Condensation of Quasi-Two-Dimensional Biexcitons in a Single Heterojunction Quantum Well

Patrick A. Folkes

ARL-TR-1934

April 1999

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Condensation of Quasi-Two-Dimensional Biexcitons in a Single Heterojunction Quantum Well

Patrick A. Folkes
Sensors and Electron Devices Directorate
Abstract

Excitons that coexist with a degenerate two-dimensional electron gas in the same quantum well subband have been observed in the photoluminescence from the recombination of electrons with localized photoexcited holes. At a critical electron density, an abrupt decrease in the exciton radiative recombination rate is observed, along with the formation of biexcitons. With increased excitation intensity, photoluminescence spectra are observed that verify theory on the radiative renormalization of biexcitons and strongly indicate the occurrence of a Bose-Einstein condensation of biexcitons.
Contents

Introduction .. 1
Experimental Results ... 2
Discussion ... 6
Conclusion ... 8
Acknowledgment ... 8
References ... 9
Distribution ... 11
Report Documentation Page ... 15

Figures

1. Schematic of backgated coupled-well bandstructure for negative gate voltage and positive gate voltage ... 3
2. Observed PL spectra from SHQW with $V_g = -38$ V at 6, 15, and 25 K 3
3. Observed 6 K PL spectra for $I = 0.3, 0.46, \text{ and } 0.75$ mW with $V_g = -37.3$ V; and for $I = 0.75$ mW, $V_g = -38$ V ... 4
4. Approximate X and XX 6 K PL lineshapes for $I = 0.3, 0.46, \text{ and } 0.75$ mW and $V_g = -37.3$ V; and for $I = 0.75$ mW and $V_g = -37.3$ V; and $V_g = -38$ V ... 5
Introduction

In certain semiconductors, excitons (electron-hole bound states) and biexcitons (exciton-exciton bound states) are expected to undergo Bose-Einstein condensation (BEC) at relatively high temperatures because of their small effective masses, which are typically on the order of the free electron mass [1–3]. Experimental results have shown that excitons in Cu$_2$O [4] and Ge [5] and biexcitons in CuCl [6] exhibit quantum degenerate Bose-Einstein statistics at high densities, as well as anomalous luminescence and ballistic transport, which have been attributed to the occurrence of BEC [7–12]. The sharp luminescence features observed [7] and an increased optical phase-conjugate signal have been attributed to the presence of a resonant two-photon absorption-induced condensate of biexcitons in CuCl. A recent report [12] describes the condensation of spatially indirect excitons in coupled AlAs/GaAs quantum wells (QWs), as evidenced by anomalous exciton transport and the concurrent appearance of a huge low-frequency noise in the photoluminescence (PL) intensity. Theory has shown that BEC of a two-dimensional (2D) ideal Bose gas in a confining potential can occur [13]; however, weakly interacting 2D bosons in a confining potential are predicted to undergo a Kosterlitz-Thouless phase transition instead of BEC, because of the absence of infinitely long-ranged phase coherence [14]. Huang [2] points out, however, that in 2D systems the existence of phase coherence over a large finite distance could lead to a local BEC.

My colleagues and I have recently observed [15] excitons that coexist with a degenerate 2D electron gas (2DEG) in the same subband (that is, Mahan excitons) in the PL spectra from the recombination of quasi-2D electrons with localized photoexcited holes in a single heterojunction quantum well (SHQW). When the 2DEG density $n_e = 1.9 \times 10^{11} \text{ cm}^{-2}$, we observed an abrupt decrease in the quasi-2D Mahan exciton (X) PL intensity and linewidth, along with the formation of quasi-2D biexcitons (XX) and a large discontinuity in the X groundstate energy. These intriguing observations led to a high-resolution study of the PL from this system as the excitation intensity is increased with $n_e = 1.9 \times 10^{11} \text{ cm}^{-2}$. I report here the observation of PL spectra that strongly indicate the occurrence of the BEC of weakly localized quasi-2D biexcitons (XX) and verify recent theory on the radiative renormalization of XX [16].

