6‘:[071 Gy - - &L] . (12.24)
Denote
i) = argmin Cn(n), (12.25)
and
7 = arg min Cq (7). (12.26)
n
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Let

f(n) =Fn, (12.27)
where
I0
F=|0 0], (12.28)
0 I

with T and O denote the L x L identity matrix and the L x L matrix with zero elements,
respectively. Using the EXIP principle {19, 17], we can obtain a new estimate 7 from 7 by

solving the following weighted least squares problem

7 = arg min [ﬁ - f (n)]TWEXIP [1:7 - f (Tl)] , (12.29)
where , [ ( )]
0% [Cq(n
_ N i/ ANS |
WEXIP = E{ BﬁaﬁT } i (12.30)

It has been shown in [19, 17] that 7) is asymptotically (for large N or high SNR) statistically
equivalent to 7. The weighting matrix Wgx7p is simply the Fisher Information Matriz
(possibly scaled by a constant) for the complex-valued {@;}E., with 7) replaced by its estimate

7 (see Appendix B for more details). It can be easily shown that
2 -1 s o
n= (FTWEXIPF) (FTWEXIP) 1. . (12.31)

The EXIP-WRELAX algorithm is composed of two steps. The first stei) is the same as
Step 1 of the Hybrid-WRELAX algorithm and the second step is to refine the initial con-
ditions obtained in Step 1 by using (12.31). Compared to the Hybrid-WRELAX algorithm,
the second step of the EXIP-WRELAX algorithm is non-iterative and avoids dealing with
the highly oscillatory true NLS cost function entirely. Our numerical examples show that at

low SNR, the former tends to outperform the latter.
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12.5 Simulation Results and Discussions

In this section, we present several numerical examples illustrating the performances of
the proposed algorithms. The performances of the new algorithms are compared with the

CRB, which gives the minimum attainable variances for any unbiased estimators.

In the numerical examples below, we use a windowed chirp signal,
To\?
S(t) = ’LU(t)COS 27Tf0t -+ ,8 (t - '5) y 0 S t S To, (1232)

where f, denotes the carrier frequency, 3 represents the chirp rate, and

0.5 — 0.5cos(mt/Ty), 0<t<Ty,
wt) =14 1, T, <t < Ty— T, (12.33)
0.5 — 0.5COS[7T(t — To)/Tw], To - Tw <t< To,

with T}, = To/10.

In the following simulations, we use N = 256, § = m X 10%, the signal bandwidth
B, = fT,/w, and the sampling frequency fs = 8B,. T, is chosen in such a way that
Ty = (N/2—1)T;. In this case, it can be shown that To = ‘/Q—V%;—IM = 12.6 ms, T = 25.3 ms,
T, = 99.209 s, B, = 1.26 KHz, f, = 10.08 KHz, and the resolution limit of the conventional
matched filter method is generally considered to be around 7, = 1/B; = 0.79368 ms.

In all of the examples below, we have used € = 0.001 (the relative change in the cost
function) to test the practical convergence of the WRELAX algorithm. The one-dimensional
search is performed in two steps, with a coarse search using FFT followed by a fine search
using the fmin function of MATLAB. Since the cost function for real-valued amplitudes is
more oscillatory than the one for complex-valued amplitudes, we use more zero paddings
with FFT for the former case. For the former case, the data length after zero padding is 4N,
while for the latter case, it is N. The sampled noise {e(nT})} is assumed to be a real-valued
zero-mean white Gaussian random process with variance o2. The SNR for each signal is
defined as 10log,o(a2/202). The MSE is obtained through 100 independent Monte-Carlo
trials.

To see the oscillatory nature of the cost function we are dealing with, consider, for
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simplicity. the case where there is only one direct path with de!ay =20 and no noiée is
present. The normalized cost functions used to obtained w; for real-valued oy (solid line,
corresponding to (12.15) and complex-valued oy (dashed line, corresponding to (12.16) are
compared with each other in Figure 1, where the horizontal axis denotes the normalized time
delay 7/T and the carrier frequency of the transmitted signal is fo = 2B;. From Figure 1, it
can be seen that the cost function obtained by assuming the real-valued oy to be complex-
valued is approximately the envelope of the true cost function [3, 5, 6]. The former is very
smooth and does not change with fo, while the latter is highly oscillatory and oscillates more
abruptly as fo increases. Maximizing the latter can yield much more accurate parameter
estimates than maximizing the former due to the sharper dominant peak of the latter (see
the following example). |

The carrier frequency has a significant impact on the achievable estimation accuracy, as
can be seen from Figure 2. Figure 2 comparés the CRBs for the first signal when there
are L = 2 signals with oy =1, ap =1, 74 = To/8, and 7 = To/8 + 0.57,, and different
carrier frequencies fo = 7B;. (The CRB curves for the other signal are similar.) It appears
that the CRBs for both the delays and amplitudes are usually sensitive to fo, especially
for the delay estimates, and the higher the carrier frequency, the lower their CRBs. This
result can be intuitively explained with Figure 1. As the carrier frequency becomes larger,
the mainlobe of the true cost function becomes narrower, and thus a better accuracy can
be obtained. However, it generally requires more sophisticated and computationally more
expensive implementation algorithms to achieve the higher accuracy potential provided by
a larger carrier frequency.

To illustrate the problem of the direct application of WRELAX to the case of real-valued
{oy}E.,, consider the example where the signals are the same as used in Figure 2 except that
fo is fixed to 2B,. Waveforms of the transmitted signal and the noise-free received signal
are compared in Figures 3(a) and (b), respectively. The output of the matched filter is
shown in Figure 3(c). From Figure 3(c), it is obvious that the matched filter method cannot
resolve the two signals. We compare the convergence properties of WRELAX for assuming

{ay}£., being real-valued (“o”) and complex-valued (“¥”) in the absence of noise in Figure
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4, where the horizontal axis denotes the iteration number and the vertical axis denotes the
NLS cost function in (12.6). It can be seen that even for the noise free case, WRELAX gets
trapped to some local minimum very quickly for assuming {oy}£, being real-valued, while
converges to the global minimum for assuming {ay}E, being complex-valued even though
{oy}f, are in fact real-valued. This example demonstrates the importance of Step 1 of the
Hybrid-WRELAX algorithm.

Finally, we add noise to the above example and compare the performances of the two new
algorithms. The MSEs of the WRELAX (“4”) for assuming {a;}f; being complex-valued,
Hybrid-WRELAX (“0”), and EXIP-WRELAX (“x”) are compared with the CRBs obtained
by assuming {o;}2, being complex-valued (dashed line) and real-valued (solid line) in Figure
5. Note that both Hybrid-WRELAX and EXIP-WRELAX achieve the corresponding CRB.
Note also that the threshold effect is obvious in Figure 5, where the MSEs deviate away from
the CRBs at low SNR. Although the WRELAX for assuming {o;}{~; being complex-valued
also attains its corresponding CRB (dashed line) at high SNR, this wrong CRB can be
larger than the true CRB by approximately 30 dB. (Note that the former CRB is expected
to be worse than the latter CRB due to the parsimony principle [17].) In this example,
Hybrid-WRELAX outperforms EXTP-WRELAX at low SNR.

