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Abstract

The USAF has developed the Space Maneuver Vehicle (SMV) to fulfill the
requirement for flexibility, rapid response, and on-demand maneuverability of space
assets. This reusable satellite merges the efficiency and readiness of aircraft-like op-
erations with the capability of global coverage from space. Designed to provide over
10,500 fps of velocity change (or delta-v, Av) while in orbit, the SMV out-maneuvers
existing satellites by up to 100 times. This thesis helps transition the SMV to the
operational arena by demonstrating their responsiveness to varied mission taskings.
The SMV Orbital Mission Planner allows the operator to place any number of SMVs
in orbit and input tasking orders for ground target overflight. Using methods of
orbit determination from two positions and time, the application determines which
of the orbiting vehicles could perform desired missions within associated time and
Av constraints. Once an operator selects a vehicle to perform the mission from
the list of capable SMVs, the Mission Planner provides maneuver specifications and
updates the respective SMV’s orbit and Av remaining. Analysis showed that 10,500
fps of Av yielded quick response times for a wide range of ground target locations;

however, rapid depletion of the Av budget would occur without proper resource

management.




SPACE MANEUVER VEHICLE ORBITAL MISSION
PLANNER: DEVELOPMENT OF APPLICATION AND
ANALYSIS OF ON-DEMAND MANEUVERING ABILITY

1. Introduction
1.1 Background

Virtually all government and commercial spaceflight organizations share one
common goal: increase performance and decrease cost. The Space Maneuver
Vehicle (SMV), being developed by the United States Air Force (USAF) in coopera-
tion with the National Aeronautics and Space Administration (NASA), attempts to
realize this goal in space. Unlike any satellites flown to date, this reusable, highly-
maneuverable spacecraft is designed to spend up to one year in orbit, reenter the
earth’s atmosphere and land on a runway, turn-around rapidly (72-hour or less), and
respond quickly to on-orbit mission taskings. The SMV embodies the “aircraft-like”
characteristics of “safety, reliability, operability, supportability, producibility, testa-
bility, and affordability” (14:1). Its standard payload interface allows employment of
a variety of sensors, jammers, weapons, and test payloads (16:14). Upon operational
deployment of the SMV, the USAF will have an entirely new type of space asset in
its inventory which has the potential to revolutionize the space business and change
the way our nation views space operations. Refer to Figures 1 and 2 for depictions

of the SMV in its launch/reentry and deployed configurations.

SMYV is one part of a larger system called the Space Operations Vehicle (SOV).
The SOV system includes the SOV itself (a reusable launch vehicle with suborbital
and orbital capabilities) and three payloads: Common Aero Vehicle (CAV), a ma-

neuvering vehicle for reentering payloads through the atmosphere from suborbital




Figure 1 Space Maneuver Vehicle with payload bay in closed configuration for
launch and reentry (Courtesy of Schafer Corp.)

trajectories; Modular Insertion Stage (MIS), an expendable liquid rocket motor up-
per stage for boosting satellites into orbit from suborbital, pop-up SOV profiles; and
SMV (13:1). Figure 3 shows the SMV separating from Boeing’s design concept for
the SOV. Responsibilities for the SMV lie with Air Force Research Laboratory’s
Space Operations Vehicle Program Office with the SMV portions residing in the
Space Vehicles Directorate of AFRL at Kirtland AFB (KAFB), NM. This thesis
deals primarily with the operational capabilities of orbiting SMVs.

In August 1998, the Air Force performed an unpowered flight test of a model
SMV to examine its autonomous approach and landing ability. The SMV had a
near-perfect landing, finally stopping on the runway just three feet off the centerline
and passing its first of many tests with flying colors (11). In December 1998 NASA
awarded a contract to Boeing for the development of a space-capable SMV through
NASA’s Future-X program. This SMV will launch on a Space Shuttle in 2002 and




Figure 2  Space Maneuver Vehicle in deployed configuration for mission operations
(Courtesy of Schafer Corp.)

will demonstrate some of the SMV’s unique maneuvering characteristics as well as
the relative ease of switching payloads. Both the USAF and NASA have significant
interest in the SMV, and through their cooperation could field operational SMVs
as early as the year 2005. Discussion of the new maneuvering satellite has also
piqued the interest of commercial organizations who anxiously await test and de-
ployment of USAF and NASA SMVs in the hope of incorporating SMV technology

into commercial satellite platforms.

As the Air Force begins to operate as ten Aerospace Expeditionary Forces
(AEFs) by the year 2000, the entire service—including its space forces—will be
involved in meeting the day-to-day commitments of the Air Force as well as being
on call for the unknown situations that arise. In an Airman magazine article,
Air Force Chief of Staff General Michael E. Ryan said that “almost all of the Air

Force will be involved with the exception of our strategic forces” and each of the



Figure 3 Space Maneuver Vehicle (SMV) separating from Boeing’s version of the
Space Operations Vehicle (SOV) (Courtesy of Schafer Corp.)

ten AEFs would “train to the task they would be called upon to perform when they
enter a vulnerability period. During that period they would expect to be forward
deployed, or on call” (18:10). These deployment or on call periods would last for 90
days, then the AEF would back off —two AEFs would be on call at any given time.
Although none of the current Department of Defense (DoD) satellites has the ability
to respond rapidly to new mission taskings, the SMV could change the nation’s way
of thinking about space. With their significant maneuvering capability SMVs would
allow space assets to be more flexible and responsive to mission requirements in a
rapidly-changing wérld. Since quick response is imperative for military missions,
perhaps, certain orbiting SMVs could be assigned to AEFs and “forward deployed”
with them by focusing on a specific area of the world; then when the 90-day period
ended, the SMVs could return to their previous missions. Although this thesis only

offers these doctrinal ideas for consideration and does not discuss them at length, it



does provide a mission planning capability that, in time, could allow space resources

to respond with flexibility, speed, and precision.

Expeditionary Force Experiment 99 (EFX 99) slated for July or August presents
an outstanding opportunity to test the SMV Orbital Mission Planner with realistic
wartime scenarios. EFX 99 is the second annual experiment sponsored by the Chief
of Staff of the Air Force that combines live flying forces, simulations, and technol-
ogy into a warfighting environment—the main concept being that “advanced air and
space warfighting concepts enhance the nation’s ability to rapidly halt an evadihg
force anywhere in the world even with limited warning” (5). EFX 99 will integrate
more space-based capabilities and space-derived information into aerospace opera-
tions than EFX 98. With the main focus of the SMV Orbital Mission Planner being
rapid response of space assets to new missions, it fits perfectly into the mission of
EFX. Ideas presented in the previous paragraph could possibly come to fruition with
a successful showing in EFX 99; space forces could become the always-ready weapons
of choice for worldwide, short-notice missions much like their airborne counterparts

today.

1.2 Problem Statement

The purpose of this research is to develop an Orbital Mission Planner for
the Space Maneuver Vehicle to enable quick response to new space tasking orders
including overflight of ground locations, satellite intercept (close approach or flyby),
and satellite rendezvous (co-fly)—with initial emphasis on ground overflight—and
to analyze the SMV’s design Av and true maneuvering capability in an operational

environment.




1.8

Research Objectives

. Design a user-friendly, PC-based application written in Visual Basic with a

Microsoft Access database interface by request of the sponsors of this research

for compatibility with the nominal launch mission planner already developed.

Assist AFRL in transitioning the SMV from an engineering design to an opera-
tional system and in defining the operations concept for the vehicle. Currently,
the Military Spaceplane Technology Office and Boeing understand the design
capabilities of the SMV, but no one understands how best to use them in a

real-world, operational environment.

. Have initial operational capability by Expeditionary Force Experiment ’99

(EFX 99) in July/August 1999.

. Allow user to determine the number, payload configuration, and orbital pa-

rameters of orbiting SMVs.

. Use orbital mechanics to identify all of the SMVs capable of performing each

mission and the variety of options for each capable SMV. Display the follow-
ing output information to the user for selection of desired SMV: Constella-
tion/SMV ID; maneuver time; Av before burn, required, and remaining after

burn; and mission completion time.

. Analyze the SMV’s maneuverability including the amount of Av (=~ 10,500

fps) designed for the vehicle.




II. Literature Review
2.1 Owverview

The topic of orbit determination and maneuvering has existed for centuries;
therefore, the amount of related literature is seemingly endless. Attempting to
use these techniques for on-demand maneuvering of satellites poses an entirely new
problem that has yet to be fully investigated due to the slow maturation of satellite
maneuvering technology. This chapter presents a review of the pertinent literature
influencing the conceptualization and development of the Space Maneuver Vehicle
Orbital Mission Planner. Section 2.2 examines documents listing SMV require-
ments, planned missions, design specifications, and other information pertinent to
understanding the SMV. Section 2.3 discusses the methods and tools used in tradi-
tional satellite mission planning and modeling with a discussion of military aircraft
mission planning systems for comparison. Finally, Section 2.4 summarizes the ex-
tensive previous works in orbital mechanics, orbital maneuvering, and astrodynamics

pertaining to an orbital mission plannér of this type.

2.2 SMV Information

Operational SMVs could eventually function as reusable satellites with a va-
riety of available payloads. With a requirement for 10,500 fps of Av and a goal of
12,000 fps, the SMV’s maneuvering capability far exceeds that of existing satellites
(13:3). For comparison, the Space Shuttle has a maximum of 1,000 fps of Av; how-
ever, most of that Av budget is already accounted for prior to launch. SMVs could
exist in low earth orbit (LEO) and even transfer to geosynchronous orbit (GEO) due

to the large amount of Av available.

Since the SMV is only the satellite bus, it can handle virtually any payload de-
signed to meet the standard size and interface specifications of the SMV payload bay.