Research on coherent effects and condensation of excitons and biexcitons has grown significantly in recent years. Potential future applications of this research include the development of a nonlasing coherent source of emission, the phase-coherent transport of optical signals through nanometer-scale devices in optical computers, and the efficient transport of light into near-field optical microscope tips [1].
Experimental Results

The experiments were carried out on an AlGaAs/GaAs modulation-doped coupled-well heterostructure [16], shown schematically in figure 1. Shubnikov-de Haas measurements at 4.2 K show that the 2DEG is confined in only the lowest subband of the SHQW, formed by the transfer of electrons from the doped AlGaAs into the lower bandgap GaAs. I varied the 2DEG density n_s by applying a voltage V_g to a Schottky contact on the 120-µm-thick substrate, as shown in figure 1. Measurements show that n_s varies linearly with V_g with a depletion rate $dn_s/dV_g = 6.3 \times 10^8 \text{cm}^{-2}\text{V}^{-1}$.

The samples were mounted in a variable-temperature liquid helium cryostat and excited with a 5145-Å emission from an argon ion laser, with intensities up to approximately 2 W/cm². The PL spectrum was measured with a 1-m monochromator.

The observed 6 K PL over the range from 1557 to 1545 meV is the superposition of (1) the sharp, resonant PL from the spatially direct recombination of weakly localized quasi-2D Mahan excitons and (2) the relatively broad PL from the spatially direct recombination of free electrons with localized heavy holes in the SHQW [16]. The observed PL over the 1545 to 1535 meV energy range is attributed to the spatially indirect recombination of SHQW electrons with photoexcited holes, which are localized 100 to 150 Å from the AlGaAs/GaAs interface [16]. In the presence of a 2DEG, the X eigenstates will depend on various many-body interactions and effects [17]. Over the range $1.9 \times 10^{11} \text{ cm}^{-2} < n_s < 2.2 \times 10^{11} \text{ cm}^{-2}$, the spatially direct X emission results in a strong resonance in the observed PL intensity at the X groundstate energy $E_{en} = 1553$ meV. Around $n_s = 1.9 \times 10^{11} \text{ cm}^{-2}$, an abrupt large decrease in the 1553-meV X PL intensity and linewidth occurs, along with the appearance of another sharp peak in the PL spectrum near 1551 meV, as shown in figure 2 for $V_g = -38$ V.

The observed abrupt decrease in the 1553-meV X PL intensity at $n_s = 1.9 \times 10^{11} \text{ cm}^{-2}$ signifies that there is a suppression of the recombination rate (possibly due to many-body effects), with an attendant increase in the radiative lifetime of the 1553-meV X. The increased lifetime will result in increases in the X density and the exciton/exciton scattering rate and possibly the achievement of thermal equilibrium with the lattice—conditions that are conducive to the formation of biexcitons [3]. A phenomenological model for the decay of an XX into a photon and an X, which subsequently radiatively decays, results in a double-peak emission spectrum consisting of the X peak at E_{en} and an XX spectrum whose high-energy edge is lower than E_{en} by an amount equal to the XX binding energy. The high-energy edge of the XX PL spectrum arises from the emission from biexcitons that occupy the groundstate. The 1551-meV feature is observed only over the narrow range of n_s where the 1553-meV X has a reduced recombination rate; this fact strongly suggests that the 1551-meV feature can be attributed to the formation and subsequent radiative decay of biexcitons in the SHQW and precludes the possibility that the 1551-meV peak is the emission from the recombination of impurity-bound excitons. The observed separation of the X and XX peaks gives an XX binding energy of approximately 2 meV, which is consistent...
I varied \(n_s \) slightly around the value \(n_s = 1.9 \times 10^{11} \text{ cm}^{-2} \) to minimize the 1553-meV peak amplitude and, using enhanced resolution, studied the evolution of the PL lineshape as the excitation power \(I \) is increased. The observed high-resolution 6 K PL data plotted in figure 3 clearly show that, with increasing \(I \), the XX PL at 1551 meV increases at a faster rate than the 1553-meV X PL, in agreement with previous observations [22–24]. Figure 3 shows that, for \(V_g = -37.3 \text{ V} \), the XX PL lineshape evolves strikingly: at \(I = 0.3 \text{ mW} \), it has a small relatively broad peak, and at \(I = 0.75 \text{ mW} \), it has a large, very narrow peak at 1551 meV and a distinctive cusp at 1551.5 meV. Concurrently (for \(V_g = -37.3 \text{ V}, I = 0.75 \text{ mW} \)), the figure shows large low-frequency fluctuations in the PL intensity over the range 1546 meV to 1555 meV. Figure 3 also shows that the PL observed under the same conditions \((V_g = -37.3 \text{ V}, I = 0.75 \text{ mW}) \) is extremely sensitive to \(n_s \), as evidenced by the abrupt decrease in XX PL intensity and the disappearance of the very narrow 1551-meV line and the low-frequency PL inten-
Figure 3. Observed 6 K PL spectra for \(I = 0.3, 0.46, \) and 0.75 mW with \(V_g = -37.3 \) V (solid lines) and \(I = 0.75 \) mW, \(V_g = -38 \) V (dashed lines).

