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AFIT/GAE/ENY/99M-08

Abstract

The Air Force is interested in evaluating the performance of loading platforms that can be con-
sidered possible candidates for precision air drops. The objective of this research is to determine
the physical response, including material failure, of a curved composite panel designed to resist
transverse loading. The cause of the material failure, in the form of delamination, fiber and/or ma-
trix failure, is determined through various criterion based on non-linear movement using a finite
element analysis technique. The finite element analysis technique known as the simplified large
displacement/rotation or SLR theory allows for large displacements but assumes small to moder-
ate rotations. This technique characterizes a three dimensional shell structure in two dimensions,
taking advantage of the small thickness relative to the shell span and width, thereby neglecting the
direct transverse effects. Third order shell kinematics, defined relative to the datum or midsurface
of the shell, allow for the characterization of in-plane and transverse shear effects, assuming small
strain. This research initially investigated the accurate and applicable range of the SLR theory by
examining the response of thin composite laminates under transverse loading. Data generated us-
ing the SLR theory both with and without the addition of progressive failure criteria, is compared
with previously published experimental data, noting where the SLR theory diverges from the ex-
perimental results. The inclusion of various failure criterion, to include maximum stress, Lee, and
Hashin, will provide a more realistic representation of the total physical response of the shell. The
criterion are applied from initial loading, to first ply failure and further progressive composite fail-
ures. As the composite shell fails, the constitutive relations, or shell stiffness are reduced. Com-

parisons are also made between the SLR theory and various higher order finite element analysis

Xiv



techniques. Once an approximate range of accurate physical representation is realized, progressive
failure of composite sandwich shells under transverse loading are examined. Results in the form
of load-deflection relations are examined, with particular attention paid to the location and type of
first core failures. The physical response of both deep and shallow shells are examined with vary-
ing thicknesses to better understand the sensitivity of the SLR theory to those variables. Results
of the analytic comparison with the published experimental data indicate that the SLR theory over-
predicts the stiffness of the various shells for both the cases considering and not considering failure
criteria. Analytic modeling is expected to result in less conservative results due to the assump-
tion of ideal test conditions, uniform material properties and the simplifying assumptions made in
the development of the SLR theory. Results generated for those cases incorporating a progressive
failure criterion are slightly closer to the experimental data because of the reduced stiffness due to
failure as deflection increases. Furthermore, matrix failure patterns predicted by all three criterion
were similar to the experimental results. Results also indicate asymmetrical deformation modes as
a result of failures. Core failures predicted in the composite sandwich analysis were similar be-
tween the failure criterion. However, results indicate that the facesheets are the dominating factor

in the reduction of stiffness, as seen in the load-deflection response curves.
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PROGRESSIVE FAILURE ANALYSIS OF
COMPOSITE PANELS

Chapter 1 - Introduction

1.1 Motivation

As the use of sandwich composite material increases in the aerospace industry, understanding
the physical response to loading is critical. ASTM defines a sandwich material as, “...a combina-
tion of alternating dissimilar simple or composite materials, assembled and intimately fixed in rela-
tion to each other so as to use the properties of each to specific structural advantages for the whole
assembly” [33]. Sandwich composites are widely regarded for their high strength-to-weight-ratio,
thus making them viable alternatives to isotropic as well as standard composite aerospace materials.
Sandwich composites are assembled by bonding two highly dense composite laminate facesheets
to a thick, low density core material. Due to the low density core, a large increase in the cross-
sectional thickness results in a large increase in stiffness but only a marginal increase in weight.
For example, doubling the thickness of the core of a typical graphite-epoxy sandwich composite
will result in a seven fold increase in stiffness, while only a three percent increase in weight. Qua-
drupling the thickness of the same material will increase the stiffness by a factor of 39 times, while
only increasing the weight six percent [39].

A sandwich composite material reacts to loading in the same manner as an I-beam. The
composite facesheets act as the I-beam flanges, resisting both the applied and bending loads. The
sandwich core, acting as miniature columns, resists transverse tension, compression and shear as

well as panel buckling [33], [39]. The result is a relatively light-weight yet stiff, thick material. The




nature of the sandwich construction is attractive to the aerospace industry, where bending resistance
and weight savings are of the utmost importance. However, sandwich construction is not new to
the aerospace community. Great Britain designed and built the DeHavilland Mosquito World War
II aircraft, using a plywood over balsa sandwich construction. The result was a relatively light,
inexpensive, fast and incredibly successful medium bomber. So successful was the Mosquito, that
their attacks became known as “Mosquito bites” and Hermann Goering, Luftwaffe Chief, wondered

why he was never provided a German equivalent [2].

1.2 Background

With the advent of powerful computing technology, there has been a rapid increase in the
mathematical modeling of composite plates and shells. Unlike isotropic materials, sandwich com-
posites typically have a complex response to loading. As an example, an isotropic material’s load-
displacement response is linear until material yielding is reached. This yield point is typically
close to the material failure point. In most if not all engineering problems considering isotropic
materials, properties, such as Young’s modulus, shear modulus and Poisson’s ratio, are therefore
assumed constant throughout this linear elastic region. On the other hand, a composite material
will transition through multiple material response phases. As the composite undergoes increased
loading, failures will occur as various points in the material reach their respective failure limits.
These lamina failures change the characteristics of the material, resulting in a change in the mate-
rial response. Assuming constant material properties in this case would only be appropriate Within
each linear portion of the material response curve, or in between the various material failure points.
While only a simple example, it is obvious that the physical response of composite construction is
complex, and it is of the utmost importance to determine where the material properties change and

what those changes are.




The strength characteristics or load carrying ability of the material after it undergoes the first
material failure and before final material or ultimate lamina failure is of great importance in the
study of composites. There are three distinct macromechanic modes of failure associated with
composite materials; fiber breakage, matrix cracking and delamination between plies. Fiber break-
age occurs when the applied loading exceeds the maximum longitudinal strength of the specific
fiber material. Similarly, matrix cracking occurs when the applied loading exceeds the strength of
the matrix material. Delamination is a highly complex phenomenon and can occur in three forms.
Delamination can occur as peeling or opening, a direct result of loading normal to the lamina. De-
lamination can also occur as ply shearing or tearing [6]. The inclusion of the sandwich core only
increases the difficulty of capturing the material response to loading. Depending on the layup of
the composite, lamina failure can occur individually or as a combination of all three of the previ-
ously mentioned forms.

Composite materials, due to the nature of multidirectional layups, may not fail completely
when one or more laminas reach the material threshold. This underscores the importance of study-
ing the progressive nature of composite laminate failure. Unlike an isotropic material, whose re-
sponse can often be assumed linear until failure, a sandwich composite can continue to withstand
significant loading long after the first ply failure. This first ply failure, analogous to the yield stress
in an isotropic material, occurs when that lamina within the composite first reaches its respective
failure limit due to the lowest applied external load. The ability of the material to withstand load-
ing after first-ply-failure depends upon the nature of the multidirectional laminate layups. Conse-
quently, this first-ply-failure will result in a change in the material constitutive relations, reducing
the stiffness of the sandwich. This process continues until final-ply-failure, and the composite fails
completely. As an example, consider two AS4-3501-6 graphite-epoxy composite center loaded

arches, modeled using a higher order large displacement and large rotation finite element method.
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The two specimens differ only in their ply layup, one in a [0/90/90/0] configuration and the other
in a [90/0/0/90] configuration [12]. Because the specimens were arches, the problem is essentially
one dimensional, with the arches behaving as beams. Both specimens experienced a transverse
concentrated load applied at their respective centers. For the [0/90/90/0] layup, first ply failure oc-
curred in the form of matrix cracking in the inner layers, shown as point A; in Fig. 1. Although
final failure did not occur for this specimen, note the static instability experienced by the arch at a

nondimensionalized load and displacement of 1100 and 20 respectively. From first ply failure to

1500 — T y
1000}
aﬁ
-
S
(-9
soof Y without failure .
- with failure
0 . . .
() 5 10 15 20 25
w/R

Figure 1. Load deflection characteristics of (0/90/90/0) layered shell with failure

the static instability, the load deflection curve experienced several changes in slope as failures oc-
curred, resulting in a 20% reduction in stiffness at the instability point. In contrast, a center loaded
arch made of the same material, but in a [90/0/0/90] configuration, experienced a completely differ-
ent failure response as shown in Fig. 2. First ply and final ply failure occur at the same point, shown
as A and Cs in Fig. 2. First ply failure occurred in the form of fiber breakage in the outer layers

and final ply failure occurred in the form of matrix failure of the inner layers. The arch failed at a
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Figure 2. Load deflection characteristics of (90/0/0/90) layered shell with failure



nondimensionalized load of 700 and a maximum nondimensionalized tip deflection of 4.5. Because
both first and final ply failure occurred at the same point, there was no significant change in the load
deflection curve. The ability of the [0/90/90/0] composite layup to continue to withstand loading
long after first ply failure, should again underscore the complex nature of a sandwich composite

material and the importance of determining the physical response throughout a loading scenario.

1.3 Objective

The objective of this research is to examine and understand the physical response of a cylin-
drical composite and sandwich composite shell under quasi-static transverse point loading. De-
termining the physical response will include an analysis of the progressive damage during various
loading scenarios. A third-order finite element analysis method will be utilized to model the cylin-
drical sandwich panels. The third-order theory models both geometric nonlinearities as well as
transverse shear effects with strain continuity. Progressive damage will be analyzed through the
inclusion of various failure criteria within the computer code. As a result of failure, the appropriate
material stiffness properties will be reduced. The inclusion of the failure criteria will allow for the

identification of the failure mode as well as the location of the failure.

1.4 Approach

The intent of this research was twofold. Initially, the purpose of the research was to gauge the
accuracy and applicability of the existing higher-order finite element analysis code. The accuracy
of the code refers to the precision of the results generated, and therefore the relative merits placed
upon those results. The applicability refers to the shell modeling conditions allowed for by the
theory utilized within the finite element code. Failure criteria was not included in this portion of
the analytical investigation. Once the accuracy and applicability of the code was established, the

effects of progressive ply damage were included.




The accuracy and applicability of the code was examined through a comparison of published
experimental test data [44] with results generated using the existing finite element code. The
experimental data included composite cylindrical shells under a quasi-static transverse center load.
Various composite shell configurations were considered, however an exhaustive comparison effort
was not undertaken. In other words, only sample shell configurations meant to represent extreme
cases were modeled using the finite element code. Of primary concern were the effects of shell
thickness and cylindrical radius on the total physical response. The finite element theory makes
several assumptions concerning transverse shear and direct transverse effects.

The shell radius and span determine whether or not a cylindrical shell is shallow or deep.
Shallow cylindrical shells tend to approach the physical response seen in plates. In other words, the
load displacement response tends to remain linear until various failures are reached. Deep shells
undergo large rotations and tend to exhibit extreme changes in the load displacement response due
to the buckling phenomenon known as “snapping”. Again, the theory utilized within the finite
element code makes a simplifying assumption concerning the rotations exhibited by the shell. The
effects of rotation were therefore examined by varying the radius of the specimen and comparing
the results with experimentation [44].

Progressive damage in cylindrical composite and sandwich composite shells was examined
through the use of several widely used failure criterion. These criterion were incorporated into
the finite element code resulting in several significant abilities. Both the type and location of
failure were monitored during the load history. Therefore, the first-ply-failure as well as further
failures were determined. As mentioned previously, as the aerospace community increasingly
incorporates composite and sandwich composite materials into critical structures, it is crucial that
both the type and location of failures are determined. Due to the progressive nature of the analysis,

the appropriate material constitutive relations were modified as failure occurred. The effects of
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asymmetry due to failure were also accounted for through the addition of the appropriate elasticity

arrays.

1.5 Overview

Chapter 2 presents the appropriate background necessary to accomplish this research. The
SLR theory utilized in the finite element code is presented in detail. Topics covered include the
SLR assumptions utilized, the resulting shell kinematics, and the conversion of the mathematical
shell relations into finite element form. Next, the failure criterion utilized and a brief review of the
analysis undertaken by the author are reviewed. Finally, a literature survey of both the various types
of failure criterion and the methods used to model progressive failure in concert with finite element
analysis is presented. The review of progressive failure analyses includes composite modeling and
assumptions.

Chapter 3 includes a review of the additions made to the program. A review of the tangent
stiffness relations and the method used to formulate the relations into the desired format. Also in-
cluded, are the failure criterion and the resulting changes made to the constitutive relations. The
final form of the progressive failure additions will be discussed as well as the reasonings and as-
sumptions used to reach the final configuration. Also covered are the allowances and assumptions
made for the sandwich core analysis.

Chapter 4 includes the results and a discussion of the analysis. Initially, the various methods,
assumptions and configurations used in the analysis will be reviewed. Topics include finite ele-
ment convergence, boundary conditions and symmetry or asymmetry of the shell structures. The
analysis covers both the results of the initial investigation into the accuracy and applicability of the

premodified code investigating composite shells and the results of the progressive failure analysis




of composite and sandwich composite shells. The results of the composite shell analysis are com-
pared to a commercial finite element package and experimental results.

Chapter 5 presents the conclusions and a brief summary.

Elasticity relations, to include the general strain-displacement relations and the strain-displacement
relations in terms of cylindrical coordinates are included in Appendix A. Appendix B presents one
of the input files used to generate the changes to the elasticity arrays. Appendix C includes a guide
to the SLR program and a sample input deck for reference, and Appendix D includes the STRESS
subroutine, where the majority of changes were made with respect to the progressive failure analy-

sis.




