Award Number DAMD17-98-2-8002

TITLE: Disaster Relief and Emergency Medical Services (DREAMS): Digital EMS Project

PRINCIPAL INVESTIGATOR: James H. Duke, M.D.

CONTRACTING ORGANIZATION: The University of Texas
Health Science Center at Houston
Houston, Texas 77225-0708

REPORT DATE: February 1999

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
13. ABSTRACT (Maximum 200 words)

Physician's virtual presence in support of the first responding care-givers at the scene of the incident will create the opportunity for achieving an accurate initial evaluation of the victim's clinical condition and a timely initiation of appropriate interventions. Any condition that interferes with adequate blood flow will cause an impairment of tissue oxygenation, the results of which are cell injury and, if sufficiently prolonged, cell death. The interval of time between the acute catastrophic events that initiate the decrease in blood flow and the establishment of therapies to reverse this cascade of cell injury is critical. Any measure that shortens the interval between the injury and the institution of appropriate therapy will afford the greatest potential for minimizing cell injury and preventing cell death. The DREAMS: Digital EMS project is designed specifically to address these issues.
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the “Guide for the Care and Use of Laboratory Animals,” prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA, the investigator(s) adhered to NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guidelines for Biosafety in Microbiological and Biomedical Laboratories.
TABLE OF CONTENTS

REPORT DOCUMENTATION PAGE ... 2

FOREWORD ... 3

TABLE OF CONTENTS .. 4

 INTRODUCTION ... 5

PROGRESS REPORT .. 6

 FOURTH QUARTER PROGRESS .. 6
 In Process Review .. 6
 Rural Connectivity .. 6
 Houston Fire Department (H.F.D.) Collaboration 7
 Onboard Systems ... 7
 Physician's Workstation ... 7

 FIGURE 1. PHYSICIAN'S WORKSTATION 8
 Navigation System ... 8
 Automated Run Records ... 9
 Communications Suite ... 14
 Digital EMS Vehicle ... 14
 Significant Events During the Quarter 15
 Upcoming Events .. 15

 FIFTH QUARTER PLANS .. 15
 Conference Attendance .. 15
 Houston Fire Department (H.F.D.) Collaboration 16
 Onboard Systems ... 16

REFERENCES .. 17

APPENDICES: .. 18

 STATEMENT OF WORK .. 18
 FIRST QUARTER PROGRESS REPORT 19
 SECOND QUARTER PROGRESS REPORT 20
 THIRD QUARTER PROGRESS ... 23
INTRODUCTION

Any condition that interferes with adequate blood flow will cause an impairment of tissue oxygenation, the results of which are cell injury and, if sufficiently prolonged, cell death. The interval of time between the acute catastrophic events that initiate the decrease in blood flow and the establishment of therapies to reverse this cascade of cell injury is critical. Two major interventional avenues are available for altering these processes. Any measure that shortens the interval between the injury and the institution of appropriate therapy will afford the greatest potential for minimizing cell injury and preventing cell death. Physician’s virtual presence through telecommunications technologies to support the first responding care-givers at the scene of the incident will create the opportunity for achieving an accurate initial evaluation of the victim’s clinical condition and a timely initiation of appropriate interventions.

Virtual Physician Presence Through Telecommunication Technologies:
The development of a civilian corps of first responding emergency medical technicians (EMT) and paramedics during the past several decades, which was in many ways an extension of that which has long existed among military corpsmen, has had a very positive impact on the survival of all types of injuries and acute illnesses. The reality is, however, that the interpretation of a victim’s clinical problems and therapies instituted are at this time dependent upon the individual care-giver’s training, judgment and experience. It is hypothesized that having a virtual physician present at the scene through the technology of modern telecommunications will have a favorable impact on patient outcome in many instances. The studies comparing helicopter crews consisting of EMS personnel and on-board physicians to that of ground paramedics alone have shown that “mortality of the patients treated by flight nurse/flight physician team was 35% lower than that predicted, and significantly lower than the flight paramedic team.”[3] Through the application of telecommunications technologies, UTHSCH proposes to virtually bring the physician to the scene of the incident, thereby allowing on-line physician evaluation and intervention with a focus towards interrupting the cell death cycle. Additionally, in hazardous biological or chemical emergencies, the physician's experience and mentoring to the medics in the field could mean a quicker identification of the victims' possible exposure.