12.6 Conclusions

In this chapter, we have proposed two relaxation based algorithms (Hybrid-WRELAX
and EXIP-WRELAX) to deal with the difficult problem of resolving closely spaced mul-
tipaths by minimizing the highly oscillatory nonlinear least squares (NLS) cost functions.
The basic idea of the two algorithms is to first find reliable initial estimates of the unknown
parameters by minimizing a much less oscillatory cost function and then refine the initial
estimates by either minimizing the true cost function or applying the extended invariance
principle. Both approaches rely on the WRELAX algorithm, which is a relaxation-based
global minimizer of the NLS criterion requiring only a sequence of weighted Fourier trans-
forms. Both of the two proposed algorithms are shown to approach the Cramér-Rao bound

as the signal-to-noise ratio increases. At low SNR, Hybrid-WRELAX performs better than
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EXIP-WRELAX and hence is preferred. At high SNR, the latter is preferred due to its

simplicity and similar performance as the former.

Appendix A: Derivation of CRBs

We sketch below the derivation of the CRBs for the real-valued parameters of the data
model in (12.3). Due to the conjugate symmetry property of DFT, {Y(k) sz/ 2__1\}/2 can
be expressed in terms of {Y(k)}gz_N/2 with {Y(lc)},:i_,\,/2 4+, being complex-valued and

{Y(—=N/2), Y(0)} being real-valued. Let

Yo=| Y(-N/2+1) Y(-N/2+2) ~-Y04)r, (12.34)
Y;=[Yme)ymﬁT, (12.35)
E.=| B(-N/2+1) E(-N/2+2) n.Epa)r, (12.36)
FL=[EENM)E®”T, (12.37)
S = diag{ S(-N/2+1), S(-N/2+2), ---, S(-1) } , (12.38)

and |
s, = diag{ S(-N/2), s© }- (12.39)

From (12.3) and (12.20), we have

Y, = Q.a+E., (12.40)
Y, =Qa+E,, (12.41)
where o is defined in (12.20),
Q. = S:A, (12.42)
with
Ac=adn) adn) - adm) |, (12.43)
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a.(n) = [exp[—j%%%c—%ﬂ+1)],exp[—y%%%c—%~+2>]&--- exp |53t (—1)] ]T,

(12.44)

and
Q, =S,A,, (12.45)

with
A= aln) am) o adm) |, (12.46)

and
a,(n) = [ exp [—i 22 (-5)] 1 ]T. (12.47)

Assume that the additive noise {e(nT;)}A is a real-valued zero-mean white Gaussian ran-

dom process with variance o?. Denote
T
0= [ of 77 o ] ; (12.48)

where
T
TZ[TI _— TL] . (12.49)

Since DFT is a unitary operator, the likelihood function for Y. and Y, has the form

1 1
P(Ye, Y,10) = sexp {—55 (Y, — Qo) (Y. - Qea) —
5(1;5 (Y, - Q) (Y, - n,a)} . (12.50)

Using the Y and the S defined in (12.8) and (12.9), respectively, we can rewrite (12.50) in

the following compact form

(Y. Y,|0) = mexp {"?}5 (Y - SAa)" (Y - SAa)}. (12.51)
where
A= [ a(r) a(rn) --- a(r) } ) (12.52)
with
T
a(n) = [ exp [~ (-Y)] exp[-jER(-E+D)] - 1 ] . (12.53)
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Hence the ML estimates of o and T are obtained by minimizing (Y — SAe)” (Y — SAa),
which is equivalent to the NLS cost function in (12.6). B

The CRB matrix CRB(8) corresponding to the unknown parameter vector € has the
form [25]: |

dlnp(Y., YTIB)} [3lnp(Ycale9)]T} . (12.54)

CRB™!(9) :E{[ 5 56

It can be shown that the matrix CRB(6) is block diagonal with its last row and column being

zero except fdr the last diagonal element. Let the signal parameter vector 17 be denoted as
T
n= [ aT TT ] . (12.55)
Then it is readily shown that the ijth element for CRB~}(n) has the form:

[CRB'(n)], = %Re { (5A0)]" [(SAa);] } , (12.56)

ij

where (Z); denotes 8Z/8n; with 7; being the ith element of 7.

Appendix B: Derivation of Wexip

For complex-valued &, where & is defined in (12.24), let
T
7= [ ReT(&) ImT(&) 77 ] : (12.57)
Then similar to the derivations in Appendix A, the ijth element of Wgrxyp has the form:

[Wexip),, = 2Re {[(SAa);]H [(SA&)}]}‘ﬁzﬁ, (12.58)

where (Z); denotes 0Z/87; with 7j; being the ith element of 7, and 7 is the estimate of 7]
obtained by using WRELAX when assuming complex-valued signal amplitudes.
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Figure 12.3: (a) Transmitted signal waveform s(nT;). (b) Noise-free observed signal wave-
form y(nT}). (c) Matched filter output of y(nT;) (solid line), where the two vertical dashed
lines indicate the true normalized arrival times of the two signals.

283




0.06—w— T T T T T T T T

O Real
© o o *  Complex

0.05

0.041

0.031

NLS Fitting Error

0.021

0.01f

*

x

* x
0 ' ' s . s * * * x x X X W w X
1} 2 4 6 8 10 12 14 16 18 20

Iteration Number

Figure 12.4: Convergence properties of WRELAX for assuming signal amplitudes being

complex-valued (“+”) and real-valued (“o”).

284




. — CRB(R) — CRB (R}
° -~ CRB(C) x -~ CRB(C)
-60f O Hybrid-WRELAX -6or O Hybrid-WRELAX
X EXIP-WRELAX ° X EXIP-WRELAX
+ Complex WRELAX + Complex WRELAX
80+ -80F
- ~ ~ - +
B 3
5 s
—_ -100| —
@© @
= =
w w
0 7]
2 =
-120
140t
_160 R A R . : . . . 160 ' . . : . . .
10 15 20 25 30 35 40 45 s0 55 10 15 20 25 30 35 40 45 50 55
SNR (dB) SNR (dB)
(a) (b)
x —-CRB(R) % —CRB(R)
o <. - - CAB(C) o~~lg -~ CRB(C)
° RN O Hybrid-WRELAX . Tkl . ©  Hybrid-WRELAX
-10p L, X EXIP-WRELAX 10 NG X EXIP-WRELAX
% ‘\\ . + Complex WRELAX x S~o 4+ + Complex WRELAX
-20) [ Sel #
& ° x Tl ot
S k<]
& )
= =
w w
5] [}
g =
o 15 20 25 30 35 40 45 50 56

: N N s " " " L
10 15 20 25 30 35 40 45 50 55

SNR (dB}

()

SNR (dB)

(d)

Figure 12.5: Comparison of the MSEs of the WRELAX for assuming complex-valued signal
amplitudes (“+”), Hybrid-WRELAX (“”), and EXIP-WRELAX (“x”) with the CRBs
corresponding to complex-valued (dashed line) and real-valued (solid line) signal amplitudes

for (a) 71, (b) 72, (c) 01, and (d) ae.