Chapter 2 - Theory and Background

Current finite element modeling has allowed researchers to determine the physical response of
composite and sandwich composite shells with ever increasing accuracy. The inclusion of failure
criteria has further increased the accuracy of the results by providing the researcher both the failure
modes and the location of failure in composite and sandwich composite shells under load. The
scope of this research was not to focus on the theory of various finite element methods, but to
incorporate a progressive failure approach to a preexisting finite element code and report on the
results. Therefore, the background material will cover the theory used to develop the existing
code, a brief review of the various forms of failure criteria, and an overview of the past as well
as current literature documenting methods and results of finite element codes with failure criteria
incorporated. As the focus of this research is the addition of “progressive” failure criteria, or that
criteria which continues to analyze the structure after first-ply-failure, the majority of the literature
review will cover those articles addressing progressive criteria. For the sake of completeness,

however, articles addressing codes utilizing first-ply-failure criteria will be reviewed briefly.

2.1 Simplified Large Displacement & Rotation Theory

This research used a pre-existing finite element code known as the Simplified Large Displace-
ment and Rotation Theory, or SLR theory developed by Palazotto and Dennis {27]. The theory
was developed in an effort to account for the through-the-thickness shear flexibility associated with
the physical response of shell structures. Like a plate, a shell is characterized by a relatively small
thickness as compared to the shell radius and span. The shell, however, is slightly more complex
in that it is typically defined in curvilinear coordinates. By taking advantage of the small thick-

ness, the three dimensional physical response of the shell was characterized in two dimensions or
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the in-plane dimensions. The transverse shear effects were defined with respect to the midsurface
or datum of the shell.

Due to the relatively small shell thickness, early theories completely neglected all transverse
shear effects. While greatly simplifying the analysis, this resulted in limited application. Trans-
verse shear effects are important in the study of shell structures for several reasons. Actual com-
posite or laminated shells tend to deflect more under the influence of a transverse load than that
predicted by those theories which neglect transverse shear effects and consider only the effects of
in-plane stress and strain. Transverse shear also has a greater effect in laminate shell structures
than in comparable isotropic shells. With the increasing use of composite and sandwich composite
shell structures in the aerospace community, the over simplified theories are not adequate in their
portrayal of the physical response of a laminate shell. Finally, as the shell thickness increases, the
effect of transverse shear increases as well. Sandwich construction is inherently thicker than lami-
nate shells, again, greatly increasing the need for a method to accurately model those structures.

It should be noted that the purpose of this research was not to redefine nor rederive the SLR
theory in its entirety. The SLR theory is described in great detail in Ref. [27]. Only those topics
which will provide a basic understanding of the SLR theory and the methodology used to charac-
terize finite element modeling of shell structures will be reviewed. Therefore, in an effort to aid in
the understanding of the SLR theory and provide the necessary background, the following subject
areas will be briefly discussed; SLR assumptions, the unique kinematic and strain relations defined
relative to the midsurface or shell datum, the stress-strain relations related through the generalized
Hooke’s Law, also known as the constitutive relations, the principals of virtual work and potential
energy resulting in the appropriate equilibrium Eqns., and finally, the finite element analysis method
used to solve the resulting equilibrium Eqns.. The finite element analysis review will include a

discussion of the appropriate load-displacement relations and their unique form when considering
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composite laminates, the degrees of freedom associated with a shell structure element defined in
curvilinear coordinates, and the element shape functions. Unless otherwise noted, all developments

related to the SLR theory were taken from Ref. [27].

2.1.1 SLR Assumptions

With the increased use and popularity of powerful computers, finite element modeling (FEM)
is fast becoming the method of choice in the analysis of structures. Likewise, FEM and the theo-
ries used to develop finite element codes are increasing in sophistication. However, that increased
sophistication comes at a price. While results continue to improve and the structures modeled con-
tinue to grow more and more complex, simplifications are required to allow for realistic computing
and analysis time. Modeling composites, even relatively simple shells, can require extensive com-
puting time, due to mesh refinement, the number of composite plies, and the number of degrees of
freedom associated with each node. Therefore the following simplifications and/or methods were
made in the development of the SLR theory. 1) Geometric nonlinearity is considered, while ma-
terial linearity is assumed. Material linearity assumes the material stress-strain behavior remains
linear, i.e., prior to yielding. Geometric nonlinearity allows for large displacements and small to
moderate rotations. 2) The shell thickness is always considered relatively thin. Because of this
assumption, the in-plane stress-strain effects will dominate the response. 3) The transverse direct
stress, or 03, is assumed negligible. An in depth discussion on this topic can be found in [27]. 4)
Transverse shear strains, ¢4 and &5, and therefore the transverse shear stresses, are parabolic through
the thickness and vanish at the top and bottom surfaces. 5) The in-plane strains are represented by
the Green’s strain relations in their entirety, while the transverse shear strains are represented by the
linear Green’s strain terms only. This last assumption concerning the transverse shear strains, re-

sults from the relative thinness of the shell thickness, and of the dominate response of the in-plane
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effects. 6) The governing shell relations were developed in the Lagrangian or the original coor-
dinate system. Therefore the Green’s strain tensor and corresponding 2nd Piola-Kirchhoff stress
tensor are used exclusively. The calculated strains are assumed small, therefore no conversion was
made between 2nd Piola-Kirchhoff and Eulerian Stresses. 7) The shell lamina are considered
transversely isotropic.

The simplifying assumption concerning €4 and €5, or the use of the linear portion of the
Green’s strain terms, result in the compatibility Eqns. not being satisfied. For small rotations,
the compatibility relations are better approximated, and for linear analysis, where the rotations and
displacements are small, the compatibility relations are directly satisfied. Therefore, for general
larger displacement and rotation scenarios, the transverse shear effects are not exact. However,
because of the use of higher order kinematic relations and the entire Green’s strain relations for in-
plane effects, the mid-surface or shell datum load-displacement results are assumed to be accurate

and will model the important shell collapse or buckling characteristics.

2.1.2 Kinematics and Strain Developments
Referencing Fig. 3 for convention, the following kinematic relationships were developed by

Palazotto and Dennis [27] for an arbitrary shell geometry:

uy (€1,€9,¢) =u(1 = C/Ry) + (o + (2 + Cyy + 264
ug (€1,€9,¢) = v (1 = C/Ry) + (g + (2y + g + (402

us (517§2) =w (1)

where &;, £,, and ( are the respective curvilinear coordinates, R, are the respective radii of curva-

ture, 1), are the rotations of the normals, @, 7, « are unknown coefficients determined by forcing
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the transverse shear stresses to zero at the top and bottom surfaces of the shell, and u, v, and w are

the associated datum or midsurface displacements as shown in Fig. 3, [27]. The following Eqns.

=

EZ:V
Sw \

Ellu

Figure 3. Surface and shell coordinate system.

are the Green’s strain relations for transverse shear in curvilinear coordinates taken from Ref. [36]:

1 Oug ouy Ohy Ohg
Y3 = 5 (h +h1 8y3 ul-a—y—s' — U 8_y1>
!._ (6u1 :l_légf_z_;g) (%_’_Uﬁ 8h1 u2 8h1)
3 Oys h10y1) \Oy1  h3Oys hoOys
+1 (6‘“3 El?ﬁi) (_% 4 m0hs %%)
2 Oy1  hs Oys Oys h10y1  hg Oys
l (8u2 El?_]ﬂ.) (_82 _ @%) (2a)
3 Oyr  haOya) \Oys ha Oys
Y = _1_(h3U3+2% u%_ %)
3 2\ "0y Bys "y Oy
+x (%-@%) (@Z+Pﬁ%+ﬂ%>
3 Oys haOya) \Oy2 h3Oys h10y
l % _ % ahg % ’LL2 ahg u1 8h3
2 (3212 h3 33/3) (53/3 ho Oys | b ayl)
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1 3u1 ug 8h2) <8u1 us (9h3)
o=l [ === 2b
2 (3312 h10y1 ) \Oys h10n (2)

where hy, are the scale factors, and for cylindrical coordinates, y1, y2 and y3 are described by the
cylindrical variables, 7, 8, and 2 respectively. The physical strains can then be calculated using the

following Eqn. [27]:
&j = - ©)

Using only the linear components of Eqn. 2a, and solving for the physical strains using Eqns. 1

and 3, the following relations for the transverse shear strains result:

1
& = 3 (ug 2 + houg 3 — ughsy 3)
2
1
& = 3 (us,1 + hiug3 — urhy 3) 4)

If one substitutes Eqn. 1 into Eqn. 3, forces the transverse shear strains to be zero at the top and
bottom shell surfaces, and solves for the appropriate coefficients, the results become the following

third order general shell kinematics:

w1 (€1,€9,¢) = u(l — {/Ry) + (o + Ck ("vb1 + Z_f>
ug (§1,€2,¢) =v (1 - (/RQ) + (Yo + CSk (1/)2 + %)
u3 (51752) =w (5)
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where k = —4/(3h2), h is the shell thickness, w ) refer to the differentiation or slopes of the
respective axes, and a) are calculated from elements of the surface metric tensor, used in the
transformation between the Cartesian and cylindrical coordinate systems characterizing the shell’s
curvature. For further detail on curvilinear coordinates see Ref. [36]. In the expressions for u;
and ug, the 1, terms which are multiplied by ( represent the rigid body rotation of the shell’s
cross-section. The terms in the expressions for u; and ug, which are multiplied by ¢ represent
the “shear rotation” of the shell’s cross-section, or 3;, i.e. B; = (¢; +w1/a1). [ represents the
rotation in which a normal to the shell cross-section no longer remains normal after deformation.
In other words, the shear rotation allows for the calculation of varying transverse shear strains.
The algerbraic summation of 3 and 1), results in w . For small rotations, this is an accurate
assumption, however, as the rotations become larger, the assumption loses accuracy and the shell
behaves stiffer than in reality. Kinematics that do not allow for shear rotation, resulting in constant
transverse shear strains, require a shear correction factor to address the associated error. It should
be pointed out that the SLR FEM approach produces a through-the-thickness strain continuity. The
by-product of this continuity is to produce in a general composite layup a transverse shear stress
function which is discontinuous. The approach of assuming strain continuity is an approach which
allows for the inclusion of transverse strain without undue analytic development.

With the kinematic expressions of Eqn. 5, the strain relationships can be developed. Inserting
Eqn. 5 into Eqn. 4, and neglecting the third-order terms, results in the following expressions for

transverse shear strain in contracted notation:

2
&4 = 711; (w2 + azehy) (1 - %)
2
s = (o) (1-57) ©
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Similarly, the in-plane strain relations, are found by solving the Green’s strain-displacement rela-
tions found in [27] and [36], using Eqn. 5. These in-plane strain relations in cylindrical coordi-
nates, derived in [27], can be found in Appendix A1. The 18 displacement terms for the previously

mentioned strain relations are as follows:

d¥ = (vuiugvvivowwy wewir wae wiz ¥y Py P1a Yo Yog Vo) @)
where the u term was added for completeness even though it is not included in the strain-displacement

relations of Appendix A2.

2.1.3 Stress-Strain Relations

The stress-strain or constitutive relations for an orthotropic material in contracted notation, are

as follows [6]:
[ o1 ] [(Cy1 Ci2 Ci3 0 0 0 |[e]
op) Ci2 Cp C3 0 0 O €2
o3 _ | Cis Cos C3 0 0 0 €3 @)
04 0 0 0 044 0 0 €4
(43 0 0 0 0 055 0 €5
L J6 0 0 0 0 0 C66 1L &g ]

where the C’zfjs are the components of the stiffness matrix, relating stress to strain. Assuming an

approximate state of plane stress, i.e., neglecting the effects of o3, results:

o1 11 s O 0 0 €1
o9 s Q% O 0 0 €9
o6 = 0 0 Q,66 0 0 €6 9
04 0 0 0 Qfl4 0 €4
o5 0 0 0 0 Qx5 €5
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where the ngs are the reduced stiffness matrix components. Finally, since each layer can be
orientated at some angle relative to the shell coordinate system, Eqn. 9 must be resolved into the

shell coordinates for each layer. Therefore the following relation results for each shell layer:

01 ¢ _@_11 §12 Qw ; €1
or | = | Qo Qa2 Qo €2
o6 Qe Qo Qs &6
k r= = 1k
oy |" _ | Qua Qs €4
["5] _[Q45 st] [55] (10

where k denotes the properties calculated at each layer, Q;; (i,j = 1,2,6) and Q,,,,, (m,n = 4,5) are
the reduced stiffness components for the Kth layer, and 0, €; and 0, €; are measured with respect

to the shell coordinates.