Density fluctuations when \(V_g \) is changed to \(-38 \) V; this change corresponds to reducing \(n_s \) by only \(4 \times 10^8 \) cm\(^{-2}\). The intersection of the –37.3 and the –38 V PL spectra (both 0.75 mW) at 1548 meV gives an approximate amplitude of the PL from 2D free-electron/localized-hole (e-h) recombination; this amplitude is not sensitive to slight changes in \(n_s \), varies linearly with \(I \), and can be approximated by a square pulse lineshape. Figure 4 shows approximate lineshapes of the combined PL from X and XX, which I obtained by subtracting the estimated e-h PL from the data shown in figure 3.

Figure 4 shows that as the XX density increases, the XX PL narrows over the range from 1548 to 1552.5 meV. The half-maximum width of the low-energy side of the XX PL, which is determined by the XX energy distribution, decreases from 1.6 meV (for \(I = 0.3 \) mW, \(V_g = -37.3 \) V) (bottom curves, fig. 4a) to 1 and 1.2 meV (for \(I = 0.75 \) mW, \(V_g = -37.3 \) V and –38 V) (both curves, fig. 4b). The observed narrowing of the XX energy distribution with increasing XX density confirms that the biexcitons obey Bose-Einstein statistics and that, for \(I = 0.75 \) mW, the XX are in the quantum degenerate regime [9], where a significant fraction of the 2D XX have small wavevectors. In the quantum degenerate regime, polariton (mixed exciton-photon state) effects are predicted [17] to significantly renormalize the XX dispersion, resulting in a shift in the location of the groundstate and an increase in the XX binding energy from the unperturbed value of \(-1 \) meV [25] to 2.2 meV, which agrees with the observed value of 2 meV.
Figure 4.
Approximate X and XX 6 K PL lineshapes
(a) for $I = 0.3, 0.46,$
and 0.75 mW and $V_g = -37.3$ V; (b) for $I = 0.75$ mW, $V_g = -37.3$ V
(solid line); $I = 0.75$
mW, $V_g = -38$ V
(dashed line). Label g
marks appearance of
narrow 1551-meV
line; label h marks
cusp at 1551.5 meV.
Label X marks
coherent polarization
mode; label X" marks
negatively charged
exciton at 1552 meV.
Discussion