285




13. Super Resolution Time Delay Estimation via MODE-WRELAX

13.1 Introduction

Time delay estimation is a well-known problem that arises frequently in radar, sonar, ra-
dio navigation, geophysical/seismic exploration, wireless communication, and medical imag-
ing. It falls mainly into two categories: one is the Time of Arrival (TOA) estimation based
on one sensor, such as radar and active sonar; the other one is the Time Difference of Arrival
(TDOA) estimation based on multiple sensors, such as passive sonar, radio positioning and
navigation systems. Practical signal models and conﬁgurations‘ of sensors depend on specific
applications. For example, the transmitted signal waveform is known for the former case
while it is usually not for the latter situation. In this chapter, we only consider the former

time delay estimation problem based on one sensor with known transmitted signal shapes.

Matched filter approach is the simplest one for this problem. By correlating the received
signal with the known transmitted signal (complex conjugated) and searching for the peaks
of the cross correlation outputs, we can obtain the time delay and amplitude estimates from
the peak positions and heights correspondingly. The major drawback of the matched filter
approach lies in the fact that it cannot resolve two signals with a time spacing less than the
reciprocal of the signal bandwidth. How to resolve very closely spaced signals is the focus
of this chapter and this issue has received a significant amount of attentions in the past
two decades. Efficient solution to this problem has many potential applications including
feature extraction via high range resolution radar and synthetic aperture radar, detection and
classification of roadway subsurface anomalies by using ultra wideband ground penetrating
radar, and multipath separation in sonar and wireless communications.

Many super resolution time delay estimation techniques have been devised recently. In
the time domain, the received signal can be modeled as the sum of multiple scaled and
delayed replicas of the transmitted signal plus noise. In the Fourier frequency domain, this
data model becomes the sum of multiple weighted complex exponentials plus noise. The

frequency domain data model is similar to those used for the sinusoidal parameter and
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angle estimation problems except that the complex éxponent}als are weighted by the known
signal spectrum. Based on this observation, many existing sinusoidal frequency and angle
estimation algorithms, such as MUSIC [1], linear prediction [2], and maximum likelihood,
are suggested to solve this time delay estimation problem [3, 4, 5, 6]. However, they are best
suited for complex-valued signals with special shapes (such as flat band-limited spectrum). A
computationally efficient approach based on the Expectation Maximization (EM) algorithm
[7] is proposed in [8] that decouples a complicated multidimensional optimization problem
into a sequence of multiple separate one-dimensional optimization problems. However, the
EM method is very sensitive to initial conditions and no systematic initialization method is
given in [8]. The separation of multipaths from real-valued bandpass underwater acoustic
signals with highly oscillating correlation functions is a very challenging issue and is addressed
in [9, 10, 11]. The algorithms proposed in [9, 10, 11] are all based on a nonlinear least squares
(NLS) fitting criterion and differ with each other in the way how the N LS cost function is
optimized. Except for the EM algorithm presented in [8], all other aforementioned algorithms
estimate the time delays and the amplitudes separately, i.e., the delays are estimated first
and then they are used with a linear least-squares approach to estimate the amplitudes.
When the time delay estimates are very close to each other, the amplitude estimates can be
very poof due to the ill-conditioning problem.

In our previous paper [12], a Weighted Fourier transform and RELAXation based method
(referred to as WRELAX) is presented to minimize a frequency domain NLS cost function.
The most striking feature of the WRELAX algorithm is that it decouples the multidimen-
sional optimization problem into a series of one-dimensional optimization problems in a
conceptually and computationally simple way. Compared with other existing algorithms,
WRELAX is more systematic and efficient and has less limitations on the signal shapes.
High estimation accuracy can be attained for both the delays and the amplitudes since they
are estimated jointly and no matrix inversion is involved. WRELAX can be applied to either
complex- or real-valued signals by minimizing slightly different cost functions. WRELAX
was extended in [13] to deal with the real-valued signals with highly oscillatory correla-

tion functions. The resolution of WRELAX are much higher than that of the conventional
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matched filter approach. However, when the signals are very closely spaced in arrival times,

the convergence speed of WRELAX decreases rapidly.
In this chapter, we study how MODE [14, 15] can be used with our efficient WRELAX

algorithm for super resolution time delay estimation. The new algorithm is referred to
as MODE-WRELAX. Although MODE can provide very poor amplitude estimates and
WRELAX has the slow convergence problem, MODE-WRELAX outperforms both MODE
and WRELAX. MODE-WRELAX can be used for both complex- and real-valued signals

(including those with highly oscillatory correlation functions).

The remainder of this chapter is organized as follows. Section 13.2 establishes the data
model and states the problem of interest. The MQDE—WRELAX algorithm is presented in
Section 13.3. Efficient implementation of the algorithm is given in Section 13.4. Numerical
examples are provided in Section 13.5 to illustrate the performance of MODE-WRELAX.

Finally, Section 13.6 contains our conclusions.

13.2 Data Model and Problem Statement

For conventional radar and active sonar, the most commonly used probing signal has the

following form:

 3(t) = m(t)cos[2 fot + 0(2)], (13.1)

where m(t) and 6(t) denote the amplitude and phase modulations, respectively, and fo
represents the carrier frequency. Usually, the above real-valued bandpass signal is converted
into inphase (I) and quadrature (Q) components. The classical approach for this conversion
is the analog quadrature demodulation by utilizing sine and cosine mixers and low-pass
filters. However, this approach is highly sensitive to analog component mismatch between
the I and Q channels. The state-of-the-art technology for such a conversion is the digital
quadrature sampling [16], whose performance is mainly limited by the A/D quantization.
The I and Q components thus obtained can be used to form the following complex-valued

analytic signal

s(t) = m(t)e?®. (13.2)
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The received signal from a scatterer can be described as
7(t) = Am(t — 7)cos[2m fo(t — 7) + 0(t — T) + 4], (13.3)

where 4. ¢, and 7 denote the amplitude, phase, and time delay determined by the scatterer
and the propagation medium. After quadrature demodulation, the received signal can be

expressed as a scaled and delayed version of the complex analytic signal s(t)

r(t) = as(t — 7), - (13.4)
where o represents the complex-valued amplitude and has the form

o = AelbeI2mIoT, (13.5)

For certain underwater acoustic signal propagation environment [9, 10, 11, 17], the re-
ceived signal 7(t) itself due to a scatterer is just a scaled and delayed version of the probing
signal 5(¢), which corresponds to the case where no phase is induced by the multipath chan-
nel. No quadrature demodulation is needed in this case and (13.4) still holds with r(t) = 7(t),
s(t) = 3(t), and @ = A. This corresponds to the real-valued signal model, which is also valid
in other applications, such as the ultra wideband ground penetrating radar where the probing
signal is carrier-free and not sinusoidal.