2.1.4 Shell Potential Energy

The expressions of equilibrium for a shell structure are realized by analyzing the potential en-
ergy of that conservative system. A conservative system is one in which the work done by the
internal strains and externally applied forces is path independent or, in other words, independent of
deformation. The principal of stationary potential energy states that the admissible configurations
of a conservative system, that satisfy the equilibrium Eqns. make the potential energy stationary
with respect to relatively small variations in displacement [3]. An admissible configuration, with
respect to finite elements, implies that the structural configuration satisfies both internal compatibil-
ity and the essential boundary conditions. Internal compatibility does not allow for discontinuities
or “kinks” in the structure. Fig. 4 from Ref. [3] shows examples of both types of violations. Essen-
tial boundary conditions in finite elements are the prescribed degree of freedom variables. The po-

tential energy of a conservative system or structure is composed of two parts; 1) the internal strain
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energy due to elastic deformation, and 2) the potential of externally applied loads to accomplish

work. Therefore, the potential energy is written in the following form:
I, = U+V (11)

where U is the internal strain energy of the system and V is the potential energy of externally

applied loads. In general, the internal strain energy is defined as:
U = —/5TUdV (12)
v

Using Eqn. 10, the stress in Eqn. 12 can be represented as a function of the shell strains and
transformed stiffness relations, @;; (ij = 1,2,6) and Q,,,, (m,n = 4,5). Therefore, applying Eqns.
10 and 12 as well as the in-plane and shear strain terms developed in [27], results in the following

internal strain energy for a general shell:

1/ — —

0= g [ @+ )+ Qe+ P
+2Q15(e9 + Prap) (3 + ("kar) + Qg (€2 + (Prep)®
+2Q15(eY + (Prap) (e + ¢ Ker)

+2Q26 (3 + (Prap) (e + ¢ ker) )d(AQ (13a)

Figure 4. violations of A) essential boundary conditions and B) internal compatibility
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U = %/{;/};(@44(52*‘(2”42)2+§55(5g+§2"@52)2

+2Q45(e3 + (Pka2) (€9 + (*is2))dCdQ (13b)

where U; and U, are the in-plane and transverse shear contributions to the internal strain energy
respectively, and together they combine to make up the total internal strain energy, or U. Both
the in-plane and transverse strain energy terms are integrated over the shell midsurface, or {2, and
through the thickness, or h. In Eqn. 13a, the €? (i = 1,2,6) terms define the in-plane strains
at the mid-surface. The k;p (j = 1,2,6 & p=1,2,3,4,5,6,7) terms are functions of the shell
displacements and curvilinear scale factors. The (" term (r =1,2,3,4,5,6,7) refers to the ply
layer coordinate with respect to the shell mid-surface. The €9, (m = 4,5) terms in Eqn. 13b,
define the transverse strains at the midsurface. The k2 (n = 4,5) terms, again, are functions of
the shell displacements and curvilinear scale factors. The exact terms in their entirety are defined in
Ref. [27]. It should be pointed out that given the typical variance in fiber orientation for the lamina
in a composite panel, the stiffness terms, or the @ij and Q,,,,, terms (3,7 = 1,2,6 m,n = 4,5) are
generally different for each ply. Expanding Eqn. 13a and integrating through the thickness, or in
the ¢ direction, allows one to express the in-plane internal strain energy in terms of the elasticity

arrays, or:

1 f
U1=-§/ (’LL1 +U2+u3)dQ (14)
Q

where:

u = /6?6?@ij
h

= 626?141'1' (lSa)
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uy = /h 263Q;;kipCPdC
= 2¢)(kiBij + ki2Dyj + kisEij + ki F
+kisGij + KisHij + Kirliz) (15b)
w = [ R
= Kj1ki1Dij + 2k1K2Eij + (26153 + Kjokio) Fij
+2(kj1Kia + kjokiz)Gij + (2Kj1kis5 + 2Kj2Ki4 + Kjakis) Hij
+2(kj1Ki6 + 2650k + Kizkia)Lij + (2651 K47
+2k50ki6 + 2K53Ki5 + Kjakia)Jsj
+2(Kj2ki7 + 2653Ki6 + Kjakis) Kij + (263K
+2k;4ki6 + Kjskis)Lij + 2(kjakir + Kjskie) Pij

+2(kjskir + Kjekie) Rij + 2k46Ki75i; + 26767155 (15¢)

where i,7 = 1,2,6 and p,7 = 1,2,3,4,5,6,7. The following elasticity arrays introduced in the

previous Eqns.:

[4ij, Bij, Dij, Eij, Fij, Gij, Hig, Lig, Jij, Kijy Lig, Pij, Rij, Sig, Tig) (16)

are defined in the subsequent Eqn., as functions of the thickness parameter, (:

/. ij] [17 C? (2) C37 C47 C57 <6, C71 Cs, Cga Cloa <117 C127 Cls, C14] dC (17)
h

Similarly, the internal transverse shear strain term, Us, can be written as:

Uy = / (e?nagAmn + 259LI€m2.Dmn + Kn2km2Fmn)dQ (18)
Q

no| =
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where:
(Ayans Doy Frnm] - = / Do [1,¢2,¢1] d¢ (19)
h

As a means of presenting the elasticity arrays in an understandable format, consider the following

development of the classical plate theory using the following strain relation:
{e} = {}+2{x} (20)

where ¢ is the laminate strain in the composite panel, defined as a function of €°, or the reference
plane strain at the mid-surface of the panel, z, or the “through-the-thickness” coordinate, and , or
the components referred to as curvature [35]. For an orthotropic lamina in a state of plane stress,
the stress-strain constitutive relationships defined for the orthotropic laminate = — y system is as

follows:

Og Qu Qi glﬁ 22
{omy} = Oy =| Qi Qn Qs Ey @
Tey ) Qi Qs @os Jp \ Yoy )4

where k refers to an individual lamina. In an effort to relate laminate deformation to the forces
and moments within the composite, Eqn. 20 is substituted into Eqn. 21 and integrated through the

thickness or “z” direction, resulting in the following expression:

u],- 43142




where N and M are the resultant force and moment vectors acting per unit length, and A, B and D
are the resulting elasticity arrays, again functions of the through-the-thickness variable “z” and are
defined as:
h/2 _,
(Aij; Bij; Dyj) = / Qi;(1,2,2%)dz (23)
—h/2

where m,n = 4,5. The A;;, B;; and D;; elasticity arrays define the extensional, coupling and
bending laminate stiffness of the panel, respectively. More specifically, A;; relates in-plane loads
to in-plane stresses, Bj; relates in-plane loads to curvatures and moments to in-plane strains, and
- D;; relates moments to curvature. The greater number of elasticity arrays in the SLR theory,
introduced in Eqns. 14 and 18 result from the assumed nonlinearity of the kinematic relationships,
or the inclusion of higher order “¢” terms, where ( is again referring to the SLR composite shell
geometry. Those higher-order terms lead to the elasticity arrays, F;; through T;;. It should
be noted that the modeling of symmetric composite laminates effectively reduces the number of
elasticity arrays by half, since terms multiplying an odd power of ¢ are zero when integrated through
the thickness. When originally formulated, the SLR theory included only those terms multiplied
by even powers of {, or the A;;, Di;, Fi;, Hij, Jij, Lij, Rij, and T;; arrays. This assumption
allowed for the modeling of symmetric laminates only. One of the modifications made to the SLR
code, which will be described shortly, is the inclusion of those arrays defined by odd powers of
¢. As the laminates fail under loading or the prescribed displacement increment, asymmetrical
failure may occur. For example, a ply in the positive ¢ direction may fail in compression, while the
corresponding symmetric laminate may not fail, thus resulting in an originally symmetric laminate
no longer remaining so. For accurate modeling and to account for all scenarios, the additional

elasticity terms should be considered. However, if an originally balanced laminate remains so
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during deformation and failure, then the previously mentioned arrays, or those arrays multiplied by
odd powers of (, will be reduced to zero.

Eqns. 11, 14, 18 as well as the strain displacement relations of Appendix A2, define the
total potential energy of the cylindrical shell structure. The variation of the resulting potential
energy would result in coupled, nonlinear partial differential Eqns. representing the equilibrium of
the structure. Finite element analysis, through the discretization of a structure and the resulting
“finite” number of Eqns., can be used to solve those equilibrium Eqns.. Discretization refers to
the representation of the shell structure in terms of discrete elements connected at nodes. The
summation of the elemental energy would result in the total potential for the structure. The potential

energy of the shell, written in terms of general discretized elements is shown in the following:
q" N N T
I, = o5 K+—+—=—")9~-q¢ R 24

where ¢ represents the nodal values of displacement, K represents an array of constant stiffness
coefficients, N1 represents an array of stiffness components that are linear with respect to the dis-
placement, Ny represents an array of stiffness components that are quadratic with respect to the
displacements and R represents the applied nodal loading. Together, K, N; and N, make up Kr
or the tangent stiffness. Applying the principal of stationary potential energy, thereby minimiz-
ing the previously mentioned expression with respect to the displacements, results in the following
expression:
N1 Ny

§I, = &q° [(K+?+?>q—R] =0

= 8¢"F(q)=0 25)
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and finally, the equilibrium equations are expressed as:

F(g) = 0 (26)

A Taylor series expansion of Eqn. 26 in terms of ¢, is accomplished to solve the equilibrium

expressions:

(K4 N1+ N2)Aq = —F(qg) 27

In other words, small variations in g, or Aq, are inputs into Eqn. 26, and the resulting forces, or
F (q), are iterated upon using a Newton-Raphson solution technique until convergence is reached.
In the SLR program, convergence is based upon calculated displacements and a user specified con-
vergence limit, typically 0.1% [27]. A required condition in the SLR development of the shell
potential energy was that the stiffness arrays of Eqns. 24, 25 and 27, or the tangent stiffness arrays,
were formulated in such a way from the internal strain energy relations, as to simplify the manip-
ulation of the potential energy expression. In other words, it was desired that the tangent stiffness
arrays, or K, N1 and N, stiffness terms, remain unchanged after the first variation of the potential
energy, or Eqn. 25, and again, after the Taylor series expansion of Eqn. 27. This formalism in the
development of the tangent stiffness terms was desired for several reasons. First, it simplified both
the variation and resulting linearization of Eqn. 26 by decreasing the number of algerbraic manipu-

lations required. Second, the amount of code required to solve Eqn. 27 in a finite element program

is greatly reduced, as the tangent stiffness array remains unchanged requiring their calculation only
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once. The resulting technique employed by Ref. [27] to facilitate this simplification, and the re-
sulting repeatable and symmetric form of the tangent stiffness components denoted as, K, Ny and
ﬁz are discussed in subsequent sections.

The detail that the author went into discussing the desired form of the tangent stiffness matrices
was necessary, as one of the modifications to the SLR program involved adding the additional
elasticity arrays, defined as odd functions of {. As shown in the development of the potential
energy and linearization expressions, the elasticity arrays are integral components of the tangent
stiffness terms. Palazotto and Dennis [27] formulated the tangent stiffness components in such
a way as to allow those arrays to be repeatable and symmetric throughout the potential energy
formulation and resulting linearization. As discussed earlier, this was desired, as it allowed for
fewer algerbraic computations as well as reducing the amount of computer code and computing
time. The steps required for the repeatability of the tangent stiffness arrays are as follows. First,
the strain-displacement terms of Appendix A2 were separated into linear and nonlinear functions
of the displacement gradient vector or d, as shown in the following Eqn.:

7

1
g = ()L,LTd + §dT oH; d

1

T
Kip = pLz’ d+ 2

dt ,H;d (28)
where ,L; are column arrays representing linear displacement terms, ,H; are symmetric matrices
representing the nonlinear displacement terms (5 = 0,1,2,...,7,7=1,2,6 andp = 1to 7) and
the displacement gradient vector is defined in Eqn. 7. Again, note that there are only 17 unique
displacement terms in the strain relations of Appendix A2, however, the additional term “u” was

added to the displacement gradient vector for completeness. Neither the ;L; or ;H; arrays are

functions of the displacement gradient vector d, but rather contain only constants. The ;L; and
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jH; constant arrays are shown in their entirety in [27]. As a means of describing the reasoning
behind the separation of the strain terms into the linear and nonlinear components, consider 9 from

Appendix A2 written in the method just described:

6(1) = uj+ %(u?l + fv?l + w?l)
e = oLTd+ %dT oH1d (29)
where o LT :
oLT =10,1,0,0,...,0]
and

00000000 07
01000000 0
0000O00O0TO OO 0
0000O0O0TO0O 0
000071000 0
ofi = |0 00000GO0O 0
000000O0TO 0O 0
00000O00O0TO 0?1 0
[0 0000O0O0O 0 |

The benefit of expressing the strain-displacement relations in this manner is in the ease of manip-
ulation, since all terms are represented as 18 x 18 arrays. Rewriting the in-plane strain relations
of Appendix A2 in terms of ;L; and ;H; results in the following energy expression, or the energy

terms due to 1, €2 and gg:

Uy = %/ dr (f{+1\71 + iﬁ@) ddo (30)
Q

where
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K = Aij oL; ()Lc]r + 231']' oL; 1L§1 + D;; (2 oL; QL;F + 1L; 1L§1)
+E;;(20LisLT +20L;i3LT) + F;j(20Li 4L} +21L; 3L
+9LioLT) + Gij(21LiaL] +25Li3L] ) + Hij(22Li 4 LT

+3L; 3L}1) + 2L 3L; 4L? + JijaLs 4L§1 (31

Ny = AijoLid oHj+ Bij(oLi d¥ 1H; + 1L; dT oH;) + Dij(oLi d¥ 2 H;
+9L;d¥ oHj + 1L;dT 1 H;) + Eij(oLi d¥ sH; + 3L; dT o H
+1L;dT 3H; + 3L;dT 1Hj + oL dT o H;) + Gij(oLi d” s H;
+1L;dT 4 H; + oL; dT 3H; + 4L; dT 1 H; + 3L; d¥ o Hj)
+H;j(oLidT 6Hj + 1L;d¥ sH; + oL;d” 4Hj + 3L; d” 3Hj
+4L;d¥ oH;) + Lij(oLs dT 7H; + 1L;d¥ 6H; + 2L; d* 5H;
+3L;d¥ 4 Hj + 4L;dT 3H;) + Jij(1Li d 7H; + oL d¥ 6H;
+3Lid" sHj + 4Lid" 4Hj) + Kyj(oLi d¥ 7Hj + 3L; d” 6 Hj

+4L;d¥ sHj) + Lij(sL; d¥ 7Hj + 4L; d¥ ¢H;) + Pyj 4L; d¥ 7H; (32)

