The Infrared &
A Electro-Optical

szaroorcs  Oystems Handbook

VOLUME 8
Emerging Systems
and Technologies

Stanley R. Robinson, Editor

Aberrated
Optical - Conventionat
System Beam image

Extended Object Ay Splitter l
| EE "-;; ---}<_ Known
Diversity image Defocus

Length

Dlsmtaunous.,.

ATE,
Ap%rioved for Public R:l”esa':: A
on Uniimlted

|
!
I
|
!
|
!




Emerging
Systems and
Technologies

VOEME

The Infrared and Electro-Optical
Systems Handbook

DTIC QUALITY INSPECTRED 4




The Infrared and Electro-Optical

Systems Handbook

Joseph S. Accetta, David L. Shumaker, Executive Editors

s VOLUME 1.

m VOLUME 2.

n VOLUME 3.

s VOLUME 4.

Sources of Radiation, George J. Zissis, Edifor

Chapter 1. Radiation Theory, William L. Wolfe

Chapter 2. Arificial Sources, Anthony J. LaRocca

Chapter 3. Natural Sources, David Kryskowski, Gwynn H. Suits
Chapter 4. Radiometry, George J. Zissis

Atmospheric Propagation of Radiation,
Fred G. Smith, Editor

Chapter 1. Atmospheric Transmission, Michael E. Thomas, Donald D.
Duncan

Chopter 2. Propagation through Atmospheric Optical Turbulence,
Robert R. Beland

Chapter 3. Aerodynamic Effects, Keith G. Gilbert, L. John Otten 1],
William C. Rose

Chapter 4. Nonlinear Propagation: Thermal Blooming, Frederick G.
Gebhardt

Electro-Optical Components, William D. Rogatto, Editor
Chapter 1. Optical Materials, William L. Wolfe
Chapter 2. Optical Design, Warren ). Smith

Chapter 3. Optomechanical Scanning Applications, Techniques, and
Devices, Jean Montagu, Herman DeWeerd

Chapter 4. Detectors, Devon G. Crowe, Paul R. Norton, Thomas
Limperis, Joseph Mudar

Chapter 5. Readout Electronics for Infrared Sensors, John L. Vampola

Chapter 6. Thermal and Mechanical Design of Cryogenic Cooling
Systems, P.Thomas Blotter, J. Clair Batty

Chapter 7. Image Display Technology and Problems with Emphasis
on Airborne Systems, Lucien M. Biberman, Brian H. Tsou

Chapter 8. Photographic Film, H. Lou Gibson
Chapter 9. Reticles, Richard Legault
Chapter 10. Lasers, Hugo Weichel

Electro-Optical Systems Design, Analysis, and Testing,
Michael C. Dudzik, Editor

Chapter 1. Fundamentals of Electro-Optical Imaging Systems
Analysis, J. M. Lloyd

Chapter 2. Electro-Optical Imaging System Performance Prediction,
James D. Howe



n VOLUME 5.

s VOLUME 6.

s VOLUME 7.

= VOLUME 8.

Chapter
Chapter
Chapter
Chapter

e

Optomechanical System Design, Daniel Vukobratovich
Infrared Imaging System Testing, Gerald C. Holst
Tracking and Control Systems, Robert E. Nasburg

Signature Prediction and Modeling, John A. Conant,
Malcolm A. LleCompte

Passive Electro-Optical Systems,
Stephen B. Campana, Editor

Chapter

1.
Chapter 2.
Chapter 3.
Chapter 4.

Infrared Line Scanning Systems, William L. McCracken
Forward-Looking Infrared Systems, George S. Hopper

Staring-Sensor Systems, Michael J. Cantella

Infrared Search and Track Systems, Joseph S. Accetta

Active Electro-Optical Systems, Clifion S. Fox, Edifor

Chapter

1.
Chapter 2.
Chapter 3.
Chapter 4,

Laser Radar, Gary W. Kamerman

Laser Rangefinders, Robert W. Byren

Millimeter-Wave Radar, Elmer L. Johansen

Fiber Optic Systems, Norris E. Lewis, Michael B. Miller

Countermeasure Systems, David Pollock, Editor
Chapter 1. Warning Sﬁstems, Donald W. Wilmot, William R.

Chapter
Chapter

Chapter
Chapter
Chapter

2.

g

Owens, Robert ). Shelton

Camouflage, Suppression, and Screening Systems, David
E. Schmieder, Grayson W. Walker

. Active Infrared Countermeasures, Charles J. Tranchita,

Kazimieras Jakstas, Robert G. Palazzo, Joseph C. O'Connell
Expendable Decoys, Neal Brune
Optical and Sensor Protection, Michael C. Dudzik

Obscuration Countermeasures, Donald W. Hoock, Jr.,
Robert A. Sutherland

Emerging Systems and Technologies,
Stanley R. Robinson, Editor

Chapter

Chapter
Chapter
Chapter

Chapter
Chapter
Chapter

1.

w

o

Unconventional Imaging Systems, Carl C. Aleksoff, J.
Christopher Dainty, James R. Fienup, Robert Q. Fugate,
Jean-Marie Marioftti, Peter Nisenson, Francois Roddier

Adaptive Optics, Robert K. Tyson, Peter B. Ulrich
Sensor and Data Fusion, Alan N. Steinberg

Automatic Target Recognition Systems, James W.
Sherman, David N. Spector, C. W. “Ron” Swonger, Lloyd
G. Clark, Edmund G. Zelnio, Terry L. Jones, Martin J.
Lohart

Directed Energy Systems, Gary Golnik
Holography, Emmett N. Leith

System Design Considerations for a Visually-Coupled
System, Brian H. Tsou




Copublished by

SERIM

Infrared Information Analysis Center

Environmental Research Institute of Michigan
Ann Arbor, Michigan USA

and

SPIE OprricAL ENGINEERING PRESS
Bellingham, Washington USA

Sponsored by

Defense Technical Information Center, DTIC-DF
Cameron Station, Alexandria, Virginia 22304-6145



Emerging
Systems and
Technologies

Stanley R. Robinson, Editor

Environmental Research Institute of Michigan

790 10906661

The Infrared and Electro-Optical
Systems Handbook

Joseph S. Accetta, David L. Shumaker, Executive Editors

Environmental Research Institute of Michigan




Library of Congress Cataloging-in-Publication Data

The Infrared and electro-optical systems handbook / Joseph S. Accetta,
David L. Shumaker, executive editors.
p- cm.

Spine title: IR/EO systems handbook.

Cover title: The Infrared & electro-optical systems handbook.

Completely rev. ed. of: Infrared handbook. 1978

Includes bibliographical references and indexes.

Contents: v. 1. Sources of radiation / George J. Zissis, editor —
v. 2. Atmospheric propagation of radiation / Fred G. Smith, editor —
v. 3. Electro-optical components / William D. Rogatto, editor —
v. 4, Electro-optical systems design, analysis, and testing /
Michael C. Dudzik, editor — v. 5. Passive electro-optical systems /
Stephen B. Campana, editor — v. 6. Active electro-optical systems /
Clifton S. Fox, editor — v. 7. Countermeasure systems / David Pollock, editor —
v. 8. Emerging systems and technologies / Stanley R. Robinson, editor.

ISBN 0-8194-1072-1

1. Infrared technology—Handbooks, manuals, etc.
2. Electrooptical devices—Handbooks, manuals, etc. 1. Accetta, J.
S. II. Shumaker, David L. IIL Infrared handbook. IV. Title:
IR/EO systems handbook. V., Title: Infrared & electro-optical

systems handbook.
TA1570.15 1993
621.36'2—dc20 92-38055
Cip
Copublished by

Infrared Information Analysis Center
Environmental Research Institute of Michigan
P.O. Box 134001

Ann Arbor, Michigan 48113-4001

and

SPIE Optical Engineering Press
P.O. Box 10
Bellingham, Washington 98227-0010

Copyright © 1993 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in
any form or by any means without written permission of one of the publishers.
However, the U.S. Government retains an irrevocable, royalty-free license to
reproduce, for U.S. Government purposes, any portion of this publication not
otherwise subject to third-party copyright protection.

PRINTED IN THE UNITED STATES OF AMERICA



Preface

The Infrared and Electro-Optical Systems Handbook is a joint product of the
Infrared Information Analysis Center (IRIA) and the International Society for
Optical Engineering (SPIE). Sponsored by the Defense Technical Information
Center (DTIC), this work is an outgrowth of its predecessor, The Infrared
Handbook, published in 1978. The circulation of nearly 20,000 copies is adequate
testimony to its wide acceptance in the electro-optics and infrared communities.
The Infrared Handbook was itself preceded by The Handbook of Military
Infrared Technology. Since its original inception, new topics and technologies
have emerged for which little or no reference material exists. This work is
intended to update and complement the current Infrared Handbook by revision,
addition of new materials, and reformatting to increase its utility. Of necessity,
some material from the current book was reproduced as is, having been adjudged
as being current and adequate. The 45 chapters represent most subject areas of
current activity in the military, aerospace, and civilian communities and contain
material that has rarely appeared so extensively in the open literature.

Because the contents are in part derivatives of advanced military technology,
it seemed reasonable to categorize those chapters dealing with systems in
analogy to the specialty groups comprising the annual Infrared Information
Symposia (IRIS), a Department of Defense (DoD)) sponsored forum administered
by the Infrared Information Analysis Center of the Environmental Research
Institute of Michigan (ERIM); thus, the presence of chapters on active, passive,
and countermeasure systems.

There appears to be no general agreement on what format constitutes a
“handbook.” The term has been applied to a number of reference works with
markedly different presentation styles ranging from data compendiums to
tutorials. In the process of organizing this book, we were obliged to embrace a
style of our choosing that best seemed to satisfy the objectives of the book: to
provide derivational material data, descriptions, equations, procedures, and
examples that will enable an investigator with a basic engineering and science
education, but not necessarily an extensive background in the specific technol-
ogy, to solve the types of problems he or she will encounter in design and analysis
of electro-optical systems. Usability was the prime consideration. In addition, we
wanted each chapter to be largely self-contained to avoid time-consuming and
tedious referrals to other chapters. Although best addressed by example, the
essence of our handbook style embodies four essential ingredients: a brief but
well-referenced tutorial, a practical formulary, pertinent data, and, finally,
example problems illustrating the use of the formulary and data.

vii




viii PREFACE

The final product represents varying degrees of success in achieving this
structure, with some chapters being quite successful in meeting our objectives
and others following a somewhat different organization. Suffice it to say that the
practical exigencies of organizing and producing a compendium of this magni-
tude necessitated some compromises and latitude. Its ultimate success will be
judged by the community that it serves. Although largely oriented toward
system applications, a good measure of this book concentrates on topics endemic
and fundamental to systems performance. It is organized into eight volumes:

Volume 1, edited by George Zissis of ERIM, treats sources of radiation,
including both artificial and natural sources, the latter of which in most
military applications is generally regarded as background radiation.

Volume 2, edited by Fred Smith of OptiMetrics, Inc., treats the propagation
of radiation. It features significant amounts of new material and data on
absorption, scattering, and turbulence, including nonlinear propagation
relevant to high-energy laser systems and propagation through aerody-
namically induced flow relevant to systems mounted on high-performance
aircraft.

Volume 3, edited by William Rogatto of Santa Barbara Research Center,
treats traditional system components and devices and includes recent
material on focal plane array read-out electronics.

Volume 4, edited by Michael Dudzik of ERIM, treats system design,
analysis, and testing, including adjunct technology and methods such as
trackers, mechanical design considerations, and signature modeling.

Volume 5, edited by Stephen Campana of the Naval Air Warfare Center,
treats contemporary infrared passive systems such as FLIRs, IRSTs, IR
line scanners, and staring array configurations.

Volume 6, edited by Clifton Fox of the Night Vision and Electronic Sensors
Directorate, treats active systems and includes mostly new material on
laser radar, laser rangefinders, millimeter-wave systems, and fiber optic
systems.

Volume 7, edited by David Pollock, consultant, treats a number of coun-
termeasure topics rarely appearing in the open literature.

Volume 8, edited by Stanley Robinson of ERIM, treats emerging technolo-
gies such as unconventional imaging, synthetic arrays, sensor and data
fusion, adaptive optics, and automatic target recognition.
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1.1 INTRODUCTION

Sections 1.2 through 1.7 cover the following types of unconventional imaging
systems: stellar speckle interferometry, aperture-plane interferometry, passive
interferometric range-angle imaging, imaging that uses nonimaged laser speckle
patterns, optical range-Doppler imaging, and laser guide star adaptive optics
for compensated imaging.

1.2 STELLAR SPECKLE INTERFEROMETRY
Weritten by Christopher Dainty and Peter Nisenson

The use of optical interferometry to determine the spatial structure of astro-
nomical objects was first suggested by Fizeau® in 1868. Stellar interferometers
measure, in modern terminology, the spatial coherence of light incident on the
earth, and the object intensity (or some parameter such as its diameter) is
calculated using the van Cittert-Zernike theorem.? Fizeau’s suggestion led to
the development of specialized long baseline interferometers; Michelson’s stel-
lar interferometer3* directly applied Fizeau’s method (amplitude interferom-
etry), while the intensity interferometer® of Hanbury Brown and Twiss enabled
the squared modulus of the spatial coherence function to be measured for
thermal sources.

Until recently, single optical telescopes were used in a conventional (non-
interferometric) way, their spatial resolution being limited to approximately
170 (1 arcsec) due to the presence of atmospheric turbulence or seeing. In 1970,
Labeyrie® invented the technique of stellar speckle interferometry, in which
diffraction-limited resolution is obtained from a large single telescope despite
the seeing. The diffraction-limited angular resolution Aa of a telescope of
diameter D operating at wavelength A is conveniently expressed by the Ray-
leigh criterion,

A

Aa = 1.22D , (1.1)
yielding approximately 07025 at A = 400 nm for a 4-m telescope. The first
results by Labeyrie and collaborators were published” in 1972 and since then
approximately 1150 papers on speckle interferometry have been published.?

Labeyrie’s important contribution was to recognize that the speckles formed
at the focus of a large telescope have an angular size determined by diffraction,
i.e., their smallest dimension is given by Eq. (1.1). Diffraction-limited infor-
mation about an astronomical object can therefore be extracted from short-
exposure, narrow-band images by an appropriate method of data reduction.

The basic principles of stellar speckle interferometry are outlined in non-
mathematical terms in Sec. 1.2.1, and this is followed by a detailed mathe-
matical discussion of the technique in Sec. 1.2.2. In astronomy, the objects
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under observation are often faint and only a limited observation time is avail-
able, so that the question of signal-to-noise ratio is very important; this is
evaluated in Sec. 1.2.3. In Sec. 1.2.4 we discuss the problem of finding images
(or maps) of astronomical objects using speckle data. This is an area of con-
siderable activity both by theoreticians and observers. The equipment required
to implement speckle interferometry is described in Sec. 1.2.5, which includes
a discussion of the technique of one-dimensional infrared speckle interfer-
ometry, which has proved fruitful in recent years. Finally, we conclude with
a brief summary of the astronomical results produced by speckle interferom-
etry—these range from measurements of asteriods to quasars and supernovas.

1.2.1 Basic Principles

Figure 1.1 shows highly magnified images of an unresolvable (point) and a
resolved star taken using a large telescope with an exposure time of approx-
imately 1072 s through a filter of 10-nm bandwidth. In the case of the point
source (upper row), the image has a speckle-like structure and it is found that,
as with conventional laser speckle patterns, the minimum speckle “size” is of
the same order of magnitude as the Airy disk of the telescope. A long-exposure
image is simply the sum of many short-exposure ones, each with a speckle
structure that is different in detail and is therefore a smooth intensity distri-
bution whose diameter is typically 1”0 in good seeing. Long-exposure images
of the point source and resolved star of Fig. 1.1 would show little, if any,
difference. The minimum speckle size, on the other hand, is approximately
07025 for a 4-m telescope at a mean wavelength of 400 nm. By extracting
correctly the information in short-exposure images, it is possible to observe
detail as small as the limit imposed by diffraction and not be limited to the
170 resolution of conventional images.

Fig. 1.1 Short-exposure photographs of an unresolved point source (upper row) and a
resolved star, a-Orionis (lower row), taken on a 4-m class telescope. The exposure time and
filter bandwidth are 1072 s and 10 nm, respectively. (Courtesy of B. L. Morgan and R. J.
Scaddan, Imperial College, London)
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Fig. 1.2 Laboratory simulation showing the principles of stellar speckle interferometry:
(A) objects, (B) typical short-exposure photographs, (C) diffraction patterns of row B, (D) sum
of 20 diffraction patterns, and (E) diffraction pattern of row D. (Courtesy of A. Labeyrie,
CERGA)

A laboratory simulation illustrating the basic method is shown in Fig. 1.2
for an unresolved star, binary stars of two separations, and a resolved star
(shown as a uniformly illuminated disk). A large number of short-exposure
records are taken, each through a different realization of the atmosphere,
typical examples being shown in row B. For a binary star, each component
produces an identical speckle pattern (assuming isoplanatism and neglecting
photon noise), and a double-speckle effect may be visible in each short-exposure
image in favorable circumstances. The optical diffraction pattern, or squared
modulus of the Fourier transform, of a typical short-exposure record is shown
in row C for each object. The signal-to-noise ratio (SNR) is low for a single
record and may be improved by adding many such diffraction patterns (row
D). The unresolved object has a diffraction halo of relatively large spatial
extent, the binaries give fringes of a period inversely proportional to their
separation, and the resolved object gives a diffraction halo whose diameter is
inversely proportional to the diameter of the object. By taking a further Fourier
transform of each ensemble-average diffraction pattern we obtain the average
spatial (or angular) autocorrelation of the diffraction-limited images of each
object (row E).
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The term speckle interferometry was adopted by Gezari, Labeyrie, and Stach-
nik.” The interferometer is, in fact, the telescope—light from all parts of the
pupil propagates to the image plane where it interferes to become a speckle
pattern. In other forms of stellar interferometry, the light in the pupil is
combined in a different way, for example, using a rotation-shearing interfer-
ometer. The beauty of the speckle technique is that the interferometer (i.e.,
the telescope) is already constructed to the required tolerances.

1.2.2 The Theory of Speckle Interferometry

1.2.2.1 Outline of Theory. For each short-exposure record, the usual quasi-
monochromatic, isoplanatic imaging equation applies, provided that the an-
gular extent of the object is not too large®:

2

Ha) = [[0@,g P - ap - ) da dp

or, in notation,
I(a,B) = O(,B)® P(a,p) , (1.2)

where I(a,B) is the instantaneous image intensity as a function of angle (a,B),
O(a,B) is the object intensity, P(«,B) is the instantaneous point spread function
of the atmosphere/telescope system normalized to unit volume, and & denotes
the convolution integral.

Aswe demonstrated in Sec. 1.2.1, the analysis of these data may be carried
outin two equivalent ways. In the angular, or spatial, domain, the ensemble-
averaged angular autocorrelation function of the image is found; this is
defined as

Cr(a,B) = <ff1(oc’,B')I(a' + o,p’ + B) do’ dB’)

or, in notation,
Cr(a,B) = (I(e,p)*I(a,B)) , (1.3)

where > denotes angular autocorrelation. Combining Egs. (1.2) and (1.3) yields
the following relationship between object and image autocorrelation functions:

Cr(e,B) = Cola,B)P (P(a,B)kP(ct,B) (1.4)

where C,(a,B) is the angular autocorrelation function of the object intensity.
Note that Eq. (1.4) for the object and image autocorrelation functions is similar

#Throughout this review, the object and image plane coordinates are taken to be angles (a,8), the
coordinates in the Fourier transform plane being angular frequencies (arcsec™?).
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in form to Eq. (1.2) for object and image intensities, but with an impulse
response equal to (P(a,B)kP(a,B)).

In the angular (or spatial) frequency domain, the average squared modulus
of the Fourier transform of the image intensity is found. This is correctly
referred to as the average energy spectrum®:

®r(u,v) = (i(w,v)? , (1.5)
where
{u,v) = ff](a,ﬁ) expl — 2mwi(ua + vB)] da dp . (1.6)

Combining Egs. (1.2), (1.5), and (1.6) yields the following simple relationship
between the energy spectrum of the image ®;(u,v) and that of the object ®o(u,v):

Or(u,v) = Polu,v) - I(u) , 1.7
where
I (u,) = (T(wv)) ,

and T'(u,v), the instantaneous transfer function, is equal to the Fourier trans-
form of the point spread function:

o

T(u,v) = ffP(a,B) expl —2mwi(ua + vB)l da dB . (1.8)

—c0

Because of the similarity between Eq. (1.7) and the Fourier-space isoplanatic
imaging equation (in which image frequency components are equal to object
frequency components multiplied by an optical transfer function!?), the quan-
tity J(u,v) is referred to as the transfer function for speckle interferometry or
speckle transfer function. Equations (1.4) and (1.7) in the real (angular) and
Fourier (angular frequency) domains, respectively, are completely equivalent;
Eq. (1.7) is simply obtained by taking the Fourier transform of both sides of
Eq. (1.4).

The conventional (“long-exposure”) image intensity is found from Eq. (1.2)
by ensemble averaging:

I(,B)) = O(,B)P (P(w,p)) , (1.9)

"The energy spectrum of a function equals the squared modulus of its Fourier transform. If the
function is a realization of a square-integrable nonstationary random process, an ensemble-averaged
energy spectrum can be defined as in Eq. (1.5). A realization of a stationary random process does
not possess a Fourier transform, but a power spectrum can be defined in terms of a generalized
Fourier transform.?
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where (P(a,B)) is the average point spread function of the atmosphere/telescope
system. In Fourier space, Eq. (1.9) becomes

@(u,)) = o(u,v)XT(uw)) , (1.10)

where o(u,v) is the Fourier transform of the object intensity, and (T'(x,v)) is
the average, or long-exposure, transfer function.