Exploiting its multiple payload options, SMV could perform missions such as tactical




reconnaissance (“recce”), filling gaps in satellite constellations, rapid deployment of
SMV constellations, identification and surveillance of space objects, and space asset
escorting, among countless other missions yet to be determined (1). These missions
directly support all four of the Air Force Space Command mission areas: space force

support, space control, space force enhancement, and space force application (9).

2.8 Aerospace Mission Planning

Prior to the Space Maneuver Vehicle no satellite has had enough spare Awv
for significant maneuvering potential; thus, the space community has put very little
effort toward development of an orbital mission planner with on-demand maneuver
calculations.  Almost all mission planning for existing satellites occurs prior to
launching the satellite. Once in its final orbital position, a typical satellite remains
in place with the exception of small maneuvers for station-keeping or making slight

changes to the ground track.

Boeing, the primary government contractor for SMV development, has de-
signed an engineering tool for demonstration of on-orbit mission planning, but it
lacks the ability to accept operational user input for real-time mission taskings.
Boeing developed a scenario with AFRL and stepped through the procedures for
mission planning and simulation, yet the procedures were never fully automated.
The target collection planner as they called it “performs detailed simulation of the
imagery collection including orbital mechanics, target deck, sensor models, and tar-

get scheduling optimization algorithms” (2).

Mr. Curt Jingle of the Schafer Corporation, an independent contractor sup-
porting Air Force Research Laboratory’s Space Vehicles Directorate, developed a
notional launch mission planner to approximate the launch to orbit of SMVs on
an SOV. This launch mission planner could eventually include more sophisticated
orbital mechanics algorithms and merge with the SMV Orbital Mission Planner to
cover the full range of SM'V operations.




Although on-orbit spacecraﬁ mission planning tools have not received extensive
research, aircraft mission planners have existed for years. Both the USAF and the
US Navy (USN) use aircraft mission planners to create flight plans for military
airborne assets. Aircraft operations differ dramatically from space operations in
terms of actual implementation of “fHight” plans, but the requirements are virtually
the same; thus, this thesis used some of the goals of aircraft mission planning to
form the basis for SMV mission planning. The Air Force Mission Planning Support
Systems (AFMSS) family of mission planning products accomplish aircraft mission
planning goals for the USAF. Goals of aircraft mission planning which apply to

spacecraft mission planning include the following (6):

e Take into account terrain, weather, aircraft performance, capability, and con-

figuration
e Plan weapon and/or cargo delivery
e Calculate fuel requirements
e Assess the route based on known enemy threat location and type
e De-conflict flight routes with other aircraft
e Review, print, and display the mission plan to Command
e Download pertinent flight information to on-board aircraft avionics
e Full automation and scalability

Modified versions of each of these goals aided in forming this thesis and in
developing requirements for the SMV Orbital Mission Planner application itself.
The reader should recognize similarities between SMV on-orbit mission planning

and aircraft mission planning as he or she reads this document.




2.4 Astrodynamics Problems

The inmost places of the heavens, now gained,
Break into view, nor longer hidden is
The force that turns the farthest orb. The sun
Exalted on his throne bids all things tend
Toward him by inclination and descent,
Nor suffers that the courses of the stars
Be straight, as through the boundless void they move,
But with himself as centre speeds them on
In motionless ellipses. Now we know
The sharply veering ways of comets, once
A source of dread, nor longer do we quasl
Beneath appearances of bearded stars.
- Edmund Halley in “The Ode Dedicated to Newton” (4:xiii)

The two main astrodynamics problems considered in this thesis are the two-
body problem (2BP) and the problem of orbit determination for maneuvers. Sections

3.3.1 and 3.3.2 introduce these two problems and the solution methods used in the

SMV Orbital Mission Planner.

Sir Isaac Newton first developed the 2BP in 1686 in his oft-cited work, Philosophia
Naturalis Principia Mathematica, or Principia as it is usually referred. Newton
stated that two spherical bodies attract one another with a force inversely propor-
tional to the square of the distance between their centers; this theorem became known
as Newton’s Law of Universal Gravitation (4:193). When combined with Newton’s
second law F = i("—;t;@ , the foundation for the 2BP results. Countless authors
have revisited the 2BP; thus, solution methods have been refined throughout the
years. This thesis used the 2BP to convert between position and velocity and the

six classical orbital elements.

The problem of orbit determination for maneuvers has a greater assortment
of solution methods depending on the type of problem and desired results. Val-
lado (17) presents some simple approximations-—coplanar, noncoplanar, and fixed
Av maneuvers. These maneuvers offer the ability to change various orbital ele-

ments. In general, forces applied within the orbital plane can change a, e, and

10



w; forces applied normal to the orbital plane can change i and Q. All of these
orbital elemeﬁts are defined in Section 3.3.1. These simplified approximations are
useful for “back-of-the-envelope” type calculations for estimation of maneuvers, but
the SMV Orbital Mission Planner requires more sophisticated routines for accurate

orbit determination.

Typically, problems involving intercept, rendezvous, and targeting use methods
of orbit determination from two positions and time. This iterative method is often
referred to as the Lambert theorem or Gauss problem. Escobal (7) presents six
different techniques of orbit determination from two positions and time, and he gives
a comparison of the strengths and weaknesses of each technique. His six techniques
include Gaussian iteration, Lambert-Euler iteration, iteration of the semiparameter
(or semi-latus rectum, p), iteration on the true anomaly, f and ¢ series iteration,

and iteration on the eccentricity.

Bate, Mueller, and White (3) presented four techniques for solving this prob-
lem. In addition, they expounded upon the method used to adjust the trial value of
the iteration variable which determines how quickly the procedure converges. Their
techniques include solution of the Gauss problem via universal variables, using the
f and g series, the original Gauss method, and the p-iteration method. The p-
iteration method discussed in (3) differs from the p-iteration method developed in
(7) and first proposed by Herrick and Liu (10) since it does not directly involve
eccentricity, e. Although Escobal suggested that the optimal orbit determination
schemes were Gaussian iteration for angular changes less than 70° and iteration on
the true anomaly for angular changes greater than 70°, Bate et al. improved the
p-iteration method for accuracy and convergence time. The p-iteration became the

method of choice for the SMV Orbital Mission Planner.

One disadvantage of the p-iteration method is that it does not converge in cases
where 7, and 75 are collinear (3:251). Fortunately, the probability of 7; and 7

being exactly collinear is extremely low. One of the techniques expressed in Escobal,

11




iteration on the true anomaly, converges for all angular spreads, but it degenerates
when the denominator of the equation for e vanishes (7:231). Potentially, the
two methods could be used together—p-iteration for most cases and true anomaly
iteration when 7, and 7, are collinear; however, this idea has not been explored

further.

12




III. Methodology

3.1 Overview

The primary purpose of this thesis is to develop an Orbital Mission Planner
for the Space Maneuver Vehicle allowing for rapid response to new mission taskings
and to analyze the maneuvering capability of the SMV. The method of achieving
this purpose involves the development of a mathematically-sound programming tool
that accurately portrays the necessary dynamics of orbit determination and maneu-
vering. This chapter outlines the methodology ﬁsed to accomplish this purpose.
Section 3.2 provides the reader with a detailed list and explanation of assumptions
made while Sections 3.3 through 3.6 discuss the underlying astrodynamics, major
processes found in the program, procedures for calculation of ground overflights,
and database interface and control, respectively. Since a major part of this thesis
involved exploring and refining the requirements for an end-state SMV Orbital Mis-
sion Planner as well as determining how best to implement these requirements, the
methodology includes certain items that have not been fully incorporated to date.
Using a modular programming approach, this Orbital Mission Planner allows for

easy expansion of capabilities and addition of as many options as desired.

3.2 Assumptions

Due to the large size and long-term nature of this research effort, the entire
problem could not be tackled in the initial development period. While this thesis

presents a comprehensive explanation of the eventual end state of the project in order

to provide a framework for all future development, the first version of the application

employs several assumptions to maintain a reasonable scope. This section lists and

describes in detail the assumptions made.

1. Space is empty. Since most existing satellites do not maneuver significantly

after reaching their desired orbit, the majority of mission planning occurs prior

13




to launch. Mission planners must consider orbital location and ensure no other
space objects occupy the orbital positions intended for their satellite. On the
other hand, SMVs will have the ability to leave their current orbits and “fly
around” space. This maneuverability complicates the issue of avoiding other
orbiting satellites and debris. This version of the Orbital Mission Planner
assumes that space is virtually empty in regards to the SMV (i.e., no collisions

with other SMVs or space objects and no damage from rocket exhaust).

. Two-Body Problem (2BP) Dynamics. The 2BP assumes negligible satellite

mass compared to mass of the earth, the heliocentric coordinate system is
inertial, satellite and earth are spherically symmetrical with uniform density,
and only gravitational forces act on the system which act along a line joining
the two bodies (17:105-106). Under the 2BP assumption the program ignores
perturbations in SMV orbits due to earth oblateness effects (Jo perturbations)
and higher order orbital perturbations. Although 2BP dynamics will not
provide the most accurate position information for SMVs, it will maintain
accuracy of relative maneuver magnitudes. The next iteration of this mission
planner will contain higher fidelity dynamics. Note: Assumption 9 refers
to the use of an oblate spheroid earth model in a geometrical as opposed to

gravitational context; thus, these assumptions do not contradict one another.

. Maneuvers can occur at precisely the correct time and Av indicated by the

mission planner. This assumption neglects delays due to the limitations of
the satellite command and control structure and errors due to inaccuracy of
engine burns. Since the SMV command and control structure has yet to be
determined, this assumption could depart dramatically from the realm of the
real world. Maneuver errors are assumed to be insignificant enough to ignore

here.