The large increase in the 6 K XX PL intensity and the abrupt appearance of the very narrow 1551-meV line (labeled g in fig. 4a) in the XX PL spectrum for \(V_g = -37.3 \) V, \(I = 0.75 \) mW, together with the extreme sensitivity of this XX PL spectrum to small changes in \(n_s \), suggest that the very narrow 1551-meV line comes from the recombination of XX that have undergone BEC into the groundstate. This conclusion is also supported by the close resemblance of the distinctive lineshape of the observed XX PL for \(V_g = -37.3 \) V, \(I = 0.75 \) mW, to the calculated [3] emission spectrum for three-dimensional Bose-condensed biexcitons. The remarkable disappearance of the very narrow 1551-meV line and the change in the XX PL lineshape when \(n_s \) is reduced by only \(4 \times 10^8 \) cm\(^{-2} \) (as shown in fig. 4b) can only be explained by a decrease in XX density: from a density greater than the critical density for BEC when \(V_g = -37.3 \) V, to a density smaller than the critical density when \(V_g \) is changed to \(-38 \) V. The calculated critical density [14] for BEC of the weakly localized quasi-2D XX at 6 K is approximately \(2 \times 10^{10} \) cm\(^{-2} \), assuming that the localization energy for the XX is \(-3 \) meV (the observed value for the hole localization energy [16]) and that the XX effective mass equals the free electron mass. Figure 2 shows that at 15 K the amplitude of the XX PL is strongly reduced compared to the X peak, and the XX PL no longer has a sharp peak near 1551 meV, indicating that the XX are not quantum degenerate at 15 K.

As shown in figure 4b, the cusp at 1551.5 meV (labeled h) observed for \(V_g = -37.3 \) V, \(I = 0.75 \) mW, evolves into a sharp resonance at 1551.2 meV for \(V_g = -38 \) V, \(I = 0.75 \) mW. This resonance is attributed to the theoretically predicted [17] van Hove singularity in the biexciton-polariton joint density of states, which is expected to be manifested in the XX PL spectrum as a peak that is \(-0.4 \) meV higher in energy than the XX groundstate energy [3,17]. The shift in the location of the van Hove singularity when BEC occurs provides evidence that BEC results in significant modification of the XX dispersion. Figure 4 shows that when BEC occurs, the observed X PL narrows, and its peak shifts by 0.2 meV to lower energy; these changes suggest that the radiative decay of condensed X results in the formation of a coherent polariton mode (labeled X in fig. 4). The 1552-meV resonance, labeled X~ in figure 4 (which is observed only when the X recombination rate is suppressed near \(n_s = 1.9 \times 10^{11} \) cm\(^{-2} \)), is not sensitive to small changes in \(n_s \), but increases with increasing excitation intensity. The observed 1-meV separation between the X and X~ peaks suggests that the X~ resonance can be attributed to the emission from negatively charged excitons, which have been recently observed in modulation-doped quantum well structures [26]. The X~ consists of two electrons bound to a single hole, with a calculated binding energy for the second electron of 1 to 1.4 meV for GaAs quantum wells [27].

In addition to the above striking changes in the XX PL when \(V_g = -37.3 \) V, \(I = 0.75 \) mW, figure 3 shows concurrent large low-frequency fluctuations (peak-to-peak times of 20 to 60 s) in the PL intensity over the range 1546 to 1535 meV, despite the fact that each data point was obtained after
averaging over a 10-s interval. The energy range over which the anoma-
lous PL intensity fluctuations are observed shows that they come from the
recombination of XX composed of at least one spatially indirect X. Similar
large low-frequency fluctuations in the PL intensity of spatially indirect
condensed excitons have been observed before [13]. In the absence of
BEC, the PL intensity exhibits the relatively small shot noise associated
with the Poisson distribution of randomly emitted photons from indepen-
dent recombination of XX. Statistical mechanics shows that BEC of an
open system of bosons is accompanied by the onset of large fluctuations
in the occupancy of the groundstate [28]. Furthermore, these fluctuations
in the condensate population must be phase coherent, as pointed out by
Nozieres [1]. A coherent fluctuation in the steady-state nonequilibrium
groundstate occupancy of condensed XX will regress via coherent radia-
tive recombination with a characteristic fluctuation time τ_f, which deter-
mines the spectral density of the PL intensity fluctuations. Since a large
number of excitons must acquire the appropriate spatial configuration for
coherent recombination of condensed XX, one would expect τ_f to depend
on and be much larger than the X radiative lifetime, which ranges up to
1 μs for spatially indirect X [29]. I conclude that the observed large low-
frequency noise (large τ_f) in the PL intensity is a manifestation of XX
coherece; this observation provides strong evidence of the BEC of XX.
The data indicate that for spatially direct XX, $\tau_f \sim 10$ s.
Conclusion