Comparing the conventional long-exposure imaging of Eq.(1.10) to the speckle
interferometry of Eq. (1.7), it is clear that the resolution of conventional im-
aging is governed by the form of the average transfer function (T'(u,v)), whereas
in speckle interferometry the relevant transfer function is 7 (u,v) = (|T'(u,v)[%.
In the following sections we show that the latter function retains high angular-
frequency information that is lost in conventional imaging. However, remem-
ber that J(u,v) is a transfer function for energy spectra, whereas (T(u,v)) is
a transfer function for Fourier components. The loss of Fourier phase infor-
mation in speckle interferometry is a severe limitation to its usefulness. Pos-
sible methods of retrieving the Fourier phase are discussed in Sec. 1.2.4.

1.2.2.2 The Long-Exposure Transfer Function. To find the optical transfer
function of a system, we must consider the imaging of a quasimonochromatic
point source as given in Fig. 1.3. For an isoplanatic, incoherent imaging sys-
tem, the optical transfer function 7T'(u,v) is equal to the normalized spatial
autocorrelation of the pupil function H(§,m):

JH(E,TI)H*(E + Auym + Av) dE dn

— 00

T(uyw) = % , (1.11)
| f |H (g dE dn

where (u,v) are angular frequency coordinates, (§,m) are distance coordinates
in the pupil, and \ is the mean wavelength.}! The pupil function H(£,m) is the

Instantaneous
Wavefront A(E,
Y «€ ")) Instantaneous
Image I(a, )
]
Quasi-monochromatic
Point Source
Turbulent
Medium Telescope
Pupil Hgl&,7)

Fig. 1.3 The formation of an instantaneous image of a point source through the atmosphere.
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complex amplitude in the exit pupil, relative to the reference sphere centered
on the Gaussian focus, due to a point source and in the case of propagation
through the turbulent atmosphere may be written as

H(m) = A HoE) , (1.12)

where A(§,m) is the complex amplitude of light from a point source that has
propagated through the atmosphere and Hy(¢,m) is the pupil function of the
optical system alone.

Substitution of Eq. (1.12) into (1.11) gives

o

”A(Em)A*(é +Au, m+ M) HoENHEE+Nu, v+ Av) dE dy

o

Tup)== = . (1.13)
f f |AGE [ Ho(gm)I® dt dn

-

The long-exposure or average transfer function is found by averaging Eq.
(1.13). The lower line is simply the intensity of light integrated over the tele-
scope pupil and is effectively constant for a large telescope and/or weak scin-
tillation. We also assume that A(§,m) is a (wide-sense) stationary process [i.e.,
its mean and autocorrelation function in Eq. (1.13) are independent of the &
coordinates], so that the expression for the long-exposure transfer function
becomes'2

(T(u,v)) = Ts(u,v)To(u,v) , (1.14)
where T's(u,v) is the atmospheric or seeing transfer function,

(AEMA*E + Au, m + W)
Ts 3 = , 1.15
(wv) (AP (115

and To(u,v) is the optical transfer function of the telescope alone,

oo

[ [ BB + xu,m + w0 dg dn

To(up) = — =
([ [ttotg P dt )

Thus the long-exposure transfer function is equal to the product of the transfer
functions of the atmosphere and telescope.

A detailed discussion of the atmospheric transfer function and other relevant
properties of turbulence may be found in Refs. 13 through 16, particularly in
the comprehensive review by Roddier.!® For a Kolmogorov spectrum of tur-

(1.16)
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bulence, the average transfer function is rotationally symmetric and is given
by

)\I 5/3
Ty(w) = exp[—3.44(—r%’~') ] , 1.17)

where w = (u? + v¥)"% and the parameter ro, first defined by Fried,'? is equal
to the diameter of the diffraction-limited telescope whose Airy disk has the
same area as the seeing disk. The parameter ry plays an important role in
both long-exposure imaging and speckle interferometry. It can be shown that!®

ro o A¥5(cosy)?® | (1.18)

where v is the zenith angle. Typical values of rq lie in the range of 5 to 20 cm
at a good observing site in the visible range. Since an ro value of 10 cm at A\
= 500 nm is equivalent to ro = 3.6 m at A = 10 pm, it follows that a 4-m
class telescope is severely seeing limited in the visible but essentially diffrac-
tion limited at 10 pm.

The angular “diameter” of the seeing disk, or seeing angle w, is defined by

o A , (1.19)
r

<o

and is therefore proportional to A\™Y5. At A = 500 nm and ro = 10 cm, the
seeing disk has a diameter of approximately 5 x 1078 rad or 1"0.

Measurements of the long-exposure transfer function and the parameter ro
have been reported by Dainty and Scaddan,!” Roddier,'® and Brown and
Scaddan'? and there is good agreement with Eq. (1.17).

1.2.2.3 The Speckle Transfer Function. The transfer function of speckle
interferometry, J(u,v) = (|T(u,v)|2), relates the average energy spectrum of
the image to that of the object. Using Eq. (1.13), we can write |T(x,v)|? as
IT(u,v)? = s(u,v)/®B, where

A(u,v) = J'f]'J’A(ﬁl,m)A*(& + Ay, m1 + Av)A*(E2,m2)

X A(k2 + \u, m2 + A\o)Ho(E3mD)HEEL + Au, mi + o)
X HE2,m2)Ho(k2 + Numg + \v) dé1 dmy déa dng
and

2

R = [ f j |AE,WE| Hote,m)|? dt dn] . (1.20)
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As before, A(£,m) is assumed to be a stationary random process with weak
scintillation. For convenience we define (|A|?) = 1 and the pupil area P,

P = f f [Ho(gm)|? dt dn (1.21)

(this is the true pupil area for an unapodized, or clear, pupil).
With the substitution ¢’ = & — & and v’ = m2 —m1, Eq. (1.20) yields the
following expression for the speckle transfer function:

T (u,v) = 9}’”2ffM(u,v;§',n’)?€(u,v;§’,n’) dg' dn'

where M is a fourth-order moment,

M(u,us€' ') = (A€1mDA*E + M, m + A)A*E + €, m + 1)
XAE + & + A u,m + ' + ) (1.22)

and

oo

H(uvE' ') = “'Ho(%l,m)HE‘)‘(&l + Ay, M1+ Av)

X H§ + &', m1 + m')Ho
XE + & + Ayym1 + '+ W) dédm .

Clearly, the quantity 4l characterizes the atmospheric contribution and % the
telescopic contribution to the speckle transfer function.

Further simplification of Eq. (1.22) requires that an assumption about the
joint probability distribution of the process A(£,m) be made. The most satis-
factory distribution is the log normal, in which the log modulus and phase
each have a Gaussian probability density. Korff2° evaluated the speckle trans-
fer function using this model and results are given below; however, neither
this model nor the zero-scintillation versions!® of it have a simple analytical
solution and require extensive numerical calculations.

To illustrate in a qualitative way the form of the speckle transfer function,
we assume that A(¢m) is a complex Gaussian process.2! This is a poor as-
sumption in good seeing, although it improves as the seeing deteriorates; this
assumption also violates the weak scintillation requirement for normalization.
For a complex Gaussian process, the fourth-order moment of Eq. (1.22) reduces
to a product of second-order moments:
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M(u,v:€' M) = (A€L,mDA*E + Au, w1 + Av))
X (A*E + &, + n)AGE + E + Ay + 1+ )
+ (AGmDA*E + €, m + ')
X (A*(E1 + Auym1 + NAE + & + Ay, M + ' + ),

which, when substituted into (1.22) yields

F(u,v) = |Tsu,0)!|To(u,v)? + P2 f f T8N, 'IN)2
- (1.23)
X #H(u,vE'm') dE' dn' .

Now |Ts(£'/\, m'/ )\)|2 is of width of order ro/)\land ¥ is essentially constant for
such values of £', v/, provided that (1% + v?)"2 < (D — rg)/\. The second term
of Eq. (1.23) therefore reduces to

P2 f f TSI\, IV dE’ dn' X %(u,v;0,0) , (1.24)

except for (12 + v®)"2 > (D — ro)/\.
The first integral in Eq. (1.24) can be evaluated using Eq. (1.17) to give
0.1097r%. The quantity %(u,v; 0,0) is simply

0

#H(u,v; 0,0) = ff|H0(§1,n1)|2|Ho(€1 + Au, m1 + AP dE dny

— 0o

which, when multiplied by @ ~! is the diffraction-limited optical transfer func-
tion T'p(u,v) for an unapodized, or clear, pupil; and, finally, the remaining ® ~1
equals 4/mD2.

Thus the expression for the speckle transfer function reduces to

T (u,w) = (T(uv)2+ 0.435(ro/DYTp(uv) , (1.25)

or, defining the number of speckles as
2

Nsp = 2.3(2> ’

ro

1
Ngp

T (u,v) = (T(uo)? + Tp(u,v) . (1.26)

In both equations we assume that (u? + )2 = (D - ro)/\.
The essential feature of the speckle transfer function, Eqs. (1.25) or (1.26),
is that there is a term proportional to the diffraction-limited optical transfer
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Fig. 1.4 (a) Comparison of the speckle transfer function predicted by the log-normal medel
with terms (1) and (2) of Eq. (1.26) for the complex Gaussian model, for D/ro = 10 and 100
(Ref. 22). (b) Comparison of the speckle transfer function predicted by the log-normal model
with experimental results.

function that extends almost up to the diffraction-limited cutoff D/\; expres-
sions (1.25) and (1.26) indicate that this result is independent of telescope
aberrations,?! although there is, in fact, a weak dependence on aberrations as
discussed in Sec. 1.2.2.4. With D = 4 m and rp = 0.1 m, the number of speckles
Ny, is approximately 3.7 x 103, indicating that the diffraction-limited infor-
mation in the image may be carried with a low signal-to-noise ratio (SNR).
However, the normalization of Egs. (1.25) and (1.26) to unity at zero spatial
frequency gives a misleading impression of the SNR, which is best evaluated
by other methods (Sec. 1.2.3).

Because Egs. (1.25) and (1.26) are based on the assumption that A(§{,m) is a
complex Gaussian process, they give only the qualitative behavior of the trans-
fer function. The speckle transfer function can be calculated using the log-
normal model and these results are compared®? to Eq. (1.26) in Fig. 1.4(a) for
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Diro = 10 and 100. The main differences lie in the region between the low-
and high-frequency terms. In fact, at low spatial frequencies, the correct asymp-
totic form of the speckle transfer function is (T)sgl?, where (T)sk is the so-
called “short-exposure” average!320 (i.e., the average when each point image
is recentered). Careful measurements by Aime et al.?? and Chelli et al.2* are
in excellent agreement with the log-normal model, particularly if the effect of
the central obstruction and the (small) effect of defocus are allowed for. Figure
1.4(b) shows the result of a measurement in the infrared.

1.2.2.4 Effect of Aberrations. Telescope aberrations have two potential ef-
fects on the speckle transfer function. If they are very severe, optical path
differences greater than the coherence length of the light may be introduced,
which would lead to a strong attenuation of the transfer function. Proper
analysis of this effect requires a detailed consideration of temporally partially
coherent imaging; this is not carried out here since the effects in normal
circumstances are small, as the following analysis shows.

Consider the simplest aberration—defocus—of magnitude m waves at the
edge of the pupil. The longitudinal and angular transverse ray aberrations Az
and Aaq, respectively, are given by

2
Az = Sn;);f )
(1.27)
Aa = 8—’17)-1-): .

Under most observing conditions, focus can be established to a tolerance Ax
of less than 10, giving a maximum value of m of approximately 5\ for a 4-m
telescope. The coherence length I of light of bandwidth A\ is given approxi-
mately by

XZ
Il = A (1.28)
and with typical bandwidths (AN = 20 nm, A = 500 nm) it is clear that I, >
mA. In practice, aberrations only introduce path differences greater than the
coherence length if the bandwidth is large or the aberrations are severe.

Aberrations also affect the shape of the speckle transfer function in the
quasimonochromatic case; their effect reduces as the ratio D/ry increases and
disappears in the limit D/rq — . The effect of several aberrations was in-
vestigated by Dainty?® using the complex Gaussian model for atmospheric
turbulence. More precise calculations for defocus and astigmatism were made
by Roddier et al.26 using the log-normal model and were compared to the
measurements of Karo and Schneiderman.?” These results are shown in Fig.
1.5; it should be emphasized that the defocus in this case was made artificially
large to illustrate the effect, with m = 6.4\ corresponding to an angular
transverse ray aberration (of extremal rays) of Ao = 3"3.

For aberrations other than defocus, intuitive reasoning based on the ap-
proximations necessary to obtain Eqs. (1.25) and (1.26) suggests that the effect
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log <|T(w)[2>

0 0.5 1.0
w/Wor

Fig. 1.5 Solid line—theoretical speckle transfer functions for D/ry = 19.2 in focus and
defocused by 6.41. Broken line—curve observed by Karo and Schneiderman®’ under defo-
cused conditions.

of aberrations is small if the seeing disk is larger than the point spread function
" due to telescope aberrations alone. Thus, a telescope of poor optical quality
achieves diffraction-limited angular resolution if sufficiently severe atmo-
spheric turbulence (real or artificially induced) is present.?! Unfortunately,
poor seeing (small ro) also results in a low SNR (Sec. 1.2.3).

1.2.2.5 Effect of Exposure Time. In practice, each image is the result of a
finite exposure time Af, which always has the effect of attenuating the speckle
transfer function. Let the instantaneous point spread function at time ¢ be
denoted P(o,B,t) and the instantaneous transfer function be T'(u,v,t). The speckle
transfer function for instantaneous exposures (At — 0) is defined by

F(uw) = (T(u,v,0)?) , (1.29)

whereas for an exposure time At it is equal to
At

Talu,v) = Aiﬂff(T*(u,v,t)T(u,v,t’)) dt dt' . (1.30)
0

The term (-) in Eq. (1.30) is called the temporal cross-energy spectrum and
plays an important role in time-integration effects. Assuming temporal sta-
tionarity of the process T(u,v,t), Eq. (1.30) may also be written

+At

o _1 _ B s
Talu,v) = At_At<1 At><T (w,u,)T(u,v,t + ) dr . (1.31)
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The finite exposure time speckle transfer function, 7 a¢(u,v), is always less than
(or equal to) the instantaneous transfer function 7 (u,v), as the following anal-
ysis shows.?® The Schwartz inequality implies

KT*(u,v,)T (w0t + DT (w,v,0P) ,

so that, using Eq. (1.31),

o 1 Nl
Tas(u,v) = o _J;t<1 At>|<T*(u,v,t)T(u,v,1,‘ + ) dr
+A¢
=1 f 1- ul (T(u,p,t)%) dr
At At e

= (| T(uu,t)? = T(uv) ,
that is,
Tadu,v) = T(wv) . (1.32)

This is a general result and is independent of the detailed nature of the tur-
bulence. The magnitude of the attenuation of 7 («,v) due to an exposure time
At depends, from an experimental point of view, on the form of the temporal
cross-energy spectrum (T*(u,v,t)T(u,v,t + 7)); only qualitative estimates of
this function have been reported.?’

The temporal cross-energy spectrum is equal to the Fourier transform of
the spatially averaged space-time® intensity correlation function,

(T*(u,v,t)T(u,v,t + 1))
= JJ' [JJ(P(G,B,t)P(a +Aa, B+ AB, t + 7)) du dB]

X expl—2wi(uAa + vAB)] dAa dAB , (1.33)

where (P(a,B,6)P(a + Aa, B + AB, ¢t + 7)) is the space-time cross-correlation
function of the instantaneous point spread function. A few measurements of
the spatially integrated space-time cross-correlation function have been made.303!
They show that, in general, this function is not cross-spectrally pure, so that
it cannot be written as the product of two separable functions of (x,v) and ¢,

(T*(u,v,0)T(u,v,t + 1) # T(u,v)Ci) . . (1.34)
¢As given in Eq. (1.33), this is an angle-time correlation function; the name space-time is more

widely used, distances (x,y) in the image plane being related to angles (a,8) by x = afand y =
Bf, where f is the focal length.
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(This result is referred to in Sec. 1.2.3.3 on the optimum exposure time.)

When Aa = AB = 0, the space-time cross-correlation is simply equal to the
temporal autocorrelation of the point spread function (P(a,B,t)P(a, B, ¢ + T)).
Several measurements of this function have been reported3°-33 and a sample
of results taken at Mauna Kea, Hawaii, are shown in Fig. 1.6; the average
correlation time of the image intensity was 15 ms for a 61-cm telescope. In
site testing for new locations for stellar interferometry, it is important to
measure both the spatial and temporal properties of seeing.

Although it is the cross-energy spectrum that most directly influences the
effect of a finite exposure time At, from a more fundamental point of view, the
important quantity is the fourth-order correlation function of the complex
amplitude in the pupil:

(AEMDA*E + &, m + M1, 8) (1.35)
X A*(E + &2,m + mg, t + DAE + &, M + M3, ¢t + )

[compare with the expression for At in Eq. (1.22)]. For both complex Gaussian
and log-normal complex amplitude, this fourth-order moment is determined
by the behavior of the second-order moment. Roddier and coworkers3435 have
calculated the effect of a finite exposure time on the speckle transfer function
using the log-normal model and the assumption that the complex amplitude
A(&m,t) moves rigidly across the telescope pupil (the Taylor approximation).
For a velocity v along the £ axis.

(AEMDARE + Ag,m + An, t + 7)) = f(AE — vT, Am) . (1.36)

0.025 0.05
T{s)

Fig. 1.6 Temporal image intensity autocorrelations over five nights at Mauna Kea, Ha-
waii, measured using a 61-cm telescope.3!
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Fig. 1.7 The effect of finite exposure time on the speckle transfer function.3®

For a telescope of diameter D, a velocity v of the turbulence implies a char-
acteristic image time scale of D/v. The results of Ref. 34 show that the atten-
uation of the transfer function is not too severe provided that A¢ < D/v.

Spatio-temporal measurements of |A|? imply that, in addition to the rigid
translation described by Eq. (1.36), there is also a strong decorrelation due to
boiling of A(tm,t). This can be explained by a multilayer model for the
turbulence’® with a velocity distribution Av of the atmospheric layers; this’
leads to a characteristic time scale of ro/Av and a uniform attenuation of the
high-frequency part of the speckle transfer function.

Karo and Schneiderman®® have measured the effect of a finite exposure time
on the speckle transfer function; their results obtained on the 1.6-m telescope
at Maui, Hawaii, are shown in Fig. 1.7. Unfortunately, the spatio-temporal
atmospheric data required to compare these measurements with theory were
not available. However, the uniform attenuation suggests that the wavefront
boiling dominated over simple rigid translation and implies a time-scale con-
sistent with ro/Av = 20 ms.

1.2.2.6 Effect of Finite Bandwidth. A finite bandwidth A\, centered at X\,
has two effects, both of which attenuate the speckle transfer function. These
effects are identical to those observed in polychromatic laboratory-generated
Fraunhofer plane speckle patterns. The two effects are (1) a radial dispersion
effect similar to that produced by a grating and (2) a loss of speckle contrast
caused by atmospheric (or, possibly, telescope induced) optical path differences
being comparable to the coherence length I, = XA\ of the radiation.

In accordance with simple first-order grating theory, a spread of wavelengths
ANX causes a spread in diffraction angles Aw/w:

Aw AN

ik
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Taking @ to be the seeing angle Mry [Eq. (1.19)], and defining wo to be the
angular diameter of a speckle (= A/D), we find the fractional radial elongation
of speckles, Aw/wg, at the seeing angle to be given by

To determine a criterion for the maximum permissible value of AN/X, we require
that Aw/wp < 1, yielding

AN

A

ro
. 1.
1 < D (1.37)

To calculate a criterion for coherence length effects to be negligible, we require
a formula for the root-mean-square optical path fluctuation o.(£) between two
points spaced £ apart in the telescope pupil. The Kolmogorov theory'® predicts

5/6

0:(§) = 0.42X<§) , (1.38)

ro

in which o,(¢) is in fact independent of wavelength since ro « A%¥5. Thus over
a telescope aperture of diameter D we may estimate o, by substituting £ = D
in Eq. (1.38); requiring that the coherence length . > o,, we obtain

AN o\ 5

0
— 4| = . 1.
<)\>2<24<D> (1.39)

Other, more stringent, criteria have been suggested.'* For typical ro = 0.1 m
and D = 4 m, criteria (1.37) and (1.39) yield

(@) < 0.025 , (@) < 0.111 ,
AN/ A2

implying that the chromatic dispersion effect is dominant and that, for X =
500 nm, the bandwidth AX should be less than 12.5 nm.

Measurements by Karo and Schneiderman®® with D/ry = 14 show no dis-
cernible effect on the speckle transfer function for ANN < 0.06; this is con-
sistent with (AMM); < 0.07 given by criterion (1.37). Even for ANA = 0.14,
the midfrequencies of J (u,v) were attenuated by only a factor of 2.

Since the chromatic dispersion effect is important, it may be worthwhile to
design a relay optical system that removes the dispersion.?” Various optical
systems have been suggested for this,3® but they suffer by having a very small
effective field angle and no design has yet been successfully incorporated into
a speckle camera system.

1.2.2.7 lIsoplanicity. If a linear system is nonisoplanatic (i.e., if its point
spread function depends on both object and image coordinates), then the ele-
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mentary convolution relationship of Eq. (1.2) is replaced by

o0

I{o,B) = jJO(a’,B’)P(a ~ao,B—Ba,B)da" dp', (1.40)

where P(Aa,AB; o,B’) is the instantaneous point spread function for an object
point at (o',B"). There is now no meaningful concept of an instantaneous trans-
fer function or a speckle transfer function. However, defining T(u,v; o',8') to
be the Fourier transform of P(a — o', B — B'; o', B') with respect to the
variables (a,B), the average image energy spectrum ®y(u,v) reduces to

@rtwp) = i) = | [ Cotar b o'

X T*(u,v; o' — a1, B’ — B1) expl—2wi(ua; + vB1)l doy dB1 ,  (1.41)

where o1 = a — o’ and B1 = B — B'.

If the function T'(u,v; o',B’) is independent of the object point (a',8'), i.e.,
the imaging is isoplanatic, then Eq. (1.41) simplifies to the usual result of
Eq. (1.7):

®7(u,v) = GolwvX|T(uv)?) .