The time delay estimation data model considered in this chapter has the following general

form:
L
Z as(t—7)+e(t) 0<t<T, (13.6)

where s(t), 0 < t < T, represents an arbitrary known transmitted signal , y(t) denotes the
received signal, which is composed of L replicas of s(t) with different amplitudes {o},y
and delays {n}L,, and e(t) is the additive noise, which is modeled as a zero-mean white
Gaussian random process. Without loss of generality, we assume that s(t), y(t), e(t), and

{oq}E, are either all complex-valued or all real-valued.
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The sampled received signal can be written as

L
y(nTs) = Za,s(nTs —7)+enTs), n=0,1---,N-1, (13.7)
=1

where T, is the sampling period and is equal to the reciprocal of the sampling frequency f;.

Our problem of interest herein is to estimate {ay, 7}, from {y(nTy) N1 with known

s(t), 0 <t < Ty, or {s(nTy) N-} when the signals are very closely spaced.

Although we could solve the estimation problem in the time domain [3, 8,9, 11], we prefer
to do it in the frequency domain. This is because for the time domain processing methods,
we could be restricted to using the discrete values of {n}/~; if we only know the sampled
version of s(t). For this case, if a more accurate delay estimate is required, then one has to
resort to interpolation [9]. This inconvinence can be avoided by transforming the problem
into the frequency domain, where {7}, can take on a continuum of values. Let Y (), S (k),
and E(k), k = —N/2,—N/2+1,..., N/2 -1, denote the discrete Fourier transforms (DFT’s)
of y(nT;), s(nTs), and e(nTy), respectively. Provided that aliasing is negligible, then Y (k)

can be written as:

L
Y (k) = S(k) Y cue™* + E(k), (13.8)
=1
where
_ 2T
wp = NTS . (139)

Note that the time delay estimation problem is similar to the sinusoidal parameter es-
timation problem except that the exponential signals are weighted by the known signal
spectrum. If we divided both sides of (13.8) by S(k), the problem would become identical
to the sinusoidal parameter estimation problem. Yet we should not do so for the following
reasons: first, S(k) could be zero for some k; second, the noise E(k)/S(k) will no longer
be a white noise even when E(k) is white; third, when E(k) is a white noise, the larger
the S(k) at sample k, the higher the SNR of the corresponding Y (k) and hence dividing
Y (k) by S(k) will de-emphasize those Y (k)'s that have high SNRs. Because of this, many
well-known sinusoidal parameter estimation algorithms, such as MUSIC [1], ESPRIT [18],
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PRONY [19], MODE [14, 15], are not best suited to our problem of interest. Further, since
these algorithms are designed for complex-valued amplitudes, they cannot provide the best

possible performance for real-valued signals.

13.3 The MODE-WRELAX Algorithm

In this section, we will first present the MODE-WRELAX algorithm for complex-valued
signals, and then extend it to real-valued signals (especially those with highly oscillatory
correlation functions) and also multiple look cases.

13.3.1 MODE-WRELAX for Complex-Valued Signals

Assume that ()T denote the transpose and let

Y= [ Y(-N/2) Y(-N/2+1) --- Y(N/2-1) ]T, (13.10)
S = diag{ S(-N/2), S(-N/2+1), ---, S(N/2-1) } (13.11)
E= [ E(-N/2) E(-N/2+1) --- E(N/2-1) ]T, (13.12)
o= [ o a - o ]T, (13.13)
and
T
A= [ a(wi) a(wy) - a(wL)] ) (13.14)
with
T
a(w) = [ eiwi(=N/2)  giw(=N/2+1) ... eij(N/2—1)] . (13.15)

Then the data model (13.8) can be written in the following vector form:

Y =SAa+E. | (13.16)
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When S is an identity matrix, then the above time delay esﬁimation issue becomes a
sinusoidal parameter estimation problem and MODE is an asymétotically statistically effi-
cient estimator of {w;}£, for complex-valued signals {14, 15]. The MODE algorithm [14, 15]
can be easily extended to the data model in (13.16) where S is an arbitrary diagonal ma-
trix as follows. The MODE estimates {¢}5, of {w;}{~, can be obtained by minimizing the

following cost function

Ci({wilz,) = YPPRY, (13.17)

where (-)# denotes the conjugate transpose and
L A (AHAY ' AH
P;=1-A(A"A) A7, (13.18)
with I denoting the identity matrix and
A =SA. (13.19)

To avoid the search over the parameter space, C; ({w;}£,) can also be reparametrized in terms
T
of another parameter vector b = [ be by -+ by ] , where {b;}F, are the coefficients of

the following polynomial:
A -
b(z) =3 bzt = b [[(z — &); bo #0. (13.20)
1=0 =1

Since the polynomial b(z) in (13.20) has all of its zeros on the unit circle, its coefficients {b;}

satisfy the conjugate symmetry constraint [14]:
bh=0b;_, [=01,---,L, (13.21)

where (-)* denotes the complex conjugate. Let

bo 0 |
B=|p by | € CV¥IND), (13.22)
0 br
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Assume that the diagonal elements of S are nonzero (see Remark 1 for more discussions).

Let
B=S"B. (13.23)

It can be readily verified that BF A = 0 and hence BYA = 0. Then P} = B (BHB)_I BH

and minimizing C; ({w;},) in (13.17) is equivalent to minimizing
Cal{hi}ly) = Y7B (BYB) ™ BHY. (13.24)

Note that B¥B in (13.24) can be replaced by a consistent estimate without affecting the
asymptotically statistical efficiency of the minimizer of (13.24). Hence b can be obtained

computationally efficiently as follows:

b = arg min [YHS”HB (ﬁé{S'IS—Hﬁo) - BHS_IY] , (13.25)
where By is the initial estimate of B obtained by replacing b with b©® in (13.22). The initial
value b(©® is obtained by setting BYB in (13.24) to I:

b® = argmin [YHs—HBBHs—lY] : (13.26)

To avoid the trivial solution b = 0, we should impose || b ||= 1 (where || - || denotes the
Euclidean norm) in (13.25) and (13.26) or some other similar constraints. (For detailed
implementation steps, see Section 4.) The estimates {@n e, of {w}{, are the phases of
the roots of the polynomial L, b;z~!. Once {@}{, are obtained, the amplitudes o are

estimated by applying the linear least-squares approach to

Y ~ SAq, (13.27)

where A is formed by replacing {w,}2, with {&}f, in (13.14).