. Impulsive maneuvers. Historically, astrodynamicists have treated maneuvers

as impulsive or instantaneous. Actual maneuvers are continuous not impul-

14




sive, taking place over a finite amount of time and depending on thrust char-
acteristics and burn duration; therefore, they require numerical integration for
their calculation (17:274). Treatment of maneuvers as impulsive simplifies the

problem without a significant loss of accuracy.

. Ignore stability, control and orientation of SMV. This application assumes
that SMVs contain the mechanisms for maintaining proper stability, control,

and orientation without impacting maneuvers.

. Orbiting SMVs all have the payload necessary to perform the mission. For
now, the program assumes that all of the orbiting SMVs are the same as far
as their payloads and ability to perform any mission. Eventually, the Mission
Planner will distinguish between types of SMVs and the payloads associated
with each, so only those SMVs with the necessary payload will be checked
for capability of performing a given mission. The payload data will include
operational limitations such as lighting, distance, weather, and field of view in

order to further refine the accuracy of the Mission Planner.

. Communications links are omnidirectional. This capability ensures that SMVs
can transmit and receive telemetry, tracking, and commanding (TT&C) infor-

mation regardless of orientation.

. Av to station-keep is negligible. Since SMVs are intended to spend one year
or less in orbit and to maneuver often, Av for keeping an SMV in its current

orbital location in insignificant.

. Earth is an oblate spheroid. An oblate spheroid model of the earth gives more
accurate results than a spherical model since the earth actually bulges a’; the
equator. Under this model a cross section of the earth along a meridian (line of
longitude) is an ellipse with semi-major axis equal to the earth’s equatorial ra-
dius and semi-minor axis the polar radius. Although the earth is not a perfect

oblate spheroid, deviations from this shape are negligible. This assumption
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10.

11.

12.

3.3

changes the manner of determining ground coordinates—spherical geometry is

no longer valid since radius of the earth changes with latitude (3:93).

SMV and target position vectors are not collinear. The orbit determination
algorithm used in this thesis cannot handle maneuvers between two collinear
vectors because the plane of the transfer orbit is no longer uniquely defined
(3:229). Due to the infrequency of a true collinear case, this shortcoming

should not pose a problem.

One mission per tasking order. The mission planner currently has provisions
for evaluating only one mission at a time. Future versions of the program will

be able to handle multiple simultaneous mission inputs.

SMVs are available for launch as required. This statement depends on the
availability of SMVs, ability to turn them around quickly after return to earth,
and availability of Space Operations Vehicles (SOVs), the reusable launch ve-
hicle.

Astrodynamics

Satellite orbital mission planning relies on astrodynamics fundamentals both

to determine position and velocity of the satellite and target and to calculate orbital

maneuvers between the two. Both problems have several possible solution methods

depending on the information known and the desired output. The first problem is

one of gravitational attraction between two bodies in space, commonly called the

two-body problem, and is discussed in Section 3.3.1. The second problem of orbit

determination from two positions vectors and time of flight between them is discussed

in Section 3.3.2. Launch and reentry of SMVs have not been considered at this point

in the research, but future versions of this application will include calculations and

comparisons for launch and reentry in order to add realism to the decision-making

process.
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3.8.1 Two-Body Problem (2BP). The tWo—body problem involves two
masses orbiting under their gravitational attraction with one another. This is the
only gravitational problem whose closed-form solution is known (20:48). Several
sources derive and discuss the 2BP in great detail. Three good references for the
reader interested in a more rigorous derivation than presented herein are Spaceflight
Dynamics by Wiesel (20), Fundamentals of Astrodynamics by Bate, Mueller, and
White (3), and Methods of Orbit Determination by Escobal (7). This section sum-
marizes the 2BP and identifies those aspects critical to the development of the SMV
Orbital Mission Planner. The reader should note that the 2BP assumes point masses
so that the gravitational forces act from the center of each body. In the case of the
earth, due to its shape as well as variations in its material composition there are
perturbations from the 2BP that one must consider. Also, other orbiting bodies
cause a gravitational pull on earth satellites that detracts from the perfect 2BP. As
mentioned in Assumption 2, this thesis ignores perturbations from 2BP dynamics

for the initial version of the mission planner.

Derivation of the 2BP begins with Newton’s Second Law which states that
the sum of forces on a particle is equivalent to the time rate of change of linear

momentum with respect to an inertial frame of reference,

SF = mv) 1)

for constant-mass systems, where F are forces acting on the particle, m is its mass,
o is its velocity vector, and @ its acceleration vector. In the case of an SMV
orbiting the earth both masses remain relatively constant barring any catastrophic
damage to an SMV or the earth; however, in the latter scenario, only the die-hard
astrodynamicists will be contemplating the effect of a change in earth mass on the

orbits of artificial satellites.

17



Next, Newton’s Law of Universal Gravitation for the force of gravity of the
earth acting on an SMV states
GM@msmv n’)"_)

F,= B R (2)
where 7 is the position vector from the earth to the SMV with magnitude r, G is
the universal gravitational constant (6.67259 x 107 m®kg™!s72), and Mg and mnm,
are the mass of the earth and SMV respectively. The force of the SMV acting on

the earth is the same as that of the earth on the SMV but in the opposite direction,

so the equation is Equation 2 but with the opposite sign.

Note from Figure 4 that T = 7 4m, — T g ; therefore, the acceleration of
the SMV with respect to the center of the earth is simply the second derivative of

position with respect to an inertial frame of reference or

G =T=Tgw— Ta (3)

Pt >

Figure 4 Geometry for two bodies in an inertial reference frame (Note: XYZ and
IJK are both inertial reference frames but displaced from one another)
(17:105)
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Under the 2BP assumption, the only force acting on either body is gravitation;

thus, Equation 2 substitutes into 1 to yield

?smv = - ) T (4)
for the SMV and
o Gy T
—_ . smv .
= G T 5

for the earth after dividing by the respective masses. Equations 4 and 5 can in turn

be substituted into Equatidn 3 to give the relative acceleration as

. CMg ™ Grmgme T
o= - o r 2 7 ©)
G(Mg + Msmy) T
_ G tmam) T )

Assuming that the mass of a single SMV is orders of magnitude smaller than
the mass of the earth (hopefully!), mgm, disappears in the equation and GMg can
be replaced with the gravitational parameter, p (= 3.98601x10° km? / s? for earth),
which is much easier to determine for celestial bodies, giving the relative form of the

two-body problem equations of motion
. p
= —;g‘r" . (8)

The word “relative” reveals that the equation of motion applies to the satellite

relative to the larger body, or the SMV relative to the earth in this instance.

As a three degree of freedom system, the vector form of the 2BP equations of
motion implies three components each of position, velocity, and acceleration. Com-

plete definition of the system requires a total of six initial conditions and a time.
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In practice, 7 and @ for a satellite are not easy to visualize. Since the initial
conditions for determining 7 and @ are six scalar quantities, any other system
which specifies the orbit must also use six scalars. The most common system
employs the six classical orbital elements: a, e, ¢, w, Q, T, (20:60). Figures 5 and 6
graphically represent the classical orbital elements with the exception of T, which is

a time measurement.

Three of the classical elements—a, e, and T,—completely describe the motion
of the satellite within its orbital plane; the remaining three—i, w, and 2—determine
the orbit’s orientation in space (20:60). Table 1 describes each of the classical orbital

elements along with their significance to the orbit.

Table 1  Description and significance of the six classical orbital elements
Element Description Significance
Semi-major For an elliptical orbit, half the | Determines size and
axis, a longest axis period of orbit

Eccentricity, e

Magnitude of the eccentricity vec-
tor which points toward periapsis

Determines shape and
type of conic section

Time of Periap-
sis Passage, T,

Time when the satellite was at pe-
riapsis

Provides satellite ref-
erence position

Inclination, ¢

Angle from equatorial plane to or-
bital plane at ascending node; refers
to the tilt of the orbital plane

For low earth orbits,
basically sets the north
and south limits of
ground visibility

Argument of Pe-
riapsis, w

Angle in the orbital plane between
ascending node and periapsis mea-
sured in direction of motion

Locates periapsis rela-
tive to body being or-
bited

Right Ascension
of Ascending
Node, Q

Angle in equatorial plane from ver-
nal equinox to ascending node mea-
sured eastward

Locates ascending
node relative to iner-
tial reference frame

The complete 2BP solution requires calculating the six classical orbital ele-
ments (a, e, i, w, , T,) from a position and velocity vector, 7 and 7, and vice
versa for any time. Standard methods exist for performing these conversions. This
thesis does not discuss these formulations, but the interested reader should consult

reference (3) or (20). The SMV Orbital Mission Planner uses two subroutines devel-
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r: position vector of the satellite relative to the center of the Earth,
v:. velocity vector of the satellite relative to the center of the Earth,

&: flight-path-angle, the angle between the velocity vector and a line
perpendicular to the position vector,

a: semi-major axis of the ellipse,
b: seml-mmar axis of the ellipse,
¢: the distance from the center of the orblt to one of the focii,

v: the polar angle of the ellipse, also called the true anomaly, measured in the
direction of motion from the direction of perigee to the position vector,

r.: radius of apogee, the distance from the center of the Earth to the farthest
point on the ellipse, and

rp: radius of perigee, the distance from the center of the Earth to the point of
closest approach to the Earth.

Figure 5 Geometry of an ellipse and orbital parameters (15:131)
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Figure 6 Classical orbital elements (20:61)

oped by Dr. William Wiesel called “class” and “randv” which convert 7 and @ at
some time, t,, to the classical elements and classical elements to 7, @, and time,

respectively (19). These subroutines feed information into and check orbits from

the orbit determination algorithm described in Section 3.3.2.