However, according to Eq. (1.41), there is no longer a simple relationship
between object and image properties, and the form of the cross spectrum,

(T(u,v; o' ,BNT*(u,0); &' — a1, B’ — B1)) ,

between speckle patterns produced by two point sources separated by angle
(a1,P1) plays an important role.

Korff et al.,?® Shapiro,*® and Fried?? have investigated this problem using
the log-normal model for atmospheric turbulence. However, a more complete
analysis can be carried out if the complex Gaussian model of the wavefront
A(£,m) is used, as shown by Roddier et al.*! Using a multiple-layer model for
the turbulence, they estimate the atmospheric isoplanatic angle 8w to be given
by

= 0.362
do = 0.367 (1.42)

where Ah is a measure of the altitude dispersion of the turbulent layers.*! This
simple relationship does not reveal the fact that high angular frequencies
decorrelate more rapidly than lower ones as the angle of separation (a3,81)
increases, but gives a good estimate of the extent of the isoplanatic region.
Based on measured profiles of the variation of turbulence with altitude (see
Vernin in Ref. 34), predicted isoplanatic angles*! were in the range 19 to 5'4
over six nights at Haute Provence Observatory, with an average of 3"1.
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Several measurements of the isoplanatic angle or related quantities have
been reported.2?42-44 The values vary widely, with the most reliable quanti-
tative estimates*344 being in the range of 1’5 to 50, i.e., the same order of
magnitude as the theoretical predictions. Qualitative estimates, based on the
successful implementation of speckle holography,2%44 indicate some correla-
tion of image intensity for stars as far apart as 220.

1.2.2.8 Amplitude Calibration for Speckle Interferometry. To recover the
energy spectrum of the object ®o(w,v), the average energy spectrum of the
image ®(u,v) is divided by the speckle transfer function

®o(u,v) = Or(u,v)/T(u,v) . (1.43)

A more robust approach to amplitude calibration for noisy data is to construct
a Wiener (or optimal) filter®5:46 in the form

T*(u,v)

F =
(w,v) T + KNP’

(1.44)

where N (u,v) is the energy spectrum of the noise in the data and K is a scaling
constant that allows adjustment of the smoothness of the result. The object
spectrum then is given by

®Po(u,v) = Or(u,v)F (u,v) . (1.45)

At high spatial frequencies, where the speckle transfer function is small and
the SNR is generally low, the Wiener filter provides a form of damping in the
division, limiting overshoot in the quotient.

In practice, the speckle transfer function is estimated by finding the average
energy spectrum for a point source (or reference star). Unfortunately, as we
have seen in previous sections, the speckle transfer function depends on a
number of atmospheric parameters (such as rp and time scale) and these pa-
rameters themselves vary considerably over both short (seconds) and long
(hours) periods of time. Under stable atmospheric conditions, application of
Eq. (1.43) is straightforward, but under (more typical) unstable conditions, the
use of Eq. (1.43) can lead to considerable error in the estimation of the object’s
spectrum. This is less critical for measurements of simple structural features
of an object (e.g., the vector separation of a binary star) but crucial for pho-
tometric features (e.g., magnitude difference of a binary star).

Several approaches to this problem have been suggested. One is to make
simultaneous measurements of ryo and use the established theory to predict
the form of the speckle transfer function.!® The measurements of Aime et al.?3
and Chelli et al.?* suggest that the instantaneous (A¢ — 0), narrow-band
(AN — 0) speckle transfer function can be predicted for an aberration-free
telescope, but in practice focusing errors, aberrations, the finite exposure time,
and other effects may influence it. Nevertheless, this appears to be a promising
technique, particularly in the infrared where other approaches are less reliable.

The most commonly used amplitude calibration technique is to choose a
reference star with as small an angular separation from the object as possible.
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Use of a detector with a large, linear dynamic range greatly increases the
number of possible reference stars in any area of the sky. Observations are
performed by frequently switching from object to reference (on a time scale of
one to a few minutes). Under most conditions, the atmosphere is sufficiently
stable so that adjacent observations have very similar statistics and a stable
speckle transfer function. This is particularly true for visible wavelength
observations.

In the infrared, better amplitude calibration is required and a technique
called binning*” has been shown to be very effective in reducing calibration
problems. Binning requires two passes through the data. The first pass sorts
the frames by their estimated transfer function and “bins” frames (i.e., per-
forms a speckle average) with nearly the same seeing, but separately for the
object and reference data. Calibration is then performed by deconvolving sub-
sets of object data by subsets of reference data and the results summed to
obtain the final result. One limitation is that the SNR in each frame must be
sufficient to allow reasonably accurate binning, so the process is limited to
bright objects.

1.2.3 Signal-to-Noise Ratio

In the visible region of the spectrum, the SNR of a measurement and the
limiting magnitude of speckle interferometry are ultimately determined by
the fluctuations imposed by the atmospheric turbulence and the quantum
nature of radiation. Although early film-based speckle cameras were limited
by other types of noise, the improvement in detector technology over the past
decade has made available detectors that are photon-noise limited.*® Thus in
this section we discuss only the fundamental noise sources relevant to visible
light speckle interferometry (the infrared case is discussed in Sec. 1.2.5.2).

Let @ be some quantity that is to be estimated by speckle interferometry;
@ may be (1) a point in the energy spectrum ®o(1,v) of the object, (2) a point
in the autocorrelation function Cp(a,B) of the object, or (3) a parameter derived
from the autocorrelation function or energy spectrum, such as the diameter of
a star, binary separation, or magnitude difference.

We define the SNR of this measurement as

SNR = expected value of quantity
~ standard deviation of estimate ’

or

__ @
SNR = T (1.46)

where var(Q) = (Q?) — (Q)? is the variance of Q. In the analysis that follows,
the SNRs relate to an estimate of @ based on a single frame of data. Normally,
one would take M frames of data and, provided these are statistically inde-
pendent, the overall SNR for the M frames (SNR)yy, is simply given by

(SNR)» = SNR x M2 . (1.47)
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The SNR is the inverse of the relative error of measurement and in a given
astronomical application we would normally be interested in the relative error
on some parameter (such as diameter), as in (3). However, each problem has
its own specific parameters of interest and to keep our results as general as
possible we will consider the SNR of the energy spectrum or autocorrelation
function.

Several investigations of the SNR of a measurement of the autocorrelation
function have been made?549-53 and Ref. 54 outlines this approach. However,
it has been shown®® that the autocorrelation and energy spectrum approaches
give exactly equivalent SNRs, although the detailed expressions show little
apparent similarity. The decision whether to use the autocorrelation method
or the energy spectrum method of data reduction should be based on operational
considerations and not on SNR considerations. Thus in the following subsection
we evaluate only the SNR of the energy spectrum of the object.

1.2.3.1 SNR at a Point in the Energy Spectrum. The SNR at a point in the
energy spectrum was first evaluated by Roddier®® and subsequently in more
detail by several authors5’-%0 and reviewed in detail in Ref. 61. In this analysis
we use one-dimensional notation for simplicity, and it is convenient to deal
with energy spectra of the image and object that are normalized to unity at
zero angular frequency, denoted by ®7(u) and ®o(u), respectively. These are
related in the usual way,

br(u) = dow)T () , (1.48)

where the speckle transfer function 9 («) in the frequency range of interest is
given by Eq. (1.26):

1 ro (D - ro)
aj = — <L —
I(u) NspTD(u) , N <u N

We model the j’th image, Dj (o), as an inhomogeneous or compound Poisson
process, which has a rate proportional to the classical image intensity I; (o),
ie.,

Nj
Di() = kZIB(a - ),

where each delta function represents a detected photon event, a; is the location
of the k’th event in the j’th frame and N; is the number of detected photons
in the j’th frame. In an observation, the squared modulus of the Fourier trans-
form |d;j(u)|? is computed for each frame. It is straightforward to show that
the average of this is given by®’

(d; w)?) = N?ds(u) + N, (1.49)

where N is the average number of detected photons per frame. It follows that
the energy spectrum of the photon data, (|d; (w)|?), is a biased estimate of ®r(u)
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to the presence of the N term; in the realistic case in which the photon events
are not delta functions but have a unit volume spread function S(a), the second
term would be Njs(u).

There are two estimators § whose average yield an unbiased estimate of
the image energy spectrum. One possibility is to subtract the average number
N from each |d;(u)|?,

Q= ldwf - N, (1.50)
and the second possibility is to subtract the actual number N;,
Q2 = |diw)f® - N; . (1.51)

In either case, the average values of ¢ are unbiased estimators,

(@) = (Q2) = N?dy(u) . (1.52)

For the first estimator, the variance is equal to®®

var(Q1) = N + N?2 + 22 + N)N3®;(u) + N2d;(2u) + N4df(n) .
(1.53)

As in all problems of this type, the fluctuation at frequency u is influenced by
the value of the energy spectrum at frequency 2u. At exceedingly low light
levels N << 1 (probably of no practical interest!), the SNR per frame for
estimate @1 is, from Eqgs. (1.46), (1.52), and (1.53),

SNR = N32¢;u), N<<1. (1.54)

The use of definition (1.50) for the estimate @1 has the disadvantage that the
noise associated with @, contains a contribution arising from N;, the actual
number of photons per frame. These fluctuations are related to the brightness
of the object and not to its structure. If one is interested in the morphology of
the object, Q2 is a better estimate; its variance is given by®°

var(Qq) = N? + N2&;(2u) + 2N3®;(w) + N*df(w) . (1.55)

If we consider only frequencies u > 12D/\, the second term in Eq. (1.55) can
be ignored, yielding a SNR per frame of

Ndr(u)

—_— 1.
1 + Nos(u) ' (1.56)

SNR =

which is the general expression for the SNR at any point (u > 1D/\) in the
energy spectrum of the image. If the speckle transfer function is known exactly
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(this is never true in practice), then Eq. (1.56) is also the SNR at a point in
the energy spectrum of the object. Substituting Egs. (1.26) and (1.48) into Eq.
(1.56) and defining the average number of detected photons per speckle 7 as

2

__N _N{(n
" T Ne 23 <D> ’ (1.57)

we find that the SNR per frame becomes

ATp(w)Po(u)

NR = = .
SNR 1 + BTpw)Polu)

(1.58)

Two limiting cases are of interest: (1) very bright objects and (2) very faint
ones. For very bright objects, such that

aTpuw)do) > 1 ,
then

SNR =1 . (1.59)
Note that the SNR per frame cannot exceed unity in speckle interferometry
and this is one of the disadvantages of the speckle technique, compared to

pupil plane interferometry, for bright objects.
For very faint objects, such that

aTpw)dow) << 1,

then

SNR = N&;(n)

[

nTp(u)bo(u) , (1.60)

where, as before, N is the average number of detected photons per frame and
7 is the average number per speckle. This particularly simple formula for the
SNR per frame at a point (z > 1D/\) in the energy spectrum of the object is
valid in practice for all fainter objects. _

An example of the variation of SNR per frame as a function of N is shown
in Fig. 1.8 for D/ry = 10, 20, and 40. For faint objects, the SNR is proportional
to r§, so that there is a strong dependence of SNR on the seeing. On the other
hand, since the average number of photons per speckle [Eq. (1.57)] is inde-
pendent of telescope diameter, the SNR at a point in the energy spectrum is
also independent of telescope diameter for faint objects. Of course, a larger
telescope yields more independent points in the energy spectrum.
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Fig. 1.8 The variation of SNR per frame with the average number of detected photons per
frame N for D/ro = 10, 20, and 40, for Tpd®o = 0.5 (Ref. 61).

1.2.3.2 Optimum Exposure Time. In the low-light-level case, the SNR at a
point in the energy spectrum for M statistically independent frames is, from
Eqs. (1.47) and (1.60),

(SNR)y = VMN®;(u) . (1.61)

It appears at first sight that a larger exposure time (i.e., increasing N) leads
to a higher SNR; however, this is true only up to an optimum exposure time,
after which the decrease in M and ®;(z) dominates. The optimum exposure
time has been evaluated by Walker5? and O’Donnell and Dainty.®?

Let the exposure time be denoted by At, the experiment time by T, and the
photon rate by p = NJ/At; then, assuming that neighboring exposures are
always statistically independent‘i Eq. (1.61) can be rewritten as

(SNR)y = (T At ar(u) , (1.62)

where (iDI,At(u) is the measured image energy spectrum for an exposure time
At. The temporal behavior of the image intensity was discussed in Sec. 1.2.2.5,

dClearly, neighboring exposures cannot be statistically independent unless A¢ >> correlation time
of the image intensity; when there are only a small number of detected photons per frame, however,
there is an approximate statistical independence for neighboring frames.
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where we showed that the measured image energy spectrum may always be
written [see Eq. (1.31)]:

At

oo L% (1 s
DPrac(u) = A _At<1 At)(z"‘(u,t)z(u,t + 7)) dr . (1.63)

Both theory and experiment show that, in general, the cross spectrum (i*(u,t)i
(u,t + 7)) is not separable. On the other hand, measurements®! indicate that
the approximation [see Eq. (1.34)]

(i*(w,)i(ut + 1) = dr(u)C(r) (1.64)

may not be unreasonable under typical observing conditions. In Eq. (1.64),
®;(u) is the normalized instantaneous energy spectrum and C(r) is the nor-
malized temporal autocorrelation function of the stellar image (some mea-
surements are shown in Fig. 1.6). Substituting Eqgs. (1.63) and (1.64) into (1.62)
we obtain

R 1o rAt
(SNR)y = @1(u)2p<-’£—§) J;) ( - IALDC(T) dr . (1.65)

In Fig. 1.9, the SNR is plotted as a function of exposure time for two models
of the temporal correlation function C(r), Gaussian and negative exponential,
each having a 1/e correlation time of 7.; the Gaussian model appears to give
a better fit to the experimental data of Fig. 1.6. It can be seen that the overall

Relative
SNR
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A :Gaussian Model
0.5 Maximum at T=1.6 T

B:Exponential Model
0.25 Maximum at T=2.0 T

| 1 | 1 L1

T 2T 3Tt 4t 5T

Fig. 1.9 Relative SNR at a point in the power spectrum as a function of the length of the
individual short exposures for two models of the time correlation of the image intensity.
The overall time of observation is assumed to be constant and it is also assumed that the
average number of detected photons per speckle is very much less than one.
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SNR is highest for exposure times At equal to 1.67, for the Gaussian model
and 2.17, for the exponential one. This is somewhat larger than might be
expected and certainly much larger than desirable at high light levels where
photon noise is negligible. Since the SNR decreases rather slowly for exposure
times longer than = 27, we can also conclude that, if there is some doubt as
to the value of 7., longer rather than shorter exposures should be used.

1.2.3.3 Limiting Magnitude. Labeyrie concluded his original paper® on
speckle interferometry with the comment that “the technique appears to be
limited to objects brighter than m, = 7. It was quickly recognized by Labeyrie
and others that, in fact, the faintest objects that can be resolved by this tech-
nique are a factor of 10° fainter, of apparent visual magnitude m, = 20.

Any estimate of the limiting or just-observable magnitude depends on the
criterion adopted for “just-observable” as well as on the usual parameters such
as detector quantum efficiency, bandwidth, exposure time, and so on. Three
examples are given here: an estimate of the complete object energy spectrum,
the detection of a binary star, and the measurement of the diameter of a star.
In each case we define a factor F' to be the product of the exposure time A# in
seconds, [s], the optical bandwidth AN in nanometers, and the quantum effi-
ciency g of the detector,

F = AtArg . (1.66)

We also use the fact that a source of apparent visual magnitude m, gives rise
to an average number of detected photons per square meter per frame, N4, of &

Ny = F10®-04m0) (1.67)

Estimation of the Object Energy Spectrum. At low light levels, combination
of Egs. (1.47), (1.60), and (1.67) gives a SNR of

2 2
(SNR)m = M‘/2“—4D—F10<8—°~4MU)[0.435(%> ]@o(u)TD(u) ,

which can be rearranged to give®

my = 18.8 + 2.5 logF — 2.5 log (SNR)» + 1.25 logM
+ 2.5 log[®o(w) Tpw)] + 5 logro . (1.68)

Forrg =01m,M = 10%, At = 0.02 s, A\ = 25 nm, g = 0.1, ®o(w)Tp(u) =
0.2, and a limiting (SNR)y = 5, Eq. (1.68) predicts a limiting apparent visual
magnitude of approximately m, = 13.3, corresponding to approximately 300
detected photons per frame in a 4-m telescope. Note that the limiting mag-
nitude defined in this way is independent of telescope diameter and depends
quite strongly on the seeing parameter rp; in fact, the dependence on ry is
stronger than Eq. (1.68) indicates since the bandwidth and exposure time both
change with ro (Ref. 14). The value m, = 13.3 is a conservative estimate of
the limiting magnitude for many purposes, since it is based on the criterion
that the SNRs have the value 5 at every point in the energy spectrum.
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Fig. 1.10 Limiting magnitude m, as a function of the desired fractional accuracy for a
typical set of observing parameters on a 4-m class telescope (observing period: 2000 s).5%

Detection of Binary Stars. Using a formula for the SNR based on the auto-
correlation approach,®®! in which the estimated quantity is the height of the
binary star autocorrelation peak above its local background, we can derive the
following limiting magnitude for a binary whose components are equally bright:

mo = 17.3 + 2.5 logF — 2.5 log(SNR)y + 1.25 logM
+ 2.5logD + 2.5 logro . (1.69)

Substituting the same parameters as earlier leads to a limiting magnitude of
my = 17.6, corresponding to approximately five detected photons per frame
on average. By increasing the number of independent frames to 106 and slightly
increasing the exposure time and bandwidth, binaries as faint as m, = 20
should be observable.

The limiting magnitude predicted by Eq. (1.69) has been effectively achieved
by Hege et al.* in their measurement of the 16.2 magnitude component of the
triple quasar PG 1115 + 08 using approximately 20,000 independent frames.

Estimation of Object Diameter. Walker*® has made a comprehensive study of
the accuracy with which the diameter of an object can be estimated by speckle
interferometry, assuming a known limb darkening profile of the star. His
results are summarized in Fig. 1.10 for a collection of observing parameters
that are similar (but not identical) to the previous two cases. For 1% statistical
error in a diameter whose value is 05, the limiting magnitude is approximately
m, = 16. Of course, other deterministic effects such as those due to atmospheric
calibration are not included in this or previous cases.

1.2.3.4 Space-Time Speckle Interferometry. In the analysis of the optimum
exposure time in Sec. 1.2.3.2, we found that exposures as long as twice the
temporal correlation time of the image could be optimum from the point of
view of the SNR. Such long exposure times result in attenuation of the high
angular frequency components in the measured energy spectrum, and those
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remain uncorrected. Another drawback of the straightforward speckle method
is that no use is made of the fact that photons detected at the end of one
exposure are associated with essentially the same classical intensity as those
detected at the beginning of the next exposure; thus there is a potential loss
of information.

Space-time speckle interferometry is an extension of speckle interfer-
ometry that includes correlations in the time domain as well as in the spatial
or angular domain. In one such scheme, the temporal cross-energy spectrum
(i*(u,v,t)i(u,v,t + 7)) is estimated and used to find an estimate of ®;(u,v) that is
not biased by the effects of a finite exposure time. However, the SNR of this
technique does not appear to be any higher than that associated with the
optimum exposure time method.® It does not appear to be worthwhile imple-
menting space-time speckle interferometry unless other benefits can be found
(such as obtaining object maps®).

62,66

1.2.4 Reconstruction of the Object Intensity

The fundamental equation of speckle interferometry relates the average energy
spectrum of the image ®;(u,v) to that of the object ®o(u,v),

®r(u,v) = ®olu,v)T(u,v) ,

where J(u,v) is the speckle transfer function. Under favorable conditions this
equation can be inverted to yield an estimate of the object energy spectrum

Po(u,v)

lo(u,v)|?
2

J’J“ O(a,B) expl —2wi(oau + Bv)l da dB| , (1.70)

where O(a,B) is the angular distribution of object intensity and o(u,v) is its
Fourier transform. It should be noted that, by the van Cittert-Zernike theo-
rem,? o(u,v) is a spatial coherence function (strictly, the mutual intensity) and
|o(u,v)| is often called a visibility function.

It is impossible, in general, to calculate a unique object intensity O(a,B)
from a knowledge of only its energy spectrum ®p(u,v); this simple fact cannot
be stressed too strongly. In some special cases, unique reconstruction of O(a,B)
is possible; in a second set of special cases, unique reconstructions can be formed
almost always; and in a third set of special cases, additional information is
available that enables a unique solution to be found.

The object energy spectrum ®o(u,v) contains no obvious information about
the phase of the Fourier transform of O(a,B) and for this reason the problem
of reconstructing the object intensity from ®o(u,v) is referred to as the phase
problem. Phase problems arise in many branches of physics—scattering, x-ray
diffraction, coherence theory, and microscopy—and a detailed review is beyond
the scope of this chapter (see Refs. 67 and 68). Our review is limited strictly
to the phase problem as it occurs in the measurement of angular coherence
functions by stellar speckle interferometry; short reviews of this may be found
in Refs. 54 and 69 through 72 and a comprehensive review was given by
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Bates.” It is interesting to note that some of the earliest work on the phase
problem by Lord Rayleigh™ and, in the modern era, by Wolf”® was also con-
cerned with coherence theory.

In Sec. 1.2.4.1 we discuss the basic reason for the ambiguity of the phase
problem. The next two sections deal with attempts at object reconstruction
from the energy spectrum only, while in Secs. 1.2.4.4 through 1.2.4.8 we de-
scribe other methods that incorporate information in addition to the energy
spectrum. The subject is summarized in Sec. 1.2.4.9. The review is limited to
the speckle method of stellar interferometry; in this regard it should be noted
that there is increasing evidence’®~"? that other methods of stellar interfer-
ometry are probably more appropriate for object reconstruction.