Logistical Issues in the Timely Arrival of First Responding Care-Givers:
Emergency medical service communication problems were highlighted in the recent events of the Oklahoma City bombing. "Phone lines were compromised or overloaded and cellular telephone frequencies were jammed." [1] Without a reliable means of coordinating the rescue effort during the first minutes after the explosion, valuable time was lost in caring for the surviving injured. Although many individuals were killed instantly by the initial blast of the explosion, the survival of many of those that were injured was dependent upon how promptly they were identified and when appropriate therapies were instituted. Medical emergencies involving multiple victims occur regularly and preparations for these occurrences center around effective communication.

* Bracketed numbers refer to items in the Reference Section.
In a similar situation encountered on a battlefield, logistical problems that impair access to victims, which delays timely therapeutic intervention, recently plagued the Sunset Limited Train wreck near Mobile, Alabama. "As the first calls went out for help, it quickly became evident that the Saraland Bridge wasn’t easily accessible by road; there were none nearby. ...it may have been as much as 45-50 minutes before anyone arrived at the scene to begin rescue efforts."[2] Although the obstacles facing the first responders in Alabama differs somewhat from the perils of the battlefield, effective coordination and control of personnel through reliable communication systems remains a vital component of any rescue operation.

PROGRESS REPORT

Fourth Quarter Progress

Congressional Briefings:
The DREAMS program and the Digital EMS project briefed Mr. Dave Davis (key staff person for Senator Kay Bailey Hutchison) on 19 November. Mr. Davis toured UTHHSC, Texas Heart Institute, and the Institute of Biosciences and Technology Texas A&M University facilities. A visit by key U.S. Representatives from Texas (Delay, Bensen, and Brady) and members of their staff occurred on 30 November. Briefing materials were virtually the same as those for MG Parker’s visit of Feb 99. They can be made available upon request.

In Process Review:
Dr. Duke (the principal investigator for Digital EMS) attended an In-Process Review at Texas A&M University in College Station on 30 October. Most of the principals and key researchers involved in the program attended. Much of the materials prepared for the IPR are included in this and previous TSRs. As stated in the previous TSR, the objectives of the IPR were as follows:

▪ To demonstrate an understanding of the technical requirements for the program.
▪ To present a present a high-level architecture for Digital EMS.
▪ To ensure that the ongoing development activities for Digital EMS are consistent with original vision of the program.

Rural Connectivity:
ResNet, a consortium in East Texas consisting of Livinston ISD, Woodville ISD, Big Sandy ISD, and the Alabama-coushatta Reservation, have constructed a fiber backbone crossing three Texas Counties. On this backbone, the rural county hospital has been equipped with limited telemedicine capabilities. ResNet will be connecting in early 1999 to the Texas Gigapop with a DS3 ATM link. We will meet with ResNet and discuss the potential of utilizing their connectivity to this rural hospital in the second phase of the DREAMSTM: Digital EMS Project. We intend to model remote, non-mobile battlefield medical facility requirements by utilizing these traditionally understaffed under-equipped rural hospitals.

Telecommunications Infrastructure Fund (TIF) board is the primary funding agency for the State of Texas rural K-12, telemedicine and library connectivity. We have attended board
meetings in the past. In the Fourth Quarter, we intend to propose the possibility of connecting at TIF funded rural sites where a Digital EMS ambulance could transfer patient vitals, protocols, and even conduct a video conference to the supervising physician.

Houston Fire Department (H.F.D.) Collaboration:

The Digital EMS project team met with David E. Persse, M.D., Medical Director of H.F.D., to formalize our collaboration relationship for Digital EMS vehicle testing. Dr. Persse supports the program and directed H.F.D. personnel to aid in the development of the Digital EMS Interact vehicle for test runs with H.F.D. later this year. Radio and other equipment specifications have been shared with the Digital EMS team for integration for inclusion in the Interact prototype.

Onboard Systems:

The overall software architecture design will continue stressing robustness, modularity, and scalability. Development of key software components will begin this quarter and interfaces to procured hardware components will be developed. The development team will continue with the prototyping of user interfaces and will begin software development of the interface components as the user community agrees them upon.

The major thrust this quarter will be focused on establishing a “bench” prototype; however, considerable engineering activities will be put forth to address the integration of the system into the ambulance.