3.3.2  Orbit Determination from Two Positions and Time.  The problem of
orbit determination from two positions and time, commonly referred to as the “Gauss
problem” or the “Lambert theorem”, has the following basic definition: given two
positions vectors (71, T 2), a time of flight (tof) between the two, and the direction
of motion, find 7’; and @’,. “Direction of motion” signifies whether the satellite
will travel from 7, to 7y the short way (angular change less than =) or the long
way (angular change greater than 7). An infinite number of orbits pass through
7, and 75, but only two of them satisfy the given tof. Figure 7 shows the short-

and long-way trajectories with the same tof between 7 ; and 7 ,.

Since the Gauss problem involves three equations in three unknowns (p, a,
and AF) with no analytic solution method available, iterative solution methods

are employed. The semi-major axis, a, was presented in Section 3.3.1; AF is the
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Figure 7 Short-way and long-way trajectories with same time-of-flight (3:229)

change in eccentric anomaly, F; and p is the semi-latus rectum. Figure 8 depicts
these values for an elliptical orbit. A number of different solution techniques exist;
this application uses the “p-iteration” method which follows the general solution
method as presented in Bate, Mueller, and White (3:230-231). See reference (3) for

more detail on this method.

1. Guess a trial value for p.
2. Use two of the three equations to compute a and AE.

3. Test the result by solving the third equation for time and checking it against
the given tof.
4. If the computed value for time does not agree with the given value, adjust the

trial value of p and iterate until it does agree.

One difference between the method used in the Mission Planner and the method
presented in (3) is that the Mission Planner can handle multiple revolution cases.
Basically, the Mission Planner can determine not only those solutions within the
first orbital period of the SMV but also for multiple orbital periods up to the time
allotted for mission completion. Dr. Wiesel’s subroutine “piter” solves the Gauss

problem using the p-iteration method (19).
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Figure 8 Semilatus rectum, p, and eccentric anomaly, E (20:55, 58)

3.4 Processes

3.4.1 Program Flow. In object-oriented, event-driven programming lan-
guages such as Visual Basic, the exact sequence of events is difficult to determine.
Most events occur due to a user’s selection, so the order of events is virtually ran-
dom. Some order exists, though, in at least the start-up portions of the program.
This subsection explains the aspects of the program that remain the same with each

time the program. starts.

Time is a critical part of orbit determination. Any set of orbital elements or
position and velocity vectors has a reference time associated with it; thus, programs
involving orbital mechanics must keep accurate accountability of time throughout
the duration of the run time. In order to allow for operations in the present as well
as futuristic wargaming, the mission planner begins by prompting the user for the
current Zulu date and time of the scenario. This time becomes a benchmark for
all other time calculations. In addition to being the initial scenario reference time,
by subtracting the current computer time from this Zulu time, the program can use

computer clock time adjusted by this time difference for all procedures.

After the time input, the program currently goes directly to the Mission Editor

to allow the user to input a new mission tasking order with the assumption that the
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desired SMVs are already in “orbit” in the database. If not, the user can use the
Constellation Editor to add or delete SMVs to/from orbit. The reader should note
that the Constellation Editor in its current form requires the user to make changes
directly in the database; however, further development will provide a user-friendly
interface to avoid having to open the database to enter data manually. Section 3.4.2
explains the eventual end state of the Constellation Editor with place holders for

additional capabilities.

3.4.2 Edit Constellation.  The sponsors of this thesis wanted the ability to
input and change the following information for orbiting SMVs:

e Number of constellations in orbit

Number of SMVs in each constellation (1 to n SMVs per constellation)

Orbital elements for each SMV

Payload carried in each SMV-select from sensor database (including look angle,

weather, day/night constraints) or enter new

Initial Av (or propellant)

Along with the aforementioned SMV information, the SMV Program Office
desired the options of selecting predetermined SMV or constellation configurations
from a database, adding or deleting SMVs at any time during a scenario, saving

scenarios for future use, and resetting to some original configuration if desired.

Figure 9 gives a graphical view of the decision processes used to implement

these requirements for editing constellations.

3.4.8 Mission Tasking Orders.  The most critical input required from the
user in mission planning is obviously the mission information such as target infor-
mation, time requirements, and satellite capabilities required for mission. Figure

10 shows a sample Mission Tasking Order Form that the user must complete and
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submit in order for the Mission Planner to determine options for completion of the
mission with currently-orbiting SMVs. Operators will eventually have the ability to

add, modify, or abort missions at any time throughout program operation.

Ground Target Location: - .
Latitude - Jes ‘ N thh =l
s e T, Al B

e East'LOngltude
s degrees]

ow clos otarget does v3gu

vy need tobe; : “Elevation:
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o Arnval Time Fiequuement [ Ex act T ime Dver T arget [T D T] J
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M unitions

~ Data _FEeIay

i

Figure 10 ~ Sample Mission Tasking Order form for ground-based targets.

The following list describes the fields in the Tasking Order Form with the

information required for each:

e Tasking Order Number. This can be any set of characters used to identify the

current tasking.
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e Mission Type: Options include Defensive Space Superiority, Offensive Space
Superiority, Post-strike recce, Reconnaissance ( “recce”), Satellite logistics, and
Strike. Note that at this time, this field is optional since according to Assump-
tion 6 all SMVs are the same and can perform any type of mission presented

to them.

e Target Description. Ground-based or Space-based. For now the form only
accepts “Ground-based” as an input since the program only examines overflight
of ground targets at this point and does not yet have the capability to intercept

or rendezvous with space-based targets.

e Target Sateliite ID # (Available only for space-based targets). When imple-
mented in the future, this option will allow the user to select target satellite ID
numbers from a database which both accesses the North American Aerospace
Defense (NORAD) Two-Line Element Sets of real-world, orbiting space objects
and affords the user the opportunity to add additional orbiting objects.

o Ground Target Location (Available only for ground-based targets). Latitude
(in degrees north or south), East longitude (in degrees), and elevation above

mean sea level (in kilometers) of ground target.

e How close to target does SMV need to be? Allows the user to enter a maximum
distance (in kilometers) that the SMV can be from the target to perform the
given mission. For ground overflights, the program will use the lesser of this
value and the current orbital altitude of the SMV being checked in order to
prevent the SMV from maneuvering to a point further away from the target
than it is already flying. For space-based targets, the distance will essentially
create an acceptable sphere around the target satellite for the SMV to fly and

still perform the mission; this field will not be available for satellite rendezvous

missions.

e Arrival Time Requirement. ASAP, Exact Time Over Target (TOT), or No
" Later Than (NLT) Time to Target. All times will be Zulu dates and times.
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This field actually affects the method of determining SMVs capable of per-
forming the mission as well as impacts the computational time required. For
Exact TOT, the program fixes the arrival time and iterates through different
maneuver times. ASAP and NLT Time to Target scenarios iterate through
both the arrival times and maneuver times; therefore, the computational time
for these two time requirements can be significantly greater than that of Exact
TOT. Refer to Section 3.5 for a better understanding of the methods employed

in a ground overflight.

Zulu Time Required. Date and time required on target for Exact TOT. For
NLT Time to Target and ASAP requirements, this field requests a maximum

time allowable to arrive on target.

Command and Control Node. Command and control node assigned for the

particular mission. This field is merely a placeholder for future development.

Munitions. User identifies type and quantity of munitions required for a strike
mission. Since space weapons are currently banned under international treaty,

this field is a placeholder for possible future development if necessary.

Data Relay. Communications relay method and destination for the given

mission. This field is also a placeholder for future development.

Upon completion of this Tasking Order Form, the operator clicks the “Submit”

button for the Mission Planner to calculate the necessary orbital maneuvers.

3.4.4 SMYV selection.  This subsection explains the requirements and high-

level procedures for determination of SMVs capable of performing a given mission

and user selection of the SMV best suited for the mission. The following list describes

the main steps in SMV selection:

e Natural Ouverflights. Can the mission be accomplished by one or more SMVs

without performing a maneuver?
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e Determination of maneuvers required for viable SMV options. Multiple options
may exist for each SMV to accomplish the mission. Also, since taskings could
overlap in time, the problem of conflicting maneuvers for a single SMV presents
itself; thus, a mechanism for tracking those SMVs already tasked to perform a
maneuver in the future must be maintained. These SMVs would be placed in
a “locked” status in the database of orbiting SMVs. Being tagged for a future
maneuver does not preclude the SMV from being considered for new missions,
but it does raise a flag to the user for a commander to decide whether or not to
abort an existing mission to perform a higher-priority mission with the same

SMV.

e Reentry analysis. Although the current version of this application does not
evaluate reentry of SMVs, the future versions will consider the amount of Av
required for reentry of an SMV if a proposed maneuver were performed. In
essence, this analysis would prevent an SMV from being stranded in space with
little or no propellant, or at least provide a commander with the information

to make an informed decision.

e Compare with launch alternative. In addition to exploring all of the options
with currently orbiting SMVs, the mission planner should compare the results
with the alternative of launching a new SMV from the ground. This option
depends entirely on readiness of a launch vehicle (SOV) and SMV at a desired
launch site.  Future iterations of this mission planner will include launch

comparisons.

o Operator selects desired SMV. The difficulty bere lies in displaying the output
to the user in a format that does not overwhelm him or her with reams of data.
A graphical interface will eventually allow the operator to point and click on
the screen to select the SMV he or she determines is the most appropriate for

the mission in question. A screen showing orbiting SMVs with their missions
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and associated times would facilitate the user’s understanding of the big picture

and impact of making certain decisions.

e Perform maneuver. Once selected, the mission planner must update the

database of orbiting SMVs and perform the maneuver at the indicated time.

e Replenish if necessary. As SMV orbits change due to new missions, gaps may
occur in an existing constellation which require determination of candidate

SMVs to fill the gap—through maneuver or launch.

Section 3.5 discusses these steps in more detail for ground overflight missions.