In summary, excitons that coexist with a degenerate two-dimensional electron gas in the same quantum well subband have been observed in the photoluminescence from the recombination of electrons with localized photoexcited holes. At a critical electron density, an abrupt decrease in the exciton radiative recombination rate is observed, along with the formation of biexcitons. With increased excitation intensity, I observe photoluminescence spectra that are sensitive to electron density, verify theory on the radiative renormalization of biexcitons, and strongly indicate the occurrence of a Bose-Einstein condensation of weakly localized quasi-two-dimensional biexcitons.

Acknowledgment

It is a pleasure to acknowledge discussions with S. Rudin, M. Dutta, H. Shen, Doran Smith, and W. Zhou and the wafer growth and processing provided by P. Newman and M. Taysing-Lara.
References

Distribution

Admnstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Dept of Defns
Attn R222 J Fitz
4800 Savage Rd
FT Meade MD 20755-6000

Ofc of the Dir Rsrch and Engrg
Attn R Menz
Pentagon Rm 3E1089
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn ODDRE (R&AT)
Attn ODDRE (R&AT) S Gontarek
The Pentagon
Washington DC 20301-3080

OSD
Attn OUSD(A&T)/ODDR&E(R) R J Trew
Washington DC 20301-7100

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

Hdqtrs Dept of the Army
Assist Secy of the Army for RD&A
Attn SARD-DOV H Fallin Rm 3E411
The Pentagon
Washington DC 20301-0103

US Army ARDEC
Attn AMSTA-FSF-RE B95 N H A Jenkinson
Picatinny Arsenal NJ 07806-5000

US Army Armament Rsrch Dev & Engrg Ctr
Attn AMSTA-AR-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army CECOM
Attn AMSEL-RD-ST-ST-TE L A Coryell
FT Monmouth NJ 07703-5000

Director
US Army CECOM Rsrch, Dev, & Engrg Ctr
FT Monmouth NJ 07703-5201

US Army Edgewood RDEC
Attn SCBRD-TD G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Info Sys Engrg Cmd
Attn ASQB-OTD P Jenia
FT Huachuca AZ 85613-5300

US Army Mis Cmd
Attn AMSMI-RD-WS P Ashley
Attn AMSMI-RD-WS-PO J L Johnson
Huntsville AL 35898

US Army Mis Cmd Weapons Sci Dirctrt
Attn AMSMI-RD-WS-ST M J Bloemer
Redstone Arsenal AL 35898-5358

US Army Natick RDEC Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Rsrch Ofc
Attn M Stroscio
4300 S Miami Blvd
Research Triangle Park NC 27709

US Army Rsrch Ofc
Attn M Dutta
Attn J Harvey
Attn H Everitt
PO Box 12211
Research Triangle Park NC 27709-2211

US Army Simulation, Train, & Instrmtn
Cmd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726
Distribution (cont’d)

US Army Tank-Automotive Cmnd Rsrch, Dev, & Engrg Ctr
Attn AMSTA-TA J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmnd
Battle Lab Integration & Techl Dirctr
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

DARPA
Attn B Kaspar
3701 N Fairfax Dr
Arlington VA 22203-1714

Hicks & Associates, Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

US Army Rsrch Lab
Attn J Zavada
PO Box 12211
Research Triangle Park NC 27709-2211