Extensive modifications to the prototype ambulance included rework of the air conditioning, isolation of possible noise from conventional onboard systems, and fit and function testing of the major hardware to be added for the April demonstration deadline. The ambulance as delivered included a 4.5 kVA generator in the patient compartment. This generator supplies power to the patient compartment separate to the truck engine or alternator. The rear air conditioner (A/C) is self contained and isolated from the truck’s OEM A/C systems as well. In addition to the rear patient compartment cooling this air conditioner was modified and plumbed to the outside radio compartment. This compartment of roughly 18 cubic feet will house the computer systems and communications equipment for the Digital EMS prototype. Fans were installed to aid the movement of air from the A/C through the radio compartment to the interior of the patient compartment. The fans are reversible for winter or cooler climates to keep the computer systems warm.

Nineteen inch standard computer racks were fitted in the radio compartment and in the interior of the patient compartment. The radio compartment rack was fitted with prototype rack slides and isolation mounts to prevent undo vibration and impulse forces on the rack components. The rack fitted inside the patient compartment was placed in front of the head seat away from the paramedic working space. Mounting locations for the Propaq patient monitor, the touch screen flat panel display, disk module for internal components, magnetic strip card reader, personal information card PCMCIA reader, and rack mounted keyboard have been established. Locations for onboard cameras and speakers have also been finalized.

Physician’s Workstation
The physician’s workstation is actually comprised of two displays. One display will show the onboard patient’s physiological data and can be toggled to show the location and status of multiple Digital EMS vehicle locations (this feature can be used for resource management at a future date). The other display will show the active camera view of the patient on the Digital EMS vehicle. The physician will be able to select from multiple cameras for different views of the patient and can pan, tilt, and zoom each camera.

The physician’s display for selecting and controlling the cameras and viewing the patient is very near completion. A screen dump of this display is shown in Figure 1. In addition, to the video portion, a capability for conducting a two-way conversation (sending voice as data packets) over the network has been created. In essence, the system is a non-proprietary video teleconferencing system developed in Java. This system is compliant with the overall architectural design (client-server based) of the Digital EMS and lays the foundation for the seamless integration of other onboard components.

![Figure 1. Physician’s Workstation](image)

Navigation System
Efforts during the past quarter have been focused on the integration of Streets 32, a mapping software program from Klynas Engineering in Santa Maria, California, in the Digital EMS Vehicle. This software is low-cost and is being integrated in the Java-based architecture of the Digital EMS. Streets 32 is a stand-alone program; however, Digital EMS personnel will access the program’s functionality through a user interface that is consistent with other user interfaces/displays found onboard the Digital EMS.

Streets 32 is GPS compatible and will keep the Digital EMS location centered on the map display. For development purposes, an inexpensive GPS receiver will be used to provide inputs to the system. A higher end GPS system (most likely, Trimble) will be procured for the actual Digital EMS vehicle.

Aggregate command sets for addressing the desired functions in Streets 32 are being built and the Java-based interface is being designed and implemented. This command set will be extended to the physician’s display that will show the location and status of multiple Digital EMS vehicles.

Automated Run Records

The design of the automated run record is nearing completion and the storyboards (shown below) are ready for conversion into Java and subsequent integration into the overall Digital EMS system. The screens have been reworked since the last report based upon inputs from a consulting paramedic.
DREAMSTM: Digital EMS Project
USAMRMC Agreement Number: DAMD17-98-2-8002
Technical Status Report
February 22, 1999

interact On-Line Form

<table>
<thead>
<tr>
<th>On-Scene</th>
<th>Exam/Observation</th>
<th>Patient Hx</th>
<th>Patient Tx</th>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Obstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate Respirations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breath Sounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminished</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheezing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphoretic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscious</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsive to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor/Sensory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type and Location

1. Pain
2. Broken Bone
3. Protrusion
4.
5.
6.
7.
8.
9.
10.

Glasgow

14

interact On-Line Form

<table>
<thead>
<tr>
<th>On-Scene</th>
<th>Exam/Observation</th>
<th>Patient Hx</th>
<th>Patient Tx</th>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Chief Complaint</td>
<td>Chest Pain</td>
<td>Loss of consciousness, disoriented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Drug Allergies</td>
<td>Sulphur, Codine</td>
<td>Soy</td>
<td>Environmental Allergies</td>
<td>Paille</td>
</tr>
<tr>
<td>M Medications</td>
<td>Advil, Morphine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P Past Medical History</td>
<td>Appendectomy about 2 yrs ago</td>
<td>Broken leg about 5 yrs ago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Events that led to the incident</td>
<td>Pt was sitting in the restaurant, finished lunch, was struck from behind, gasped for air, then fell unconscious to the floor.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem List