3.5  Ground Overflight

As an Orbital Mission Planner, the routines which calculate orbital maneuvers
comprise the main thrust of the program. The focus of the initial application
development is overflight of ground targets; hence, the “Ground Overfly” module
contains the “meat” of the problem. This section steps through the important

aspects of the routine, intertwining process with orbital mechanics.

3.5.1 Inputs. All of the inputs for this module come from manipulating
entries in the Mission Tasking Order Form. The following input information must

be passed to the subroutine for proper operation:

e Start time for maneuver calculations [modified Julian date]. This time is
automatically determined when the operator presses the submit button on
the Tasking Order (T.0O.) Form. One should note that the Mission Planner
contains date conversion routines written for converting from calendar date

and time to modified Julian date (MJD) and vice versa (19).

o Arrival time required [MJD]. This time comes from the “Zulu Time Required”

field of the T.O. Form.

o Time (urgency) requirement. ASAP, Exact TOT, NLT Time to Target
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Tasking Order Number

Latitude of target [radians/

East Longitude of target [radians]

Elevation of target [distance units]. One distance unit (DU) equals the equa-
torial radius of the earth (6378.135 km).

Distance from SMV to target [DUJ. This value represents the maximum alti-

tude above the target that the SMV can be in order to perform the mission.

3.5.2 Ground Target Position Vector.  Orbit determination from two posi-
tions and time requires, obviously, two position vectors—one for the SMV and one
for the target. Target position vectors for ground targets begin with station coor-
dinates for the ground site. For a spherical earth, spherical geometry could be used
to determine station coordinates from latitude, -longitude, and elevation informa-
tion. Because the earth is not a perfect sphere but slightly bulging at the equator,
the SMV Orbital Mission Planner modeled the geometric shape of the earth as an
oblate spheroid instead, as mentioned in Assumption 9. Bate, Mueller, and White
(3) develop the oblate spheroid earth model used in “Ground Overfty”; the highlights

appear below.

An oblate spheroid earth is an ellipsoid whose cross-section along a longitudinal
meridian is an ellipse with semi-major axis, a., equal to the equatorial radius, and
semi-minor axis, b., equal to the polar radius. Table 2 shows the constant properties
for the reference ellipse. The value for the earth’s equatorial radius varies somewhat
from one source to another; the value listed in Table 2 comes from Wiesel’s Spaceflight
Dynamics (20) instead of Bate, Mueller, and White (3) since Wiesel’s value is based
on US military space operations regulations (one should note that the numbers differ

by only 10 meters) (20:323).

Although longitude measurements remain the same for an oblate spheroid as

for a perfect sphere, latitude definition changes. Geocentric latitude (L) is defined
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Table 2 Constant properties for the oblate spheroid earth model reference ellipse

Property Value
Equatorial radius, a, | 6378.135 km
Polar radius, b, 6356.785 km
Eccentricity, e, 0.08182

as the angle between the equatorial plane and the radius from the center of the earth;
geodetic latitude (L) is defined as the angle between the equatorial plane and the
normal to the surface of the ellipsoid. Almost without exception, the word latitude
signifies geodetic latitude (L) unless otherwise stated. Refer to Figure 11 for a view

of the reference ellipse with a., be, L', and L identified.

equotorial
buige
21.4 km

Figure 11  Geocentric and geodetic latitudes; station coordinates (3:95-96)

Calculation of target station coordinates begins with latitude, longitude, and
elevation of the site. Introducing the “reduced latitude”, 8, from Figure 11, and
recognizing that any measurement in the ellipse is simply the equivalent measurement

in the circumscribed circle reduced by the factor, %ﬂ it is easy to see that the x and
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z coordinates become

T = aecosf (9)
be . . .
z = a—aesmﬂ =ae/1 —€2sinf (10)

e

since b= ay/1 — e? for any ellipse. To express these coordinates in terms of L, one
can use the slope of the normal which equals the negative reciprocal of the slope of

the tangent and also equals tan L; thus,

dz tan ‘2 V1—ée2sinL
- _ _ = - = 11
tan L &= e = tanf =4/1—e2tanl - (11)

where dz = —a.sinf8df and dz = a.4/1 — e2cos3df from differentiating Equa-
tions 9 and 10.

If tanﬁzg— where A= ,/1—e2sinl and B = cos L, then

v1—e€?sinL
sin 3 A _ e? sin (12)
VA? + B? 1 —e2sin’ L
B cos L
cosfB = = 13
VA2 +B?  |/1-e2sin’L (13)

Substitution into Equations 9 and 10 with an adjustment for height, H, above
mean sea level of Az = HcosL and Az = HsinL yields the two rectangular

_station coordinates in terms of latitude, elevation, and earth equatorial radius and

eccentricity
Qe
z = + H|cos L (14)
1 - e2sin® L
e - 2 .
z = 21— <) + H|sin L (15)
1—e2sin’ L
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The third and final station coordinate is the east longitude, Ag, of the site.
Combining Ag with the Greenwich sidereal time, 8, gives the local sidereal time,
6, where 0, = 6, + 1.0027379093 x 27 x D [rad] with 6, = 1.74516701 and
D = # of days elapsed since Oh Universal Time (UT), 01 January 1971 (3:101-104).
The Mission Planner calculates Greenwich sidereal time by calling a simple function
written by Dr. Wiesel called “Thetag” which uses the equation just discussed (20).
Sidereal time actually has angular units as opposed to time units since it signifies the
angle from the direction of the vernal equinox (a.k.a., First Point of Aries). With
the calculation of § = f, + Ag , one arrives at the final result for the position vector

of the target
_..9 ~ ~ ~
R =zcos@I+2sinfJ+2zK (16)

Figure 12 shows the relationship between z, z, 8, and R.

Figure 12 Vector from center of earth to ground target (3:99)

One important point to note about the target position vector is the obvious

fact that it lies on the surface of the earth; therefore, unless a commander requests
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a kamikaze mission, the target position vector for ground overflight must be some
distance above the target. The current version of the Mission Planner allows the
user to input a maximum distance that the SMV can be from the target (see Section
3.5.1). “Ground Overfly” then uses the lesser of that value and the current orbital
altitude (minus the target elevation) to avoid having an SMV in a lower-altitude

orbit fly to a higher altitude to accomplish the mission.

3.5.83 Orbiting SMV Loop.  Since the Orbital Mission Planner allows any
number of SMVs to be in orbit at any given time, “Ground Overfly” must check
all orbiting SMVs to see if they are capable of performing the mission; thus, the
outer loop of this module cycles through all of the orbiting SMVs in the “Orbiting
SMVs” table of the Mission Planner database (refer to Section 3.6 for information
concerning the database). The necessary information extracted from the table for
“Ground Overfly” includes the six orbital elements, Av remaining in the current

SMV, and constellation and SMV identifier codes.

3.5.4 Time Iteration Loops. Two critical times envelop any maneuver: ma-
neuver time and arrival time. User input from the Tasking Order Form determines
whether only one or both of these can vary. Missions requiring an “Exact TOT”
do not have flexibility in arrival time; hence, the mission planner fixes the arrival
time and only iterates through maneuver times to find as many maneuver options as
possible. “NLT Time to Target” and “ASAP” requirements step through different
maneuver times as well as arrival times, up to a maximum arrival time determined by
the user. Although looping through both times may provide more opportunities for

SMVs to complete a mission, it also increases the computational time significantly.

In order to perform these time loops efficiently and effectively, consideration of
the time step was necessary. A trade-off hetween computational speed and accuracy

existed. Too short of a time step drastically increased run time; while too long of
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a time step missed opportunities in the orbit to maneuver. The solution required

some insight into both the SMV orbital periods and the arrival time requirement.

Orbital period is defined as the amount of time elapsed for a satellite to undergo
one complete revolution. The following equation allows for calculation of the orbital
period, T'P:

TP =2n By (17)

He
where ag,,, is the semi-major axis of a given SMV orbit and p, is the earth’s gravi-
tational parameter (3.98601x10°km?® /s?) as introduced in Section 3.3.1. From the
start time to the time required on target (either exact or maximum), an SMV will
experience a specific number of orbital revolutions based on the orbital period and

the difference between the start and required times,

tre - ts ar
# of orbits = —-qd—T—P—t—t- (18)

The number of points used could come from multiplying the number of orbits by
some number of points per orbit and using the integer portion of the result. After
experimentation with the program, the need arose to use a different number of
points per orbit depending on the arrival time requirement. As mentioned above,
the nested loop through maneuver and arrival times increases the computational
time dramatically. To minimize this effect, it was decided to use a smaller number
of points per orbit for both “ASAP” and “NLT Time to Target” than “Exact TOT”.
An arbitrary 100 points per orbit for the former and 300 points for the latter seemed
reasonable. Since these numbers are arbitrary, they can be changed in the future to

improve performance. Finally, the time step could be determined by

tre d ™ tstart
At = -2 0T 1
# of points (19)
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where # of points = (# of points per orbit) x (# of orbits) . This time step,

At, was utilized in both time loops.

3.5.5 Natural Overflights. Before finding maneuver options for mission
accomplishment, it was appropriate to check for natural overflights, or in other words,
times when an SMV would fly over the ground point without maneuvering out of its
current orbit. Without knowing the earth visibility limitations (e.g., sensor field of
view) of possible payloads that the SMV could carry, natural overflights could still
be examined by choosing some arbitrary angle between the target position vector,

Tiqt, and the vector, p, defined as
_P-) = T>sm'v - ?tgt (20)

Figure 13 shows the relationships between these three vectors. This method es-
sentially defines a cone above the target with cone half-angle equal to the arbitrary

angle, chosen as 20° for this application.