1.2.4.1 Ambiguity of the Phase Problem. An essentially theoretical re-
striction in the phase problem, which is always satisfied in practice, is that
the object intensity O(a,B) has a finite angular extent with support (2a, 2b);
thus o(u,v) is the finite Fourier transform,

a b
o(uw) = f_ f_bO(a,B) expl —2wi(ua + vB)] da dB . 1.71)

It can be shown that the analytical continuation of o(u,v) to the complex plane,
o0(z1,22) where z1 and z2 are complex variables is an entire function of expo-
nential type. Such functions are completely specified by their (complex) zeros.
The zeros provide a unifying concept for the study of all phase retrieval meth-
ods; their importance in interferometry was discussed by Bates®® and in a more
general context by Ross and colleagues.?183 Although the zeros are the unify-
ing concept, they are not necessarily of practical value in computer-based
algorithms due to the complexity of determining their locations.

Before discussing the reason for the ambiguity of the phase problem, we
should note that certain phase ambiguities do not affect the form of the object
intensity and are ignored in the following analysis. Defining the phase of o(u,v)
as phase {o(u,v)}, we are not concerned with the following variants:

phase {o(u,v)} + ¢, where ¢ is a constant, (1.72a)
phase {o(x,v)} + 2w(ua; + vB1) ,
where (a1,B1) is a constant vector, (1.72b)

— phase {o(u,v)} . (1.72¢)

The addition of a constant phase [Eq. (1.72a)] does not alter the object intensity
O(a,B); the second variant [Eq. (1.72b)] leads to a shifted object O(a + ai,
B + Bi); the third case [Eq. (1.72¢)] gives O(—«a, —B), which is a 180-deg
rotated version of the object. In the following discussion, these trivial ambi-
guities are ignored.

Our approach to describing the phase problem is, following Bruck and Sodin,*
to represent the object by a finite number of samples, equally spaced (for
simplicity) by A on a grid of (N + 1) by (M + 1) points. Defining new complex
variables w; and w2
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w1 = exp(—2wiz14), w2 = exp(—2wizzA) , (1.73)

the Fourier transform o(wi,w2) can be written as a finite polynomial in w1
and wg

Mz

N
olwy,wg) = wy V2w, ¥4 20 0O(nA - a, mA — bwiwy .
n=

m

The terms wi “* and w; ¥ merely define the (o,p) origin; ignoring these, and
simplifying the notation we write

N M
o(wy,ws) = Zo mZOOnmw{’wén . (1.74a)

The most important feature of Eq.(1.74a) is that the (discrete) Fourier trans-
form of the object intensity can be written as a finite polynomial in the complex
variables w1 and wg, the coefficients of the polynomial being the sampled values
of the object intensity. In this approach to the phase problem, the mathematics
of polynomials is important. Note, however, that this approach is less general
than required by the original problem, which was for continuous, not discrete,
object functions.
Consider now the one-dimensional case:

N
o(wy) = nZOOnw'l‘ . (1.74b)

A one-dimensional polynomial can always be factorized, or reduced, into prime
factors.

N
o(wy) = C.]_[l(wl - wi,j) , (1.75)

Jj=

where C is a constant and w,; are the roots or zeros. The N zeros and the
constant C completely determine the Fourier transform o(w1) and hence the
object O,. If the object is real, as in the present case, the zeros lie on the unit
circle or in complex conjugate pairs around the unit circle and only N/2 zero
locations are required to specify the object; positivity requires that no zeros
lie on the positive real w; axis. Figures 1.11(a) and (b) illustrate these results.

In a similar manner, we can represent the energy spectrum ®o(u) as an
analytical function o(z1)0*(2%). The conjugate function to o(wy) is just o(1/w1)
so that ®o(w1) can be written as a polynomial of degree 2N:

N
Qowr) = C? 1 (wy — wy Nw;, — Vwi;) . (1.76)
j=1 J 5J

That is, the complex zeros of ®o(w1) consist of the original N zeros of the object
transform plus their inverses. This is illustrated in Fig. 1.11(c).
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Fig. 1.11 (a) A real positive object, (b) zeros of its Fourier trausform, and (c) zeros of its
energy spectrum. (Courtesy of B. J. Brames)

Thus, the essence of the phase problem is that, without some basis for
choosing between the correct zero and its inverse, we could construct 22
equally valid sets of N zeros each representing a real, possibly positive, object.
In the one-dimensional case, there is no unique solution to the phase problem,
in either a theoretical or practical sense; additional information is required to
find the object intensity.

Consider now the two-dimensional case, where the Fourier transform of the
object intensity can be written as a polynomial in two complex variables,

N

M
o(wy,wz) = > Onmwitwy .
n=0m=0

Napier and Bates®® were the first to find that a unique solution to the phase
problem was more likely to occur in this case. In one dimension, ambiguity
resulted from the factorizability of the polynomial of Eq. (1.74b); in two di-
mensions, as shown by Bruck and Sodin,® ambiguity may also exist if the two
variable polynomial of Eq. (1.74a) is factorizable (or reducible) and the degree
of ambiguity is determined by the number of non-self-conjugate irreducible
factors. However, there is a very small probability that any two-dimensional
polynomial is reducible; in fact, reducible polynomials in two dimensions are
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a set of measure zero.2 Thus one is tempted to assume that the two-dimensional
phase problem has a unique solution “almost always.”

The uniqueness of the two-dimensional phase problem is the subject of much
current research. The results of applying the algorithms to be described in
Sec. 1.2.4.3 strongly suggest that effectively unique solutions may exist for cer-
tain objects, although of course it is always possible to produce counter-
examples.5% Fiddy et al.®° and Fienup®® have used Eisenstein’s irreducibility
theorem to define one particular class of objects for which a unique solution
is guaranteed.

There are three basic approaches to solving the phase problem in stellar
speckle interferometry. In the first, it is assumed that something about the
object is known. For example, for a symmetric object intensity

O(a,f) = O(~0a,—P) , .77)

the Fourier transform o(u,v) is purely real and continuity arguments enable
it to be found from |o(u,v)|; a rotationally symmetric object is included in this
category. Speckle holography, discussed in the next subsection, also assumes
that the object has a known property. In the second approach, one assumes
that the two-dimensional phase problem is almost unique and seeks an al-
gorithm to recover the object intensity from the modulus information alone.
In the third approach, additional information is extracted from the speckle
images in a number of different ways (see Secs. 1.2.4.4 through 1.2.4.7).

1.2.4.2 Speckle Holography. The technique of speckle holography, in its
original and most elementary form,°2 relies on the presence of a reference
object, preferably a point source. Let the object field be written as the sum of
a point centered at the origin and the object under investigation O;(a,B) cen-
tered at (a1,B1),

O(e,B) = 3(@)d(B) + Or(a — a1, — B1) . (1.78)

The spatial autocorrelation of Eq. (1.78) consists of four terms

o«

Cola,p) = J'fﬁ(a’)S(B')S(a’ + 3B’ + B) da' dp’

o

+ fjol(a', BN01(a’ + a, B’ + B) da' dP’

+ O1{la — a1, B — B1) + O1(—a — a1, —B — B1) . 1.79)

The first two terms are located in the region of the origin, the third is the
object centered at (ai,B1), and the fourth term is a 180-deg rotation of the
object centered at (~a1,— B1). Provided that a1 > 3a/2 and 81 > 3b/2, where
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ADS 3358 A-B-C

Fig. 1.12 Speckle holography of ADS 3358 (Ref. 94).

the object extent is (a,d), the third and fourth terms are separated in angle
from the first two and a reconstruction of the object is obtained (with the 180-
deg rotation ambiguity). Weigelt?®%® has demonstrated that this is a useful
astronomical technique and Fig. 1.12 shows an example of the reconstruction
of a triple star using speckle holography. The extent of the atmospheric iso-
planatic angle is clearly important in speckle holography (Sec. 1.2.2.7).

If the reference point is not separated by the holographic distance then, in
general, the object intensity cannot be reconstructed unambiguously unless
further information is available. For example, Liu and Lohmann®® suggested
using the long-exposure image as a mask, and Baldwin and Warner®’ used
the knowledge that one star is brighter than the others to unravel the object
(star clusters) from the autocorrelation function. Indeed, if the object consists
of a discrete set of points and no vector separation between points occurs more
than once (i.e., nonredundant spacings), then a unique solution to the problem
exists.?®% In another special case described by Bruck and Sodin,® a one-
dimensional object can be reconstructed uniquely provided that the reference
point is not in line with the object in the two-dimensional plane. The irredu-
cibility criterion described by Fiddy et al.?? also involves the use of reference
points less than the usual holographic distance. In practice, speckle holography
israrely applicable to astronomical problems, since very few interesting objects
have bright sources conveniently located at a small enough separation to be
within the atmospheric isoplanatic angle.
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Weigelt'9%10! hags suggested a technique called speckle masking that is re-
lated to holography in the sense that the speckle short-exposure images are
preprocessed to yield an approximation to the instantaneous point spread func-
tion. Details are given in Sec. 1.2.4.8.

1.2.4.3 Modulus-Only Algorithms. In this approach to object reconstruc-
tion in stellar speckle interferometry, it is implicitly assumed that the two-
dimensional problem does have a unique solution. Three algorithms that at-
tempt to recover this solution are described here. Any result produced by these
algorithms is therefore subject to two uncertainties: (1) Did a unique solution
to the phase problem exist, even in principle? (2) If it did exist, did the algo-
rithm converge to this solution? Strictly speaking, uniqueness of the solution
to the two-dimensional phase problem is not guaranteed and none of the al-
gorithms described here has been shown to always converge to the unique
solution when one is known a priori to exist. On the other hand, the over-
whelming proportion of experimental evidence suggests that, for simple objects,
some of these methods are successful in reconstructing object maps.

Iterative Algorithm. Fienup has suggested a number of iterative algo-
rithms!02-108 for computing the object intensity from a knowledge of only the
modulus of its Fourier transform and an estimate of the support of the object.
Two possible schemes are shown in Fig. 1.13. The first scheme, called the error
reduction method because the mean square error between iterations always
decreases,'® is a generalized form of the Gerchberg-Saxton algorithm.}%7 Starting
with an estimate of the object intensity at the &’th iteration Oy(«,B), the trans-
form 0z(u,v) is calculated. The modulus of this transform is replaced by the
given modulus, forming a new estimate o(u,v) that satisfies the constraints
of the problem in the Fourier transform domain. This is inverse-transformed
to give a new estimate of the object Oj(a, B), which is set to zero in the region
where the object is known to be zero and set equal to zero where negative
object values exist, thus forming a new estimate O +1(a,8), which is the start-
ing point for the next cycle. In practice, the error reduction algorithm converges
very slowly and it is generally most useful when applied with one of the input/
output algorithms.

The second scheme is shown in Fig. 1.13(b) and is called the input/output
algorithm. The only difference between this and the error reduction scheme
lies in how the next starting input 0k+1(a,B) is derived from the previous
output estimate 0 (a,B) and input Ok(a,B) To a first-order approximation, a
small change in the input gives a small change in the output proportional to
that in the input (plus nonlinear terms); thus, by changing the input it should
be possible to drive the output in the desired direction. The most satisfactory
version of this scheme, called the hybrid input/output algorithm is

On+1(oup) = Ok(a,ﬁ) when object constraints satisfied
k1 Or(a,p) — vOi(a,B)  when not satisfied,
(1.80)

where v is a parameter, typically of the order of unity.
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Fig.1.13 The iterative algorithms for solving the phase problem: (a) error reduction in

object space and (b) hybrid input/outéput. (A) is where object constraints are satisfied and
(B) is where they are not satisfied.!°

A discussion of the relative merits of different iterative algorithms is given
in Ref. 106. At the present time, these algorithms are still rather ad hoc and
their success appears to depend to some extent on the skill of the programmer.
Figure 1.14 shows some results obtained by Fienup. These algorithms tend to
recover the object intensity successfully for simple, but nonsymmetric, objects;
the shape of the support of the object also appears to affect the success of the
iterative method. It should be stressed that this (and other) algorithms can
fail to converge to the correct solution for complicated objects.

Phase-Closure Algorithms. Bates and coworkers!®-110 have suggested an
algorithm that, in its original form, may be useful as a starting point for the
Fienup algorithm,11-113 and in a future improved form may be valuable on
its own. Consider an array of N by M values of the Fourier transform of an
object (for a real object of size N by N, M = N/2 + 1). The aim of this algorithm
is to calculate the phases of each point 6;;, allowing any one point (usually
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Fig. 1.14 (A) Original object; (B), (C) examples of simulated degraded images; (D) Fourier

modulus estimate computed from degraded images; and (E) image reconstructed using it-

erative algorithm.10®

the origin) to be set to zero. Bates and coworkers suggested the following two-
step procedure:

1. Estimate the magnitude of the (N — 1) by M phase differences along
the u axis, [0;+1,; — 0;;| and the N by (M — 1) v phase differences
18i5+1 — 0]

2. Compute the N by M phases from the magnitudes of these (2NM —
N — M) = 2NM phase differences.

Let us assume, for the moment, that step 1 is possible and see how phase
closure might be used to determine the phases. Consider the rectangle com-
prising the first four points (0,0), (1,0), (1,1), and (0,1) and assume that the
magnitudes of the four phase differences are known:

61,0 — 600 = Y1 ,

|91,1 - 01,O| =g, (1.81)

61,1 — 60,1 = U3,

60,1 — 60,0 = Ws .

Clearly, we can set

600 = 0 (1.82a)
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and
010 = +i1 . (1.82b)

(If in fact 810 = —, the object reconstruction will be rotated by 180 deg.)
Proceeding around the rectangle anticlockwise,

01,1 = Y1 = U (1.82¢)
and this leads to four possible values of 6¢,1,

801 = Y1 = Y2 = Y3 . (1.82d)
On the other hand, going directly from (0,0) to (0,1) yields

001 = g . , (1.82e)

Bates!'% argued that only one of the four solutions [Eq. (1.82d)] will equal one
of the two solutions [Eq. (1.82¢)], thus determining the phases at each of the
four points. If this is the case, then this procedure could be repeated for all
points in the Fourier plane and the object intensity could be found by inverse
Fourier transformation. Since the number of phase difference magnitudes is
roughly twice the number of phases, it may be possible to use the methods
mentioned in Sec. 1.2.4.7 for improving the phase estimates.

Even if step 2 works, it is still necessary to find the magnitudes of phase
differences from step 1. These can be estimated by oversampling the modulus
in a scheme in which the Shannon interpolation formula is replaced by two-
point interpolation'%; this provides only a crude estimate of the phase differ-
ences (for example, a large proportion have to be set equal to 0 or ) and
requires improvement for reliable object restoration by itself. Combined with
a modified Fienup algorithm that incorporates a preprocessing step to remove
the strong central lobe in the Fourier plane, this technique has been shown!12:113
to produce excellent reconstructions of simple objects.

Maximum Entropy Algorithm. In general terms, the maximum entropy method
reconstructs the smoothest object intensity distribution consistent with the
available data. It was first suggested for use with phaseless data by Gull and
Daniell'* as with the other algorithms, there is, of course, no way that the
maximum entropy algorithm can resolve any inherent ambiguities.115 If there
are ambiguities, this method restores the smoothest object map.

1.2.4.4 Use of Exponential Filters. The ambiguity of the phase problem
arises because the 2N zeros of the object energy spectrum consist of the N zeros
associated with the Fourier transform of the object, plus their inverses. Given
only the 2N zeros of the energy spectrum, it is impossible, in general, to select
the correct zeros from each zero pair. By making a second measurement of the
energy spectrum of a modified object intensity distribution [the original O(a,B)
multiplied by exp(—2maa), where a is a constant], it is possible to recover
unambiguously the correct N zeros and hence the object intensity itself. This
was first suggested by Walker!'® and Wood et al.l'’
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Fig. 1.15 The effect of exponential filtering on zero locations.

The basic principle of the method is shown in Fig. 1.15, where, for illustra-
tion, there are only three sets of zeros. The zeros corresponding to the original
object are shown as solid circles @ and their inverses as O; given only the object
energy spectrum it is impossible to determine which is the “correct” one. When
the object is multiplied by exp(—2maa), a > 0, the zeros in terms of the 2
variable move from z; to z; — ia, and in terms of the w variable, w = exp(—2mnizA),
from w; to w; exp(2waA). That is, the correct zeros all move radially outward
by a constant factor, as shown in Fig. 1.15 (e— m). The energy spectrum of the
modified object contains both these zeros (W) and their inverses (0); given both
pairs of zeros (e, 0, B and 0) the correct zero (®) can always be located. Although
our description has been in terms of one dimension, the uniqueness of the
solution also applies to the two-dimensional case.

In astronomy, it is, of course, impossible to place an exponential filter over
the object! Walker!!8 showed that this is not necessary and that the exponential
filter may be placed in the image plane. Denote the instantaneous image
intensity by I(e,8) and the exponential filter transmittance by G(o,B). The
energy spectra of the image intensity and the modified image intensity
[I(e,B)- G(c,B)] of Eq. (1.5) are

®r(u,v) = |o(u,0)X|T(u,0))
and
Dj(u,v) = {Ji(u,v)Bg(u,v)?)
= (o(u,) T (u,v)}Rg(u,v)P) , (1.83)

where & denotes the convolution and the other symbols are defined in Sec. 1.2.2.1.
Provided that
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Fig. 1.16 (a) Test object; (b) a short-exposure point spread function; (c) a short-exposure
image; (d)-(g) reconstructions using, respectively, 10, 25, 50, and 100 simulated point and
object exposures.!®

G(og + ag, B + B2) = G(a,PB1)Glaz,B2) , (1.84)

which is satisfied by the real exponential function, the convolution of Eq. (1.83)
simplifies to yield

Dp(u,v) = |o'(wv)X|T" (u,v)?) , (1.85)
where

o' (u,v) = o(u,v)PBg(u,v) ,

T'(u,0) = T(u,v)PBg(u,v) .

Assuming that the forms of the two transfer functions (| T'(x,0)[?) and {|T" (u,v)|?)
can be found (using a reference star, for example), we can find the energy
spectra of the object and of the modified object, which are sufficient data for a
unique solution to the phase problem.

Having shown that a unique object reconstruction can be found from |o(z,v)[?
and |0’ (u,0)[%, there remains the problem of finding a practical two-dimensional
algorithm that converges to this unique solution. Walker!18:119 hag used an
extended version of the Fienup algorithm that includes both sets of Fourier
constraints. Figure 1.16 shows an example of reconstructions obtained by Walker
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in a computer simulation that used this algorithm. Note that this proposed
method of object reconstruction uses only a single set of data for the object and
for the reference, because the exponential filter can be applied numerically on
the raw data.

1.2.4.5 Shift and Add. The short-exposure speckle images shown in Fig.
1.1 are of an unresolvable star in the upper row and a-Orionis, or Betelgeuse,
which is a red giant star in the lower row. In simplistic terms, each “speckle”
in both sets of images may be regarded as an “image”; for the upper row, it is
an image of a point source and for the lower row it is an image of a-Orionis.
Such reasoning led Harvey and coworkers!2%:121 to obtain the first diffraction-
limited map of a star other than our own sun.

In the original method, a few bright speckles are selected from each exposure
and superimposed with the aid of a digital microdensitometer and computer.
Figure 1.17 shows the result of this process for a point object (a) and a-Orionis
in the continuum (b) and TiO absorption band (c); clearly the giant star is

() (d

Fig. 1.17 Diffraction-limited images computed from short-exposure photographs by Lynds
et al.1?% (a) unresolved star (y-Ori), (b) a-Ori or Betelgeuse, in the continuum, (¢) a-Ori in
the TiO band, and (d) the difference between (b) — (c). The contour levels are 5% of the
peak intensity (a) — (¢); in (d) the interval is 2%, with the broken curve indicating that
the continuum is brighter.
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resolved and the difference |(b — ¢)| indicates Possible temperature variation
over the surface of the star. McDonnell and Bates 22 have applied super-resolution
techniques to produce an enhanced image of Betelgeuse from these data.

This approach to forming object maps has been extended by Bates and
Cady!23:124 in a technique they call shift and add. Let (;,8;) denote the co-
ordinates of the center of the brightest speckle in the j’th image. Each image
is shifted such that (a;,B;) is at the origin and then added to all other similarly
shifted images, giving the result

N
R@B) = 5 26 = B~ ) - (1.8

1=

This process is carried out for both the object under study and a reference star;
the image of the object is deconvolved using that of the reference and an
algorithm'®® such as CLEAN. A theoretical study'?® has confirmed that
diffraction-limited information is preserved in the shift-and-add method. Ex-
cellent reviews of shift-and-add techniques and their variations are found in
Bates and McDonnell'?” and Hege.!2®

1.2.4.6 Phase Averaging. In the technique of speckle interferometry, the
Fourier transforms of the instantaneous image intensity and the object inten-
sity are related by

i(u,v) = o(u,)T(u,v) , (1.87)
where T'(u,v) is the instantaneous transfer function. The quantities (|i(u,v)[?)
and (|T(u,v)|?) are measured and an estimate of the object energy spectrum
lo(u,0)|? is obtained. Taking the logarithm of Eq. (1.87) we obtain

phase{i(u,v)} = phase{o(u,v)} + phase{T(u,v)} (1.88)
and, taking the average

(phase{i(u,v)}) = phase{o(x,v)} + (phase{T(u,v)}) , (1.89)
where, in all cases, the phase is the value in the interval —o to «. Thus,
provided that (phase{T (u,v)}) is known (or zero), the phase of the object trans-
form can be obtained from the average phase of the image transforms; this
method was first suggested by McGlamery.2°

Using arguments based on the central limit theorem, it is not difficult to
show that, for D >> ry and angular frequencies

ro/A < (u,v) < (D — ro)/\

the quantity T'(u,v) is a circular complex Gaussian random process. It follows
that

(phase{T'(x,v)}) = 0 ,
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and that the phase {T'(u,v)} folded into the primary interval —= to 7 is sta-
tistically uniformly distributed.

The crucial step in implementing the phase-averaging method is therefore
the determination of the unwrapped phase (i.e., that in the interval —o to «)
from the phase in the primary interval — to «. In principle, this may be done
by assuming continuity of the phase and following it out from the origin where
it can be assumed to be zero. This procedure is subject to error when the
modulus |i(z,v)| is small. O’Donnell?® has shown that the rms absolute error
¢ in the unwrapped phase is given approximately by

1

o (2N)1/2|2(u,v)| , (1.90)
where N is the average number of detected photons per frame and i(u,v) is
the Fourier transform of the instantaneous image intensity normalized to unity
at the origin. Clearly, a small value of |[i(x,v)| leads to a large error. For
example, for a point object [®o(u,v) = 1] at an intermediate frequency [ Tp(u,v)
= 0.5] and a large telescope (D/ro = 40), an average value of li(u,v)| is of the
order of 10”2, implying N > 8 x 10* detected photons per frame for a phase
error of less than 0.25 rad.