Irregular ECG
Loss of consciousness
Uncontrolled Bleeding
Interact On-Line Form

On-Scene
- High cholesterol
- Colon surgery about 2 yrs ago for polyps

Exam/Observation
- Migraine about 2 yrs ago

Patient Hx
- NKA
- Possible side effects from sulphur

Patient Tx
- Vaserelc
- Lipid
- Domebors
- Pauel
- Tylenol

Other
- Obtained vitals, placed on O2 URB @ 12 LPH, cardiac monitor showing SR c depressed ST @ 80.
- Transferred to amb. Placed on 12 lead - showing SR, Nonspecific ST and 1 wave abnormality.
- Abnormal ECG, Established N NOCI 0.9% L ante 18ga 1 1/4 x 1 attempt D. Grayson.
- Tindall sent info to MEDCON. Contacted by phone, spoke c Dr. Galloway.
- Pt info given to MEDCON c B/P, SPO2, EKG and video being transmitted.
- Rec'd orders for Nitro SL 0.4mg, and to Life Flight Pt to Hermann.
- Administered Nitro 0.4mg SL s relief. Orders for Procardia 10mg rec'd from Galloway, given c orders to Bite and swallow.
- Pt still denied CP continued to rate @ 8 on 1-10 scale.
- Pt continued to deny relief of CP, also denied dizziness, or lightheadedness.
- Pt continued to be hypertensive.
- Dr. Galloway ordered MS 4mg IVP, given L ante after rechecking allergies for drugs.
- Second 12 lead ran and had no noted change from 1st 12 lead.
- Dr. Galloway had also ordered 1/2 adult ASA (325mg) p.o.
- Administered 1/2 ASA, 162.5mg p.o. Pt refused H20, stated could swallow s it.
- Continued to monitor pt, after MS & ASA, pt began gasping, stated "Air, Air", elevated head slightly higher & pt relaxed.
- He still denied any relief from the meds.
(Propaq Vitals History)
Communications Suite

Two wireless communications engineers joined the Digital EMS team since the last report and have begun working on the design and integration plans for multiple communications means (e.g., cellular phone, UHF radios, two-way pager, and satellite communications). Commercial-off-the-shelf (COTS) radio equipment consistent with the radios used by the Houston Fire Department will serve as the initial base case.

Digital EMS Vehicle

The activity related to the Digital EMS vehicle itself is divided into two parts: the computing/network facilities to be integrated onboard the vehicle to support the migration of software from the “bench” to the prototype and the modifications to the vehicle to provide an acceptable environment for the computing/network facilities (e.g., air conditioning and power distribution).

Equipment lists have been produced and procurement action has been started for the necessary components to build the prototype that will be demonstrated in April 1999. Computer racks are being fabricated and installed. Air conditioning ducts have been reworked to cool compartments that will contain computers.
Significant Events During the Quarter

• 19 November 99 - Briefing to Dave Davis
• 30 November 99 - Briefing to U.S. Representatives Tom Delay, Kevin Brady, Ken Bensen
• 8 February 99 - Briefing to MG Parker, U.S. Army Medical Research and Materiel Command

Upcoming Events

• 19-21 April 99
 — American Telemedicine Association Conference in Salt Lake City, UT
• 28-29 April 99
 — Internet 2 Conference in Washington, D.C.
• 29-30 April 99
 — American Trauma Society in Washington, D.C.
• Summer 99
 — Integrate satellite antenna, NOTE: pending further Digital EMS funding
• Summer 99
 — Satellite antenna testing begins, NOTE: pending further Digital EMS funding
• November 99
 — Texas EMS Conference in Austin, TX

Fifth Quarter Plans

Conference Attendance

The Digital EMS Interact vehicle has been invited to attend the American Telemedicine Association annual conference in April. In addition, the Digital EMS Interact vehicle has been invited to attend and demonstrate as a part of the Internet 2, Highway 1 show during the fourth week in April. Attendees at Highway 1 include prominent congressman and senators, and members of the administration interested in high technology and internet gigabit transmission, also call the Next Generation Internet. Vice President Al Gore is expected to attend as well. Following the Internet2 show, members of the American Trauma Society whose conference is in Washington DC coincidentally during the fourth week in April have been invited to Internet2 for a demonstration as well.
Houston Fire Department (H.F.D.) Collaboration:

The Digital EMS project team has a meeting scheduled with David E. Persse, M.D., Medical Director of H.F.D., to formalize our collaboration relationship for Digital EMS vehicle testing. Work to integrate our medical protocols and data collection not only into H.F.D.'s operating procedures and the emergency patient record will also be addressed. This is a follow up to Dr. Alan Tomnesen's protocol work discussed in previous TSRs.

Onboard Systems:

The overall software architecture design will continue stressing robustness, modularity, and scalability. Development of key software components will begin this quarter and interfaces to procured hardware components will be developed. The development team will continue with the prototyping of user interfaces and will begin software development of the interface components as the user community agrees them upon.

The major thrust this quarter will be focused on establishing a "bench" prototype; however, considerable engineering activities will be put forth to address the integration of the system into the ambulance. The ambulance will be modified to hold additional deep cycle batteries, modifications will be planned for the integration of a prototype satellite antenna, and the installation of the onboard video, vitals, and voice systems.

The Digital EMS team will continue work with the MRMC technical staff to integrate a MRMC recommended instrumented litter (i.e. MiRF) and the Medicam unit into the onboard systems. Completion is not expected by the end of the fifth quarter, but the Digital EMS team is hopeful of having a working model of the Medicam for our integration work sometime during this quarter. Also, work will progress on the presentations and floor demonstration of the Digital EMS Interact unit with MRMC at the American Telemedicine Association annual conference in Salt Lake City, UT during the third week of April.
REFERENCES

APPENDICES:

Statement of Work

Digital Emergency Medical Services:

- Design, develop, integrate, and operate a system which allows telecommunication (video, voice, and data) between far forward ambulances and the University of Texas Health Science Center at Houston.

- Test new military technologies like MEDITAG and LSTAT in Houston's diverse environment of, industrial, and medical emergencies.

- Perform expeditious patient evaluations and guide appropriate interventions.

- Collect and analyze outcome data.

- Prepare and submit:
 - Quarterly "Program Status Report"
 - Midterm "Technical Status Report"
 - Final "Technical Program Report"

- Publish findings in appropriate medical journals.
First Quarter Progress Report

During the first quarter, Digital EMS project concentrated on the selection of collaborative partners. In order to advance the selection process, we formed a Digital EMS working group consisting of leaders in the areas of medical information systems, medical direction, and technology integration within the Medical Center. This working group was tasked to divide the project into sub-projects focusing on medical protocol development, needs assessment, requirements definition, and operational goals.

In a parallel track to the Digital EMS working group, we have been assessing varied medical programs and technology. We attended the ATA Annual meeting in Orlando, Florida learning more about current military medical programs. In addition, we traveled to Texas A&M University at College Station, Texas (TAMU) and to the Texas Department of Transportation Transguide facility in San Antonio, Texas (Southwest Research Institute – SwRI). The purpose of these meetings was to form alliances with institutions within Texas that are working in areas closely related to the Digital EMS project. TAMU has offered technical leadership in the areas of wireless communications, systems development, the human interface, and biological warfare defense. SwRI has offered engineering and technical leadership and their experience with the San Antonio Transguide Urban LifeLink EMS program.

In a partnership with TAMU, we submitted a joint proposal for the use of the Advanced Communications Technology Satellite (ACTS). In a battlefield or rural environment, we feel that mobile high bandwidth communication is central for the success of the Digital EMS project. The first indications from NASA for our use of the ACTS terminal (two of which are located in the TAMU-Medical Center campus) were positive. We are finalizing the formal proposal for ACTS satellite use at this time.

Under guidance from members of the Telemedicine and Advanced Technology Research Center (TATRC), we feel a collaborative partnership between UTHSCH and other centers of excellence in Texas will advance the project while maximizing the opportunity for success. We hope to match Digital EMS collaborators to the sub-projects and goals from the Digital EMS working group.