SMV and target position vectors at the “arrival” time could be calculated
using methods discussed in Sections 3.3.1 and 3.5.2, respectively. “Arrival” time
here indicates the current iteration of arrival time. Recall that for all but “Exact
TOT” time requirements, the program loops though arrival time as well as maneuver
time. Using Equation 20, one can easily calculate 9" given the position vectors just
determined. Properties associated with the vector dot product or inner product,
@ - b, provide a method for checking the angle between 7’and 74y in the following

manner:

D Tigt =P || T gt| cOSy (21)
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Figure 13  Natural overflight geometry

or

— =
y = arccos (—f———t—t—g—t—> (22)

i

where y = angle between the two vectors (12:436). 1If v < 20°, then the SMV being

considered will have a natural overflight at the current iteration of the arrival time.

3.5.6 SMYV Position Vector. Calculation of 7 sme simply requires a call of
the “randv” subroutine at the current iteration maneuver time. This step converts

the orbital elements of the SMV to position and velocity vectors.
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3.5.7 Maneuver Calculations. Finally, the program comes to the point
where it calculates the required maneuvers for the given mission. Subroutine “piter”
discussed in Section 3.3.2 performs these calculations, but a few important steps

precede the procedure call to the “piter” subroutine.

1. Until now no reference has been made to the value of time of flight (tof). Since
tof is the flight time between 7 g, at maneuver time and 7,4 at arrival time,

tof is simply
tOf = tarr — tman (23)

where t,.. is the arrival time and t,,,, is the maneuver time at the current

iteration steps.

2. As mentioned in Section 3.3.2, “piter” can find maneuver options for single or
multiple revolution cases for the SMV. In order to know which revolution is
being considered, “piter” requires an input of the current revolution number.
In practice, the Mission Planner needs to loop through all of the complete SMV
revolutions up to the maximum possible number, which can be found easily
by dividing the time of flight by the SMV orbital period and truncating the

answer to retain only the whole number portion

tof
max — t 24
revs runc ( TP, ) (24)

3. “piter” needs to know the direction of motion: short way or long way; thus, in

order to find all possible solutions, the Mission Planner tries both directions.

After determining all of these values, the application can call “piter” using
T smv b tman, T tgt &t terr, tof, direction of motion, and revolution number—each

for its respective iteration step. Subroutine “piter” solves the Gauss problem and
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yields @’; and @, where @, is the required SMV velocity at t,,4,, to reach the target

at the appropriate t., and ¥’y is the SMV velocity upon arrival at the target.
Prop

One final step is required to insure that the new orbit is valid: verify that the
new orbit does not intersect the earth. Normally, an orbit which intersects the earth
is not desired, even though it may produce some interesting audiovisual effects. By
the geometry of an elliptical orbit and of the earth, to avoid intersecting the earth,
the radius of perigee (point in orbit closest to the earth) must be greater than the
radius of the earth. Since 7, and @’ are known at %,,,,, subroutine “class” can
be used to calculate the orbital elements for the new orbit. The radius of perigee Tp
can be calculated from the semi-major axis and eccentricity of the SMV orbit after

maneuvering

Tp = a'sm'uafte'r(]‘ - esm"-’after) (25)

and compared to the radius of the earth (6378.135km) (20:56). One should note
that in reality r, should be greater than the radius of the earth plus some distance
(say 100km). Otherwise certain SMVs might prematurely undergo a test of their
heat shields.

3.5.8 Delta-v Required. Before recognizing each maneuver option as a

solution, the Av required for the maneuver must be compared to the Av remaining

in the affiliated SMV. Awv required is simply 7’1 — ¥ 4my at maneuver time. If Av
. Yy

required < Av remaining , then the option is definitely a valid option and can be

presented to the user as an option for completing the mission.

3.6 Database Control

This program relies heavily on good database management for accurately track-
ing orbiting SMVs, maintaining multiple orbital element sets for each based on

planned maneuvers, and organizing data on SMVs capable of performing each mis-
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sion. The Mission Planner uses a Microsoft Access database (by request of the thesis
sponsor) with six tables each containing different information. The first version of
this program only uses two of the tables; descriptions of these tables and their con-
tents can be found below. Note that these database tables can be easily modified

to contain more or less information as desired.

e Orbiting SMVs. Contains information on all SMVs currently in simulated
orbit, including ID numbers, current mission, scheduled maneuvers, Av re-

maining, and orbital elements.

e Capable SMVs. Accepts output from the Mission Planner of all possible ma-
neuver options for missions. Currently, the table receives ID information;
receipt, maneuver, and arrival times; Av remaining before, required for, and

remaining after maneuver; and before and after orbital elements.

Future versions of the Orbital Mission Planner will include tables with payload
specifications and limitations, types of SMV configurations, predetermined constel-
lations for users to select, and possible target satellites for intercept or rendezvous.
This last table will access the NORAD two-line orbital element set for all earth-
orbiting objects as well as allowing users to add their own objects, such as the Space

Shuttle or asteroids.
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IV. Results and Analysis
4.1  Quverview

This chapter explains the results achieved in this thesis and the analysis of
those results. As a developmental thesis, the results and analysis focus primarily
on the accuracy of the application developed and its usefulness. Additional analysis
delves into the maneuverability of the SMV and its ability to respond rapidly to
on-demand, short-notice taskings. Although another entire thesis could focus on
the maneuverability analysis alone, Section 4.3 attempts to demonstrate some of
the capabilities of the Orbital Mission Planner and make some recommendations for

further analysis of the SMV’s maneuverability using the Mission Planner.

4.2 Program Tests

Analysis began with a test of the Orbital Mission Planner itself to insure accu-
racy of results. To increase the level of confidence in the application, two different
tests were performed. The first test involved running a scenario through the pro-
gram with known results. Comparison of the program output with the correct
results would give a relative level of security in the accuracy of the Mission Planner.
The second test used Satellite Tool Kit (STK), a professional orbital simulation tool,
to check the Orbital Mission Planner’s ability to provide maneuvers that cause an

overflight of an identified ground target.

4.2.1 Test 1: Verification with Known Case. The following steps were

used to verify the results of the Orbital Mission Planner with a known case:

1. Find 7 4n, at an arbitrary time (Zulu date/time 02/07/1999, 00:55:06 was
selected) for one of the orbiting SMVs using “randv” subroutine described in

Section 3.3.1.
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2. Find the ground point directly under the SMV at that time (i.e., 7, and

T smw Share a common unit vector)

3. Run the Mission Planner for the target found in step 2 with a start time before
the overflight time chosen in step 1. A natural overflight should occur, and

many of the maneuver options should require small Av’s.

Step 2 demands a method for determining which ground location lies directly

beneath the SMV. By equating unit vectors,

— —
Lsmv _ Ltgt (26)
[T ool |7 tgtl

where the left hand side was already calculated in step 1 above. Since a vector in
three dimensions is simply the sum of its three components, the individual compo-
nents can be substituted for the respective numerators in Equation 26. Recalling the
relations derived for a ground target position vector in Equation 16 and substituting

into Equation 26,

T tgt1 T COSH

7 = = 27
smy,ul I?’t‘gtl l—,r.—-)tgtl ( )
_—» .
. T g2 xsing
T w2 = = 28
- | T tgtl |7 4t (28)
—>
— T tgt,3 z
7 = = 29
smv,u3 ( —,F)tgt ' ‘ ?tgt I ( )

where z, z, and 6 are defined as in Equation 16, subscript u signifies unit vector,

numeric subscripts signify the specific vector component, and

| T gt = \/mQ cos?(6) + x2sin*(0) + 22 (30)
— \/3;2 -+ 22 (31)
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Equations 27 through 29 can be solved for z, 8, and z in the following manner:

z = _F)smv,uB : |?t9t‘ (32)
rsind = ?smv,UQ ' |?)t9t| (33)
rcosf = Tsmv,ul . I—T—)tgtl (34)

Assuming the target has zero elevation, |7 4| & a. , where a. equals the semi-major

axis of the oblate spheroid earth as defined in Section 3.5.2. Then,

z = —'F)smv,ufa' * Qe (35)
—
§ = arctan (_/’;)smv,u2> (36)
T smv,ul
.H
T smuu2 * Qe
= omvur e 7
o sin 6 (37)

where z and # have immediate solutions, and z follows from 8. Care must be taken to
find the correct 8 from the arctan function. Before losing sight of where this is headed,
recall that this procedure began with a search for the ground site underneath the
SMYV,; hence, latitude and longitude are required. Using the equation for longitude,
0 =0, + Ag , and Equation 15 for latitude at zero elevation, H,

Ap=0-16, (38)
with 8, easily calculated from the “Thetag” subroutine, and

: 22
L = arcsin (\/;3(1 . z2eg> (39)

All of the values are now available to solve for latitude, L, and east longitude, Ag,

of the ground point.
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For the time given in step 1 and an SMV with orbital elements (a=6978.135
km, e=0, 1=0, Q=0, w=0, T,=0), the resulting latitude and longitude were

L = 17.6008444456° (40)
Ap = 242.569932465° (41)

Running the scenario starting a few hours prior to the time in step 1 completed
the first test of the Orbital Mission Planner. The results showed an almost direct
natural overflight at the desired time—“almost” due to the approximation |7 ;| =
a. . Maneuver options with Av’s as low as 7.91 feet per second were presented.
These results provided sufficient assurance that the orbital mechanics and code were

operating properly and delivering good data.

4.2.2 Test 2: Verification with Satellite ‘Tool Kit. Test 1 used the Or-
bital Mission Planner to check itself with a known scenario, but in order to verify
the results further, a comparison with an external satellite orbit simulation program
proved beneficial. Satellite Tool Kit (STK), a powerful, commercially-available sim-
ulation program, seemed a logical choice for this second check. Since STK can
neither calculate nor perform maneuvers like the SMV Orbital Mission Planner, it
could not simply run the same scenario as the Mission Planner allowing for com-
parison of results. STK can, however, accept two sets of orbital elements from the
Mission Planner—before maneuver and after maneuver; if the after-maneuver orbit
showed the SMV flying over the ground target identified in the test case, then Test
2 could be considered successful. STK allows the user to change the level of fidelity
of its dynamics propagator. In order to present an acéurate comparison with the

Mission Planner, this test reduced STK’s dynamics to the two-body problem (2BP).