Despite this analysis, computer simulations of the phase-averaging method
have shown some promise,!30:131 particularly for providing a starting point to
the Fienup algorithm. Other algorithms for phase unwrapping have been sug-
gested by Tribolet'3 and Swan!33; in the latter, the average phase is calculated
without explicit unwrapping. Finally, Mertz¢ has suggested following the
phases of the angular frequency components in time in order to find their
average value; the error has not yet been evaluated for this approach.

1.2.4.7 Knox-Thompson Method. In this method, first suggested by Knox
and Thompson,134135 the cross-energy spectrum of the image intensity is com-
puted; following the notation of Sec. 1.2.2.1,

@(u' v)i*(w"v") = o(u' v )o*(w' v XT(uw' v")T*(u'v")) . (1.91)
Taking logarithms of each side and equating imaginary parts, we find that
phase{(i(u,v)i*(v + Au, v + Av))}
= phase{o(u,v)} — phase {o(u + Au, v + Av)}
+ phase{(T(u,v)T*(u +Au, v + AV))} , (1.92)
where we have made the substitutions
Au=u" - u and Av=0v-"0 in Eq. (1.91).

Thus, provided that

1. (T(u,v)T*(u + Au, v + Av)) + 0 and
2. phase {{T'(u,v)T*(u + Au, v + Av))} is either known or zero,



UNCONVENTIONAL IMAGING SYSTEMS 45

it is possible to find phase differences in the object spectrum. This information
is then used to find the phase of the object spectrum and hence the object
intensity (if the energy spectrum is known). In the following we show that
item 1 is satisfied when (u,v) < ro/\ and that phase {(T(x,0)T*(u + Au, v +
Av))} is approximately zero; we then discuss how the phase difference infor-
mation can be used to restore the actual phases.

To evaluate the quantity (T'(z’,0")T*(u",0")), we use a similar approach to
that given in Sec. 1.2.2.3 to evaluate the approximate speckle transfer function.
In particular, we assume that the complex amplitude of the wave in the tele-
scope pupil from a point source is a circular complex Gaussian process. Instead
of Eq. (1.23) we now have the following expression for (T(x',v")T*(u",v")):

(T(u' )HT*W"v") = Tolu' w)THu"v")Ts(u' v )T% " V")

o[ (s )

x Ho&amDHEEL + Au', m + N )H§(E2,m2)

X Ho(k2 +Au", 2+ \v") dé1 dny déz dmg (1.93)
where

A€=§1“§2, AT]=T]1—"12,

Au=u" —-u , Av =v' - v,

and the other symbols were defined in Sec. 1.2.2.3. Assuming that Ho(§,m) is
constant where Ts(&/\, m/\) is effectively nonzero, the second term reduces to
[see Eq. (1.24)]

®- ffTs(Ag,A“>T*< 1 Ay, A;‘ + Av) dAE dAn

iy " ! " ! 2
fmantfafe e £52) on52)

Bearing in mind that the seeing transfer function Ts(u,v) has a width = ro/\,
then it is clear from Eq. (1.94) that (T (u,v)T*(u + Au, v + Av)) can only be
nonzero if |Au| and |Av] < ro/X [otherwise the first integral in Eq. (1.94) is zero].

If we make the further approximation that the seeing transfer function has
a Gaussian shape [it is more accurately described by Eq. (1.17)], then it is
straightforward to show that

dtdn .

(1.94)

(T(u,0)T*u + Au, v + Av)) = (T(w)?)|Ts(Aw/2, Av/2)? . (1.95)
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That is, the Knox-Thompson transfer function is simply the product of the
speckle transfer function at (u,v) and the squared modulus of the seeing trans-
fer function at (Au/2, Av/2). It follows from Eq. (1.95) that

phase(T(u,v)T*(u + Au,v + Av)) = 0 .

Since Eq. (1.95) results from an oversimplified atmospheric model, it cannot
be relied on quantitatively, but it does provide the correct qualitative condition
on |Au| and |Av|. Using the log-normal model, Fried*® suggests that the optimum
value of |Au| and |Av| is approximately 0.2r¢/\.

If we consider the Fourier transform of the object to be sampled on a grid
of N by M points, there are approximately 2NM phase differences for a single
choice of (Au,Av); several schemes have been suggested for efficiently com-
puting the required NM phases.!36-143 This problem is similar to that of cal-
culating phases from shearing interferograms. It may be helpful*®® to use more
than one value of (Au,Av).

In a variation of the Knox-Thompson technique, Aitken and Desaulniers
suggest computing average ratios (i(uw,v)/i(z + Au, v + Av)), a possible ad-
vantage being that a separate reference calibration may not be required.
Sherman#® has extended the technique to nonisoplanatic imaging. Brames
and Dainty'%® have given an interpretation of the method in terms of the
complex zero picture of Sec. 1.2.4.1; this picture may be useful for studying
the role of noise in the technique. The effects of photon noise on speckle image
reconstruction with the Knox-Thompson algorithm have recently been inves-
tigated.'*” Photon noise introduces a frequency-dependent bias, which must
be corrected for successful reconstruction. In the photon-limited case (low light
levels), Nisenson and Papaliolios!*” gave the lower bound on the number of
frames M required for “good” image reconstruction of a point-like object as

2
Nsp)
M=z=125{=) ,
(N

where N, is the average number of speckles per frame and N(< Ngp) is the
average number of detected photons per frame.

144

1.2.4.8 Triple Correlation

Weigelt100:101 has suggested another method for recovering the phase from a
speckle integration. This method was originally called speckle masking from
an early version that used photographic masks to extract the image from the
autocorrelation. It is now more commonly referred to as the triple correlation
(or bispectrum, in the frequency domain) method. The triple correlation is
defined as

Inc(a,B,00,B0) = T(a,BM(a — a9, B — Bo)kI(a,B)) . (1.96)

Fourier transforming this quantity yields the energy spectrum (or bispectrum)
in the form
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ire(u’ v u' ") = ' w)ilu' + u', v + Vi) . (1.97)

Following the approach in Sec. 1.2.2.1, we can derive the bispectrum as the
product of the object bispectrum and the telescope-atmospheric bispectrum:

iTC(u’,U’,u",U") — O(u,,U,)O(u' + u”, v+ v")o(u",v")
X (T(u' v)T(' + u", v + v)TW' V")) . (1.98)

The problem of correcting for the speckle transfer is identical to the amplitude
for speckle interferometry (Sec. 1.2.2.8). The general approach is to calculate
the bispectrum from data taken with similar atmospheric statistics on an
unresolved reference star. We then calculate the object bispectrum as the ratio
of the image bispectrum and the data bispectrum:

(irc(u’,v'u"v")
<RTC( ulivlau",v"» ’

Orc(u' v u" V) = (1.99)

where Rrc is estimated from the reference source data.

As with the Knox-Thompson algorithm, the phases of the object energy
spectrum are extracted from the corrected bispectrum by a set of recursion
relations. See, for example, the review by Weigelt.}*® This recursive algorithm
has the limitation that phase errors accumulate from low to high frequencies.
Glindemann et al.'*? have suggested using a least-squares method for recover-
ing the phase that does not have this cumulative error problem.

A number of analyses'59-152 have been carried out calculating and com-
paring the expected SNR for Knox-Thompson and triple correlation. The re-
sults differ somewhat from one analysis to another. Ayers et al.'®° point out
that both the Knox-Thompson and triple correlation methods may be consid-
ered as four-dimensional problems, in which phases are correlated over all
possible baselines. In this case, Chelli®2 has found the triple correlation to be
slightly superior at high light levels, and the Knox-Thompson to have slightly
better SNR at low light levels. Ayers et al.!®® point out that the Knox-Thompson
may be degraded by frame-to-frame centroiding errors, reducing the low- light-
level advantage to approximate equality.

1.2.4.9 Summary. In this section we have reviewed a number of possible
techniques for solving the phase problem (that is, reconstructing the object
intensity) in stellar speckle interferometry. The methods fall into two cate-
gories; those that require only the modulus of the object Fourier transform
(covered in Secs. 1.2.4.2 and 1.2.4.3) and those that utilize other information
present in the original speckle exposures (Secs. 1.2.4.4 through 1.2.4.8). It
seems obvious that methods in the latter category are preferable for this par-
ticular phase problem, because they make use of additional information present
in the available data.

Great progress has been made in the last decade on the use of speckle
imaging techniques with a large body of scientific results having been pub-
lished over the last several years. Progress in algorithms, detectors, and fast
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computers has made full image reconstruction a standard tool for high angular
resolution astronomy.

1.2.5 Implementation

1.2.5.1 Data Collection and Processing. Speckle camera systems have been
constructed by a number of groups.!41:183-157 Ag an example, we describe a
first-generation system used at Kitt Peak National Observatory for many
years, a diagram of which is shown in Fig. 1.18.

Referring to Fig. 1.18, light from the telescope passes through an electro-
mechanical shutter (1) at the front of the speckle camera system and reaches
the Cassegrain or Ritchey-Chrétien focus at (2). At the 4-m Mayall telescope,
the image scale at this focus is approximately 6.5 arcsec/mm so that a lens
(3) is required to magnify the image 10 or 20 times giving final image scales
of approximately 0.65 and 0.32 arcsec/mm, respectively. At 500 nm, the
diffraction-limited angular frequency of a 4-m telescope is approximately 40
arcsec” !, and the sampling theorem therefore requires image plane sampling
at Aa = 07012, or 0.04 mm or less in the 20 x magnified image plane; this
value also determines the resolution (or MTF) of the image detection system.

It is necessary to correct for atmospheric dispersion except when observing
close to the zenith. The magnitude of atmospheric dispersion depends on a
number of factors,'®® but it is approximately given by

Az = 0.3 tan z [arcsec/100 nm] ,

in the middle of the visible spectrum. Either a grating system53:135 or a pair
of Risley prisms!54156 can be used to correct this; Fig. 1.18 shows the use of a
prism pair. The optimum choice of glasses for the prisms are LaK24 and KF9—
these match the dispersion of air over the broadest wavelength range.!>® A
narrow-band interference filter (5) selects the mean wavelength and bandpass
(see Sec. 1.2.2.6 for a discussion of the permissible bandpass).

The most critical element in a speckle camera system is the image detector.
Figure 1.18 shows an image intensifier/photographic film combination, which
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Fig. 1.18 Schematic cross-section view of a speckle camera.156
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has the advantage of simplicity. A variety of image intensifiers may be suit-
able—magnetically or electrostatically focused cascade systems, or micro-
channel plate devices; a variable (high) gain and low background are two
practical requirements for the intensifier. Recently constructed speckle cam-
eras and those under construction all use some form of electronic readout; this
has the potential advantages of overcoming the noise and nonlinearity of pho-
tographic film and of allowing the possibility of real-time analysis of the data.

The type of electronic image detector required depends to a certain extent
on the type of astronomical speckle observations that are planned and the
intended method of data analysis. Before describing possible detectors it is
therefore appropriate to discuss methods of data reduction. In the first-generation
speckle cameras, the photographic images were analyzed in a coherent optical
processor; this extremely simple analog device gives as output the energy
spectrum of the complex amplitude transmittance of the film, the average
energy spectrum being found by summation of the energy spectra of M frames
(M < 1000 in practice). This technique could also be used for other “real-time”
photographic-type detectors,!3” but these analog systems tend to suffer from
nonlinearities and noise. Digital processing appears to offer more flexibility
and is the only way of implementing some of the object reconstruction algo-
rithms described in Sec. 1.2.4.

For conventional speckle interferometry, two approaches are used to cal-
culate the object information; one is via the average energy spectrum, as in
Eq. (1.5), and the other is via the average spatial autocorrelation function as
in Eq. (1.3). Allowing for moderate oversampling, large telescope speckle data
require a format of at least 256 x 256 pixels, and a desirable frame rate is
approximately 50 s~ 1. Devices that compute Fourier transforms of this size at
this rate are becoming available, but their cost may not be justified in this
application. Consequently, the average energy spectrum method of analysis is
currently done after the observations have been made and stored on a suitable
medium such as videotape.

On the other hand, the autocorrelation method of analysis lends itself to
real-time computation. Vokac'®® has described a prototype on-line digital au-
tocorrelator for 16-level (4-bit) 64 X 64 pixel images taken at a rate of 2571,
and predicted that full-scale throughput would be possible with current tech-
nology. Blazit'®! and the London group'®? have constructed 1-bit vector au-
tocorrelators that process images containing a few photons (< 200) at 25 s~ 1.
Vector autocorrelators work on the principle that the autocorrelation function
of an image consisting entirely of ones and zeros (presence or absence of a
photon) is equal to the histogram of vector differences between all possible
pairs of photons. This algorithm can either be hardwired in a special-purpose
device or programmed into a fast commercial or customized microcomputer.
An example of the resolution of a binary star obtained with such a device (in
real time) is shown in Fig. 1.19. Another approach suggested by Cole!®3 uses
optical circuit elements to allow higher photon rates.

Depending on the type of data analysis to be used, there are several possible
electronic detector systems. One of the most straightforward is to use an in-
tensified television camera or intensifier plus television camera combination.
The format of the data allows easy storage on videotape, but digital computer
analysis, via a video-digitizer system, may be tedious. Another possibility is
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ADS 1123

Fig. 1.19 Output of a vector autocorrelator display in real time when observing a binary
star. (Courtesy of B. L. Morgan and H. Vine, Imperial College, London)

to replace the television camera with a charge-coupled device (CCD).}¢* The
advantage of both of these approaches is that either analog (intensity) or digital
(photon counting) data may be processed. For low light levels, photon counting
devices in which the position and time of photoelectron events are recorded
may be preferable,165-167 particularly since the recorded data are already in
a suitable format for vector autocorrelation processing.

Two-dimensional photon counting detectors such as the MAMA detector,6®
the RANICON detector,®® and the PAPA detector'®” have several important
advantages for speckle, particularly for image reconstruction. They record lists
of photon positions and time of arrival, so the data may be regrouped into
frames of arbitrary length, allowing optimization of exposure times for each
data set. This is not possible with framing cameras such as CCDs and inten-
sified video cameras. They also give exact counts of the number of photons and
provide centroided photon positions, so that the photon noise biases that ac-
cumulate (and dominate for low light levels) can be accurately subtracted.!”°

1.2.5.2 One-Dimensional Infrared Speckle Interferometry. Until recently,
efficient two-dimensional array detectors in the near infrared (2 to 5 pm) have
not been widely available and therefore infrared speckle interferometry had
to be practiced using only a single detector element. This feature, some other
special problems that are encountered, and its demonstrated astronomical
success make it worthwhile to devote a section of this chapter to infrared
speckle interferometry.

At first glance, infrared speckle interferometry would seem less fruitful than
that in the visible range, particularly in view of the restriction to a single
detector element. Table 1.1 summarizes the resolution according to the dif-
fraction limit for a 4-m telescope (column 2) and the seeing limit (column 4)
for the wavelengths of 0.5, 2.2(K), 3.45(L), and 4.8(M) pm. From column 2,
it can be seen that the diffraction-limited angular resolution (Rayleigh cri-
terion) is approximately 0703 at 0.5 pm, but only 0730 at 4.8 pm, whereas a
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Table 1.1 Resolution According to the Diffraction Limit for a 4-m Telescope

(1) (2) (3) (4}
Wavelength Ax(D=4m) o w

[pm] [arcsec] [m] [arcsec]
0.5 0.03 0.1 1.00

22 (K) 0.14 0.6 0.74
3.45(L) 0.22 1.0 0.68

48 (M) 0.30 1.5 0.64

170 seeing-limited image at 0.5 pm is slightly smaller, 0764, at 4.8 um. Thus,
taking the ratio of columns 2 and 4, we see that there is typically a 33 X
increase in angular resolution possible by doing speckle interferometry at
0.5 um, whereas the improvements at 2.2, 3.45, and 4.8 um are only 5, 3, and
2, respectively (this does assume “good” seeing). The reason infrared speckle
has been so valuable is that, despite the relatively poorer angular resolution,
there are many more potentially resolvable (i.e., large) bright objects in the
near infrared than in the visible.

The technique of one-dimensional infrared speckle interferometry is de-
scribed in Refs. 171 through 175, particularly the comprehensive paper by
Sibille et al.'”? In the method developed by the French group, the image is
scanned over a long, narrow slit and the light collected by a single indium
antimonide (InSb) detector cooled to liquid nitrogen or helium temperature.
The bandwidth restrictions are much less severe in the infrared than in the
visible [see Eq. (1.37) and Table 1.1], the maximum AN/X being on the order
of 0.13 at 2.2 pm and 0.37 at 4.8 pm. The scanning speed of the image across
the slit has to be sufficient to “freeze” the speckle, rates of 50 to 100 arcsec
s~ 1 being typical; the effect of scanning rate is described by Aime et al.}”®

If the scan is assumed to be along the a-axis (corresponding to the u axis
in the angular frequency plane), the temporal average energy spectrum (|i(f )|2)
of the image intensity I(¢) = I(a/v), where v is the scan rate, is given by

JiHI? = lo(w,0)|%|T(w,0*) T2it(u) , (1.100)

where the temporal frequency [ is related to the angular frequency u by f =
uv and where the slit transfer function for a slit of width agjt is

Tsu(u) = SRTwostt) (1.101)

TUAit

The one-dimensional temporal energy spectrum can easily be computed on-
line using a commercial microcomputer. By observing a reference star, the
speckle transfer function can be found, so that a section through the modulus
of the object energy spectrum |o(u,0)| can be found. The complete modulus
could, in principle, be found by rotating the scan direction, although because
of practical problems connected with atmospheric instability only north-south
and east-west scans are usually made.




52 IR/EO HANDBOOK

One of the greatest problems encountered in implementing infrared speckle
interferometry is the instability of atmospheric turbulence. Because the seeing
limited angular frequency portion of the speckle transfer function is a signif-
icant part of the whole transfer function, it is not possible to use Worden’s
scheme for self-calibrating the method. Accordingly, a typical observing se-
quence is object — sky — reference — sky — object, taking perhaps 100 to
1000 scans of each and repeating the sequence until consistent results are
obtained. The “sky” measurement is required in the infrared due to emission
from both the sky and the telescope, and an estimate of the energy spectrum
of the object is obtained from

_ lisi(DP = sy PP
- (liref(f)|2) - (lisky(f)|2> '

The SNR of the slit scan method is derived by Sibille et al.'’? In addition to
the atmospheric fluctuation and photon noise of the signal that are the only
fundamental contributions in the visible, there is now also the photon noise
of the “sky” background and noise inherent in the detector, such as Johnson
noise. Limiting magnitudes, based on the value of the object intensity that
yields an energy spectrum equal to that of the noise sources for a single 100-ms
scan, were predicted to be of the order of 5 to 6 for the K, L, and M wavelengths,
although practical experience indicates limiting magnitudes of approximately
7 (K) to 2 (M). Selby et al.!7* used a grating rather than a slit, thus measuring
only a single-frequency component at a time; they claim fainter limiting mag-
nitudes but these have not yet been achieved.

In a new development of one-dimensional speckle interferometry (visible or
infrared) Aime et al.1”” suggested the use of a telescope with a one-dimensional
aperture (e.g., 10 x 800 cm?). This gives a contrast gain over a circular ap-
erture and, associated with a spectroscope, allows investigation of a spectral-
angular plane with no loss in light.

More recently, infrared arrays have become available!™ for speckle appli-
cations with current array sizes up to 256 x 256 pixels. These arrays have
dramatically expanded the range of astronomical science that can be accom-
plished by means of speckle techniques in the infrared.

lo(,0)|2 (1.102)

1.2.6 Astronomical Results

Observational speckle interferometry is now two decades old, and approxi-
mately 300 papers primarily concerned with astronomical results have been
published. Despite the enthusiasm of a growing group of astronomers, it is
only realistic to point out that the technique is not widely used by the astro-
nomical community at large. Some possible reasons for this are (1) relatively
few ohjects, particularly in the visible, are resolvable by 4-m class telescopes,
whose diffraction limit at 400 nm is 0702; (2) calibration problems make it
difficult to obtain photometric energy spectra of sufficient accuracy for the
particular astronomical problem; and (3) only the most expensive equipment
yields faint limiting magnitudes and enables the vast amounts of data to be
reduced.
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This section summarizes astronomical results in four parts: solar system
objects, binary stars, single stars, and infrared objects. We include discussion
of some of the many astronomical results that have been obtained with speckle
interferometry and related techniques. In recent years, the improvements in
detectors and algorithms and in the processing power of computers has led to
an explosion of activity and a dramatic increase in the number and importance
of scientific results. A complete bibliography of scientific papers in this field,
through 1990, has been generated by Gezari et al.'™ and is available as a
NASA publication.

In addition to the four types of results discussed, some more unusual objects
have also been observed by means of speckle interferometry. For example,
Hege et al.®* resolved one of the components of the “triple” quasar PG 115 +
08 as a binary, one of the faintest objects studied by the speckle method (m,
=~ 16.2). The Seyfert galaxy NGC 1068 has been observed in the visible'®? and
at 2.2 pm,'®° both results revealing a nuclear core containing most of the
luminosity. The study of Ebstein et al."®! observed both NGC 1068 and NGC
4151, the two brightest Seyferts. They showed that, when observed in a narrow
emission line (OIII), the very bright nucleus exhibited similar (but not iden-
tical) structure to maps generated at radio wavelengths with the Very Large
Array telescope. Structure in the nucleus was also observed for NGC 1068 in
the infrared.!52

However, due to their intrinsic faintness, extragalactic astronomy is very
difficult with speckle techniques, despite the improvements in detector
technology.