Once the individual strengths and areas of interest for TAMU and SwRI are identified, we will work together to modify the statement of work (SOW) to show the responsibilities and contributions of each collaborating institution.
Second Quarter Progress Report

Online Protocol discussions:
Several meetings between Dr. Tonnese and Dr. Galloway (Medical Director for MEDCON at Hermann Hospital) have resulted in the selection of two medical and two administrative protocols for implementation. They were selected because they were common enough to expect that they will occur several times each month, but either the protocols are too complex or uncommon enough to cause problems in the clinical setting. These include:

- Management of tachyarrhythmias
- Management of acute pulmonary edema, hypotension and shock
- Facility diversion guidelines
- Prehospital patient triage and facility bypass algorithm

Functional Analysis:
A functional analysis is currently underway to address the roles and activities of medical specialists and EMT personnel throughout the full cycle of the deployment of an EMS ambulance – pre-notification to recovery. This approach is based on decomposing the complete cycle into a series of state changes and transitions and exploring the roles of all personnel (medical specialists, EMT personnel, dispatchers, etc.) and the ongoing activities at their respective locations. This analysis will include direct observation by Digital EMS researchers participating in real ambulance deployments with the Houston Fire Department. Once this analysis (and further interviews with medical experts) is completed, opportunities for improving this cycle by the introduction of those technologies included in the Digital EMS program will be explored.

Requirements Definition:
While the Digital EMS concept has been well-defined, the requirements definition continues and is a necessary precursor for development of the technical specification. The level of activity has been and continues to be high in this area given its importance in the early part of the development cycle.

3D Modeling of the Ambulance:
A 3-D model of the Digital EMS ambulance has been constructed in 3-D Studio Max for the purpose of addressing space management issues related to add-on components (See Appendix). Also, this model is being used to aid in the location of digital cameras within the ambulance to ensure that the appropriate coverage of an onboard patient can be achieved. While the required area of coverage includes the entire body, the emphasis extends from the groin area to the top of the head.

Patient Monitors Evaluation:
Three portable patient physiologic monitors are commercially available for consideration by the Digital EMS team. For the purposes of this project, we have specified that the following parameters are the minimum set to be included in the monitor chosen:
• Electrocardiogram
• Noninvasive blood pressure
• Heart rate
• SpO2
• ETCO2

The three monitors under evaluation include the Physio-Control Lifepak12, the Zoll Medical’s M Series Pacemaker-Defibrillator, and the Protocol Systems’ Propaq Encore. The first two monitors are still in prototype form awaiting FDA 510K approval and do not include all the vitals monitoring needed. The third has been in the market for a number of years and already carries both flight and military certifications (See Appendix).

The ideal patient monitoring solution would include the multi-parameter monitoring of the Propaq unit with the defibrillator and pacing of either the Lifepak or the M Series. This would allow the paramedics to carry one unit into the field that could meet their needs of pacing, defibrillating, and full patient monitoring. While Protocol’s competitors are developing their monitors to do just that, neither the Lifepak nor the M Series monitors currently have the ability to stream data out of the unit to an onboard computer. Both Physio-Control and Zoll Medical have expressed much interest in investigating this capability in future models. The Propaq does support this type of communication through its data port. We foresee continuing relationships with all three manufacturers and the development of a communications standard interface for these and other monitors so that we do not get tied to any one manufacturer.

Voice Controlled Equipment:
An important consideration in the project is the ergonomics of the EMT staff. Where possible, voice control of non-critical equipment is desired. The ambulance environment is noisy and non-deterministic. We are evaluating software from several vendors. Several products have been eliminated as too complex or not robust enough for the project. Additional products are being solicited from existing and previous military projects. These will be evaluated as available.

Video Transmission Simulation:
A key question that must be answered within the scope of this research effort relates to video quality. What resolution and frame rate must be sustained for the video images to permit medical specialists to evaluate the patient and mentor EMT personnel with regards to medical treatment or procedures. A video simulation has been constructed that varies resolution and frame rate to permit medical personnel to determine what are the minimum acceptable levels of video quality given the technical constraints in this area (See Appendix for example screens from this simulation). This simulation will be refined and used to produce video inputs for interface development in the early prototype development as the project moves forward.

Display Monitor Prototype:
Screen prototypes for remote and base station monitoring are in development. These are based on standard monitor layouts already in use in emergency rooms and intensive care
facilities. Additional screens and functionality are being determined and specified to be added at a later date. Prototyping is being done in Visual Basic.