Remark 1: MODE cannot be implemented efficiently to avoid the search over the parameter
space when S(k) = 0 for some k. The most commonly used complex analytic signal s(t)
is low-pass. For this case, we can select a contiguous segment of Y satisfying |S(k)| >
0, K <k < Ky, and preferrably with [S (k)| above a certain threshold to avoid numerical

problems. We can then apply MODE to the segment {Y(k)} 2K, to estimate {w}{;.
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Remark 2: The amplitude estimates given above can be very poor when the SNR is not
sufficiently high. This is because some of the MODE estimates {@&}E, can be so closely"
spaced that A in (13.27) is seriously ill-conditioned. We use a simple spacing adjustment
scheme to avoid this problem. After obtaining the MODE estimates {@}{z; of {wi}i,,
we first sort them in the ascending order and then check the spacing between two adjacent
estimates. If the distance between any two estimates, say @; and W, (01 < @), is smaller than
a predefined threshold, say Aw;, we adjust the estimates by replacing &; with @; — 0.5Aw;
and & with & + 0.5Aw;. The amplitudes are then estimated using the adjusted estimates
of {wi}£,. This spacing adjustment step is ad hoc but can be used to provide good initial
delay and amplitude estimates to replace the first L — 1 steps of WRELAX.
The MODE estimates {&;}/; of {w;}~, and {al}l ", of {ay},, which may not be optimal,
Aespecially for real-valued signals, can be refined by using the last step of the WRELAX
algorithm.
WRELAX is a relaxation-based minimizer of the following nonlinear least-squares (NLS)

criterion:
L
Cg({al,wl}le) =“ Y - Za,Sa(wl) ”2 . (1328)
=1

When e(nT,) is a zero-mean white Gaussian random process, £ (k) is also white since DFT
is a unitary transformation. For this white noise case, the NLS approach is the same as
the maximum likelihood (ML) method. When e(nT}) is not white, NLS approach can still

provide estimates with good statistical accuracy [20].

Minimizing Cs({oy, wi}L;) with respect to the unknown parameters is a highly nonlin-
ear optimization problem and it is very difficult to find the global minimum. WRELAX
decouples the multi-dimensional optimization problem into a sequence of one-dimensional
optimization problems in a conceptually and computationally simple way. WRELAX esti-
mates the delays and amplitudes jointly and requires only a sequence of weighted Fourier
transforms. When the signals are not spaced very closely, WRELAX usually converges in
a few steps. However, when the signals are very closely spaced, the convergence speed of

WRELAX is very slow. Yet by using the above MODE algorithm to obtain the initial con-
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ditions and then using the last step of WRELAX to refine them, super resolution time delay
estimation can be achieved with a fast convergence speed.
Before we present the MODE-WRELAX algorithm, let us consider the following prepa-

rations. Let
L

Y, =Y- 3 alSa(@)], (13.29)
i=1,i7#l

where {&;,@;}i=1,4 are assumed to be given . Then (13.28) becomes

C4(Oél,(dl) =” Yl - alSa(wl) “2 . (13.30)

Minimizing Cy(ay, w;) with respect to w; and the complex-valued ¢ yields

' 2
o = arg max |aH(wg)(S*Yl)| , (13.31)
and
a (w)(S*Y1)
= —rgm ; 13.32
TSTE Lo (13:32)
where || - || denotes the Frobenius norm [21].

With the above preparations, we now present the steps of the MODE-WRELAX algo-
rithm for complex-valued signals.

Step (1): Select a contiguous segment of data vector Y (for MODE use only) so that
IS(k)] >0, K <k< K, Apply MODE to the segment to obtain {@&y}2,. Adjust {@1}7,
so that the minimum spacing of {&q}L, is at least Aw;. Obtain the estimates {&}i, of
{oq}, by using (13.27).

Step (2): Refine the estimates obtained in Step (1) by using the last step of WRELAX.
That is, compute Y; by using {@, &y}, obtained in Step (1). Obtain {&n, & }i=1 from Y,
by using (13.31) and (13.32). Next, compute Y, by using the updated {&;, & }i=1,3,.r and
determine {@;, & }i=2 from Y,. Then compute Y3 by using the updated {@;, & }i=1,24,...L and
determine {&;, & }i=3 from Y;3. Continue this procedure and similarly determine {&;, &i}i=1
from Y. Repeat the above process until “practical convergence” (to be discussed later on).

The “practical convergence” in the iterations of the above WRELAX algorithm may be
determined by checking the relative change of the cost function Cs({@r, éi}E,) in (13.28)
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between two consecutive iteraﬁdns. The algorithm is bound to converge to at least a local
minimum point under mild conditions [22].

Once {&;}L, are determined, the delay estimates {7}/, of {n}{; can be computed by
using (13.9) with {w;}, replaced by {@}/;.

Similarly, we can use MODE as an initialization method for the EM time delay estimation
algorithm [7], which is referred to as MODE-EM. However, we have found through numer-
ical simulations that the convergence speed of MODE-EM is slower thaﬁ that of MODE-
WRELAX.

13.3.2 MODE-WRELAX for Real-Valued Signals

Real-valued signals are often bandpass signals that occur, for example, in underwater
sonar and ultra wideband ground penetrating radar applications. Bandpass signals have
highly oscillatory correlation functions, which makes the super resolution time delay estima-
tion problem more difficult. The larger the center frequency of the pass band, the sharper

the oscillation of the correlation function.

Consider the data model expressed by (13.8). When the signals s(t), y(t), and e(t) are all
real-valued, their Fourier transforms are conjugate symmetric, i.e., Y (—k) = Y*(k), S(=k) =
S*(k), and E(—k) = E*(k), k=1,2,---,N/2—1, and Y(~N/2), Y(0), S(—N/2), 5(0),
E(—N/2), and E(0) are real-valued. Define

W = diag{ W(=N/2), W(-N/2+1), e, W(-1), W(O)}
- dia,g{ Bl L %} | (13.33)
Y=wW [Y(_N/z) Y(~N/2+1) --- Y(0) ]T, | (13.34)
S=wW diag{ S(-N/2), S(=N/2+1), ---, S(0) } (13.35)
E=W [E(—N/Z) E(—N/2+1) .- E(0) ]T, (13.36)
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and

_ T
A=) aw) - as) | (13.37)
where
T
g(wl):[ewz(—mm in(=N/2+1) . 1] . (13.38)
Then it follows that
Y =SAa+E. (13.39)

Since the amplitudes {a;}%, are real-valued and due to the conjugate symmetry of Y (k),
S(k), and E(k), it can be proven that minimizing C3({o, wi}E,) is equivalent to minimizing
L