1.2.6.1 Solar System Objects. The angular diameters of the asteroids Pal-
las and Vesta were measured by Worden et al.,'®3-18% the results for Pallas
indicating some elongation of the object. The asteroids Juno and Amphitrite,'8
Eros,187 Herculina,'®® and Davidal8® have also been resolved with speckle.
Newer observations of Vesta include Knox-Thompson reconstructions that show
surface features, and a sequence of images that show rotation.!?? The diameter
of the planetary satellites Rhea and Iapetus!®® and Titan'®! have also been
measured. Diameters have also been measured for the larger satellites of
Uranus and Neptune.!%2

Observations of the planet Pluto and its moon Charon are near to the lim-
iting magnitude of speckle interferometry, their magnitudes being approxi-
mately 15.3 and 16.9, respectively. Arnold et al.!% estimate Pluto’s diameter
to be 3000 = 400 to 3600 = 400 km depending on whether limb darkening
is incorporated in the model. This is slightly smaller than that measured by
Bonneau and Foy,'%* 4000 + 400 km with no limb darkening, who also es-
timate the diameter of Charon to be 2000 + 200 km and propose a revised
orbit for the moon. Both results imply a mean density of Pluto (and Charon)
=0.5 g cm~ 2. The Pluto-Charon system has continued to be observed and
studied, including image reconstruction using speckle masking over seven
different nights.1%5 Infrared imaging!?6 of Jupiter’s satellite Io shows hot spots
on the surface that probably correspond to volcanic activity. This appears to
be a promising approach to long-term monitoring of lo’s rapidly evolving surface.

The Solar granulation has also been measured by speckle interferome-
try,'97-20% the main technical problem here is the absence of any reference
source for estimation of the speckle transfer function. Image reconstruction
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techniques (using the Knox-Thompson algorithm) have been applied to solar
features.'® Keller and von der Luhe?° have combined speckle interferometry
with polarimetry to allow the study of small-scale magnetic features on the
sun. Keller?”” has employed the same techniques to passibly resolve magnetic
flux tubes, which are thought to be the principal conduits of energy from the
solar convection zone into the solar corona.

1.2.6.2 Binary Stars. Speckle interferometry has been very successful when
used to determine the angular separation and position angle of binary stars.
McAlister and his colleagues?®-2!3 have reported more than 1000 measure-
ments of resolved binaries, as well as a number of detailed studies of individual
systems.?14-216

Several hundred observations have also been reported by three other
groups.”3"217-224 Several reasons have contributed to the success of speckle
interferometry in this area; the measurements are among the simplest speckle
observations to make, can be made rapidly on brighter stars (McAlister?%
reported 125 to 175 observations per clear night), and yield an accuracy far
exceeding visual observations. McAlister?25 mentioned typical errors of 0.6%
on the separation and + 2 deg on the position angle, although other groups
gave more conservative error estimates.?

The aim of making binary star measurements is usually to estimate the
masses of each component. For a double-lined spectroscopic binary (i.e., one
for which the radial velocities of both components are known) a minimum of
two measurements of the angular separation and position angle yields both
the masses of each component and the absolute distance (parallax). One ex-
ample measured by McAlister??8 is 12 Persei; the masses are 1.25 + 0.20 and
1.08 =+ 0.17 times the mass of the sun and parallax is 07046 + 07002, which
combined with the known apparent magnitudes gives absolute visual mag-
nitudes of 3.8 + 0.1 and 4.1 = 0.1, respectively.

Binaries that are both double-lined spectroscopic and resolvable by speckle
interferometry are rather rare. If the binary is single-lined, then speckle ob-
servations cannot unambiguously give the individual masses and distances.
However, if masses appro;)riate to the spectral type are assumed, a distance
can be found. McAlister??’ and Morgan et al.2!® have applied this to binaries
in the Hyades cluster, a distance marker in the universe, to confirm that its
mass-luminosity relationship is normal and that its distance is approximately
10% greater than the original proper motion studies indicated. A full orbit for
the Hyades binary Finsen 342 has been measured??® and 28 combined visual/
speckle orbits of close binary systems have been published.?%?

Beckers?3%231 has suggested a modification of the speckle technique called
differential speckle interferometry that may enable submilliarcsecond separa-
tion of binary stars to be measured on a 4-m class telescope in the visible. The
technique uses the Doppler shift and observation at two closely spaced wave-
lengths to modulate the position of speckles in the short-exposure photographs;
since the speckle procedure measures shifts to an accuracy of a fraction of the
speckle size, resolution of binaries whose separation is much less than the
diffraction limit may be possible. This technique has been successfully em-
ployed to perform submillisecond imaging of rapidly rotating stars.?3? Speckle
imaging in the infrared has proven to be extremely important in the study of
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duplicity in pre-main sequence stars. Since Dyck et al 233 discovered a protostar
companion to T Tauri, there have been extensive efforts by many to look for
companions to young ‘stars in order to determine their influence of the early
evolution of such systems.234-239

1.2.6.3 Stellar Physics. One of the first stellar disks to be resolved by speckle
interferometry was the supergiant a-Orionis (Betelgeuse),” which has subse-
quently been observed on many occasions,120-121,221,240-242 The regults include
measurements of the mean diameter in Ha and the limb-darkening
coefficient?*3-245; two-dimensional image reconstruction®*624"; detection of
companions that may play a role in the star’s episodic outbursts of mass loss?43;
and a study of the dust envelope close to the star.2492%¢

Several Mira variable stars—O Ceti (Mira), R. Leo, and x Cygni
have been observed by speckle interferometry. O Ceti, the closest and brightest
Mira, has been studied with speckle techniques in attempts to better under-
stand the mechanisms for the regular pulsation of these highly variable stars.
Labeyrie et al.25! have found that the apparent diameter of these stars changes
by a factor of 2 or more when observed in and out of TiO absorption bands.
Karovska et al.23 have measured asymmetries in the shape of O Ceti’s en-
velope, which change with the phase of the star’s pulsation period.

Eta Carina, one of the most massive stars in the galaxy, shows jet-like
features, a bipolar nebula, and extended emission features from recent violent
eruptions when examined with speckle imaging.254-257

R1364a, a bright feature in the 30 Doradus region of the Large Magellenic
Cloud, was studied by Weigelt and Baier®>® by means of speckle masking and
found to be a cluster of stars rather than an inexplicably massive bright
single star.

SN1987a, the brightest and closest supernova in nearly 400 years, became
the most intensely studied astronomical object in history. Speckle observations
directly measured the size and the velocity of the expanding debris from early
epochs?39-262; detected asymmetries in the shape of the debris?®®; and detected
a bright source close to the supernova, which has still not been completely
understood.?%4

Speckle interferometry is now playing an important role in stellar research,
particularly when the derived information is combined with observational
results from other techniques, including photometry, spectroscopy, or polarimetry.

Finally we note that the first results of long-baseline two-telescope speckle
interferometry have resolved the individual components of the binary star
Capella, yielding values of 5 + 1 and 4 * 2 x 10~3 arcsec.?%°

240,251,252

1.2.6.4 Infrared Stars. Although infrared speckle interferometry has been
until recently restricted to a single detector across which the image is scanned,
many interesting measurements have been made. This work is rapidly ex-
panding now that array infrared detectors have become available.

The diameters of several protostar candidates have been measured, partic-
ularly WS-IRS 5, MonR 2-IRS 3, S 140-IRS 1 and the BN object.173175-266-268
McCarthy’s measurements?®® of the triple nature of MonR 2-IRS 3 are a good
example of the results possible with careful data analysis. Speckle interfer-
ometry in the infrared has been extensively employed in the search for “Brown
Dwarfs,” stars that have insufficient mass to “turn on” nuclear fusion but which
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“glow” in the infrared.23¢:26%270 While there have not been any certain detec-
tions, these objects are thought to be important candidates for the “missing
mass,” which is extrapolated from gravitational dynamics, but not detected
directly as visible luminosity. The bright carbon star IRC + 10216 has been
observed both in the continuum and in the CO lines.271-272 Several Mira
variables!”®?"! and the dust shells around Wolf-Rayet stars2’3-275 and the
supergiant a-Orionis!" have also been observed. The star T Tauri, after which
the class of T Tauri variable stars is named, has been shown to have a protostar
companion.27® Object restoration via the Knox-Thompson algorithm and image
enhancement techniques have been applied to infrared observations of the
extended object n Carinae.2”’

1.3 APERTURE-PLANE INTERFEROMETRY
Written by Jean-Marie Mariotti and Francois Roddier

1.3.1 Theoretical Background

1.3.1.1 Aperture-Plane Versus Image-Plane Interferometry.  Aperture-plane or
pupil-plane interferometry was first independently proposed by Breckinridge®?8®
and KenKnight?”® in 1972, as a means to reconstruct turbulence degraded
images. Since then, the technique has been developed to overcome some lim-
itations of image-plane speckle interferometric techniques. One major short-
coming of image-plane speckle images is the random attenuation of the object
spectral components introduced by the turbulent atmosphere. As a conse-
quence, speckle interferometry requires a large number of independent images
to be taken, even in the case of bright sources, and it requires careful calibration
of the resulting modulation transfer function (MTF) on an unresolved star
under exactly the same seeing conditions, which is difficult to achieve.

The reason for this random attenuation of the speckle transfer function is
to be found in the so-called redundancy of the beam recombination.?8? One can
think of the instantaneous speckle image as a superposition of interference
fringe patterns. Each fringe pattern corresponds to a spatial frequency f and
is produced by the interference of beams issued from aperture point pairs with
the same separation and orientation. In the image plane, many such pairs of
interfering beams contribute to the same spatial frequency (hence, the name
redundancy). Because different pairs are affected differently by turbulence,
the associated fringe patterns are randomly shifted by different amounts and
do not add in phase. This incoherent addition of complex vectors (phasors) of
identical amplitude but random phases produces a random attenuation of the
spectral energy transfer function (also called speckle transfer function). Beyond
the seeing frequency cutoff, the average attenuation is proportional to the
inverse of the number of coherent areas in the aperture, or the number of
speckles in the image plane.

By putting a mask with two small holes on a telescope aperture, one isolates
a single pair of interfering beams producing a nonredundant beam recombi-
nation. This is a Michelson-Fizeau interferometer. Apart from small effects
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due to stellar scintillation, atmospheric turbulence does not affect the ampli-
tude of the fringes produced by a Michelson-Fizeau interferometer. It only
introduces phase delays, which randomly shift the fringe pattern. Hence, as
long as the exposure time is short enough to freeze the random fringe motion,
the true fringe visibility is recorded. If the object is bright enough, the visibility
can be estimated from a single exposure. The drawback of this approach is
that only one object Fourier component is measured at a time. The technique
can be extended by using masks with an array of holes in a suitable config-
uration forming nonredundant pairs. The technique was first demonstrated by
Goodman and coworkers?81:282 and has only recently been applied to astro-
nomical observations.283-287 Unfortunately, the SNR for the reconstructed im-
age decreases with the number of holes,?®® and most of the light is thrown
away by the mask, which severely limits the potential of the technique. Clearly,
the ideal would be to use an array of Michelson-Fizeau interferometers with
as many different baselines as possible working all in parallel. This is precisely
what aperture-plane interferometry provides,289-292

Compared to speckle interferometry, aperture-plane interferometry has the
following advantages:

1. better SNR on bright sources

2. less sensitivity to calibration errors due to fluctuations of seeing

3. insensitivity of the object Fourier amplitudes to telescope aberrations
(even if larger than atmospheric-induced aberrations)

4. local detector errors have only local effects in the Fourier plane and
are less harmful

5. makes a better use of the detector dynamic range to detect faint ex-
tended structures such as stellar envelopes.

The only fundamental drawback of the technique is that it is essentially limited
to sources smaller than the seeing disk. For larger sources, the SNR decreases
as the source size increases and the advantage over image-plane techniques
is lost.

1.3.1.2 Wavefront Shearing Interferometers. Aperture-plane interferom-
etry provides a way to recombine many light rays in a nonredundant fashion.
A beamsplitter is used to produce two images of the telescope entrance pupil
through a wavefront shearing interferometer. Interference fringes are observed
within the common part of the two pupil images, hence the name aperture-
plane interferometry. Figure 1.20 shows examples of various types of wavefront
shears that can be used.

In a lateral shear interferometer, one pupil image is shifted with respect to
the other. All the baselines over which interference occurs measure the same
object Fourier component [Fig. 1.20(a)]. Many sequential measurements are
required to cover the object Fourier spectrum as with a Michelson-Fizeau
interferometer. Because it avoids the use of a pupil mask it is more efficient
although light is still lost because the two pupil images only partially overlap.
A regular Mach-Zehnder interferometer can be conveniently used as a lateral-
shear interferometer.?%® Ribak uses two Dove prisms and introduces an acous-
tic modulator.294-2%8 For an efficient use, it requires as many detectors as
coherent areas on the telescope pupil. Instead of modulating very wide fringes,
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Fig. 1.20 Examples of various types of shears used in shearing interferometry: (a) lateral
shear interferometer, (b) folding interferometer, and (c) 180-deg rotational shear interfer-
ometer. Interfering points are connected with a straight line.

one can introduce a tilt between the two interfering beams and record narrower
fringes with a camera. However, the fringe spacing is wavelength dependent.
This has the drawback of putting a more stringent constraint on the optical
bandwidth than does speckle interferometry. To avoid this drawback achro-
matic shearing interferometers have been developed.299-301 They have mainly
been used for visual measurements of double stars.

In a wavefront folding interferometer, one pupil image is superimposed on
its mirror image [Fig. 1.20(b)]. Several baselines still measure the same spatial
frequency. All the baselines measure spatial frequencies in the same direction.
As a result the interferometer produces a map of a one-dimensional Fourier
transform.3°? Sequential measurements are still required to map the object
two-dimensional Fourier transform. Currie uses a Koster prism to fold the
wavefront.303-305 Good astronomical results were obtained with a pair of de-
tectors. Full efficiency would require a detector array. Another convenient
configuration consists of replacing a flat mirror with a roof prism in a Michelson
interferometer,306-308

In a rotational shear interferometer, one pupil image is rotated with respect
to the other [Fig. 1.20(c)]. If the rotation axis coincides with the center of the
pupil, the two images again exactly overlap and no light is lost. Each baseline
measures a different spatial frequency, mapping the whole frequency plane
up to a cutoff frequency that depends on the rotation angle. A 180-deg rota-
tional shear produces a two-dimensional map of the object Fourier transform
up to the cutoff frequency f. of the telescope.?’ A rotation angle B produces
a two-dimensional map up to the spatial frequency f = f. sin(p/2). This zoom
effect was first mentioned by Lowenthal, Serres, and Froehly309 and later
independently by Bryngdahl and Lohmann.?1° It is useful to match the Fourier
plane coverage to the extent of the object Fourier transform. At the expense
of a lower resolution, one can improve the SNR on extended objects by putting
all the available photons in the useful part of the Fourier transform signals.
In direct imaging this is done by choosing the appropriate detector pixel size.
In interferometric imaging, a variable rotational shear is a unique means to
provide the same flexibility.

Various optical configurations producing a rotational shear are described
by Armitage and Lohmann.3'! This type of shear is particularly suitable for
coherence measurements312313 and such interferometers were widely devel-
oped in the early 1970s for the study of optical propagation through turbulence.
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Rotation shearing interferometers specially built for interferometric imaging
in the visible are described by Breckinridge,278b:814-316 by Ttoh and Ohtsuka,317
and by C. Roddier et al.318-320 In all cases a small tilt angle is introduced
between the two interfering beams and fringes are recorded with a camera.
As discussed earlier, this is done at the expense of a reduced bandwidth. This
constraint can again be alleviated by introducing appropriate spectral disper-
sion.3?! In practice, one can simply modify the setting of a dispersion compen-
sator or simply use atmospheric dispersion with a proper choice of the fringe
spacing and orientation. An interferometer built for infrared applications is
described by Mariotti.322-325 In this case, the tilt angle has been reduced to
zero, which widens the fringe spacing to the point where they disappear. Fringes
are said to be fluffed out. The local fringe contrast is measured by modulating
the optical path difference between the two interferometer arms.

An important problem associated with rotation shearing interferometers is
polarization matching. When fed with unpolarized light, the states of polari-
zation of the two interfering output beams do not perfectly match, producing
fringes with a reduced contrast. This problem is generally solved by putting
a properly oriented polarizer at the interferometer input. For low-light-level
astronomical applications this solution is unacceptable. However, high-contrast
fringes can be obtained for any rotation angle by means of phase-compensated
roof prisms.326

Because it allows the recording of all the object Fourier components simul-
taneously under exactly the same seeing conditions, rotational shearing in-
terferometry is generally the preferred technique. In the following, only ro-
tational shear interferometers are considered.

1.3.1.3 Interferometric Imaging and Incoherent Holography. Let us first
consider a monochromatic point source at infinity in a direction a with respect
to the telescope optical axis. For the time being we assume no perturbation
(no turbulence) along the optical path. On the telescope aperture plane, the
source produces a plane wave tilted at an angle a that is a complex amplitude
of the form

Aor) = O exp<—2i'n'a r) , (1.103)

where \ is the wavelength of the source. A rotational shear interferometer
produces two images of the entrance aperture, one rotated with respect to the
other by an angle B. Hence, the complex amplitude at the interferometer output
is

A@r) = —\;—i[Ao(rH Ao(@r) exp(i6)] (1.104)

where R is a rotation operator with rotation angle B. The angle 6 represents
a possible phase delay between the two interferometer arms. Putting Eq. (1.103)
into Eq. (1.104) gives
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Al) = %[exp(—%ﬂa; r) + exp<*2iwa -)\%r) exp(i())] .

The illumination I(r) at the interferometer output is given by the squared
modulus of the complex amplitude

Ir) = IQIZ{I + Re{exp[2i’nu%:—_-i)]} exp(—ie)} , (1.106)

(1.105)

where Re denotes a real part. It requires only simple geometry to show that
Rr — r = 2jsinp/2|R'r , (1.107)

where R’ is a rotation operator with rotation angle (8 + w)/2. Introducing the
new rotated coordinates r' = ®'r, Eq. (1.106) can be written

Ix') = |Q|2[1 + cos(4¢r|sin3/2|9-;)\-r—’ - e)] . (1.108)

The cosine term in Eq. (1.108) describes interference fringes perpendicular to
the direction a with fringe spacing M(2|sinB/2||a)).

Let us now consider the case of an extended object. Assuming that the object
is an incoherent light source, the illumination at the interferometer output
will be the sum of illuminations produced by each of its points. For a brightness
distribution |Q[?> = O(a), Eq. (1.108) becomes

Ix") = J'O(a)[l + cos(4¢rlsinB/2la )\r - 9)] da . (1.109)
It is the sum of a constant term plus a cosine transform of the source brightness
distribution. By recording the illumination I(r') for different values of 8 one
can obviously obtain both the cosine and the sine transform of the object
brightness distribution O(«) and recover it by means of an inverse Fourier
transform. Under certain conditions one can also recover it from a single
interferogram. Assuming 6 = 0, Eq. (1.109) can be written

Ir') = 00) + Re[O(kr")] , (1.110)
where f)(r’) denotes the Fourier transform of O(a) and

_ 2Jsinp/2|

k )

(1.111)

Taking the Fourier transform i(u’) of the illumination I(r’) in the interfero-
gram gives
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1

I(w) = 0(0)3(u) + 3]

[O(wk) + O(-wk)] , (1.112)

where 3(u) is a Dirac impulse at the origin. If the object is sufficiently off axis,
the three terms in Eq. (1.112) do not overlap and its brightness distribution
can be recovered.

This is the basis of incoherent holography. The technique consists of re-
cording the illumination I(r) on photographic film to produce a hologram, the
behavior of which is very similar to that of coherent holograms recorded under
coherent illumination; that is, an image of the original object can be seen in
the diffraction pattern produced by the hologram when illuminated with a
laser beam. This is demonstrated in Fig. 1.21, which shows the diffraction
pattern produced by a hologram of the word “fourier” recorded through a
rotational shear interferometer using an incandescent white light source. Note
the bright central peak represented by a delta impulse in Eq. (1.112) together
with the word and its mirror image.

Goodman®?’ first pointed out the analogy between interferometric imaging
of incoherent sources and holography. Incoherent holography was developed328-330
in the 1960s as a means to extend holographic methods to incoherently illu-
minated objects. The success of incoherent holography was limited because of
the steep decrease of the SNR as the number of resolved points increases in

Fig. 1.21 Diffraction pattern produced by an incoherent hologram illuminated with a laser
beam. Note the two symmetrical images of the object “fourier.”
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the object.231:332 This is due to the dc term in Eq. (1.110), which contributes
to the noise without contributing to the signal. The SNR decreases as the
number of coherence areas increases inside the aperture. For our application,
this degradation must be compared to that produced by turbulence in the image
plane. It turns out that incoherent holography still compares favorably as long
as the object is smaller than the seeing disk. Indeed in this case the coherence
area is determined by the wavefront aberrations rather than by the object and
is independent of the object size. The technique starts losing its advantage
when the object gets bigger than the seeing disk.333.334

1.3.1.4 Effect of Atmospheric Turbulence on Interferograms. Let ¥(r) be
the instantaneous complex transmission of the turbulent atmosphere. Instead
of Ao(r), the source will produce on the telescope entrance aperture a complex
amplitude

Ai(r) = Ao()¥(x) . (1.113)

Replacing Ao(r) with A1(r) in Egs. (1.103) and (1.104) and assuming for sim-
plicity that & = 0 gives

a-r

N >+ V(3ir) exp(—2i’n'a ')\%)] . (1.114)

A(x) = % [‘I’(r) exp( —2iw

Taking the squared modulus of Eq. (1.114) gives the illumination at the in-
terferometer output:

I(r) = %|Q|2{|\If(r)|2+ | ()2

+ WE)PHRY) exp[-ziw“—'(—g%ii)] + cc} , (1.115)

where * and cc denote complex conjugates. We assume that the effect of the
atmosphere described by ¥(r) is independent of the direction a of the source
(isoplanicity condition). Then, for an extended object with brightness distri-
bution O(a), Eq. (1.115) becomes

Iv) = -;-[I\If(r)lz + [P(@r)2] f O(a) da

+ YWD f 0() eXp[—zm“—'-@t—r‘—”] do + cc , (L116)

A

or, in terms of the Fourier transform O(r) of O(w),

Rr ~r

I(r) = é[l\lf(r)|2 + |[W(@r)?10(0) + %‘P(r)‘?*(@tr)@( ) +cc. (1L117)
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As shown in Sec. 1.3.1.3 the second term on the right-hand side of Eq. (1.117)
can be isolated to reconstruct an image of the object. However, the object
Fourier transform is now multiplied by a complex factor ¥(xr)¥*(®r). Turbu-
lence essentially produces phase aberrations. If we neglect amplitude fluctua-
tions (stellar scintillation), then |¥| = 1 and Eq. (1.117) shows that the modulus
of the object Fourier transform is not affected by pure phase aberrations as
expected from a nonredundant beam recombination technique. Only the phase
of the object Fourier transform is distorted. This is illustrated in Fig. 1.22,
which shows the effect of a wavefront phase distortion on a rotational shear
interferogram taken with a double point source. Because the fringes produced
by each of the source points undergo the same distortion (isoplanicity condi-
tion), the beat pattern (fringe amplitude) is the same as if there were no
distortion. From such a single interferogram one can determine both the an-
gular separation and the orientation of the double source, which are given by
the beat frequency vector. A speckle interferometric technique would require
processing thousands of speckle frames to obtain the same result. This dem-
onstrates a clear advantage of aperture-plane interferometry over image-plane
interferometry.