The test case run in Test 2 came from one of the scenarios in Section 4.3 and

had the following specifications:
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e Start time: 01 Jan 2015, 12:00:13.2880032 Z (where Z signifies Zulu time)
e Arrival time: 01 Jan 2015, 14:00:00 Z
e Time Requirement: Exact TOT (i.e., overfly target at exactly 1400 Z)

Target: Seattle, WA (47.36° N latitude, 237.80° E longitude, 0 km elevation)

6 SMVs orbiting in Walker Constellation with same orbital information as

identified in Section 4.3

The first maneuver option provided by the Mission Planner became the test
case for input into STK; Table 3 shows the orbital elements before and after the
suggested maneuver for one of the SMVs capable of performing the mission—the

one used for comparison with STK.

Table 3 rbital elements before and after maneuver for test case used in Test 2
a [km] e i [° Q] w [°] T, [MJD]
before | 6656.112 | 0 38 60 0 17037.0104
after | 6673.5754 | 0.004505 | 47.3714 | 92.0121 | 109.9717 | 17024.0232

Figure 14 shows that STK verifies the result of the Mission Planner since the

after-maneuver orbit flies over the ground target (Seattle, WA).

4.8 Maneuverability Analysis

As mentioned previously, this section introduces sample mission taskings and
demonstrates some of the capabilities of the SMV Orbital Mission Planner. The in-
tent of this section was not to perform a comprehensive, on-demand maneuverability
analysis but to show the types of information gleaned from the Mission Planner and

suggest areas for further analysis based on the results of the sample scenarios.

Based on input from the sponsors of this thesis, a constellation of six SMVs
with full propellant (Av=10,500 fps) in a Walker constellation at 150 nautical mile
(277.977 km) altitude and 38° inclination provided a realistic starting point for the
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™~ SMV orbit
after maneuver (flies
over Seattle)

SMV orbit
before maneuver

---------

Figure 14  Satellite Tool Kit (STK) orbital simulations before and after maneuver
for Program Test 2 showing overflight of ground target (Seattle, WA)

analysis. A Walker constellation, or Walker delta pattern, assumes all satellites are
in circular orbits at the same inclination and evenly-distributed around the globe.
This description is sufficient for the purposes of this research; however, a more de-
tailed coverage of Walker constellations can be fdund in Reference (15). Table 4
shows the initial orbital elements for the six SMVs in a Walker delta pattern with six
orbital planes and one SMV per plane. Note that the increment for T, came from
dividing the orbital period (T'P = 90mn 4.327s = 0.01043 d, from Equation 17) by
SiX, théreby evenly-spacing the six SMVs by latitude around the globe; whereas, the
* increment for ) evenly-spaced the SMVS by longitude.

Since one of the main goals of the SMV is rapid response to new taskings,
a relatively short time requirement was appropriate to test maneuverability and
responsiveness. The scenario used two hours as a maximum time between receiving
the tasking and an SMV arriving over target. Two different start times (01 1200Z
Jan 2015 and 01 1400Z Jan 2015) allowed a comparison of options based on the time
the tasking was received. Figures 15 and 16 show the 6 SMV ground traces for the

43




Table 4  Orbital elements for six SMVs in Walker constellation used as starting
point for analysis

SMVID# | alkm] |e|i]°]|Q][]]|w]] T, [IMJD]
SMV 1 6656.112 |0 |38 | O 0 17037.0

SMV 2 6656.112 | 0 | 38 | 60 0 17037.0104250132
SMV 3 6656.112 | 0 | 38 {120 |0 17037.0202500264
SMV 4 6656.112 | 0 | 38 | 180 |0 17037.0303750396
SMV 5 6656.112 { 0 | 38 1240 |0 17037.0405000528
SMV 6 6656.112 | 0 | 38 | 300 |O 17037.050625066

two-hour periods starting at 1200Z and 1400Z, respectively. Notice that the ground

traces in Figure 16 start where the corresponding ground traces in Figure 15 end

since the second start time is the same as the first end time.

Figure 15 Ground traces for six SMVs in 38° inclination Walker constellation at
first start time. Only two hours of the orbits are shown.

Next, the analysis required a representative sample of worldwide ground tar-
gets at a variety of latitudes. Due to symmetry of circular orbits with the northern

and southern hemispheres, only targets in the northern hemisphere were considered.
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Figure 16  Ground traces for six SMVs in 38° inclination Walker constellation at
second start time. Only two hours of the orbits are shown.

Four targets at different latitudes and longitudes would deliver enough data to as-
certain trends within the results and determine areas to focus further analysis. As
one can see from Figures 15 and 16, the limit of latitude visibility for low-earth-
orbiting satellites is the inclination of the orbit—38° in this scenario. To challenge
the SMV maneuvering capability, three of the four targets chosen lay at latitudes
greater than 38° and one lay near the equator where coverage gaps often occur in

most constellations. Table 5 lists the four target locations (8).

Table 5 Ground target locations for analysis

Target Latitude [°N] | Longitude [°E] | Elevation [km)
Seattle, WA (USA) 47.36 237.80 0
Bogotd, Colombia 4.36 285.95 3
Moscow, Russia 55.45 37.37 0
P’yongyang, N. Korea | 39.03 125.48 0




Finally, in order to determine differences between “Exact TOT” and “NLT
Time to Target” time requirements, the analysis incorporated an “Exact TOT” and
“NLT Time to Target” with each target at each start time. Sixteen different combi-
nations resulted (4 targets x 2 start times x 2 time requirements), each receiving a
number 01 through 16 for tracking purposes. Table 6 shows each of the 16 scenarios

and indicates the combination associated with that scenario.

Table 6  Sixteen scenarios considered during analysis

Target Location Start Time | Time Reqt
Scenario | Seattle | Bogotid | Moscow | P’yong | 1st | 2nd | Exact | NLT
01 X X X
02 X X X
03 X X X
04 X X X
05 X X X
06 X X X
07 X X X
08 X X X
09 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14, X X X
15 X X X
16 X X X

Since the 16 scenarios produced almost 10,000 possible maneuver options, all
of them could not be included in this document. Appendix A gives portions of
the program output for the Seattle cases only (Scenarios 01-“Exact TOT”-and 02—
“NLT Time to Tgt”). The list of output only includes those maneuver options
that create valid elliptical orbits after maneuver and that require less Av to perform
the maneuver than that remaining in the identified SMV. Note that many other
variables could be sent to the database as output, so users may tailor output to their

specific needs.
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Figures 17 through 27 graphically represent the maneuver options for the 16
different scenarios. These graphs assist in the visualization of the Mission Planner
results as well as provide the user with useful information for making informed
decisions about a specific mission—without drowning in reams of data output. If
the user always desired either the lowest Av option or the option arriving soonest,
then a list of choices would suffice; however, in the real world, these choices are not
so simple. Good military tactics often require that commanders make decisions that
the enemy would not expect. For instance, an Army infantry platoon on regular
patrols does not follow the same route at the same time during each successive patrol,
else soldiers die and the platoon leader does not keep his job for long. Similarly,
Air Force bombers do not follow the same flight path during each sortie, else the
current Air Force pilot shortages might have another cause other than pilot retention
problems. In the same way, an SMV commander would not always want his or
her decisions to become predictable; therefore, he or she needs as many options as
possible in order to make a sound selection. Additionally, there may be cases when
one SMV requires less Av for a specific mission than another SMV, but the first
SMYV has less Av remaining than the second; in this event, the second SMV may be
a better choice in terms of constellation management. As these examples indicate,
there are many instances where an SMV operator needs more than simply lines of

data output.

After examination of the different taskings entered into the Mission Planner,

three different types of outputs appeared.

1. Discrete Points. These points are the set of solutions where SMVs would fly

over a target naturally, without maneuvering, as discussed in Section 3.5.5.

2. One independent variable. This type corresponds to “Exact TOT” missions
since only maneuver time varies, while arrival time remains fixed. @ Two-

dimensional plots result.
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Figure 18 NLT Time to Target maneuver options for Seattle,
time (Scenario 02)




10000 |
9000 |- .
8000F--- 10000 = . S Swvt
) . : ' G SMV2
_ i et : : SMv3
7 7000 8000 - : et + SMV4
= H H H I 5 SMV5
S 6000 _ :
@ 3 =] SMVE
2 8 60004 g RE LT !
8 5000 z -
x g 000 :
£ s000f--- =
©
3000
2000
1000
: ; : ; 0
00 " : = ) Arival Time (hours] 0 Manetver Time [hours}

Maneuver Time [hours]

Figure 19 NLT Time to Target maneuver options for Seattle, WA for second start
time (Scenario 10)
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Figure 22 NLT Time to Target maneuver options for Bogotd, Colombia for second
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NLT Time to Target maneuver options for Moscow, Russia for first start

time (Scenario 06)
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for second start time (Scenario 16)

3. Two independent variables. This type corresponds to “NLT Time to Target”
or “ASAP” missions since both maneuver time and arrival time vary. Three
dimensional plots result; however, two-dimensional plots could be used if one

of the variables is ignored.

In the 16 scenarios examined, none had any solutions of Type 1, Natural Over-
flights. This statement is obvious for the three targets with latitudes greater than
the SMV orbital inclination, but it also applied to the target near the equator during
the time periods tested. Type 2 and 3 solutions were abundant, though, and Figures
17 through 27 display the options for these types. Note that for each of the Type 3
(“NLT Time to Target”) plots, 2-D and 3-D versions sit side by side for comparison.