Cs({as, wi}e) =l Y - Ealgé(wl) 1. (13.40)
For the case of white Gaussian noise, the above NLS approach is the same as the ML method.
For bandpass real-valued signals, Cs({a, wi}~,;) is a highly oscillatory cost function and is
very difficult to find its global minimum. Although MODE is derived for complex-valued
signals, we can apply it to Y in (13.39) by assuming the real-valued amplitudes {oy}i; to
be complex-valued. These initial estimates are then refined by the WRELAX algorithm.
Since the attraction domain of the cost function Cs({au,wi}{~,) is extremely small, a very
good initial condition is required to achieve the global convergence of any minimizer of
Cs({ou, wi}E.;). The MODE estimates are first refined by WRELAX by assuming {4}, to
be complex-valued since the attraction domain of Cs({ou, wi}Z;) becomes much larger when
assuming the real-valued {o;}£, to be complex-valued [10]. The so-obtained estimates are
refined again by WRELAX by using the fact that {oy}£; are real-valued. The cost functions

of WRELAX are changed slightly when the signals are real-valued. Let

L
Y =Y- Y a&lSa(@)], (13.41)
i=1,il

where {&;,®; }i=1,i are assumed to be given . Then (13.40) becomes

Cs(al,wl) :“ Y el OZ[SZTI((U[) “2 . (1342)
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Minimizing Ce(ay, w;) with respect to w; and real-valued o, yields

o = arg max Re? [éH(wl)(g*Yg)] , (13.43)
and [H o ]
Re (af (w;)(S*Y))

& = — 13.44

! . (13.44)

With the above preparations, we now present the steps of the MODE-WRELAX algo-
rithm for real-valued signals.

Step (1): Select a contiguous segment of data vector Y so that |S(k)] > 0, K; <
k < K,. By assuming the real-valued {ey}{~, to be complex-valued, obtain the estimates
{&}E, and {&}L, in the same way as Step (1) of the MODE-WRELAX algorithm for
complex—valued signals.

Step (2): Refine the estimates obtained in Step (1) above by using the last step of
WRELAX by assuming complex-valued signals. Take the real parts of the so-obtained
amplitude estimates as the amplitude estimates {d1}{~; of {1 }i;-

Step (3): Refine the estimates obtained in Step (2) above by using the last step of
WRELAX and the fact that the signals are real-valued.

13.3.3 Extensions to Multiple Looks

The above algorithms are designed for the single look case. However, they are readily
extended to the multiple look case where multiple independent measurements are available,
which occurs, for example, when a radar emits a sequence of pulses for target detection. For
the multiple look data model, it is assumed that the delays are fixed while the unknown
amplitudes vary from scan to scan. Under this assumption, the extensions of both MODE
and WRELAX are possible and the detailed derivations are omitted here due to the limited

space.
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13.4 Efficient Implementation of MODE-WRELAX

Since MODE-WRELAX is mainly composed of two blocks, MODE and WRELAX, below

we consider the efficient implementation of each block.

13.4.1 MODE

As stated before, it is necessary to comstrain b to avoid the trivial solution b = 0
when minimizing Co({b;}%,) in (13.24). Furthermore, the conjugate symmetric constraint
in (13.21) can also be easily included to improve the performance. With conjugate symmetry,
the number of unknowns is about halved. This does not guarantee that the zeros are on
the unit circle. It is a necessary but not sufficient condition for the zeros to be on the unit
circle. This constraint can be eliminated by reparameterizing Ca({bi}/o) in (13.24) with a

real-valued vector 8 € R{IE+D*1 which satisfies
b =Tg, (13.45)

where T' € CT+D*(I+) denotes a matrix made from 0,1, +j. Let

VvV =87'Y, (13.46)
and
[ V(=N/2+L) V(-N/2+L-1) --- V(-N/2) |
g_ | VENRELEY VN2 L) - V-N/2+ 1) 34)
L V(N/'2 ~1) V(N/.2 —9) - V(N/2 — L-1)

Then the optimization problem in (13.25) becomes
B = arg rrlgnBHRe [I‘HVH (BES 'S8, \71“] 3, (13.48)

with
39 = arg i B"Re (T7VIVT) B. (13.49)
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To avoid the trivial minimizer 8 = 0, we impose || B ||= 1. |

To implement (13.48) and (13.49) efficiently, we note that (S‘H BO) is a banded but not
a Toeplitz matrix. Also, (]36’ S-1s-# 1?30) is a banded Hermitian matrix with band width L,
which is usually far less than the matrix dimension N — L.

The steps of minimizing (13.48) and the amount of computations (complex operations)
required in each step are summarized as follows:

Step 1: Compute C = (S‘HBO)H S-HB,.

It is easy to verify that the (i, j)th element of matrix C is given by:

0, for i — j| > L,
Cig =14 Trg s for|i—j| < Landi>j, ~ (13.50)
Cr; for i —j| < Landi<j.

ij
This step requires O (NL?) flops.
Step 2: Compute the Cholesky decomposition GGH of C.

Since C is a positive-definite banded Hermitian matrix with the band width L, the
Cholesky factor G is a banded lower triangular matrix with band width L, which is calculated
by the following iterative procedure [23]:

G=C;

(for j=1:N-1L
for =max{l,j—L}:5—1, gj;=9i;— |giu|* end
95i = \/95.3;
[ for i=j+1:min{j+L,N—L} (13.51)
j for l=max{1,j—L}:j—1, gij=8ij— 995 end;
95 = 9i5/ 954>

end
\

end

This step requires O (NL?) flops.
Step 3: Compute Z = G™'V.
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Since G is a banded lower triangular matrix with band width L, the Ith column of Z
can be obtained by back substitution from matrix G and the /th column of V, which is

computed by the following procedure:

z; = lth column of matrix V;

(for j=1:N-1L

21(5) = 2(9)/ 9i.4; (13.52)
for i1=j+1:min{j+L,N—L}, z(i)= 2(3) — gij2(j); end

\ end

This step requires O (NL?) flops.

Step 4: Compute ¥ = Z#Z.

Since Z is an (N — L) x (L + 1) Hermitian matrix, this step requires O (N L?) flops.

Step 5: Compute 2 = Re (I‘H \III‘).

This step requires O (L?) flops.

Step 6: Compute 8= arg ming B3 subject to || B ||=1.

Note that 3 is the eigenvector of © corresponding to its smallest eigenvalue. This step
requires O (L®) flops.

In practice, L, the number of signals, is usually much smaller than N, the number of
data points, hence Steps 1 through 4 constitute the major computational load of MODE,
which is around O (NL?) flops.