External Connectivity:

The long term Digital EMS base station will be located in the Herman Trauma Suite. This facility is being built and will be on line in January. It will be connected by fiber backbone to the Texas Medical Center backbone and then on to the Internet. Until the Trauma Suite is completed, the Texas A&M Institute for Biosciences and Technology (IBT) research facility provides all the connectivity to the project. The IBT is the home of the Texas Gigapop project. A private fiber connection from the Trauma Suite to IBT allows access to the Texas Gigapop project, providing connections to the NSF vBNS network project, the Internet2 backbone project, NGI, and the State of Texas Tex-an 2000 state backbone.

Ambulance Acquisitions:

As noted in our joint proposal to subcontract with TEES (Texas Engineering Experiment Station, TAMUS, College Station), we investigated the building of a mockup ambulance patient compartment for the engineering design team to use for fit form and function studies. Since the quotations for materials and labor to build this mockup exceeded the cost to purchase a complete used ambulance from Nacagdoches County Hospital District, we decided to purchase this vehicle. The vehicle, a 1988 Ford F350 diesel ambulance, now resides in the Digital EMS bay at the TEES facility. It will be used for both initial and continuing prototyping of the onboard systems, antenna testing, and for accelerometer force testing.

In addition to the prototype vehicle, we placed the order for a new Frazer, Inc. ambulance with a refurbished 1993 patient compartment. This vehicle will be used for field testing of the prototyped TEES system and patient runs later in the project. We expect delivery of the Frazer unit within the next few weeks. The TEES graphics department has designed the layout for logos and the name for the Digital EMS ambulance for the Frazer unit, provided in the appendix.

TEES Digital EMS Subcontract:

After the acceptance of the UTHHSC-TEES joint proposal for collaboration and subcontract on the DREAMS: Digital EMS project (USAMRMC Cooperative Agreement revision dated July 29, 1998), the contracts and grants offices at both UTHHSC and TEES began final negotiation of the subcontract for integration and design work. This process is proceeding rapidly and the subcontract will be in place in the very near term. Once the final document is complete, the UTHHSC Office of Sponsored Projects will provide copies to USAMRMC. Interviewing and preliminary staffing is underway at TEES in anticipation of the subcontract. Texas A&M University System provided an office at IBT for the DREAMS project allowing close collaboration and communication with both TEES and the telecommunications team at IBT.

Preliminary ACTS pre-proposal accepted:

Final submission of proposal scheduled for week of August 24th.
Congressional Briefings:

The DREAMS program and the Digital EMS project is planning a briefing to Mr. Dave Davis (key staff person for Senator Kay Bailey Hutchison) on 19 November. Mr. Davis will tour UTHHSC, Texas Heart Institute, and the Institute of Biosciences and Technology Texas A&M University facilities. A visit by key U.S. Representatives from Texas (Delay, Bensen, and Brady) and members of their staff is scheduled for 30 November.

Our participation in the Texas EMS conference, originally scheduled for November 25th, will not occur due to personnel and time constraints associated with the congressional briefings.

Digital EMS High Level Systems Design:

Digital EMS represents the integration of multiple leading edge technologies, especially in the areas of video processing and wireless communications. The objective is to improve the quality of emergency medical services by allowing highly trained trauma specialists to gain better situational awareness and to direct lifesaving measures sooner, thus increasing the survivability of critical patients. This is accomplished by linking the Digital EMS vehicles with the trauma suite using multiple communications means in order to provide high quality data and video to the trauma specialist. A brief discussion of the high level design follows.

Digital EMS Onboard Subsystems (Figure 1)

The Digital EMS Vehicle onboard subsystems are shown in Figure 1: the EMT Interaction & Communication Subsystem; the Video/Audio Processing Subsystem; and the GPS Positioning & Navigation Subsystem. Onboard components will be linked using a 100 Base-T network hub. The Digital EMS vehicle will have the capability for both wireless and wired connectivity with the main hospital system.
Figure 1. Digital EMS Onboard Subsystems

EMS Interaction & Communication Subsystem (Figure 2)

This subsystem will include a multi-functional flat panel display with a touch screen and stylus interface. EMS personnel will use this display primarily for maintaining an awareness of the camera view being used by the trauma specialist at the hospital and to display outputs from the vital signs monitor. This subsystem will host an intelligent communications manager that will match data requirements with available bandwidth. Also, low bandwidth medical support systems (e.g., Propaq, I-Stat, barcode reader, etc.) will be interfaced and managed by this subsystem.
Figure 2. EMS Interaction & Communication Subsystem