Ny = AyjoH;dd" oH; + BijoH;dd” 1H; + Dyj(oH; dd” oH;
+1H; dd” 1H;) + Eij(oH; dd¥ sH; + 2, H; ddT o H;) + Fyj(oH; dd” 4 H;
+21H;ddT 3H; + oH; dd¥ oH;) + Gyj(oH: dd” sH; +21H; dd” 4H;
+2.H; dd¥ 3H;) + Hij(oH; dd¥ 6H; + 21 H; dd¥ s Hj + 22 Hy dd” 4H;
+3H; dd” 3H;) + Lj(oH; ddT 7 H; + 21 H; dd¥ 6H; + 2o H; dd” 5H;
+23H; ddT 4 Hj) + Jij(21H; ddT 7 Hj + 22 H; ddT ¢ Hj + 23H; dd” 5H
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+24H; ddT 4H;) + Kij(20H; ddT 7Hj + 23H; dd” ¢ H; + 24H; dd” 5 H))
+Li;j(2sH; ddT 7H; + 24H; ddT ¢H; + sH; dd” 5H;)
+P;j(24H; ddT 7 H; + 25 H; ddT ¢ H;) + Rij (25 H; dd” 7H;

+6HiddT6Hj) +Sij26HiddT7Hj +T%j7HiddT 7Hj (33)

Taking the variation of the the K , N; and N terms of Eqns. 31-33 will not yet result in the

repeating stiffness arrays sought after. One final step is required, to replace the form of the RHS of

Eqns. 31-33 with the following format yields the desired repeating formalism. Therefore, for K:

% / d* Cij pLi pL? d d§? (no sum on p) = no change
Q

% / d" 2Ci; pLi L] ddQ =% / d" Cyj (pLirLf + rLipLi)ddQ (34)
Q JQ

where C;; refers to any of the elasticity arrays within K. For Ni:

E / d* Cyj pL; dT . H; d dS)
2 Ja

= % / d’ Cij (pLid”  Hy +d¥ pLi Hj + +H;dpL])dd (35)
Q

where Cj; refers to any of the elasticity arrays within Ni. Finally, for Ny:

%/QdTCiijiddTijdszTli/ﬂdTCij(pHiddTij
L.r T
—|—§d pH;jdd" pH;)ddQ) (no sum on p)

1/dT(J,~j,1r1r,-dczT,,HjaZdQ=1/ fcij(rﬂiddT,,Hj
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-%dT +H;dd" ,H; + pH;dd” . H; + %dT pHidd™ H;)ddQ (36)

where Cj; refers to any of the elasticity arrays within Na. Therefore, the in-plane energy expres-

sion, or Eqn. 30 can now be written as:
U, = —1—/dT g+ M2 50 37)
Q 3 6

The transverse shear terms were handled in a similar manner and are described in detail in Ref. [27].
Finally, given the preceding tangent stiffness terms, the tangent stiffness terms of Eqn. 24 can

be represented as:

K = / DT K D dQ
Q
N = / DT N, D dQ
Q
Ny = /DT No D dQ (38)
Q
where DT represents the array of shape functions or interpolating functions in natural coordinates
and their derivatives used to approximate the displacement gradient vector, or Eqn. 7. The shape

functions for the specific finite elements used in this analysis will be developed in the subsequent

section.

2.1.5 Finite Element Formulation

The finite element formulation is a numerical procedure that approximates the displacements
and therefore the loads, strains and stresses of a structure by analyzing the structure’s discretized
domain [3]. To discretize a structure is to model that structure as an assemblage of finite elements.
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The term finite is specifically used to distinguish the reference element from a differential element.
The finite element process approximates those discretized displacements through the use of inter-
polating functions, also called shape functions. The potential energy of the structure as described
in the previous section, is formulated in terms of the discrete displacements. In other words, the
individual nodal displacements and therefore the nodal strains for each element make up the to-
tal potential energy for the structure. Thus the total structure, or continuum displacement can be
written as a function of algerbraic expressions through the use of the interpolating functions. The
unknowns, or nodal displacements are then solved using a finite element analysis technique. Typ-
ically, as a finite element mesh is refined, the results of the analysis approaches the exact solution
as long as several requirements are met. In the formulation of the SLR theory and resulting fi-
nite element method, the following six requirements were enforced: 1) each element must satisfy
continuous displacement within that element, 2) each element must represent a constant strain con-
dition, 3) the rigid body terms, or the 1; (: = 1,2) and u, v, w terms were incorporated into the
displacement functions, 4) each element must ensure compatibility is met, see Fig. 4, 5) each ele-
ment should not have preferred directions, i.e. it should be geometrically invariant.

For the purposes of this research, 8-node, 36-degree-of-freedom (dof) elements were utilized
for all scenarios. Fig. 5 displays the node numbering and the degrees-of-freedom for each node,
element geometry, as well as the cylindrical displacement variables, = and s [27]. There are
seven degrees-of-freedom (dof) at each corner node: u, v, w, w1, w2, 4 and ¥,. In addition,
there are four “mid-nodes” with the degrees-of-freedom, v and v. In the initial development of
the SLR finite element theory, a 28 degree-of-freedom element was proposed. This approach is
appropriate for flat plate analysis, however the in-plane v and v displacements for a cylindrical shell
are coupled to the transverse displacements to a much greater degree in shell analysis due to the

nonzero shell curvature. For this reason, the mid-node displacement variables, v and v were added,
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Figure 5. 36-degree of freedom rectangular shell element. Corner nodes have 7 degrees of freedom,
midside nodes have 2 degrees of freedom.
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resulting in the 36 degree of freedom element. C° continuity was required for the displacement
degrees of freedom u, v, ¥ and ¥, and C" continuity was required for the displacement degrees of
freedom w, w ; and w 9. Therefore, bilinear Lagrangian shape functions were used for ¢, and 1,
quadratic Lagrangian shape functions were used for v and v due to the addition of the mid-nodes,
and cubic Hemitian shape functions were used for w, w 1, and w. Fig. 6 displays a rectangular

shell element in terms of the natural coordinates ¢ and 7, where £ = x/a and ) = s/b [27]. The

/E

\ 2

Figure 6. Rectangular shell element in natural coordinates.

following expression is the bilinear Lagrangian shape function for dof 1/, and v in terms of natural

coordinates:

Re = 7 (1468 (L+ng) (39)

where for the k™ node, g7 = {1, ¥,}. For the displacement degrees of freedom u and v for the

k*" node, the quadratic Lagrangian shape functions in terms of natural coordinates are shown in the
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following:

1
S =3 (1-€) (1+m0), k=6,8
=3 (1-17) (1 +68), k=57 (40)

where nodes 1 through 8 are displayed in Fig. 5. Finally, the cubic Hermitian shape functions for

dof w, w1 and w 5 are defined as follows:

R = g (0+68) (L) (2+&E +mn— & —1)
(3) & (1+&8° €6 -1 (1 +nem)
(-g—) M (L + €x€) (e — 1) (1 + i) (41)

where for the k£* node, q}f = {ww, wy}. Using the 18 degree of freedom displacement gradient
vector of Eqn. 7, the displacement gradient vector for the 36 dof shell element can now be written
in the following matrix form, including the shape functions and the shape function derivatives in

terms of natural coordinates:

d(,m = Dgq
(g1 )
Q1 0 0 -+ @ 0 0 @ --- Qg
= | o B o -« 0 H 0 0 -~ 0 |[{ T}V (@
0 0 N - 0 0 Ny 0 - O %
\ 48 )

where

34




q]z:—' {uvwwyl w2 ¢1 ¢2}k7 k=172)374
g = {uv} k=5,6,7.8 43)
and
a0 ]
Spe 0
& 0
Q= g 3, (44)
0 Sng
| 0 Sy |
[ Rex Ree Fus
Rete Rioe Mize
Re1n  Rroy iz
= : : ’ 45
Riree Ruoee Risee “45)
‘SRklmn %klnn §RkB,nn
| Reime Reome Risne
k0T
N}C,g 0
_ Nk,n 0
0 Nk,€
i 0 Ry |

With the development of the discretized shell domain and stiffness relations complete, a trans-
formation from natural to global coordinates, or a transformation from the coordinates in Fig. 6 to
Fig. S is required. The transformation is presented in the following expression:

d(z,s) = Td(£,n) (47)
where T is the inverse of the Jacobian matrix that relates the two coordinate systems. Having
accomplished the transformation, the linearized, incremental/iterative relations of Eqn. 27 can now

be represented as:

i(/ DT (K + N, +ﬁ2)DdQe> Ag

k=1 W@ 2
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qg+R (48)

where . represents the two dimensional domain of each element, 7 is the total number of elements
in the mesh, Aq and q represent the global displacement arrays assembled from the individual
element displacement vectors, and R represents the global load array. The integration in Eqn. 48
is accomplished using Gaussian quadrature. Solutions to Eqn. 48 are found when the RHS of the

Eqn. satisfies the user specified convergence criteria.

2.2 Failure Criteria

Why is failure criteria important? Strength prediction in fiber composite materials is critical
when designing a structure. Failure in the structure will occur when the applied loading in the form
of stress exceeds the load carrying threshold or ability of the structure. It is an expensive and often
impossible process to experimentally analyze every possible design. Therefore, failure criterion
have been established to predict the load carrying abilities of anisotropic composite structures. The
idea of analytically predicting the residual strength of a structure utilizing failure criteria is not
new. In fact, the process has been in practice for several centuries. The use of failure criteria in
the design process requires several considerations [10]. First, the material constants used in the
analysis must be easily determined. In order to apply a failure criterion, experimental studies are
carried out to determine the composite ply strengths in the principal material directions. Composite
failure theories relate those principal strength properties, or material constants, to the stresses in the
composites. Failure theories must also be applied within appropriate boundaries. Appropriate
boundaries implies several things. The failure criteria must accurately predict behavior, or provide
results with known error for conservative design purposes. Failure criteria must also be applied

appropriately with regards to the type of structure and loading. Structures are rarely exposed
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to single axis loading, and the typical multi-ply and multioriented nature of composites leads to
complex multiaxis loading. Some failure theories relate various stress components, i.e., relating
shear and normal stress components, while other criterion simply compare the material directed
stresses to the principal material properties. Finally, failure criteria in the design process must be
simple to apply, i.e., complex mathematical formulae are not practical for general use.

Each failure criteria describes a failure envelope, beyond which, the criterion predicts the
material will fail. As seen in Fig. 7 taken from [6], which depicts a failure envelope using the
maximum stress theory, if the applied stresses ojor o2 exceed the material strength limits, Fir,

-F1¢ or For, -Fa¢ respectively, then the material will fail.

LA o,
4

o o,

G,

> o,

Fac

Figure 7. Failure envelope for unidirectional lamina under biaxial normal loading (maximum stress
theory)

There are numerous forms of failure criterion. Specifically, failure criterion can be classified
as either non-interactive or interactive [43]. Non-interactive failure criteria, like the maximum
stress and maximum strain theories, are typically used for brittle isotropic materials. In other
words, there is no attempt to take into account the multiple stress interactions when the structure

experiences a biaxial state of stress [6]. Interactive, to include quadratic failure criteria, are so
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named for the assumption that stresses do interact under biaxial loading. These criteria are typically
used for ductile isotropic materials experiencing yielding. Both non-interactive and interactive
failure criterion have been applied to fiber reinforced composite materials. Given an understanding
of the assumptions used to formulate various criteria, their use provides a powerful tool in the
composite design process. There are numerous macroscopic failure theory surveys available in the
literature, and [35], [43] and [26] are several that provide a fairly exhaustive review of the current

failure criteria in use. There are also new criteria being developed constantly [1], [47].

2.2.1 Fiber Failure Criteria

There were three criterion used in this research: the Hashin, Lee and maximum stress theories.
For all of the various failure modes considered, the chosen failure criterion allowed for the ability to
distinguish between the failure mode. The following inequality relationships were used to analyze
the state of stress, assuming fiber failure had occurred:

Maximum stress crtierion:

011 2 OFN
Lee criterion [9]:

1l
2

(0'%2+0‘%3) EUFS

Hashin criterion [9], [14]:

2 2 2
< 011 ) 4 (012 —2i_ 013) 2 1 (49)
OFN OFrg

where “11”, “12” and “13” indicate the fiber, matrix and in-plane directions with respect to the
material axis, oy is the allowable fiber normal strength and o pg is the allowable fiber strength

in shear. The maximum stress criteria differs from the Lee and Hashin criteria in that it considers
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only the direct stress contribution. The Lee criteria considers only the shear components of stress

and the Hashin criteria is a combination of direct and shear stress contributions.

2.2.2 Matrix Failure Criteria
Matrix failure can be divided into two categories, failure in tension and failure in compression.
The inequalities used to analyze the state of stress in the composite structure for matrix failure in

tension are expressed in the following:

Maximum stress crtierion:
092 > OMNT, (022 > 0)
Lee criterion [9]:

2 213
(012 +033)% > 0oms

Hashin criterion [9], [14]:

1 1
(092 + 033)% + —— (033 — 022033) +
OMNT OMs
1
T(U%Q_l'o-%?,) > 1, (022 +033) >0 (50)
OFs

where o /N is the allowable matrix strength in normal tension and o g is the allowable matrix

strength in shear. The following were the expressions used for matrix failure in compression:

Maximum stress crtierion:

092 > opmne, (022 <0)

Lee criterion [9]:

W=

(012 +0%)* > oms
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Hashin criterion [9], [14]:

1 (O'MNC>2__1

1
(99 + 033) + = (022 + 033)% +

doys
1 1
—— (0’%3 —0'220‘33) +—=— (0’%2 +0’%3) >1, (092+033) <0 (51
oMs OFs

where o pne is the allowable matrix strength in normal compression. It should be noted

that o33 was neglected in the formulation of the SLR theory, resulting in a reduction of the Hashin

criteria.