US Army Research Lab
Attn AMSRL-DD J Rocchio
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-CS-AS Mail & Records Mgmt
Attn AMSRL-CS-EA-TP Techl Pub (3 copies)
Attn AMSRL-SE E Poindexter
Attn AMSRL-SE H Leupold
Attn AMSRL-SE J Mait
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-DP H Brandt
Attn AMSRL-SE-DS C Fazi
Attn AMSRL-SE-E
Attn AMSRL-SE-E D Wilmot
Attn AMSRL-SE-E H Pollehn

US Army Research Lab (cont’d)
Attn AMSRL-SE-EE A Goldberg
Attn AMSRL-SE-EE B Stann
Attn AMSRL-SE-EE S Kennerly
Attn AMSRL-SE-EE Z G Sztankay
Attn AMSRL-SE-EI
Attn AMSRL-SE-EI B Beck
Attn AMSRL-SE-EI K Deb
Attn AMSRL-SE-EI J Little
Attn AMSRL-SE-EI M Tidrow
Attn AMSRL-SE-EI N Dhar
Attn AMSRL-SE-EI R Hoffman
Attn AMSRL-SE-EI R Leavitt
Attn AMSRL-SE-EI U Lee
Attn AMSRL-SE-EI W Clark
Attn AMSRL-SE-EM
Attn AMSRL-SE-EM F Semendy
Attn AMSRL-SE-EM G Euliss
Attn AMSRL-SE-EM G Simonis
Attn AMSRL-SE-EM J Pamulapati
Attn AMSRL-SE-EM L Harrison
Attn AMSRL-SE-EM M Stead
Attn AMSRL-SE-EM M Tobin
Attn AMSRL-SE-EM M Taysing-Lara
Attn AMSRL-SE-EM P Newman
Attn AMSRL-SE-EM P Shen
Attn AMSRL-SE-EM W Chang
Attn AMSRL-SE-EM W Zhou
Attn AMSRL-SE-EQ
Attn AMSRL-SE-EQ G Wood
Attn AMSRL-SE-EP
Attn AMSRL-SE-EP B Zandi
Attn AMSRL-SE-EP D Smith
Attn AMSRL-SE-EP D Wortman
Attn AMSRL-SE-EP J Bradshaw
Attn AMSRL-SE-EP J Bruno
Attn AMSRL-SE-EP J Marohn
Attn AMSRL-SE-EP J Pham
Attn AMSRL-SE-EP K K Choi
Attn AMSRL-SE-EP M Ferry
Attn AMSRL-SE-EP P Folkes (10 copies)
Attn AMSRL-SE-EP R Tober
Attn AMSRL-SE-EP S Rudin
Attn AMSRL-SE-EP T B Bahder
Attn AMSRL-SE-RE F Crowne
Attn AMSRL-SE-RE S Tidrow
Distribution (cont'd)

US Army Research Lab (cont'd)
Attn AMSRL-SE-RL
Attn AMSRL-SE-RL A Lepore
Attn AMSRL-SE-RL C Scozzie
Attn AMSRL-SE-RL K Jones
Attn AMSRL-SE-RL M Dubey

US Army Research Lab (cont’d)
Attn AMSRL-SE-RL P Shah
Attn AMSRL-SE-RL R Lareau
Attn Chief AMSRL-SE-E
Adelphi MD 20783-1197
Report Title
Condensation of Quasi-Two-Dimensional Biexcitons in a Single Heterojunction Quantum Well

Abstract
Excitons that coexist with a degenerate two-dimensional electron gas in the same quantum well subband have been observed in the photoluminescence from the recombination of electrons with localized photoexcited holes. At a critical electron density, an abrupt decrease in the exciton radiative recombination rate is observed, along with the formation of biexcitons. With increased excitation intensity, photoluminescence spectra are observed that verify theory on the radiative renormalization of biexcitons and strongly indicate the occurrence of a Bose-Einstein condensation of biexcitons.