When observing through the atmosphere, amplitude fluctuations produced
by high-altitude turbulence may affect the accuracy of the estimation of 0.
In this case one still has to compute averages taken over statistically inde-
pendent interferograms. A good accuracy can be obtained with typically 100
interferograms. One estimate33° consists of averaging the squared modulus of
the object Fourier transform term in Eq. (1.117):

Fig. 1.22 Interferogram of a double point source distorted by severe optical aberrations.
Because fringes produced by each object point undergo the same distortion, the beat pattern
(fringe amplitude) remains the same as if there were no distortion.
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2 2

> = (W) T*@r)?) (1.118)

<‘\If(r)\lf*(9tr)0 (%r - r)

sfRr — r
0
(5
Because amplitude fluctuations are correlated only over small distances (typ-
ically less than 10 cm), the squared modulus of the object Fourier transform

is multiplied everywhere by a factor equal to unity, except very close to the
origin (r = 0):

(P@PT*@Rr)?) = (YE)?) - (P@R0)? =1 . (1.119)

Another possible estimate consists of averaging the log rather than the square
of the modulus®3¢:

<log W(r)‘l’*(@tr)@(gir )\— r) ) = (log|¥®)|) + (log|¥*(Rr)))
~ [ Rr ~ 1
+<log O( X ) > . (1.120)
To a good approximation stellar scintillation is a log-normal process,3*® and
(logl¥()|y = (log|¥*@r))y = 0 . (1.121)

Taking the antilog of the result will therefore produce an unbiased estimate
of the modulus of the object Fourier transform.

The SNR performance of aperture-plane interferometry has been analyzed
by several authors333,334.337-342 ynder different assumptions. We summarize
here the results for the modulus of the object Fourier transform (fringe visi-
bility), assuming that the object is smaller than the seeing disk. One must
distinguish atmospheric noise and detection noise. The latter can be either
signal dependent, such as photon shot noise in the visible, or signal indepen-
dent, such as detector or background noise in the infrared. At very low light
levels, when detection noise dominates over atmospheric noise, both aperture-
plane and image-plane interferometry have similar performance. Aperture-
plane interferometry performs slightly better near the diffraction limit, whereas
image-plane interferometry performs slightly better at lower spatial frequen-
cies. In both cases the SNR grows quickly in proportion to the signal in the
visible and to the square of the signal in the infrared. At higher light level,
atmospheric noise starts to dominate over detection noise, and for image-plane
interferometry the SNR saturates to a constant value, whereas for aperture-
plane interferometry it keeps growing as the square root of the signal in the
visible and as the signal in the infrared.

1.3.2 Rotation Shearing Interferometry in the Visible

1.3.2.1 Instrumentation. Many different configurations have been proposed
for a rotation shearing interferometer.311,313,316,317,320,343,344 Compact
designs316'320’343’344 are preferable for three reasons. First, the number of nec-
essary adjustments is kept to a minimum, making the interferometer easier
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Fig. 1.23 Schematic design of a rotation shearing interferometer. C and D: beamsplitter
cube; A: rotatable roof prism; B: fixed roof prism; B: shear angle.

to use. Second, it greatly reduces the sensitivity of the interferometer to me-
chanical vibrations; third, it eliminates stray light and light losses produced
by internal reflections at air-glass interfaces.

Figure 1.23 shows a widely used configuration. It consists of a beamsplitter
cube (C-D) and two roof prisms (A and B), one in each arm of the interfer-
ometer. A rotation of prism A by an angle B/2 produces a rotation of the
associated image by an angle B. In Breckinridge’s design,3! the angle /2 is
equal to 90 deg producing a fixed 180-deg rotation of the associated image.
Prism A and C form a single piece of glass. Prism B and D form a second piece
of glass. Both pieces were cut out of cube corner reflectors. They are held in
contact with an oil film at the beamsplitting interface. The optical path dif-
ference can be zeroed by sliding one prism against the other. This is the only
adjustment. A drawback of this design is a mismatch in the polarization of
the two interfering beams, which reduces the fringe contrast.

A similar configuration was used by Roddier et al.320 but split into three
pieces rather than two. Prism C alone is one of the three pieces. It is held at
a fixed position in the mount. Roof prism A is the second piece. It is pressed
against prism C with an oil film between. It is free to rotate over any angle
B/2 and can also be translated. Prisms B and D form the third piece. They
adhere together by optical contact and form a single block. This third piece is
also pressed against prism C through another oil film. Optical path difference
is adjusted by translating it against prism C. It can also slightly rotate. There
are four adjustments: two translations and two rotations. Polarization mis-
match can be a severe problem in this case. Although high-contrast fringes
are observed at zero shear angle, the fringe visibility decreases when the shear
angle increases, and fringes eventually disappear and reappear with an in-
verted contrast. The problem has been solved by putting quartz phase plates
of appropriate thickness on the entrance face of each roof prism so that the
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state of polarization at the prism output is the same as that at the prism
input.??® With this modification, high-contrast fringes are observed at any
rotation angle. Figure 1.24 shows the optical parts of the interferometer, and
Fig. 1.25 shows the interferometer in its mount.

A drawback of these configurations is that only one of the two interferometer
outputs is used. Half of the light is reflected back to the telescope and lost.
The use of both interferometer outputs doubles the system efficiency.3*° It also
helps in the determination of the continuum (see Sec. 1.3.2.2.1). Mertz**? re-
cently proposed a design for a compact rotation shearing interferometer with
two outputs, but a fixed 180-deg wavefront shear. Figure 1.26 shows a possible
configuration for a compact interferometer with two outputs and a variable
rotational shear.3** It consists of two reversion prisms inserted between two
Koster prisms. Rotating the reversion prisms symmetrically would change the
magnification of the object Fourier transform without rotating it. Although
feasible, these designs are technically challenging; no such interferometer has
yet been built.

Fig. 1.24 Optical parts of a rotation-shearing interferometer. Half of the beamsplitter cube
adheres to the fixed roof prism. Note the quartz phase plates on the entrance face of the
roof prisms.
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Fig. 1.25 A rotation-shearing interferometer in its mount. Long cylinders with spring-
loaded pistons press together the optical parts (see on Fig. 1.24) through a steel ball, allowing
the parts to move freely. Spacers are used to maintain a small space interval between the

parts, which is filled with oil.

semi-transparent coating

Kbster prism

oil film
rotatable
reversion
prism
silver
coating
optical
Vcontact
quartz plate oil film

Kbster prism

semi-transparent coating

Fig. 1.26 Design for a compact rotational-shearing interferometer with a variable shear
and two outputs.
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1.3.2.2 Data Processing

1.3.2.2.1 Estimation of the Modulus of the Object Fourier Transform. We
saw in Sec. 1.3.1.4 that turbulence essentially affects the phase of the fringes.
Hence the modulus of the object Fourier transform can in principle be estimated
from the amplitude of the fringes recorded on a single interferogram. We
describe here how to do so. In practice, it is advisable to average the estimated
object energy spectrum over several interferograms. This will improve the SNR
and reduce any effect of turbulence on the fringe amplitude as shown in
Sec. 1.3.1.4.

We assume that a properly sampled and digitized off-axis interferogram has
been obtained and photometrically calibrated. Any background scattered light
has to be carefully estimated and subtracted. The problem is to map the fringe
visibility over the interferogram. This is best done by means of Fourier trans-
form techniques as described in Ref. 346. A two-dimensional Fourier transform
produces an array of complex numbers with a central peak and two sidelobes.
A window is set to isolate one of the sidelobes and this reduced data set is
inverse Fourier transformed, yielding a map of complex numbers whose mod-
ulus and argument represent the amplitude and phase of the fringes. Here we
consider only the amplitude. The square of the amplitude is an estimate of the
object energy spectrum. When dealing with faint light sources, this estimate
is biased by the photon noise spectrum. The photon noise bias can be estimated
from an interferogram taken with differently oriented fringes as described in
Ref. 346. The estimated noise energy (square of the amplitude) is then sub-
tracted from the estimated object energy spectrum, yielding a bias-free esti-
mate. The shape of the photon noise spectrum also provides an estimate of the
system optical modulation transfer function, which can be calibrated out. Be-
cause the illumination in the interferogram is generally not uniform, the dc
level or continuum must also be similarly mapped by setting a window on the
central peak and taking the inverse Fourier transform. At each point on the
pupil, the object amplitudes can then be corrected for the continuum nonuni-
formities.

Errors arise because the central peak and the two sidelobes always partially
overlap. Indeed the illumination in the interferogram can be written

Ir) = DA@){1 + Re[C(r) expinfo - )]} (1.122)

= D(r)A(r)[l + -;—C(r) expRinfo - r) + %C * (r) exp(—2infy r)] ,
where D(r) describes the domain over which the interferogram extends,

D) = 1 inside the domain
0  outside the domain ,

A(r) is the dc level or continuum, and C(r) is the complex fringe visibility
with modulus equal to the fringe amplitude and argument equal to the fringe
phase. The spatial frequency vector fo represents the reference fringe fre-
quency. Taking the Fourier transform of Eq. (1.122) gives



UNCONVENTIONAL IMAGING SYSTEMS 69

1) = D(f) = A(F) *[B(f) + %C‘(f - f5) + —;-é*(—f - fo)] . (1.123)

In the ideal case of an infinite interferogram with uniform continuum [A (r)
= D(r) = 1], the right-hand side of Eq. (1.123) reduces to the factor between
brackets. Since C has a finite support the interferogram Fourier transform
displays nonoverlapping terms as long as f is greater than the cutoff frequency
of C. The trouble comes from the smearing introduced by the D and A con-
volution factors.

On high SNR data, good results have been obtained by estimating the con-
tinuum from interferogram Fourier transforms in which the side peaks have
been removed and replaced with equivalent data recorded without fringes. The
illumination I(r) in the interferogram is then divided by the estimated con-
tinuum A (r) on a frame-by-frame basis. Clearly, the use of an interferometer
with two opposite phase outputs is helpful in providing directly both the ac
and the dc parts of the signal.

Because D(r) is a discontinuous function, its Fourier transform D extends
widely to infinity and has a disastrous smearing effect in Eq. (1.123). A solution
is to extrapolate the interferogram with a Gershberg-type algorithm.346 In the
interferogram Fourier transform, data are set to zero outside the assumed
support of the C functions. The result is inverse Fourier transformed, producing
an interferogram with extrapolated fringes. The original data are put back
inside the domain while keeping the extrapolated data outside the domain,
and the result is Fourier transformed. After a few iterations well-isolated
sidelobes are obtained. One of them can easily be selected and Fourier trans-
formed back, yielding an improved map of the fringe complex visibility.

1.3.2.2.2 Estimation of the Phase of the Object Fourier Transform. Methods
have been developed to determine also the phase of the object Fourier transform
from atmospherically distorted pupil-plane interferograms. As we have seen,
the phase obtained from a single interferogram is severely affected by tur-
bulence. The most straightforward method consists of averaging this phase
over a large number of statistically independent interferograms. However,
direct averaging is not possible because the phase obtained from a Fourier
transform is only defined modulo 2. It is called a wrapped phase. On high
SNR data, the phase can be unwrapped using a two-dimensional phase un-
wrapping algorithm, and the unwrapped phase can be averaged. This method
was successfully used in the 1970s to produce the first image reconstruction
from rotational shear interferograms taken through laboratory-generated tur-
bulence,319:347:348 A gimilar experiment was performed by Itoh and
Ohtsuka307 817,349,350 i1 the early 1980s. In this case the phase at each fre-
quency was followed and unwrapped as a function of time using a one-dimensional
unwrapping algorithm described by Mertz.3%! The result was then averaged.

Rather than averaging unwrapped phases, an algorithm that is more robust
to noise consists of considering the phase difference Ad between two consec-
utive samples in the frequency plane and averaging the phasor exp(iAd) over
a large number of interferograms. The argument of the average phasors is an
estimate of the gradient of the object phase. The phase is reconstructed from
its gradient by integration.®52 Least-squares integration algorithms have been
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widely described in the literature especially in relation to wavefront estimation
in adaptive optics.*33%* These algorithms have to be modified because the
phase of an object Fourier transform is likely to contain poles.3>® This technique
is now being applied to infrared interferograms (see Sec. 1.3.3).

The preceding methods have the drawbacks of requiring averages over many
independent frames and being sensitive to telescope aberrations. The same
procedure has to be repeated on a reference point source to calibrate out tele-
scope aberrations. As noted by Ribak,3%6: 357 phase closure relations can be
extracted from a pupil-plane interferogram when 360 deg is an integral mul-
tiple of the shear angle. These relations can be used to enhance the image
reconstruction process,®>”~3% but they are not sufficient to retrieve the object
phase entirely. A method was proposed by Hofmann and Weigelt to fully
retrieve the object phase from a single snapshot.36%3¢! It is called triple shear-
ing interferometry and consists of recording interference produced by three
overlapping pupil images with different angular shears. An equivalent but
simpler method, 344362 which has been tested in the laboratory, consists of
recording at the same time two interferograms, one with a shear «, the other
with a shear 2a. The object phase can be recovered either by solving the phase
closure equations explicitly or by using self-calibration techniques similar to
those developed by radioastronomers,363-365

1.3.2.3 Astronomical Results
Rotation shearing interferometry has been applied to the study of the red
supergiant star Betelgeuse (a-Ori). This star has the largest angular diameter
in the sky and in 1921 was the first star to be resolved interferometrically by
Michelson and Pease.3%® Rotation shearing interferograms of Betelgeuse were
taken in 1980 at the Canada-France-Hawaii telescope on Mauna Kea. Inter-
ferograms were recorded on photographic films through a four-stage magnet-
ically focused EMI image intensifier. Figure 1.27 shows an example of such
an interferogram. Exposure times of V30 and Veo of a second were used to freeze
the effect of atmospheric turbulence. Different spectral windows were used in
the continuous spectrum and in the TiO bands. Evidence was found for vari-
ations of the stellar diameter with wavelength.367

A total of 71 frames, taken at wavelength A = 535 nm, were scanned with
a PDS microdensitometer and photometrically calibrated. A two-dimensional
map of the fringe visibility was obtained as described in Sec. 1.3.2.2. It shows
evidence for a deviation from circular symmetry. The result was interpreted
as being produced by the combined effect of a bright spot on the stellar disk
plus a halo of scattered light, indicating the presence of a close dust envelope. 368
The existence of a bright spot on the disk was recently confirmed by the
nonredundant pupil masking method.?83:285

An attempt was made to reconstruct an image of the star using a phaseless
maximum entropy algorithm.3¢® The reconstructed star image is displayed in
Fig. 1.28. It shows evidence for an asymmetric dust condensation at about 2.5
stellar radii from the star center. Because the noisy high spatial frequency
structures were filtered out in the reconstruction process, the bright spot did
not appear on the stellar disk.

Further astronomical observations®’® made with the rotation shearing in-
terferometer revealed a time evolution of the dust envelope and the possible
existence of a companion to a-Ori.
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Fig. 1.27 Short-exposure rotational-shear interferogram recorded in the visible (534-nm)
region at the CFH telescope. The source was a-Ori and the shear angle was 30 deg.

Fig. 1.28 Image of o-Ori reconstructed from rotational-shear interferograms. The recon-
struction was made without phase information, using a maximum entropy algorithm. It
reveals light scattered by a highly asymmetric dust envelope.

71
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1.3.3 Rotation Shearing Interferometry in the Infrared
1.3.3.1 Instrumentation

1.3.3.1.1 Thelnfrared Case. Theoretically, the near infrared (NIR) and thermal
infrared (TIR) domains are well suited to exploit the benefits of aperture-plane
interferometry. This is due to two main reasons: .

1. In contrast to the visible domain, the dominant source of noise is no
longer the photon noise from the source, but rather the detector noise
(NIR) or the photon noise of the thermal background (TIR). The noise
is now independent of the source. In the speckle-dominated regime
(number of photons per frame and per coherence cell >> 1), this implies
that the SNR is proportional to the number of photons per frame and
per coherence cell, whereas for the visible domain it is proportional
to the square root of this number of photons (see Sec. 1.3.1.4).

2. It is well known that the effect of turbulence on image formation is
strongly wavelength dependent.33® Both the Fried parameter ro and
the coherence time 7¢ increase with the wavelength, which consider-
ably favors the IR domain with respect to the visible.

However, the detection of the interferometric signal is far less efficient in the
infrared. In the TIR, one faces a physical limit, namely, the photon noise of
the huge thermal background: The number of photons per frame and per
coherence area delivered by the source sets the instantaneous SNR and there
is no way to improve this quantity significantly, at least for ground-based
observations. On the other hand, the situation is different in the NIR: A critical
parameter is o/, the ratio of the readout noise to the quantum efficiency of
> the detector. Modern IR array detectors feature excellent quantum efficiency
(>170%) and readout noise of the order of a few tens of electrons per pixel,
although this performance can be degraded when the array is operated with
the very short exposure times mandatory in interferometry. Yet, this is far
from the photon counting operating mode usually reached in the visible.

As is already the case for high angular resolution image-plane techniques,
the limit between the two domains, NIR and TIR, is shifted for aperture-plane
interferometry toward longer wavelengths, typically 5 pm. This shift is the
consequence of the large reduction of the background level due to the limited
spectral bandwidth, the very short exposure time (<<1¢) and the very limited
beam étendue (throughput) per pixel (<<\?). Since at the wavelength of 5 pm
and above, even the largest optical telescopes are close to being naturally
diffraction limited, one can see that infrared aperture-plane interferometry
works mostly in the detector noise-limited regime.

1.3.3.1.2 The Time Encoding Setup. The immediate consequence is that, in
order to keep the detector noise as low as possible, IR pupil-plane interfer-
ometers should be implemented so as to minimize the number of pixels used
to analyze the interferometric signal. An attractive solution is to fluff out the
fringes, that is, to widen the fringe spacing until they disappear. This is done
by setting the source on the axis of the interferometer. Defining p as the
equivalent pixel pitch, i.e., the equivalent size of a pixel at the telescope pupil,
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the sampling condition for the wavefront roughly corresponds to p < ry/2. With
respect to the off-axis setup for which we assume that the off axis yields about
three fringes per coherence area, the gain in the total number of pixelsis 3 x 3.

For this setup, of course, the estimation of the degree of coherence of the
source through the two-dimensional analysis of the fringe contrast is no longer
possible. A third dimension is required to encode the interferometric signal,
namely, the time. This leads to the concept of phase shifting interferometry
(PSI): the optical path difference (OPD) § inside the interferometer is modu-
lated in discrete and equal fractional increments of the wavelength

i—1

S = 8y + A fori =1,2,..,n . (1.124)

For each step i, a frame is recorded. Then the process is repeated in sequence.
From each set of n successive frames, it is straightforward to recover the
modulus and the phase at each point of the interference field, i.e., in this case,
at each spatial frequency. The sampling theorem imposes n > 2. On the other
hand, n should not be too large since the total readout noise of the sequence
is proportional to n, and since the whole sequence has to be completed in a
total time shorter or of the order of 1o. Hence, n = 3 or 4 appear as reasonable
compromises.

A prototype infrared rotation-shearing phase shifting interferometer for
astronomical observations has recently been described.322-325 The implemen-
tation of this prototype is based on a Michelson interferometer that provides
the pupil rotation with roof mirrors installed on both arms. Figure 1.29 shows
the optical setup of this interferometer. One of these mirrors can be rotated
in order to control the shear angle. In practice, a 180-deg shear is used in order
to have access to the full spatial frequency coverage up to the diffraction limit
of the telescope. It turns out that for this shear angle the contrast of the fringes
is high (>0.9), thus avoiding the need for polarization compensating plates.
When a different shear angle is used, the reduction of the fringe contrast is
indeed observed. A grid polarizer can be used to restore the full contrast by
selecting one polarization.

The other roof mirror is mounted on a piezo-stack, which provides the OPD
modulation. For this instrument, the range is covered in four steps, i.e., the
successive frames are in phase quadrature.

The optical elements of the interferometer are all standard components.
Figure 1.30 shows the Michelson interferometer and the dewar containing the
infrared camera. This camera uses a 32 X 32 CdHgTe diode array bump-
bonded to a standard silicon CCD (IRCCD). One important advantage of using
a CCD for 2-D interferometry is its ability to capture one complete image at
a time, therefore freezing the turbulence in the same state over the whole
image, without using any mechanical shutter in front of the detector. The
detector’s quantum efficiency is rather high (=~60% at 3.5 um) and it can store
~2 x 107 electrons, allowing long integration times to be used. A description
of the IR camera can be found in Monin et al.>”* where it is used in a classical
imaging version.
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Fig. 1.29 Optical setup for an infrared rotation-shearing phase shifting interferometer.
(After Ref. 325)

Fig. 1.30 The central part of the infrared rotation-shearing interferometer. The beam-
splitter stands in the middle and the IR camera in the background at left.
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1.3.3.1.3 The Space Encoding Setup. The previous setup has been designed
to work in the flat-tint mode. If the source is set slightly off-axis, equal thick-
ness fringes appear in the pupil image, and the interferometer can be operated
as in the visible. The only condition to meet is a sampling condition: For a
4-m telescope and a Fried parameter ro = 40 cm (a typical value at 2.2 pm),
and assuming that we choose to sample a coherence cell with three fringes,
we need to image the pupil onto approximately 60 x 60 pixels. Since rg is only
a statistical expectation for the mean size of a coherence cell, a 128 x 128
detector array would be a reasonable choice. State-of-the-art infrared detector
arrays now exist in this format and even 256 x 256. Hence, spatial encoding
of the interferometric signal is possible for infrared rotation-shearing inter-
ferometers with telescope diameters up to 8 m.