13.4.2 WRELAX

Compared with MODE, WRELAX is computationally much simpler. From (13.31) and
(13.43), we note that WRELAX involves a sequence of one-dimensional search over the
parameter space. This search can be implemented using the weighted FFT and dedicated
high speed FFT chips, such as TMC2310 [24], A41102 [25], and TM-66 swiFFT [26]. ‘With
brute force search, sufficient zero paddings are needed to guarantee the high accuracy of
the estimates. An alternative scheme to zero-padding FFT is tb find an approximate peak

location first by using FFT without much zero-padding and then perform a fine search nearby
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the approximate peak location by, for example, the fmin function in MATLAB, which uses

the Golden section search algorithm.

Golden section search is an efficient one-dimensional iterative optimization method ex-
hibiting local convergence property [22]. Each iteration requires the evaluation of the the cost
function once. After each iteration, the search interval is shortened by a factor of 0.618. To
estimate the amount of computations required by WRELAX, let us assume that the iteration
number needed by the Golden section search is Ny. N, depends on the accuracy desired for
the estimates of {wy }£,. Provided that the desired accuracy for {O}{=, iS Awmin, then the
iteration number N, needed by the Gloden section search is the minimum integer satisfying
the following inequality

) |
%0.618”9 < Dwmin, (13.53)

where N denotes the the number of data points after zero-padding used by the coarse-gridded

FFT search and is power of 2. From (13.53), it follows that

NAwmin
Ny = [1080.618 (————% )] : (13.54)

where [X] rounds X to the nearest integer > X. The amount of computations required by

WRELAX for each iteration is O [(N log, N +4N Ng) L] flops.

13.5 Numerical Examples

In this section, we present several numerical examples illustrating the performance of
MODE-WRELAX. In all of the examples below, we have used € = 0.001 to test the conver-
gence of WRELAX. All data sequences are zero-padded to the nearest power of 2. MODE is
applied to a data segment (see Remark 1 in Section 3.1) satisfying |S(k}| > max{|S (k)|}/10.
The spacing threshold value Aw; (see Remark 2 in Section 3.1) is chosen as 0.157,, where
7, is the equivalent pulse width and is equal to the reciprocal of the signal bandwidth. (e
is usually considered to be the resolution limit of the matched filter approach.) The one-
dimeﬁsional search is performed in two steps, a coarse search using FE'T followed by a fine

search using the fmin function of MATLAB. The mean-squared error (MSE) is obtained
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through 100 Monte-Carlo trials. For all of the examples below, the MODE amplitude esti-
mates are obtained without the spacing adjustment. |
Case A: Application to Ultra Wideband Ground Penetréting Radar

The detection and classification of roadway subsurface anomalies are very important for
the design and quality evaluation of highways. Ultra wideband ground penetrating radar
emits nonsinusoidal impulses with extremely large bandwidth (several GHz) and is very
suitable for this application because of its high range resolution (on the order of several
centimeters). The returned echoes of the ultra wideband ground penetrating radar are
superimposed real-valued signals reflected from the boundaries of different media (layers,
voids, etc.), which can be described by (13.6). Both the delays and gains are very useful for
the detection and classification of roadway subsurface anémalies. The delays can be used
to determine the layer thickness or anomaly location and the gains can be used to classify
the type of media because the gains are related to the reflection coefficient at the boundary
between two media with different dielectric constants. Once we get the estimates of the
media dielectric constants, we can judge the type of the media.

Although the range resolution of the ultra wideband ground penetrating radar is very
high, it is still very difficult, if not impossible, to identify closely spaced echoes from different
layers by_visual examination or using the matched filter method. Yet the closely spaced

echoes may be more important for the detection and classification of the anomalies.

Ultra wideband signals have many unique features. The sampled version of such a signal
s(t) is depicted in Figure 13.1(a) as a function of the sample points, where the sampling
interval is T,=0.07 ns. The discrete time Fourier transform (magnitude) of the signal in
Figure 13.1(a) is shown in Figure 13.1(b), where f; = 1/Ts=14.28 GHz. From Figure
13.1(b), it can be seen that the signal spectrum covers a wide range (from O to 2.5 GHz).
Figure 13.1(c) shows the autocorrelation function (magnitude) of the signal s(t) in Figure
13.1(a), from which high sidelobes can be observed. These high sidelobes will greatly degrade
the performance of the conventional matched filter approach. The observed signal y(t) is
assumed to be composed of signals coming from three layers with delays 7, = 407, = 2.835 ns,

15 = 70T, = 4.961 ns, and 73 = 72T, = 5.102 ns, and amplitudes a; = 1.0, ap = 0.4, and
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as = 0.3. Noise is also added to the observed signal and the noise variance is 324, as
determined by the data collection system. The sampled waveform of y(t) is as shown in
Figure 13.1(d). Note that since the signals coming from Layers 2 and 3 are so closely spaced,
only two signals can be observed by visual examination.

The performances of MODE (a, b, and ¢), WRELAX (d, e, and f), and MODE-WRELAX
(g, h, and i) are compared in Figure 13.2. In this example, the data length N is 200. In
Figure 13.2, the solid lines and the symbols “o” denote the true and estimated echoes of
each layer, respectively. From Figure 13.2, we note that the echo due to Layer 1 is well
estimated and the estimates are almost the same for all methods since this layer is well
separated from the other two layers. However, the estimated echoes due to Layers 2 and 3
differ greatly. MODE can resolve the two closely spaced signals but the estimates are biased,
especially for the amplitude estimates. In some other trials, the MODE amplitude estimates
are even poorer and are on the order of 10'3. WRELAX cannot resolve the two closed spaced
signals due to its slow convergence. MODE-WRELAX not only successfully resolves the two
closely spaced signals but also provides very accurate estimates for both the delays and the
amplitudes. (In this example, the number of iterations required by Steps (2) and (3) of the
MODE-WRELAX algorithm for real-valued signals is 24 and 10, respectively.)

Case B: Application to Multipath Underwater Acoustic Signals

We now show the performance of MODE-WRELAX for bandpass real signals with highly
oscillatory correlation functions, which may occur in underwater sonar applications. The per-
formances of MODE, WRELAX, and MODE-WRELAX are compared with the Cramér-Rao
bound (CRB), which gives the minimum attainable variances for any unbiased estimators.

(Detailed derivations of the CRB can be found in [13].)

In this example, we use a windowed chirp signal,

s(t) = w(t)cos [Qﬁfot + 0 (t - %)2] , 0<t< Ty, (13.55)
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where f, denotes the carrier frequency, § represents the chirp rate, and
0.5 — 0.5¢cos(7t/Ty), 0<t<Ty,
w(t) =41, Tw <t < Ty — T, (13.56)
0.5 — 0.5cos[7(t — To)/Tw), To—Tw <t < To,
with T, = T4 /10.