2.2.3 Delamination
Finally, the last failure mode considered in this research was delamination. The inequalities

used to express the state of stress assuming delamination had occurred were the following:

Maximum stress criterion
013 2 OpS Or 023 2 OpS

Lee criterion [9]:

o=

(025 +0%3)% > 0ops

Hashin criterion [9]:

2 2 2
( 033 ) + 019 _2{—0-13 > 1 (52)
9zZN 9ps

where oz is the allowable transverse normal strength, and o pg is the allowable delamination
strength in shear. It should be noted that o33 was neglected as a result of assumptions made in the

SLR theory, therefore the delamination considered in this research was based solely on transverse

shear stresses.
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There are currently two areas of research in the study of failure in composite structures. Fail-
ure criteria can be used to determine first ply failures as well as further progressive failure, or
failure after the first ply failure has occurred. Progressive failure analysis incrementally reduces
the strength of the composite structure using various techniques. As alluded to earlier, composite
materials, can retain significant strength after first-ply-failure. It is therefore beneficial to analyze
composite structures both for first-ply-failure and for the failures that follow. For the aforemen-
tioned~ reasons, a means of analyzing progressive failure is extremely important in the analysis of
composite structures. There are many avenues available to engineers to aid in this investigation.
Some methods use statistical analyses, micromechanics or fracture mechanics approaches to pre-
dicting lamina damage progression [46]. Finite element analysis also provides engineers a ready
platform for the study of failure in composite materials. Failure criteria has been included in many
finite element methods used to analyze composite structures for both first-ply-failure and last ply
failure.

First ply as well as progressive failure analysis was the true scope of this research, so little time
was spent researching first ply failure only. Reddy and Pandey [30] incorporated failure criteria
into a first order or classical shear deformation finite element method in order to examine first
ply failure utilizing various criteria. Multiple ply layups, specimen geometries and plate element
configurations were considered. Maximum stress, maximum strain, Hoffman, Tsai-Wu and Tsai-
Hill criteria were compared for all configurations considered. The finite element method solved
for the stresses in each element of each ply from an initially applied load. Once the failure criteria
was satisfied for a given load, or first ply failure was reached, the load was reduced by 20% and
the stresses and failure analysis were recalculated in order to better predict the load responsible
for first ply failure. The iterative procedure was continued until the difference between any two

load increments was less than 1%. Output data includes the failure load, type and location of first
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ply failure. Results of the study indicate that the criteria investigated yield the same results for
in-plane loading. For the cases of transverse loading, the interactive and non-interactive failure
criterion results diverge.

Reddy and Reddy [31] investigated first ply failure using a first order shear deformation the-
ory and various failure criteria. Linear and non-linear (von-Karman) loads were computed and
compared for several loading conditions, to include in-plane and transverse loading. The failure
criteria investigated included both independent and polynomial failure criteria. The independent
criteria includes maximum stress and maximum strain. The polynomial failure criteria includes
the polynomial maximum stress, polynomial maximum strain, Tsai-Hill, Hoffman’s and Tsai-Wu
criteria. The non-linear loads and first failure were calculated using an iterative procedure similar
to Ref. [30]. Results indicate that the failure loads predicted by the various criteria varied a maxi-
mum of 35% for the linear analysis and by a maximum of 50% for the non-linear analyses. There
were significantly more differences in the results calculated for linear and non-linear cases while
under transverse loading than for cases involving in-plane loading.

Calculating the loads and stresses in a composite specimen prior to failure is not difficult.
Even comparing those stresses to various failure criteria and determining the first ply failure is a
relatively straightforward procedure. However, post-failure analysis of composite laminates is an
extremely complex process and has therefore been studied using various simplifying approaches.
Those simplifying approaches are made in an effort to handle the strength reduction after first ply
failure and all additional failures. Various strength reduction procedures include removing stiffness
properties or ultimate strengths in some incremental form [34]. The following is a short, and by
no means complete compilation of various progressive failure analyses incorporated within finite

element methods.
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Sandhu et al. [29] developed a progressive-ply-failure program for structures with stress con-
centrations. The finite element method utilized was also compared with several experimental pro-
cedures incorporating stress concentrators with good results [22]- [28]. The finite element method
was based upon a modular program that allowed the user to specify the element type, failure crite-
ria and post failure ply unloading method. Constant strain elements were used along with the Total
Strain Energy failure criteria developed by R. S. Sandhu [37] and two post failure unloading meth-
ods. The unloading procedures included a gradual method where the affected element moduli were
reduced by a percentage and the incremental loading continued. When the stresses in an element
were reduced to zero due to failure, the moduli were then assigned a nominally small value. The
second procedure, or rapid unloading immediately reduced the affected element moduli to nomi-
nally small values. In both cases, if failure had occurred, the loads and therefore the stresses were
recalculated after the moduli had been reduced in order to calculate any secondary failures. The
procedure was repeated until no further failure occurred. The gradual unloading procedure yielded
good results for multi-directional lamina, but overestimated the strength in unidirectional speci-
mens. As expected, the rapid unloading scheme resulted in more conservative lamina strength
calculations for all specimens.

Tolson and Zabaras [42] developed a progressive finite element method incorporating Maxi-
mum stress, Hoffman, Tsai-Wu, Lee and Hashin failure criteria in the study of composite plates.
In the use of the Maximum stress, Lee and Hashin failure criteria, the failure mode was readily
determined. For the Hoffman and Tsai-Wu failure criteria, the various proportions of direct and
transverse fiber and matrix contributions were examined to determine the mode of failure. Once
the failure mode was determined, the appropriate stiffness relations were modified. As the calcu-
lated loads and therefore the stresses exceed the failure criteria, the appropriate element stiffness

relations were reduced. After a failure has been reached and the appropriate stiffness reduced, the
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lamina stresses are recalculated with the new global stiffness relations in order to calculate further
material failures. The sequence continued until no more failure occurs at the prescribed load. Fi-
nal ply failure was assumed to have been reached when all lamina moduli have been reduced to
zero at a given (x,y,z) coordinate. Results indicate that the Lee criteria gave the best results, with
first ply failure and last ply failure enveloping the true structural limitations.

Hwang and Sun [17] analyzed laminated composite panels under uniaxial tension using a three
dimensional finite element method. Failure criterion, in the form of the Tsai-Wu theory, was used
to investigate three forms of failure; fiber breakage, matrix cracking and delamination. The first
ply failure load is solved for using an iterative mixed field technique to solve the linear portions
of the finite element Eqns.. A Newton-Raphson iterative technique was employed to solve the
nonlinear finite element Eqns. for the progressive analysis. Progressive analysis is accomplished
using stiffness reduction as failures occur. Analytic results indicate reasonably good correlation
with experimental results for both notched and unnotched tensile specimens.

Gummadi and Palazotto used a geometrically nonlinear finite element method based upon
the total Langragian approach to investigate progressive failure in laminated beams and arches
[13] and composite cylindrical shells [12]. The finite element method allowed for both large
displacements and large rotations. Finite element discretization was based upon twelve degree of
freedom elements. The load carrying abilities of various structures were considered after first ply
failure. Failure relations based upon 2nd Piola Kirchoff stresses and large strains were considered.
In the investigation of beams and arches three failure criterion were utilized in the analysis: Lee,
Hashin and maximum stress. Results indicated significant residual strength after first ply failure.
Failure modes included fiber breakage, matrix cracking and delamination for all but the Hashin
failure theories. Progressive loading calculated using Hashin criteria were the most conservative.

Hashin, Lee and maximum stress failure criteria were again examined in the analysis of composite

44



cylindrical shells. Changes to the elasticity relations allowed for the analysis of asymmetrical
failure. Results indicated significant load carrying capability after first ply failure for certain lamina
considered.

Lee [21] developed a three dimensional finite element method for the analysis of failure in
layered fiber reinforced composite lamina. His algorithm allows for the calculation of element
stresses, failure modes, damage accumulation and lamina ultimate strength. Three damage modes
were considered, fiber breakage, matrix failure and delamination. With the occurrence of failure,
total reduction of the appropriate stiffness relations was accomplished. Numerical analysis was
accomplished on various specimen configurations under several loading cases. Results indicate
limitations in the program. Due to the relative coarseness of the meshes considered, delamination
while logically expected, was never experienced. Given the early nature of the study and limited
computing resources, trade-offs in finite element studies were necessary.

Eason and Ochoa [9] developed a shear deformable element for ABAQUS®

, capturing three
dimensional states of stress and damage progression in composites. This allows an ABAQUS®
user to analyze damage progression in a composite structure through a readily available commercial
finite element package. The user defined element allows for the analysis of damage progression
by comparing the calculated stresses to several failure theories. The failure modes considered for
the research were fiber breakage, matrix cracking and delamination. Subroutines allowed the user
to choose from Hashin, Greszczuk, maximum stress, Lee and Ochoa criterion for each mode of
failure. Stiffness reduction took place as the stresses calculated at the element Gaussian points
exceeded the failure criteria on a ply-by-ply basis. Analysis of composite plates with a center-
through hole or center delamination yielded good results when compared with experimentation.
®

Excellent correlation was also observed between the user defined element and the ABAQUS

shell element (S8RS).
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Moas and Griffin [25] developed a methodology for the analysis of progressive damage in thin
structures undergoing large deformations based on a finite element theory that accounts for geo-
metric and material nonlinearitites. An iterative solution process based upon the Newton-Raphson
technique converges to an updated load, and therefore the stresses. The stresses are then compared
with the maximum strain or Tsai-Wu failure criteria. An experimental investigation, examining a
six foot diameter arch, representative of a rotorcraft stiffener, provided a direct comparison with the
analytical solution. The finite element method accurately predicted the arch failure point and the
residual stiffness after failure for both the maximum strain and Tsai-Wu failure criteria.

Sleight, et al [38] devised a progressive failure analysis method based upon classical theory
using C! plate and shell elements. Again, a Newton-Raphson solution technique was employed to
solve the nonlinear Eqns. for either an applied load or displacement situation. Hashin, Christensén
and maximum strain failure criteria were compared with the converged stresses. Ifthe stresses were
calculated to cause failure, either an instantaneous or gradual reduction technique was employed.
Analyﬁcal analyses were carried out on two specimens which are common in experimental studies.
Results indicate good comparison with experimental data and the overprediction of the final failure
load for all criterion considered.

Kim and Hwang [19] used a penalty finite element method to analyze the progressive failure
of pin-loaded laminated composites to predict the failure strengths and failure modes. Pin loaded
composites are becoming increasingly important in aerospace structures. Three failure modes were
considered for the pin-loaded analysis; tension, shear-out and the bearing mode. The tension and
shear-out modes were taken to be caused by tensile and shear stresses respectively, and the bearing
failure mode caused by compressive stresses. Therefore, the two failure mechanisms considered

for this research, or fiber breakage and matrix cracking, were analyzed using Hashin failure criteria.
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When failure occurred, the appropriate stiffness terms were reduced to zero. For the plane stress
cases considered, results indicate excellent correlation with experimental data.

Kim and Hong [18] incorporated macroscopic failure criteria into a two dimensional finite el-
ement method in an effort to analyze progressive failure in composite laminates with stress concen-
trators. Fiber and matrix failure modes as well as appropriate stiffness reduction were considered
using fiber bundle failure and a shear lag analysis respectively. Results indicate good results for
flat composite laminates without a hole. Analytical results for laminates with a hole yielded the
state of stress, ultimate strength, the extant of damage and matrix crack density.

Tan and Perez [41] also considered the progressive failure analysis of a composite laminate
with a hole under compressive loading. In-plane failure modes in the form of fiber breakage and
matrix cracking were evaluated using a lamina based fiber failure criteria and the Tsai-Wu criteria
respectively. Stiffness reduction took place using stiffness degradation factors, “D;” Which were
treated as material constants during the analysis. If matrix failure occurred at a particular load
increment, the element stiffness was reduced and the load was incremented. If, on the other hand,
fiber failure occurred, the element stiffness was reduced, the stress distribution was recalculated
resulting in a recheck of fiber failure. The procedure was continued until fiber failure was no longer
detected, and the next load increment was examined. Results in the form of failure mechanisms
and ultimate strengths compared reasonably well with experimental results.

Tan [40] developed a progressive failure finite element method to analyze damage progression,
stress-strain states and ultimate strength in composite laminates under tensile loading containing
openings in the form of a central hole. Unique in this study of progressive failure analysis, was the
inclusion of environmental effects in the form of thermal residual stresses and the stresses due to
moisture content. Similar to the author’s previous research, fiber and matrix in-plane failure modes

were considered using Tsai-Wu failure criteria. Again the constant stiffness degradation factors,
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“D;” were used to reduce element stiffness. If matrix failure occurred, new element stiffness
relations were calculated using the stiffness degradation factor. Subsequent failures at that load
were not considered. If fiber failure occurred, element stiffness reduction was accomplished and
subsequent failures were considered before the load was incremented. Experimental comparisons
indicate good correlation with stress-strain states, ultimate strengths and damage progression.

Youngchan, Davalos and Barbero [20] developed a progressive failure model for laminated
composite beams using a beam finite element considering layer-wise constant shear. Maximum
stress and Tsai-Wu failure criteria were used to evaluate fiber breakage and matrix cracking. The
element stiffness relations were reducéd using degradation factors. The degradation factors were
chosen using parametric studies and by analytic comparison with experimental results. If either
fiber or matrix failures were discovered, element stiffness reduction took place using the degra-
dation factors and then subsequent failures were checked for prior to a new load increment being
accomplished. Good results based on stiffness degradation and failure criteria were achieved in
the prediction of progressive failure and ultimate load, although the ultimate displacement varied
as much as 30% from experimental results.