Video/Audio Processing Subsystem (Figure 3)

The Video/Audio Processing Subsystem will capture video from onboard video sources and the Medic-Cam System when available. Pan, tilt, and zoom control of onboard video sources will be accomplished from the trauma suite. Real-time video CODEC processing, “thumbnail” generation for each camera view, and audio integration will occur within this subsystem. A flat panel display will be used for patient-doctor video interaction.
GPS Positioning & Navigation Subsystem (Figure 4)

This subsystem will provide real time positioning and navigation based on GPS and local map information. An interface into standard mapping products for route planning, ETA, and navigation will be included. Location inputs (destinations) from multiple sources will be accommodated. A magnetic card reader will be included to extract patient information from driver’s licenses, credit cards, etc.
Hospital Based Subsystems (Figure 5)

The hospital-based system shown in Figure 5 includes the following subsystems: Doctor Audio/Video Processing Subsystem; Vital Signs, Positioning, & Status Subsystem; and Web Server Situation Monitor and Control Subsystem. The main hospital-based system can interact with the Digital EMS (wireless and wired connectivity), hospitals with comparable systems (wireless and wired connectivity with the same capabilities), and hospitals without a comparable system (Web-based connectivity with degraded capabilities).

![Diagram of Hospital Based Subsystems](image)

Figure 5. Hospital Based Subsystems

Doctor Audio/Video Processing Subsystem (Figure 6)

The Doctor Audio/Video Processing Subsystem will capture video of the doctor, facilitate transmission to the Digital EMS for doctor-patient interaction, decode and display incoming video from the Digital EMS. The incoming video and the vital signs information are essential for increasing the situational awareness of the trauma specialist. Pan, tilt, and zoom for local and remote video sources will be accomplished using joystick/software control. This subsystem will process audio for the patient, EMS personnel, and doctor interaction.
Figure 6. Doctor Audio/Video Processing Subsystem

Vital Signs, Positioning, & Status Subsystem (Figure 7)

This subsystem will feature a vital signs monitor for incoming patient data. Control for local and remote resource management will be enhanced by a map display showing all emergency vehicle locations and hand-off control protocol management for virtual collaboration. This subsystem initially will also serve as the intelligent communications manager for local/remote interaction.

Figure 7. Vital Signs, Positioning, & Status Subsystem
Web Server Situation Monitor and Control Subsystem (Figure 8)

The Web Server Monitor and Control Subsystem will be Java-based and can be accessed using a single desktop system to view a facsimile of the dual displays and control systems used in the main hospital system. This subsystem can be a single unit or replicated and mirrored across multiple network nodes.

Figure 8. Web Server Situation Monitor and Control Subsystem

User Interface Prototyping (Figure 9 and 10)

Another key activity occurring during this reporting period has been the prototyping of user interfaces (Figures 9 and 10). The prototype displays are being developed to gain user feedback.

Figure 9. Onboard Video Display with Composited Vital Signs
Digital EMS Breakthrough Technology:
Key areas of breakthrough technology for the Digital EMS includes:

- System Level Impact of Digital EMS
 - A unique collection of digital technologies will create a virtual presence by the physician and permit a remote mentoring environment.
 - This virtual presence will enhance current life-saving protocols by involving the physician sooner and in greater detail.
- Intelligent Communications Processing and Management
 - A “smart” communications manager using software agent technology that can balance bandwidth requirements versus bandwidth availability will be developed.
 - Multi-modal communications will be treated as a single channel with dynamically varying capacity.
- Multi-Channel Real-Time Video/Audio Processing
 - Dynamic management of multiple video/audio streams will permit a high level of on-board situational awareness by physicians at remote locations.

Mobile Satellite Antenna Design Groups:
We are meeting with several groups to discuss tracking, mobile antennas. It is our intent to establish one or more development consortia during the 4th quarter. The groups under consideration for development projects include NASA-Lewis, Naval Research Labs, Lockheed Martin, Southwest Research Institute (SwRI), and others.
Medical Protocols:

Dr. Tonnesen has finalized four online algorithms discussed in the previous status report:
- Management of tachyarrhythmias
- Management of acute pulmonary edema, hypotension and shock
- Facility diversion guidelines
- Prehospital patient triage and facility bypass algorithm