Other signal parameters are chosen as N = 256, B = m x 10%, the signal bandwidth
B, = fBT,/~, and the sampling frequency f; = 8B,. Ty is chosen in such a way that
To = (N/2—1)Ts. In this case, it can be shown that Tp = @—’%M =12.6 ms, T' = 25.3 ms,
T, = 99.209 us, B, = 1.26 KHz, f, = 10.08 KHz, and the resolution limit of the conventional
matched filter method is around 7, = 1/B; = 0.79368 ms. The carrier frequency of the
transmitted signal is fo = 2B;.

Since the cost function for real-valued amplitudes is more oscillatory than the one for
complex-valued amplitudes, we use FF'T with more zero paddings for WRELAX and MODE-
WRELAX. For the former case, the data length after zero padding is 4N, while for the latter
case, it is N. The sampled noise {e(nT)} is assumed to be a real-valued zero-mean white
Gaussian random process with variance o2. The SNR for each signal is defined to be

10log, (a? >amo Jsz(nTs)P/N)

To see the oscillatory nature of the cost function we deal with, consider the case where
there is only one direct path with delay 71 = 0 and no noise is present. The cost functions
used to obtain @, for real-valued oy (solid line, corresponding to (13.43) and complex-valued
o (dashed line, corresponding to (13.31) are compared with each other in Figure 13.3, where
the horizontal axis denotes the normalized time delay 7/T. From Figure 13.3, it can be seen
that the cost function for complex-valued o, is approximately the envelope of that of the
real-valued oy [10]. The former is very smooth and does not change with fo, while the latter
is highly oscillatory and ‘oséillates more abruptly as fo increases. Maximizing the latter
can yield much more accurate parameter estimates than maximizing the former due to the
sharper dominant peak of the latter.

Now we consider an example where the echoes corresponds to L = 2 paths with oq =

1, ap = 1. 7y = Ty/8, and 7, = Tp/8 + 0.27,. The MSEs of MODE (“0”), WRELAX
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(“x”), and MODE-WRELAX (“+”) are compared with the corresponding CRBs (solid line)
in Figure 13.4. Note that due to the highly oscillatory cost functions and very closely spaced
signals, WRELAX converges to some local minimum instead of the global one, which yields
very poor estimates. Since the MODE amplitude estimates are obtained without spacing
adjustment, they are so poor at low SNR that some of their MSEs are above the axis limit
due to the inversion of ill-conditioned matrices corresponding to very closely spaced delay
estimates. Although the MSEs of the MODE estimates are close to the CRBs corresponding
to the complex-valued amplitudes when the SNR is high, the wrong CRBs (not shown to
avoid too many lines in the figure) can be larger than the true CRBs, which correspond to the
real-valued amplitudes, by approximately 30 dB. (Note that the former CRBs are expected
to be worse than the latter CRBs due to the parsimony principle [27].) MODE-WRELAX
significantly outperforms MODE and WRELAX and can approach the true CRBs. Note that
for the real-valued signals that do not have highly oscillatory cost functions, for example, for
the ground penetrating radar probing signal used in Case A (see Figure 13.1 (c)), Step (2)
of the MODE-WRELAX approach given in Section 3.2 can be skipped. However, when the
signals have highly oscillatory correlation functions, such as the one used in this example,
Step (2) is needed to yield the best estimates since the initial estimates provided by MODE
is not accurate enough to achieve the global convergence of the last step of WRELAX for
such real-valued signals. For this example, the SNR threshold for MODE-WRELAX to
approach the CRBs without Step (2) is about 10dB higher than that for MODE-WRELAX
with Step (2). (Note that the average numbers of iterations required by Steps (2) and (3)
of MODE-WRELAX for real-valued signals are 20 ~ 33 and 7 ~ 13, respectively, in this
example.)

Case C: Application to High Range Resolution Radar

In the this example, we apply the time delay estimation technique to target feature extrac-
tion with high r.ange resolution radar (HRRR). HRRR can be used to form one-dimensional
target range signatures (radar cross section (RCS) versus range) with high resolution, which
can be used for automatic target recognition. To achieve the high range resolution, the radar

must transmit signals with very large bandwidth. For this purpose, pulsed linear frequency
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modulation (FM) chirp waveform is commonly used. However, the requirement for the lin-
earity of the wideband frequency modulation is very stringent if FF'T is used to obtain target
range signatures [28]. We can relax this requirement by applying our super resolution time
delay estimation technique to this problem.

The transmitted windowed complex-valued signal has the form
s(t) = w(H)PC T, 0<t< T, (13.57)

where the window function w(t) is defined in (13.56) and the definitions of all other param-
eters are the same as those used in the previous example.

In this example, we use N = 128, # = mx 10'2, the signal bandwidth B; = To/, and the
sampling frequency f, = 4Bs. Ty is chosen in such a way that T = (N/2—=1)T;. In this case,
it can be shown that Ty = Q—V/%;—lﬁ = 3.9686 us, T = 8.0002 us, Ty = 0.062994 us, B; =
3.9686 MHz, f, = 15.875 MHz, and the resolution limit of the conventional matched filter
method is around 7, = 1/B, = 0.25198 pus. For the sake of simplicity, we assume that
the target is composed of two scatterers with a; = I8 ap = eI/%, 1 = Tp/128, and
7o = Tp/128 + 0.27.. Zero-mean complex white Gaussian random noise is added and the
definition of SNR is the same as used in Case B. We use FFT with no zero-padding in
WRELAX and MODE-WRELAX.

The MSEs of MODE (“0”), WRELAX (“x”), and MODE-WRELAX (“#”) are compared
with the corresponding CRBs (solid line) in Figure 13.5. The performance of WRELAX is
poor due to its slow convergence for very closely spaced signals. Both MODE and MODE-
WRELAX can approach the CRBs when the SNR is high. However, MODE-WRELAX
outperforms MODE significantly at low SNR. (Note that the average number of iterations
required by Step (2) of MODE-WRELAX for complex-valued signals is 20 ~ 33 in this

example.)
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13.6 Conclusions

We have studied time delay estimation of very closely spaced signals and presented a
super resolution method (referred to as MODE-WRELAX). The popular direction estimation
technique MODE is modified and used in combination with our efficient WRELAX algorithm
for time delay estimation. MODE-WRELAX outperforms MODE in estimation accuracy and
provides better resolution than WRELAX. MODE-WRELAX can be used with not only
complex-valued signals but also real-valued signals, including those with highly oscillatory
correlation functions. Numerical examples have shown that MODE-WRELAX can approach
the corresponding CRBs as the SNR increases.
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Figure 13.1: Signals used by an ultra-wideband ground penetrating radar. (a) Waveform of
the known signal s(nT). (b) Discrete Fourier spectrum (magnitude) of s(nT5). (c) Matched
filter output of the known signal s(nT). (d) Observed signal y(nT}) consisting of three

reflections from three layers plus noise.
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