Reddy, Dakshina Moorthy and Reddy [32] analyzed progressive failure in composite plates
using various independent and polynomial failure criteria incorporated into a three dimensional
finite element method. The authors considered stiffness reduction directly proportional to structural
discretization. In other words, instead of reducing an element’s stiffness to zero irrespective of the
element size, a gradual reduction method was used. Therefore, the element stiffness was reduced
incrementally until no further failures occurred at a particular loading. Parametric studies were
accomplished using various gradual stiffness reduction percentages.

For the present research, progressive failure criterion was incorporated into the SLR theory

for the purpose of studying failure characteristics of composite lamina and sandwich composite
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structures. As will be explained in greater detail in further chapters, stresses were determined at
the Gaussian points within the elements of the discretized plate or shell structure. The stresses
were then compared with the previously mentioned failure criterion of Eqns. 49-52. If the various
failure criterion were determined to have been satisfied, in other words if the boundaries of the
state of stress had been exceeded, then a reduction in stiffness was made. Since the chosen failure
criterion allowed the user to distinguish between various failure modes, the appropriate constitutive
coefficients were reduced to a nominal value within the respective ply, on an element-by-element
basis. Once the constitutive relations were modified, equilibrium was again reached for the same
load condition in order to investigate subsequent failures. When further failures no longer occurred,

the displacement increment process continued.
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Chapter 3 - SLR Modifications

There were several major modifications made to the SLR finite element method. First, the
tangent stiffness relations were expanded to include the possible effects of asymmetrical failure.
Next, the failure criteria of Eqns. 49 through 52 was added to the SLR program. Coincident with
the addition of the failure criteria, the element constitutive relations were modified to allow for
stiffness reduction as failure occurred. Throughout the modification process, various updates were

incorporated into the program in order to facilitate the previously mentioned changes.

3.1 Elasticity Arrays

As mentioned in Chapter 2, the SLR method was originally formulated to analyze only sym-
metric plate and shell structures. For the case of composites, this is a satisfactory assumption if
symmetric laminates are the primary focus of the research. However, with the inclusion of failure
criteria, symmetry may no longer be an accurate assumption. A composite laminate or sandwich
composite plate or shell can experience varying stresses throughout the thickness. This variance in
stress can be further aggravated as the thickness of the composite structure increases and failures
result. As failures occur in a composite structure, asymmetry can result if a ply fails on either the
top or bottom surface and the corresponding symmetrical ply does not fail. For that reason, the
SLR program required modification to include the elasticity arrays in the stiffness matrices.

Having explained the need to include the elasticity arrays, and describéd in detail the proce-
dure undertaken to arrive at the desired repeatability of the elasticity arrays and hence the tangent
stiffness arrays, the B;;, E;;, Gij, Iij, Kij, P;j, and S;; arrays were added to the appropriate tan-
gent stiffness terms in the SLR program. Incorporating the elasticity arrays into the tangent stiff-
ness Eqn. resulted in literally hundreds of 18x18 arrays, given the required matrix format. Sub-

sequently, a means was needed to carry out the manipulation given time and resource constraints.
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Therefore, the symbolic mathematical manipulator, MATHEMATICA, was chosen for the process.
Using the MATHEMATICA program and the relations for the repeatable tangent stiffness arrays
of Eqns. 31-33, with the respective changes noted in Eqns. 34-36, the necessary development was
carried out.

The MATHEMATICA program was specifically chosen due to the sheer size of the arrays
incorporated in the previously discussed elasticity relations. MATHEMATICA allowed the author
to assemble the literally hundreds of element-independent arrays with relative ease and furthermore,
express the output in Fortran format for immediate inclusion into the SLR program. The B;;, E;j,
Gi; and I;; arrays were added to the K stiffness matrix, and the B;;, E;;, Gyj, I, K;; and Py
arrays were added to the ]Vl stiffness matrix. Because of the sheer size of the arrays and the
resulting thousands of lines of code, only the first four arrays, or the B;;, E;;, Gi; and I;; were
included in the JVQ stiffness matrix. Even without the last three elasticity arrays, or K;;, P;;, and
Sij, included in ]/\\72, the total lines of code added to the SLR program exceeded 25,000. The input

file used to generate the changes made to the K stiffness matrix is included in Appendix B.

3.2 Failure Criterion

The importance of failure criteria in the design process can not be overstated. When used
properly and conservatively, failure criteria can provide an engineer a powerful tool used in the de-
sign process. The proper addition of failure criteria into a finite element method can lend realism to
a structural analysis. For many composite structural analyses, finite element methods are the only
means of investigating the structural response other than an experimental investigation. This is due
to the complex nature of a composite structure with multiple plies, arrayed in multiple orientations.

Therefore, the addition of failure criteria into a finite element method investigating composite struc-
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tures can give designers a multitude of information in a reasonable amount of time and for limited

resources.

3.2.1 Assumptions

There were several assumptions made during the addition of failure criteria as a result of SLR
assumptions, material property limitations, or for general simplification purposes. As described in
Chapter 2, the SLR theory makes several assumptions regarding the thickness of the structure and
the resulting kinematics, the effect of the transverse shear strains relative to the in-plane strains and
stresses, and the importance of the transverse direct stress. Finally, a discussion will be made with
respect to several general finite element method simplifications.

The SLR theory takes advantage of a shell’s relative thinness with respect to the width or span
of the panel. Therefore, the SLR kinematics describe the transverse displacements relative to the
midsurface of the shell. Because of this simplification, the transverse location of the Gaussian
points and therefore the location of the stress calculations is carried out at the midsurface of each
lamina. All stress calculations, including those used to calculate delamination failure, also occur at
the midpoint of each ply or lamina. Therefore the stresses are considered to be intraply as opposed
to interply, or at the interface between two plies.

Because of the previous assumption, i.e., a thin panel in an approximate state of plane stress,
the transverse direct stress, o, is taken to be zero. This implies that the in-plane stress-strain
effects will dominate the response. Palazotto and Dennis [27] accounted for this assumption by
showing that o, was small when compared to the transverse shear stresses in thin plates and shells.
This assumption, however, loses accuracy as thickness increases, i.e., as more plies are considered
or for sandwich panels, and the problem essentially becomes three dimensional. Furthermore, this

leaves the transverse shear calculations as the only means of calculating any form of transverse fail-
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ure. Also, the transverse shear strain-displacement relations were assumed linear, and the resulting
transverse shear stress was parabolic through the thickness. The combination of the zero transverse
direct and parabolic transverse shear stress assumptions will affect the accuracy of the progressive
failure calculations. While these assumptions may not have a significant affect on thin, composite
analyses, this may have a great affect on composite sandwich analysis. Remember, sandwich com-
posite panels rely on the sandwich core to provide significant transverse shear resistance, while the
facesheets provide the majority of the bending resistance. These assumptions leave the parabolic
transverse stress calculations as the only means of approximating core failure.

The SLR theory considers geometric nonlinearity, while material linearity is assumed. Mate-
rial linearity assumes the material stress-strain behavior remains linear prior to yielding. Geometric
nonlinearity and therefore the SLR theory allows for large displacements, but only small to mod-
erate rotations. The displacements and ultimately the stresses calculated from the SLR kinematics
lose accuracy for larger midsurface rotations, as the slope w1 can not by itself accurately represent
the elastic curve. The result is a response that is stiffer than in reality. Specifically, when inves-
tigating composite shells, which as will be shown later can undergo significant rotations, the small
angle assumption loses accuracy.

A final assumption of the SLR theory is the use of Green’s strains and 2" Piola Kirchoff
stresses. The failure criteria as written in Eqns. 49, 50, 51 and 52 require the use of the Eulerian
stresses. There was no conversion undertaken between the 2"¢ Piola Kirchoff stresses and Eulerian

stresses, thereby assuming that the strains considered in this analysis were small.

3.2.2 Program Logic
The SLR program was separated into three components, the pre-processor, processor and the

post-processor, as shown in Fig. 8.  The pre-processor has several functions. First the program
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Figure 8. SLR program flowchart without failure criteria
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receives an input file from the user. Included in the input file, are the panel geometry, element
type and size, prescribed displacements and forces, number of plies and orientation, and material
properties. The pre-processor takes geometric inputs, discretizes the structure, and calculates elas-
ticity arrays. The processor portion of the program solves the algerbraic system of Eqns. (Eqn.
27), using the Newton-Raphson solution method and the user specified convergence criteria. First,
the processor prescribes a displacement, and using the previously calculated elasticity arrays, the
elemental stiffness is calculated. The element stiffness is summed over the discretized structure
in order to attain the global stiffness. The importance of the desired repeatability in the tangent
stiffness should now be readily apparent. Once the global stiffness is calculated, the boundary
conditions, prescribed forces and displacement boundary conditions are imposed. Next, the pre-
viously mentioned system of equations is solved, resulting in an updated displacement vector. If
convergence has not been reached, the process is repeated until convergence is achieved. If, on the
other hand, convergence has been reached, the program shifts to the post-processor. The job of the
post-processor is to calculate the nodal loads and elemental stresses. Once the loads and stresses
are calculated, a new displacement increment is prescribed.

The majority of the modifications made to the SLR program took place in the STRESS sub-
routine of the post-processor. A guide to the SLR program along with a sample input deck are
included in Appendix C, and the STRESS subroutine is included in Appendix D. The STRESS
subroutine, as the name implies, calculates the stresses in the discritized structure. Once the SLR
program achieves equilibrium with respect to the displacements, the STRESS subroutine is called
for each element in the structure. Stresses are calculated at the four outermost Gaussian points of
each element. There are two nested loops used to calculate the stress in every element. Start-
ing with the first element, at the top layer or most negative distance in the transverse direction, the

stress is calculated at the each of the outer four Gaussian points. The stresses are then calculated
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through the thickness towards the bottom most layer. Once the stresses at each Gaussian point for
all lamina at that particular element are calculated, the procedure is repeated for all elements in the

structure.

3.2.3 Failure and Stiffness Reduction

Failure criteria was added to the post-processor segment of the program as shown in Fig. 9.
The stresses calculated at the four outermost Gaussian points were transformed into the material
axis system and compared with the user specified failure criteria, where fiber, matrix and delami-
nation failure were examined. Failure was assumed to occur at the end of each displacement incre-
ment. For that reason, the displacements were kept relatively small. If the elemental transformed
stresses exceeded the respective failure criteria at a given “n” ply, then a stiffness reduction was
accomplished. For the purposes of this research, a total reduction method was implemented. For
each Gaussian point that failed, the appropriate stiffness components of that particular element ply
were reduced by 25%. When all Gaussian points in an element failed, the stiffness was reduced to
a residual value, again on a ply basis. Initial analysis indicated that to reduce the elemental stiffness
to zero instead of a residual value resulted in computational difficulties. As mentioned previously,
the choice of the maximum stress, Hashin and Lee failure criteria allowed for the prediction of the
type of failure. Leaving a residual value allowed the analysis to continue until significant strength
was lost in the lamina. Once the elemental stiffness reduction took place, a new equilibrium con-
figuration was considered without prescribing a new displacement. This allowed for the calcula-
tion of subsequent failures as a result of the initial failure and resulting lamina stiffness reduction.
The result of this technique was seen as a load drop for a displacement control analysis, or a dis-
placement drop for a load control analysis. When no further failures occurred, a new displacement

increment was prescribed and the analysis continued.
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3.2.3.1 Fiber Failure

Prior to any occurrence of failure, the ply materials were assumed linearly elastic and or-

thotropic. Therefore, the reduced k" ply stress-strain relations, written in the local or material pl
P ply ply

coordinate system is as follows:

k

o1 Qu Q2 0 €1
oy | =| Q2 Qa 0 €2
o6 0 0 Qe €6

04},6“{6244 0 ]k[&x]
os | | 0 @ss €5

Fiber failure, defined by the following relations:

Maximum stress crtierion:
011 2 OFN
Lee criterion [9]:
2 2\3
(032 +0%3)* > oFs

Hashin criterion [9], [14]:

(011 )2+ (035 + 03s) >1

OFN 0%3 -

(53)

(54

occurred when the stresses calculated at the element Gaussian points exceeded the failure envelope

defined for fiber failure by the maximum stress, Hashin and Lee criteria. Fiber damage tends to

soften the material properties [15]. In order to simulate that softening of the lamina, the constitutive

coefficients 11, Q12, Q44 and Qgg were reduced. It should be noted that the constitutive relations

that were reduced, were the constants in the material axis, or the ¢;; terms, and not the constitutive

relations in the shell axis system, or @z ;. Prior to the failure of all four of the outer Gaussian points,

the coefficients Q11, @12, Q44 and Qe were reduced incrementally for that particular element. In
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other words, the respective constitutive relations for that element were reduced by 25% fqr the
failure of each Gaussian point. When total failure for the fibers, or all four of the outer Gaussian
points exceeded the fiber failure envelope, the relations were reduced to a residual value. After
all of the Gaussian points within an element had failed and the appropriate stiffness reduction had

taken place, the resulting constitutive relations were represented as:

- k k

g1 0 0 0 €1

o2 | =0 Qa2 O €2
| 06 0 0 O €6
EAk _ | Qu O “les (55)
i (o 0 0 €5

In order to provide some understanding into the rationale behind the stiffness reduction, consider the
following fiber failure example. If each of the Gaussian points in a ply, for an element, exceeded the
fiber failure envelope, then as was just mentioned, the entire elemental stiffness properties related
to the fiber were equated to a nominal value. If fiber breakage was the only failure detected at the
Gaussian points, then the ply would continue to provide strength through the stress-strain relations
of Eqn. 55, i.e., 09, or the in-plane stress perpendicular to the fibers, and the transverse stress o4 is

not zero for that particular element within the ply considered.