Some general explanation of these plots is required for the reader’s understand-
ing. “Exact TOT” plots show Av réquired versus maneuver time for both start times
(if options existed for both start times). Maneuver times were scaled such that the
start time is at Oh and arrival time at 2h regardless of the actual Zulu time. All of
the options shown in these “Exact TOT” plots will place the given SMV over the
target at precisely the 2 hour point—the right hand vertical axis of the plot. “NLT

Time to Target” plots show a 2-D plot of Av required versus maneuver time next
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to a 3-D plot of the same data points with Awv required on the vertical axis and
maneuver time and arrival time on the two horizontal axes. The difference between
the “Exact TOT” plots and the “NLT Time to Target” plots is that for the latter the
arrival time is not necessarily at the 2h point. Using Figures 15 and 16 along with
17 through 27, the reader can better understand why one SMV has more options

than another SMV that has fewer or no options for a given scenario.

After analysis of the output plots and associated data, the following trends

became apparent:

e Often more than one window of opportunity exists. For most scenarios, a given
SMV capable of performing the mission has more than one window of oppor-
tunity to maneuver and arrive on time, with each window requiring relatively
the same Av’s. These windows of opportunity help alleviate the problem of
short-notice maneuvers (i.e., those maneuvers that require a decision and a
command sent to the SMV in a short period of time, say less than 30 min.).
In most cases, a minimum amount of time is required to make a decision on an
SMV option, get the maneuver information to the space operators, and send

the command to the SMV to perform the maneuver.

e Only a fraction of the orbiting SMVs are capable of a given mission. Although
6 SMVs were in orbit for the analysis, no more than 4 (and usually only one or
two) could perform the mission in any individual scenario. This observation
suggests a need to consider how many SMVs should be in orbit for a desired

level of responsiveness.

e Some (most) of the maneuvers presented require large Av’s. Most of the ma-
neuver options presented use a significant amount of the vehicle Av allocation.
One should recall that the scenarios tested were designed to challenge the SMV
with large, short notice maneuvers; hence, high Av’s could be expected. The

important point is that although some maneuvers require much Av, the tasking
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can be performed, nonetheless, if mission needs dictate—missions that current
satellites would be completely incapable of performing. Proper resource man-

agement would be essential to prevent unreasonably rapid Av depletion.

Generally more options for “NLT Time to Target” than “Fzact TOT”. While
three of the “Exact TOT” scenarios had no options (both for Moscow, one for
Bogotd), all of the “NLT Time” scenarios had options and usually more than
their “Exact TOT” counterparts. Operators need this information to insure
that they do not place unnecessary restrictions on arrival time if the mission

does not require it.

Timing of taskings is important. Since more options present themselves with
more time available, space operators should give the SMVs as much time as
possible if the mission affords some flexibility. One can see that this statement
is true by choosing any of the target locations and looking at the maneuver
options for both start times (essentially 4h available) as opposed to just one

start time (2h available).

“After-maneuver” orbits may not always be desirable. Inspection of the or-
bital elements after performing some of the indicated maneuvers revealed that
certain maneuvers place an SMV in a highly elliptical orbit or may change the
inclination significantly. These and other orbital changes may put the SMV
in an orbit of little use after performing the mission and would require another

maneuver to return to a reasonable orbit for the payload carried.
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5.1

V. Conclusions and Recommendations
Conclusions

This research effort designed a mission planning capability for orbiting Space

Maneuver Vehicles (SMVs), the highly-maneuverable, reusable satellite bus destined

to restructure space operations as it is known today. The SMV Orbital Mission

Planner developed in this thesis marks the first step in transitioning the SMV to

an operational USAF mission system. The Mission Planner not only provides a

computer application for determination of maneuvers and analysis of maneuverability

but also presents a, framework for establishment of an SMV operations concept, while

introducing relevant doctrinal issues.

Throughout the course of this thesis many observations were made, resulting

in the following conclusions:

The SMV Orbital Mission Planner works! As seen in Chapter IV, the Mission
Planner calculates orbital maneuvers accurately. This conclusion is important
since the main purpose of the thesis was development of the mission planning

tool for wargaming and real-world analysis.

10,500 fps of Av appears adequate for most scenarios. Although more Av is
always better when high maneuverability is desired, 10,500 fps allows for a wide
range of maneuver options even for some of the more difficult taskings. At

times, large Av’s are required, but most missions can be completed if necessary.

Proper resource management is critical. ~ Without proper management of
maneuvers—timing and arrival requirements—and associated Av, the SMV

orbital lifetime would decay rapidly.

Often more than one window of opportunity is available to complete a mission.
For any given tasking and capable SMV, more than one window of time periods

usually exists for completing the mission with the same amount of Av required.
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5.2  Research Impact

This thesis has significant usefulness to the USAF and to the space opera-
tions field in general. Both the Space Warfare Center (SWC) at Shriever AFB,
CO and the Theater Air Command and Control Simulation Facility (TACCSF) at
Kirtland AFB along with the sponsors of this thesis, AFRL’s Space Vehicles Direc-
torate, eagerly await the opportunity to demonstrate the SMV’s capabilities using
the Orbital Mission Planner in EFX 99. Favorable results at EFX 99 could rev-
olutionize military space operations and increase the contribution of space assets
to the new Aerospace Expeditionary Force concépt and the Air Force mission as a
whole. The research presented here improves the responsiveness of space vehicles in

an operational environment.

5.8 Recommendations for Further Research

A research effort of this magnitude always contains much room for future ex-
pansion. Due to the nature of this project, a multi-disciplinary approach utilizing
researchers from the Astronautical Engineering, Space Operations, Operations Re-
search/Analysis, and Computer Science fields may provide the best mix for tackling
the myriad challenging problems introduced in this thesis. This section lists a
selection of areas discovered during the course of this thesis that are ideal for fur-
ther development. Some could begin immediately depending on the availability of

researchers.

e Higher fidelity dynamics. As mentioned in this thesis, 2BP dynamics model
the relative maneuvers and positions with fair accuracy, but inclusion of per--

turbations to the 2BP would greatly improve the realism of calculations.

e Space-based targets. In addition to ground-based targets, the SMV will be
able to intercept or rendezvous with space-based targets for recce, destruction,

disruption, repair, or replacement missions. Dr. Wiesel has already written
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Visual Basic code modeling flyby and rendezvous of space targets which could
be edited to interface with the Mission Planner. He has also developed code
for reading the NORAD Two-Line Element Set data for all unclassified space
objects; this data would allow the SMV to flyby or co-fly with real-world

satellites.

Ezxpand upon maneuverability analysis. Additional areas that deserve some at-
tention include Av required vs. change in orbital elements (specifically Aa, Ae,
A7) to determine desirability of after-maneuver orbits; timing of maneuvers;
and second and higher levels of maneuvers (i.e., perform maneuver, update Av

and orbital elements of SMV, perform additional maneuvers).

Improve user interface. Graphical displays of output and SMV orbits would
enable a user to understand more easily the operational environment. Simula-
tion tools such as Satellite Tool Kit (STK) or the Air Force-designed Satellite
and Mission Analysis Tool (SMAT) could possibly assist in this process by
showing SMVs orbiting the earth, ground traces, and much more. The points
of contact for SMAT are Program Manager Maj Dudley (DSN 560-9358; Comm
719-567-9358) and Computer Programmer Mr. Mark Herklotz (DSN 560-9247;
Comm 719-567-9247), SWC/AEWE. Other areas for user interface improve-
ment lie in Windows capabilities such as printing, help files, saving most recent
configuration, loading old configurations, generating reports of missions and

maneuvers, etc.

Merge orbital and launch mission planners. This merger would assist in an-
swering the question: “Is it better to have SMVs in orbit or launch them only
when needed?” Note: This question assumes the availability of reusable

launch vehicles on alert status.

Determine if it is always better to fly to similar orbital altitude or are there
times when different altitude might be better. This problem has not been

researched significantly due to the inability of most satellites to perform ma-
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neuvers on demand. For elliptical orbits occasions may exist where flying to a
higher orbital altitude at a given point in the orbit may yield maneuvers that

are cheaper in terms of Awv.

Include payload or sensor specifications and limitations. By identifying pay-
load specifications and limitations (e.g., maximum distance from target, field
of view (FOV), lighting requirements, weather constraints), the Mission Plan-
ner could evaluate only those orbiting SMVs with the necessary payload for
a given maneuver, and it could insure that the payload limitations were not

violated.

Multiple missions per tasking order and/or per SMV. Currently, the Mission
Planner can only handle one mission per tasking order. Future versions could
allow multiple mission to be entered simultaneously. Also, the program could
decide if one SMV could potentially cover more than one target or more than

one mission.

Reentry analysis. both for determining if Av is adequate to perform maneuver
and reenter and for calculating maneuver specifications for reentry and landing

at given bases.

Periodic revisits. Allow the user to specify the number or frequency of revisits

by SMV(s) over a target.

Recommend constellations that optimize maneuvering flexibility. Perhaps an
operations research professional could optimize SMV constellations for maxi-

mum flexibility.

Ability to edit or abort missions after approving them. Military missions,
especially those involving weapons, must have an option to abort. The current

version of the SMV Orbital Mission Planner does not include an abort option.

Integrate SMV command and control structure into mission planner. The

SMV command and control structure has not yet been determined. Once this
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determination occurs, visibility of satellite, support downtimes if required, and
other telemetry, tracking, and commanding (TT&C) issues should be incorpo-

rated into the Mission Planner.

o Consider collision avoidance. Obviously, space is not empty as assumed in
this thesis. Avoidance of other space objects will require consideration as the

SMV and the Mission Planners mature and approach operational use.
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Appendiz A. Sample Output from Analysis Scenarios
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