Except for the detector, an interferometer of that kind would be very similar
to its visible counterpart, including the data reduction methodology. To our
knowledge, no such system has yet been built and we do not discuss it further.

1.3.3.2 Data Reduction. Data reduction procedures for infrared rotation-
shearing phase shifting interferometry have been described by Mariotti et
al.3%5 and Monin et al.3"2 The first step, of course, is to apply the classical
corrections mandatory for infrared imaging, e.g., flat-fielding, corrections for
bad pixels, and estimation of the level of the thermal background. Then the
procedures of PSI can be applied.

1.3.3.2.1 Estimation of the Modulus. It is straightforward to see that if the
interference field is stable, a simple combination of the n phase-shifted frames
yields an estimation of the phasor amplitude A for each pixel of the detector,
i.e., for each spatial frequency. For instance, in the case n = 4, we have®?®

1 2 1 e
A= {[E(Il - 13)] + [5(14 - 12)] } : (1.125)

where I; denotes the signal in the i’th frame. Figure 1.31 illustrates the es-
timation of the modulated interferometric signal from the raw data: It displays
side-by-side series of two instantaneous quadrature images (I — I3) and (I4 —
I5). They correspond to the sine and the cosine components of the interfero-
metric signal from which A is estimated.

Similarly, the mean number of photons is given by a mere summation, so
that the modulus of the visibility function is simply given by

V- - 4_ (1.126)
=X
ni=1

Hence, in theory, the estimation of the source visibility is extremely simple

and should be performed easily in real time. Note also that the experiment is

self-calibrated: Variations in the transmission of the setup, or the differences
in sensitivity of the detector pixels cancel out in the expression for V. The only
assumption is that the response of each pixel of the detector versus flux is
linear near its operating point. However, it is often wise to make an estimation
of the actual MTF of the setup, for instance, by performing observations of
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Fig. 1.31 Pairs of fringe patterns taken in quadrature at four different instants at the
wavelength of 3.8 pm on the star B Peg. (After Ref. 325)

unresolved sources. Note, however, that the conditions for this calibration are
far less stringent than for speckle interferometry.

In practice, the final data reduction is more complex, especially when the
instantaneous SNR is weak.3?® Both the above expressions for A and V are
biased, the first one by the variance of the additive noise, the second by the
number of photons emitted by the background. These biases are easily esti-
mated and corrected for by performing an observation of the nearby sky close
to the source in the same experimental conditions, a procedure also mandatory
for speckle interferometric observations.

A more complex matter to handle is the detection of undersampled frames.
The deformations of the wavefront have a typical size of ro, but can be much
smaller for some frames, possibly smaller than twice the equivalent pixel pitch,
in which case they are not correctly sampled by the detector. This phenomenon
creates another bias leading to an underestimation of the fringe contrast. This
bias is difficult to correct. The best solution is to detect and discard these
spatially undersampled frames. Similarly, although each phase shifting se-
quence is scanned in a time shorter than 7o, for some sequences the frames
can be decorrelated, leading to an erroneous estimation of the contrast. Again,
the best solution is to reject these undersampled time sequences. Quality es-
timators of the data have been developed, which allow one to solve these
problems for the final data reduction.3?> Unfortunately, the procedure is it-
erative and cannot be easily implemented in real time.

1.3.3.2.2 Estimation of the Phase. While the MTF of a pupil-plane interfer-
ometer is not affected by the turbulence, the estimation of the phase is. In the
case of the phase shifting interferometer with four steps, it is straightforward
to estimate an instantaneous phase Y at each spatial frequency

Iy — Do
- Y Pt
Y = tan <I1 = 13) , (1.127)
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Fig. 1.32 Image of NML Cygni at 3.8 pm obtained by IR rotation-shearing interferometry
and deconvolved with a regularization method. Contours are —o, 30, 60 to peak value by
steps of 60 (o is the rms noise value on a sky image containing no object). (After Ref. 352)

where Y is the wrapped value of “true” phase ®. Even if it were possible to
unwrap the estimator Y, for instance, by following it in time and detecting
the = 27 jumps, ® is strongly dominated, for spatial frequencies larger than
fo, by the atmospheric-induced phase errors. Fortunately, several solutions for
the estimation of the phase exist. The method used for the previously described
infrared interferometer relies on the spatial correlation of the phase for ad-
jacent frequencies.3”? The idea is to average the spatial gradients of the phase
in a spirit similar to the Knox and Thompson method.373 The contribution of
the atmospheric phase in the phase gradients is small because p < ry and
averages out rapidly. The next step involves the reconstruction of the average
phase from its gradients by a minimal norm least-squares fit. Finally, the
“internal” phase errors corresponding to the stable aberrations of the setup
and the telescope are calibrated out by subtraction of the phase map obtained
in similar experimental conditions on an unresolved astronomical source. Again,
the conditions for this calibration are far less stringent than for image-plane
interferometry. The reader is referred to Refs. 352 and 372 for a detailed
description of the phase restoration and image reconstruction procedures. Fig-
ure 1.32 shows the reconstructed image of a giant star with a circumstellar
shell. As illustrated in this figure, this interferometer is primarily used for
observations of marginally resolved sources. In such conditions, neither the
lack of low spatial frequency information due to the telescope central obscur-
ation, nor the trace of the edges of the roof mirrors in the visibility map are
problematic. In most cases, it is not even necessary to interpolate the complex
visibility data to fill these gaps, since the image reconstruction algorithm is
sufficiently constrained by the high spatial frequencies to converge to a correct
solution.

1.3.3.3 Astronomical Results. Asalready stated, the only rotation-shearing
infrared interferometer is a prototype instrument. Its aim was to demonstrate
the feasibility of aperture-plane interferometry at infrared wavelengths and
its ability to produce diffraction-limited images. Both these goals have been
reached, opening the way to the application of the technique to the observation
of astronomical sources. Since the instrument was not optimized for sensitivity,
it cannot compete with image-plane techniques (e.g., speckle-interferometry,
adaptive optics) in terms of high-resolution imaging of faint sources. Rather,
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its advantage over these techniques lies in its high-valued transfer function
near the cutoff frequency D/\. Aperture-plane interferometry is therefore well
adapted to observe objects for which the important information lies at high
spatial frequencies, i.e., to measure the characteristic size of marginally re-
solved sources.

Some evolved stars undergo a process of large mass loss, creating a thick
circumstellar envelope. Dust grains can form in this envelope at a few stellar
radii from the surface of the star, a zone where the temperature has dropped
below the sublimation point. This dust radiates in the infrared, creating the
so-called “IR excess.” The observation of the spatial structure of the shell and
of the temperature and the density of the dust can help us to understand the
mass loss phenomenon, the dynamics of the envelopes, and the interaction
with the interstellar medium. At typical galactic distances, the expected size
for these IR circumstellar emissions ranges from 1 to 10~ 2 arcsec, and falls
close to the diffraction limit of a 4-m class telescope at 3.8 um. Indeed, a dozen
of these shells have been recently observed at the 4.2-m William Herschel
Telescope (La Palma, Canary Islands). Several have been resolved®’* at 3.8 um,
and diffraction-limited images of NML Cyg (see Fig. 1.32) and O Cet have
been reconstructed. The astrophysical interpretation of these images is in
progress.

1.3.4 Summary and Future Prospects

Although more difficult to implement than speckle interferometry, aperture-
plane interferometry has been successfully demonstrated at both visible and
infrared wavelengths. The technique was found to be notably effective on
bright sources, when in the image plane speckle noise dominates over detector
noise. Because information is recorded in the frequency domain, the transfer
function of the atmosphere and of the telescope are better estimated and cal-
ibrated out. Aperture-plane beam recombination techniques have also been
considered in long-baseline interferometry 336342375

Aperture-plane interferometry applies to the reconstruction not only
of turbulence-degraded images, but also of images degraded by permanent
aberrations.3®* Large lightweight telescopes are now being envisaged in space
for millimetric and infrared applications. Aperture-plane interferometry could
be applied to extend their resolution toward shorter wavelengths.341:376.377 Thig
interferometric imaging technique might as well be called Fourier transform
imaging by analogy with Fourier transform spectroscopy. Indeed the two tech-
niques are similar and can be combined to provide both angular and spectral
resolution with the same interferometer. The method involves three-dimensional
Fourier transforms. It has been described and extensively investigated in the
laboratory by Itoh and Ohtsuka.378-381 It has been independently proposed
and investigated on a telescope by Mariotti and Ridgway?382:383 using a modified
Fourier transform spectrometer.

A real-time image compensation technique called adaptive optics is now
starting to be applied to astronomical telescopes and one might wonder wheth-
er postdetection processing techniques such as speckle-interferometry or
aperture-plane interferometry have any future. Adaptive optics is a very ef-
ficient way to compensate for the effect of large-scale wavefront errors, but it
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requires very bright on-axis reference sources or guide stars to produce fully
diffraction-limited images. Most of the time only partial compensation will be
achieved and postdetection processing techniques will still be required to fur-
ther enhance image resolution. Rotation-shearing interferometry appears to
provide a promising means to calibrate accurately the effects of turbulence on
partially compensated images and reach the diffraction limit with the highest
SNR. Moreover, whenever adaptive optics brings the wavefront rms phase
error sufficiently below 2m, it becomes possible to record and process long-
exposure interferograms. This may well open for the first time the possibility
of producing very high resolution images of very faint sources.

1.4 PASSIVE INTERFEROMETRIC RANGE-ANGLE IMAGING
Written by Anthony M. Tai

Passive interferometric sensors have long been employed for the imaging of
celestial objects. Radio telescope is a prime example. Interferometric method
allows the synthesis of a large imaging aperture using widely separated pairs
of receiving apertures.3®* The effective image resolution is determined by the
separation of the apertures instead of the size of the individual apertures. In
recent years, substantial progress has also been achieved in the implemen-
tation of interferometric sensors at optical wavelengths as described in the
previous section. Most interferometric sensors, whether they operate in the
optical or microwave regions, are ground-based sensors and they produce im-
ages in angle-angle coordinates.

Another well-developed sensing technique to create high-resolution images
utilizes an active coherent sensor as exemplified by the synthetic aperture
radar (SAR), which has been operational for more than three decades. This
form of sensor actively transmits a coherent beam and detects the complex
amplitude of the returned electromagnetic field. Unlike passive interferometric
sensors, SAR systems are typically operated from airborne platforms to image
ground targets, and the images they produce are in range-angle coordinates.
In this section, the two synthetic aperture imaging concepts are combined to
produce a class of passive interferometric imaging sensors that image in range-
angle coordinates. Unlike other interferometric sensors, which are designed
primarily for astronomical imaging, this new class of sensors can also be used
to image ground targets from airborne sensor platforms.

A passive interferometric sensor measures the mutual coherence of the
received light field emanating from a far-field incoherent source. The mutual
coherence or cross-correlation function is related to the intensity distribution
of the source via a Fourier transformation. In Sec. 1.4.1, we see that the Fourier
transform relationship is three-dimensional in nature. Depending on how the
imaging aperture is synthesized, the resulting image can be in two-dimensional
angle-angle or range-angle coordinates. If enough degrees of freedom are avail-
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able in the sensor imaging geometry, passive three-dimensional synthetic ap-
erture interferometric imaging is also possible.

A synthetic aperture radar385:386 typically operates in a side-looking mode
with a fairly shallow grazing angle. It produces high-resolution images in
range-angle coordinates. The two-dimensional image resembles an angle-angle
image of the scene, which is illuminated from the side and viewed from above.
In Sec. 1.4.2, an airborne two-aperture interferometric imaging sensor oper-
ating in a similar side-looking imaging mode is described. Extension to three-
dimensional interferometric imaging is also discussed.

A sensor designed to image ground targets must have a substantially wider
field of view than a sensor intended for astronomical imaging. With a conven-
tional interferometer, the spectral bandwidth of the cross-correlation mea-
surements must be restricted to accommodate the path difference from an off-
axis source to the two receiving apertures. If the field of view is large, the
measurement spectral bandwidth becomes very narrow. With the source-emitting
broadband light, the optical efficiency of a conventional sensor is very low. In
Sec. 1.4.3, the implementation of a grating-based two-aperture interferometric
sensor is described. The achromatic grating interferometer allows the cross-
correlation of broadband radiation from a relatively large object scene to be
measured. In addition, the grating interferometer allows cross-correlation mea-
surements to be performed simultaneously at different spectral bands, which,
for a fixed baseline interferometric sensor, correspond to different spatial fre-
quencies. This feature is crucial to the implementation of the passive range-
angle interferometric imaging concept.

Finally, the issues associated with the implementation of an airborne sensor
such as phase errors induced by air turbulence and platform motion are ad-
dressed in Sec. 1.4.4. While technically challenging, the implementation of an
airborne passive synthetic aperture interferometric imaging sensor is shown
to be feasible and can be accomplished with much less difficulty than a coherent
optical synthetic aperture laser radar.

1.4.1 Basic Concept

The underlying theory of interferometric imaging is well known and it has
long been applied in the field of astronomical imaging. The basic concept is
illustrated in Fig. 1.33. Consider a two-aperture interferometer. The electro-
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Fig. 1.33 Imaging geometry with a two-aperture interferometric sensor.
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magnetic far-field wavefronts u1(ry) and ua(re) received at the sensor input
apertures can be related to the source scene field us(rs) via

ui(ry) = %}r_ﬂ_/ﬂ us(rs) exp[_—ﬂlﬁ—ﬁ] drs , (1.128)
and
ug(re) = Em—(;izr—zw\—]fus(rs) exp[M] dr, . (1.129)

The coordinate geometry shown has its origin located at a point in the scene
that is defined as the phase reference point. Position vector r; is for an arbitrary
point in the scene and vectors r; and rs define the location of the interferometer
apertures as related to the phase reference point; 7 denotes the unit vector and
r the magnitude of r. If the fields received at the two apertures are correlated
(or made to interfere), the cross-correlation output of the received field samples
can be expressed as387

It

piz = (ui(ry)ui(re)

_ exp{[i2w(r1—r2)]/)\}fl (r) exp[—i2w(?‘1—f‘2) . rs:| dr (1.130)
)\2r1r2 e A v .

where (-) represents the ensemble average over all source realizations and
Is(rs) = (lus(rs)’z>-

The expression describes a three-dimensional Fourier transform relation-
ship between the intensity distribution of a spatially incoherent source and
the correlation output of the two-aperture interferometer. The correlation out-
put measured at wavelength A represents a single Fourier coefficient of the
three-dimensional object spectrum, evaluated at spatial frequency

_(5‘1—;‘2)_2_16. a
f= v = s1n(2) , (1.131)

where « is the angle subtended by range unit vectors 71 and 2. The direction
of the spatial frequency vector f in the three-dimensional Fourier space is
defined by the sensor line of sight to the phase reference point in the object
scene and the orientation of the baseline that connects the two apertures of
the interferometer. It can be changed by varying the orientation of the baseline
and/or the line of sight of the interferometric sensor to the phase reference
point. The magnitude of the spatial frequency vector f = |f|, on the other hand,
can be altered by increasing or decreasing the separation of the sensor aper-
tures and/or the measurement wavelength. If enough degrees of freedom are
available to vary the direction and length of the spatial frequency vector, a
full three-dimensional synthetic imaging aperture can be generated. However,
complete freedom in changing the spatial frequency vector is usually not avail-
able, and aperture synthesis is limited to two dimensions. In astronomical
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Fig. 1.34 Imaging geometry expressed in Cartesian coordinates.

imaging, for example, the coherence measurements at various spatial fre-
quencies are obtained with the use of different baselines or shear distances as
described in the previous section. The direction of the spatial frequency vector
is changed by rotating the sensor baseline about the optical axis. The rotation
may be accomplished with a rotation shearing interferometer38-3% or, in the
case of long baseline interferometric imaging, by utilizing the earth’s rota-
tion.3*! The result is a two-dimensional imaging aperture in angle-angle
coordinates.

Of special interest in this chapter is the use of an airborne two-aperture
interferometric sensor for passive synthetic aperture imaging. Unlike a sensor
for astronomical imaging where the line of sight to the object is fixed, an
airborne sensor can fly around the object scene. With this added freedom in
changing the direction of the spatial frequency vector, a synthetic aperture in
range-angle coordinates can be obtained.

The generation of a synthetic aperture in the range direction is more clearly
shown by expressing the three-dimensional Fourier transform relationship
described in Eq. (1.130) in Cartesian coordinates. Consider the imaging ge-
ometry illustrated in Fig. 1.34. The angle between the sensor baseline and the
x'-z' plane is denoted as ¢, and the angle between the sensor line of sight and
the y-z plane is given by 0. The Fourier transform relationship in Eq. (1.131)
can then be written as

piz = Kfffls(x,y,z) expl — 2w f(cosh cosdx
b

+ cosf sindgy + sind cosdz)] dx dy dz (1.132)

where K is a complex constant and X represents the instantaneous field of view
(IFOV) of the sensor. For R>> S, f = (2/A\) sin({/2) = S/R\ where R is the
distance to the object scene and S is the length of the baseline. If the sensor
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baseline lies on the x'-z’ plane, then ¢ = 0 and the cross-correlation of the
fields at the two apertures can be simplified to

pi2 = KL”Is(x,y,z) exp(—i2mxf cosd) exp(—i2mzf sind) dx dy dz .
b

(1.133)

In the Fourier transform kernel, the spatial frequency is a function of siné in
the z direction. For small 6, sin® = 0, the spatial frequency is approximately
a linear function of 6. The viewing angle 6 can be changed by moving the
sensor along an arc of radius R in the x-z plane. Rotating the viewing angle
from —A6/2 to +A6/2 and continuously measuring the correlation outputs of
the sensor, a synthetic aperture in the range direction can be generated. The
synthesized imaging aperture spans spatial frequencies from S sin(—A6/2)/R\
to S sin(A6/2)/R\ in the z or range direction. In the following section, we
examine a specific imaging geometry that produces a range-angle fine-resolution
image similar in character to that of a spotlight synthetic aperture radar.386

1.4.2 Imaging Mode

There are practical restrictions on the size and weight of a sensor that is
installed on an airborne platform. Imaging at long-wave infrared from a long
distance, it may not be possible to construct a real aperture sensor with ade-
quate resolution due to the large imaging aperture required. The implemen-
tation of a multiple-aperture interferometer on an airborne platform is also
impractical because of the number of openings required on the fuselage. In
this section, a side-looking staring imaging mode is described with which high-
resolution two-dimensional images in range-azimuth coordinates can be pro-
duced with a two-aperture interferometric sensor.

The sensor operates in an imaging geometry similar to that of a spotlight
SAR. The airborne two-aperture sensor flies at a stand-off distance and stares
at a fixed patch of ground as illustrated in Fig. 1.35. As the sensor platform
flies past the object scene, the viewing angle to a fixed point in the object scene
is changed and the spatial frequency vector is rotated. Assuming that the
sensor platform flies along a straight line and the sensor images the target
broadside, the target range as a function of the viewing angle is equal to R (0)
= Ro/cos(0). If the baseline of the sensor is also rotated synchronously such
that it remains perpendicular to the line of sight, the measurement spatial
frequencies in the x and z directions are then given by S cos(8)/Ro\ and S cos(6)
sin(0)/Ro\, respectively. Baseline rotation, however, is practical only if the
aperture separation is small enough to fit the entire sensor within a gimbal
mount. For a sensor with a baseline longer than 0.5 m, the orientation of the
baseline may have to be fixed. In such cases, individual scanning mirrors can
be used to steer the sensor line of sight and a pathlength adjuster can be
utilized to equalize the optical paths from the two apertures to the phase
reference point in the scene. The effective baseline of the sensor becomes S
cos(0) and the measurement spatial frequencies in the x and z directions are
equal to S cos%(8)/Rox and S cos%(8) sin(8)/Ro\, respectively.
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Fig. 1.36 Aperture synthesized by combining angle and wavelength diversities.

For simplicity, let us consider the case where the sensor baseline is rotated
with the viewing angle, such that it remains perpendicular to the line of sight.
The spatial frequency of the cross-correlation measurement in the x direction
is given by S cos(8)/Ro\. For small 9, the change in viewing angle has little
effect on the measurement spatial frequency in the x direction. Measurements
at different spatial frequencies in the x direction can be accomplished by a
diversity of wavelengths. An imaging aperture is synthesized by performing
simultaneous cross-correlation measurements at a set of wavelengths that
spans a spectral bandwidth of AX. The rotation of the viewing angle results
in an aperture fill along an arc while the change in measurement wavelength
produces a radial aperture fill.

For small 0, the spatial frequency bandwidths of the synthetic aperture
generated by combining viewing angle and wavelength diversity are illus-
trated in Fig. 1.36. The spatial frequency bandwidths of the synthesized ap-
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erture are approximately equal to Br = S sin(A8)/Ro\ in the z or range di-
rection and Ba = S(AMM)/ARg in the x or azimuth direction. Projecting the
two-dimensional range-angle image to the ground plane, the ground range
image resolution of the passive synthetic aperture sensor is given by

1 ARo

Bz ~ S sin(A6) costy) ’ (1.134)

PR =

where v is the grazing angle with values typically between 20 and 30 deg. The
azimuth or cross-range resolution is a function of the percentage spectral band-
width according to

_ 1 - ARo
PA = B, T S(AMN)

(1.135)

We note that the range and cross-range resolution