3.2.3.2 Matrix Failure
If the stresses calculated at the Gaussian points exceeded the failure envelope defined by the

following relation for matrix failure in tension:

Maximum stress crtierion:

022 > OMNT, (022 > 0)

Lee criterion [9]:
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Hashin criterion [9], [14]:
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or the following relation for matrix failure in compression:

Maximum stress crtierion:

022 2 OMNC

Lee criterion [9]:

(V10

(02, +033)% > oms

Hashin criterion [9], [14]:

2
21 <UMNC) -1 (022 +033)° +
omne |\ 20Ms

(092 + 0733) +

40%45
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then matrix failure was assumed to have occurred. Again it should be noted that o33, or the
transverse direct stress was neglected. Matrix failure or cracking also softens the lamina [15]. In
order to simulate the softening of the lamina, the constitutive coefficients Q22, @12, Q55 and Qg6
were equated to zero for each of the Gaussian points in each of the plies where matrix failure had
occurred. As with the fiber failure, reducing the coefficients of one Gaussian point reduces the

appropriate element constitutive relations by 25% on a ply basis. Once total failure had occurred,
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or matrix failure had occurred for all Gaussian points, the constitutive coefficients Q22, Q12, @55

and Qeg were reduced to a nominal value resulting in the following lamina stress-strain relations:

r k k

o1 Qu 00 €1

09 = 0 0 0 €9
| 06 0 00 €6
(0a1°_[0 0 1 [e 58)
| 05 0 Q@ss €5

Again, the ply could continue to provide strength, as o1 and o5 were not equated to zero. One
can see that if total fiber and total matrix failure occurred for all of the Gaussian points within an
element on a ply basis, the total stiffness was effectively removed, as Q11, Q22, Q12, Q44, @55 and

Qg6 were reduced to a residual value.

3.2.3.3 Delamination
In the event the stresses calculated at the Gaussian points exceed the failure envelope defined

for delamination in the following Eqns.:

Maximum stress criterion
013 = 0ps Or 023 2 ODS

Lee criterion [9]:

N

(023 +033)* > ops

Hashin criterion [9]:

2 2 2
( 033 ) + 0719 —2*_ 013 >1 (59)
OZN Opg
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interply delamination was assumed to have occurred. Again, note that o33 was neglected. Inter-
preting delamination failures using this method was accomplished in the following manner. If an
intraply delamination for the n® ply occurred, then an interply delamination was assumed to have
occurred at the interface of the n** ply and the n*?*+1 plies. However, the stiffness reduction only
took place in the n*® ply. In other words, the n*£1 plies continued to maintain transverse stiff-
ness. For the n” ply, delamination resulted in the reduction of the constitutive relations (44 and
Qs5. In a manner similar to the fiber and matrix stiffness reductions, the reduction of each Gaus-
sia;l point equated to a 25% reduction of Q44 and Q55 for that element within the ply in question.
Total reduction resulted in the removal of all transverse elemental strength, again for the element
within the ply considered, as the element stiffness was assigned a residual value. The resulting
lamina stress-strain constitutive relations for an element whose outer Gaussian points had failed

and thereby resulting in the reduction of Q44 and @55 are expressed in the following relations:

o 1" Qu Q12 O FT e
o2 | =| Q2 Q2 0 €2
o6 0 0 Qes €6
k k
g4 _ 00 €4
) =loo] 2] @

3.2.3.4 Core

The sandwich core was treated as an orthotropic lamina, oriented 0° from the SLR panel axis
system as shown in Fig. 5. The core was divided into five layers, thereby allowing the elasticity
relations and tangent stiffness calculations to be accomplished in the same manner as they were for
the face sheets. To put it another way, each core layer was treated as a simple lamina. The purpose
of the core in any sandwich composite is to provide transverse direct and shear stiffness, while the
face sheets provide the panel bending resistance. Since the core is designed to provide transverse

62




and not in-plane strength, the core was treated in a slightly different manner than the facesheets.
Several assumptions were required when modeling the core. Since the transverse direct stress
was neglected, the resulting core transverse stiffness was completely modeled by the transverse
shear strength. Therefore, the primary core failure mode, core shear failure, was modeled by the
transverse shear strengths. Second, delamination was obviously not a factor in the core “layers”,
so the delamination failure was considered as a transverse shear failure, and thus still included in
the analysis. The maximum stress, Hashin and Lee failure criterion were evaluated in the same
manner for the core as they were evaluated for the facesheets. In other words, the transverse
components of each of the respective criteria was evaluated for the core “layers”. Once a transverse
core failure occurred, or the transverse failure envelopes for either the maximum stress, Hashin or
Lee criteria were exceeded, the entire core stiffness at that point was reduced. Since the core
“layers” were treated in the same manner as the facesheets, the stiffness reduction took place in
the same manner as was conducted in the facesheets. Since the facesheets primarily provide the
bending stiffness while the core resists transverse stress, the in-plane strength contribution of the
core was assumed negligible as compared to the transverse strength. Therefore, the following
stiffness reduction took place. For an elemental transverse core failure at a particular Gaussian
point within a given layer, all of the constitutive properties for that point were removed, which
differs from the facesheet or general composite lamina stiffness reduction. For example, for fiber
failure calculated at all Gaussian points for a particular element within a given ply, the in-plane
constitutive coefficients @11, Q12, Qes and (55 were reduced to a residual value. To reiterate,
due to the greater significance of the transverse strength, when a core failure occurred, all of the
respective constitutive coefficients, or Q11, Q22, @12, Qss, Q44 and Q55 were reduced within that

layer.
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Chapter 4 - Results and Discussions

The purpose of this research was to gauge the accuracy and applicability of the existing SLR
finite element analysis code, with and without the addition of failure criteria, as well as examine
the modeling of composite sandwich panels. Prior to the addition of the failure criteria, a com-
parison was made between the SLR finite element method, a preexisting experimental study, and

®

the commercial finite element program, ABAQUS ™. The initial intent of the comparison was to
gauge the accuracy of the code, and therefore the relative merits placed upon those results and the
results of future SLR program modifications. The accuracy of the results led to an understanding
of the SLR methodology and its applicability as a structural analysis tool. Once the accuracy and
applicability of the code was established, the effect of progressive ply damage was included within
the SLR finite element method. With the addition of failure criteria, a comparison was once again
made with the experimental results. Finally, an analysis of a sandwich composite shell took place,

both with and without failure analysis considered, to examine the various effects of the sandwich

core and the core stiffness reduction.

4.1 Composite Panels without Failure Analysis

Due to the simplifying assumptions made in the development of the SLR finite element method,
an analysis was needed to determine how the SLR results would compare to actual experimental
results. It should be noted that initial comparisons were made for accuracy purposes only. In other
words, progressive failure analysis was not considered. As will be discussed shortly, a general
case was considered for the purposes of creating an SLR baseline. The results were compared with

®

both the commercial finite element program ABAQUS ™, as well as experimental data [44]. This
general case was also reexamined with progressive failure and compared with experimental data in

order to examine how the stiffness reduction compared.
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The accuracy and applicability of the code was examined through a comparison of published
experimental test data [44] with results generated using the existing finite element code. Various
composite shell configurations were considered, however an exhaustive comparison effort was not
undertaken. In other words, only sample shell configurations meant to represent extreme cases were
modeled using the SLR FEM. Two geometric shell variables, thickness and radius, were analyzed
with the SLR FEM. Of great importance in any analysis using the SLR FEM, was the effect of
panel thickness. The SLR theory enforces zero direct stress through the thickness and neglects
the higher order transverse Green’s strain-displacement terms, for the purposes of modeling the
transverse shear effects. The accuracy of this assumption was reduced as the thickness of the panel
increased. Therefore, an analysis of panel thickness was performed. The effect of shell radius
versus span was also investigated. The shell radius and span dimensions determine whether or not
a cylindrical shell is shallow or deep. The SLR theory assumes small to moderate rotations, and
since the rotations a shell can undergo are affected by whether or not a shell is deep or shallow, an

investigation was warranted.

4.1.1 Finite Element Formulation for a General Shell

Before discussing the results of the investigations, the process leading up to the final modeling
configuration, or the boundary conditions, mesh refinement and discreization choices, needs to be
reviewed. The general baseline shell case will be considered here as an example of the process used
to formulate the input file for the SLR program. The experimental data, taken from Ref. [44], in-
vestigated the quasi-static and dynamic response of various plate and cylindrical composite panels.
The experimentation included an investigation of three structural parameters, namely, shell radius,
span and thickness. All specimens were constructed of AS4/3501-6 graphite/epoxy in [£45,,/0,),

(n =1,2,3) layup configurations. The material properties for AS4/3501-6 graphite/epoxy can
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be found in Table 1 [24]. The specimens reviewed and compared with the SLR results included
composite cylindrical concave and convex shells as well as composite plates under a quasi-static
transverse center load. The convex composite shell specimens were tested in a rigid test fixture as
shown in Ref. [44], with the axial edges in pinned/no in-plane sliding, or hinged boundary condi-
tions. The axial edges are those edges in the “u” direction, as shown in Fig. 5. The circumferential
edges, or the edges in the “v” direction in Fig. 5, remained free. The general case chosen as the
baseline specimen was in a “R1T1S1” configuration, where “R” represents the shell radius, “T”
represents the shell thickness and “S” represents the shell span. The “1” refers to the choice of

geometric multiplier. The specimen layout is represented in Fig. 10, [44]. Simply put, it was the

E; =142 GPa
E> =9.7TGPa
G12 = 6.0 Gpa
Gl3 =6.0 Gpa
G23 =3.6 G’pa
Vig = 0.3

Ipiy = 0.134 mm
p = 1580 kg/m>

Table 1. AS4/3501-6 ply properties

smallest and thinnest of the specimens considered by Wardle and Lagace [44]. The dimensions
for the specimen radius, span and thickness were, 152, 102 and 0.804 mm respectively, with a ply
layup for this configuration of [+45/0],. It is important to note that, unless otherwise stated, the
ply angle orientation is defined as shown in Fig. 10.

When modeling any composite panel, there are numerous modeling conditions available to
the analyst, each of which can significantly affect the outcome of the analysis. For instance, the
obvious finite element discretization approach would be to consider symmetry for the plate or shell
panel. That is a reasonable choice if the panel considered was isotropic, orthotropic, or in the

case of a composite, a cross ply laminate. Utilizing symmetry, or only considering one quadrant,
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Figure 10. Itlustration of a generic test specimen defining the radius, span, thickness and ply angle
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allows the user to save computing time and resources, by reducing the number of elements, thus
reducing the number of nodal displacement, load, and elemental stress calculations. For angle-
ply laminates however, the D¢ and Dag, or the laminate bending stiffness terms negate the biaxial
symmetry assumption valid for the previously mentioned cases [27]. However, worst case analysis
(60 degree angle ply laminates) for a flat plate under uniform pressure, revealed a difference in
quarter-panel maximum displacements of only 6% [27]. Results using the SLR finite element

method indicate that modeling the entire panel will result in a stiffer response as shown in Fig. 11.
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Figure 11. Full versus quarter panel finite element modeling

In other words, the same transverse panel deflection will result in greater calculated loads for a full
panel model. The effects of asymmetry due to the angle ply layup can be seen in Fig. 12, which

represents a topographical view of the shell’s midsurface. The shell in Fig. 12 is experiencing the
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instability phenomenon known as snapping, which will be described in greater detail in subsequent
sections. Fig. 12 represents a composite laminate without considering progressive failure analysis.
A transverse direct point load has been applied in a displacement control analysis, the effect of
which can be seen in the “depressed” center of the panel. The various shades of gray represent the
elevation above the base or floor of the figure. For example, all of the elements within a specific
shade of gray, are within the same elevation range. This coloring scheme was specifically used
to examine the shell through its various stages of deformation. As shown in Fig. 12, the darkly
shaded areas on the top surface diagonal quadrants represent a higher elevation than the other two
diagonal quadrants. In other words, those darkly shaded diagonal quédrants at the top surface of
the shell represent true symmetry for this composite, and specifically for the cases considered in
this research. Even though the angle ply laminate modeling results can be expected to differ by as
much as 6%, the choice was made to continue the analysis modeling the entire shell, as the effects
of progressive failure were unknown.

There were many choices available with respect to the shell boundary conditions. There
were seven degrees-of-freedom at each corner node: wu, v, w, w,1, w2, ¥ and 5. In addition,
there were four “mid-nodes” with the degrees-of-freedom, w and v. The convex composite shell
specimens in the experimental analysis were tested in a rigid test fixture, with the axial edges in a
pinned, no in-plane sliding condition. The initial choice for the SLR FEM analysis was to allow the
axial edge degrees of freedom u, v, w, and 9, to remain fixed. This condition fixed the rotation of
a normal to the shell mid-surface in the “u” direction, but allowed for rotation in the “v” direction.
At the time, this seemed the most logical approach to modeling the pinned/no in-plane sliding or
hinged boundary conditions along the axial edges. Early results tracked the experimental data quite
well, until reaching shell instability point. After reaching that critical shell snapping load, the SLR

data achieved equilibrium only with a load sign reversal. Since the sign reversal of the force vector
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was meaningless for this research, a new approach was required. Thus, the final configuration for
experimental comparison purposes was settled upon. The boundary conditions 1/, and 1, along
both axial edges were fixed. The midsurface slopes, w ; and w 2 were not fixed, although along the
axial edges w ; was implicitly zero. Holding 1, fixed was in essence equating the total midsurface
rotation, or w 3 to the midsurface shear rotation, or 35. If both 15 and w 2 were fixed along the axial
edge, then a condition of zero transverse shear stress would exist at those boundaries. With the final
boundary conditions settled upon, results were stiffer, but continued to track the experimental data
reasonably well, as will be discussed in subsequent sections. Likewise, after the critical snapping
load or shell instability point, a load sign reversal was no longer required to achieve equilibrium.
Initial results obtained while generating the final ABAQUS® configuration yielded similar force
results if the axial edge nodes were not maintained in a manner similar to the SLR configuration.
The final boundary configuration, element numbering and SLR ply orientation angle for a 12212
mesh can be seen in Fig. 13.

A finite element convergence study was cérried out for the general shell case using the previ-
ously mentioned boundary conditions. All cases used displacement controlled incrementation with
a user specified displacement convergence criteria of 0.1%. The purpose of the convergence study
was to balance the need for accuracy with computing time and memory restrictions. The results
of the convergence study were used as a basis for the remainder of the SLR research, including the
composite sandwich specimens. The full panel convergence study results are illustrated in Fig. 14.
Just as using the pinned/hinged boundary conditions resulted in the load sign reversal, the same
scenario resulted when the panel discretization was too coarse. An examination of Fig. 14 re-
veals a significant difference between the various mesh configurations. The coarsest mesh, the 828
;:onﬁguration, reached its respective critical snapping load at a transverse deflection of 5 mm, as

opposed to 4.5 mm for the 10210, 12212 and 14214 configurations. At the critical snapping point,
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Figure 14. Convergence study for center loaded shell
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the respective loads for the 828, 10210, 12212 and 14x14 configurations were 868 N, 637 N, 565
N and 520 N, representing a difference of 55%, 23% and 9% as compared to the 14z14 mesh. For
the cases considered in this analysis, modeling was accomplished using 12212 mesh discretization.
Results using the 14214 mesh discretization were not appreciably better and extended computing
time by days.
4.1.2 Baseline Comparison

The phrase “critical snapping point” or “instability point” has been mentioned several times
when discussing the physical response seen in shells without an adequate description of the phe-
nomenon. As a convex shell is deflected in the transverse direction, the response can be separated

into three distinct regions as seen in Fig. 15 [44]. Referencing Fig. 15 and Fig. 16, a shell will pro-
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Figure 15. Illustration of the three distinct shell physical response regions

ceed along the first equilibrium path until reaching the critical snapping load or the buckling load
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shown in Fig. 16B. In this first region, the shell transverse displacement will increase with an in-
crease in the transverse loading. Compressive membrane stresses in the circumferential direction
dominate the shell’s response along the first equilibrium path. After reaching the critical snapping
load, the shell proceeds into the instability region, resulting in the shell ending up in an inverted or
concave position shown in Fig. 16C. As seen in Fig. 15, the transverse displacement between the
first and second equilibrium points is quite significant, or roughly 31% of the total deflection for
this general case. That transverse displacement represents a significant amount of energy absorp-
tion, all of which should be taken into account when examining ply failure in composite panels. In
other words, the energy absorbed throughout the instability region, or the energy required to “snap”
the shell is energy that otherwise would have gone into ply damage. Thus, the existence of the
instability region serves as damage resistance for the convex shell. It has been shown that convex
shells can resist damage to a greater extent than a plate of similar geometry by absorbing the en-
ergy within the instability region, that otherwise would have resulted in ply damage. Conversely,
the plate, having no instability region, absorbs quasi-static or impact energy by continued mono-
tonic loading thus incurring more damage [44]. In a shell, the compressive membrane stresses
associated with the first equilibrium path undergo a sign reversal after the critical snapping load,
thereby becoming tensile membrane stresses. Upon reaching the second stable equilibrium path,
the shell will once again increase in displacement with an increase in load, and will exhibit a phys-
ical response similar to that seen in concave shells. It is well established that the critical snapping
load associated with different convex shell geometries will result in differences in the damage ex-
tent and type, and that the damage exhibited by a composite panel is directly associated with the
peak force that the panel is exposed to [15], [44]. As mentioned previously, the panel stresses as-
sociated with the first equilibrium path are compressive membrane in nature and are responsible

for sublaminate buckling and delamination [44]. Since the type of stress seen in the panel depends
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A) Composite panel at the
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B) Composite panel at the
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Figure 16. Graphical representation of a general shell’s response encompassing initial loading, shell
buckling and the final equilibrium path
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upon the physical response “region”, then the type of panel damage also depends upon the physical
response “region”. This makes any discussion concerning composite panel damage irrelevant with-
out including a discussion of the convex shell’s total response. Since the type and extent of panel
damage is associated with the physical response region, those structural parameters associated with
affecting the critical snapping point need to be examined.

Continuing with the SLR finite element method accuracy check, a comparison was made be-
tween the SLR FEM, the Wardle and Lagace experimental data [44] and the ABAQUS® com-
mercial finite element package. This case served as a baseline against which to compare the ex-
perimental data before and after incorporating the effects of progressive failure. The motivation
behind the ABAQUS® comparison was to test the SLR method against an industry “standard” fi-
nite element package. The AS4/3501-6 graphite/epoxy composite panel used in the comparison
was the general shell displayed previously, with a radius, span and thickness of 152, 102 and 0.804
mm respectively, and a composite layup of [£45/0],. Both the SLR and ABAQUS® data com-
pared favorably with the experimental data as displayed in Fig. 17.  As mentioned earlier, the
ABAQUS® results generated using hinged boundary conditions along the axial edges resulted in
the same sign reversal of the transverse force vector after the critical snapping point that was seen
with the initial SLR data. With shell elements and similar axial edge boundary conditions as those

® compared favorably with the SLR

®

used in the SLR analysis, results generated using ABAQUS
results for this particular specimen configuration. The ABAQUS™ input deck also included the
same 12212 mesh and displacement control analysis. The analytical data generated using both
SLR and ABAQUS® was stiffer than the experimental data. Several factors were responsible.
First, a finite element method assumes consistent material properties, as opposed to the material

defects inherent in a test specimen. Those defects result in a reduction of the stiffness or strength

of the panel. The same analogy is true for the test fixture as well. While the finite element method
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Figure 17. Comparison between SLR, ABAQUS and experimental data
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will be exact in its application of the boundary conditions and location of the loading, an exper-
iment will again inherently have a margin of error. The loading will not be applied exactly in
the center of the panel, and similarly, the boundary conditions can not possibly be applied with as
great a degree of accuracy. Finally, the finite element methods used in this research considered
a geometrically perfect cylindrical shell, while an actual cylindrical test specimen will again have
tolerances or errors associated with the radius and thickness. Examining the results shows that the
SLR data displays the critical snapping point being reached at a center transverse displacement of

®

4.5mm and accompanying transverse center point load of 565 N, versus the ABAQUS™ and ex-
perimental critical snapping point displacements and loads of 4.5mm and 515 N, and 5.5mm and
380 N respectively. At the start of the second stability region, the ABAQUS® data is the stiffest,
resulting in a minimum transverse load of 140 N versus 90 IV for the SLR data and 88 N for the
experimental data. Both the ABAQUS® and SLR models reached their respective minimum load
points at a transverse deflection of 11.5 ynm. Therefore, for this baseline specimen, the SLR and

ABAQUS® analytical data are less conservative in transverse deflection and loading characteris-

tics when compared with experimental data.

4.1.3 Panel Thickness

Thickness has a considerable influence on the overall resp’onse of a composite shell. War-
dle and Lagace [44] investigated the effects of thickness on a convex shell’s physical response, and
found that the shell thickness has a significant effect on the bending and membrane contributions
to panel stiffness. Increasing the shell thickness resulted in an increase in stiffness for both the
first and second equilibrium paths [44]. Three specimen configurations examined in the experi-
ment, were examined using the SLR FEM, all with the same span and radius of 457 mm and 305

mm respectively. The three thicknesses examined were 0.804 mm, 1.608 mm and 2.412 mm re-
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spectively. Using displacement controlled increments of 0.5 mm, a 12212 mesh discretization, a
displacement convergence criteria of 0.1%, and using the previously mentioned simple boundary
conditions, yielded the results shown in Fig. 18. The experimental data in Fig. 18 was taken from

Ref. [44]. As shown in Fig. 18, as the thickness increased, the difference in stiffness between
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Figure 18. Physical response of convex shells with varying thicknesses

the experiment and SLR data also increased. However, the physical response trends for the SLR
data were consistent with the experimental data, even with the stiffness discrepancies. In other
words, the snap characteristics or general loading responses generally correspond with the exper-
~iment. For the SLR “T'1” specimen, the critical snapping load was 318 N with a corresponding

deflection of 10 mm. The experimental data reached a peak load of 100 N and a corresponding
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deflection of 6.5 mm. For both the SLR and experimental “7T'2” and “T"3” specimens, there were
no critical snapping phenomenon. However, for the “I"2” specimen, there was an inflection in the
load-deflection curve at approximately 250 N and 2.5 mm. The SLR data shows a corresponding
change in slope at a load of 450 N and a deflection of 2.5 mm. There was no critical snapping
load or significant change in slope experienced with the “I"3” specimen.

Of the structural parameters considered in the experiment, thickness has the greatest effect on
the bending and membrane panel stiffness [44]. With that in mind, increasing the shell thickness
impacts the critical snapping point in two ways. First, an increase in thickness will increase the
load at which the critical snapping point occurs. With too great a thickness, the panel will not
reach a critical snapping point, as seen in the “7'2” and “T'3” specimens. Thus, a thick panel will
approach the response seen in plates. It should be noted that the shell response only approaches that
seen in plates. The slope of the load-deflection curve is still decreasing with increasing deflection,
unlike a plate load-deflection response curve having an increasing slope with increasing deflection.
Also, the shell, even when thick, will still experience membrane compression stiffness whereas a
plate will load monotonically, experiencing tensile stresses. Finally, an increase in thickness will

result in the critical snapping load being reached at a reduced transverse deflection.

4.1.4 Panel Radius

Ultimately, a study will be made of the response characteristics of sandwich composite shells.
Since the study will include an analysis of the impact of failure criteria and the corresponding
stiffness reduction, an understanding of the impact that the geometric radius has on a panel is
necessary. For the purposes of this research, a shell is considered deep if the ratio “§/S” is
greater than 25%, where “6” and “S” are defined in Fig. 10. Shallow cylindrical shells tend to

approach the physical response seen in flat plates. Deep shells undergo large rotations and tend
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to exhibit extreme changes in the load-displacement response due to the buckling phenomenon
known as snapping. The effects of rotation were therefore examined by varying the radius of the
specimen and comparing the results with Wardle and Lagace [44]. The specimens considered by
Wardle and Lagace had a constant span and thickness of 203 mm and 0.804 mm respectively,
with varying radii of 152 mm, 305 mm and 457 mm. Using the previously defined definition
for the “deepness” of a shell, the §/5 ratio was 20%, 8.5% and 5.7% respectively. According
to the definition, only the first shell would be considered “deep”. Using displacement controlled
increments of 0.5mm, a 12212 mesh discretization, a displacement convergence criteria of 0.1%,

and the boundary conditions shown in Fig. 13, the results of the analysis are expressed in Fig. 19.
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Figure 19. Physical response of convex shells with varying radii
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Once again, the SLR results were stiffer than the experimental results, while the critical snap
phenomenon was modeled reasonably well by the SLR FEM. Increasing the panel radius while
holding all other parameters constant produced some interesting results. For the SLR and espe-
cially the experimental data, the slope of the load-deflection curves was generally consistent until
the respective critical snapping load was reached. The same phenomenon holds true after the crit-
ical snapping load as well. As the shell radius was increased, the critical snapping load and the
transverse deflection within the instability region decreased for both the SLR and the experimental
data. For the “R3” specimen, the SLR analysis produced a critical snapping load and correspond-
ing transverse deflection of 214 N and 5.5 mm respectively. The experimental data shows the
critical snapping load and transverse deflection to be approximately 150 N and 6 mm respectively.
For the “R2” specimen, the SLR analysis produced a critical snapping load and corresponding
transverse deflection of 373 N and 7.5 mm respectively. The experimental data shows the critical
snapping load and transverse deflection to be approximately 190 N and 8 mm respectively. For
the “R1” specimen, the SLR analysis produced a critical snapping load and corresponding trans-
verse deflection of 1077 N and 14.5 mm respectively. The experimental data shows the critical
snapping load and transverse deflection to be approximately 380 IV and 15 mm respectively. It
is therefore obvious that as the shell radius decreases, or the shell becomes deeper, the SLR FEM

results in data that is stiffer than the corresponding experimental results.

4.1.5 Results of the Comparison

There were three comparisons made with the experiment conducted by Wardle and Lagace
[44]. First, a general thin shell specimen was compared, followed by comparisons on the effect
of panel thickness and radius respectively. The increase in panel thickness tended to exaggerate

the stiffness discrepancies between the SLR and experimental results. The discrepancies can be
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attributed to material defects, load application, test methods and imperfect specimen geometry. As
an example, the SLR theory is very sensitive to thickness. With the likelihood of thickness variation
in the experimental specimens, significant differences in stiffness will result. The results of the
SLR comparison show that the difference in panel stiffness was a minimum when comparing the‘
“T'1”, or the thinnest of the specimens, however, the panel stiffness tended to diverge significantly
as the shell thickness or number of plies was increased. There were several possibilities for the
stiffer response of the SLR finite element modeling in addition to material defects and test methods.
Remember that the SLR theory is based upon a two dimensional assumption, i.e., a “thin” structure
in a state of relative plane stress. That “thinness” allowed the developers of the SLR theory to
approximate the transverse shear effects with respect to the panel midsurface. For the cases where
in-plane effects dominate, this is a valid assumption, as seen in the “I'l” comparison. As the
thickness of the panel increases, the problem develops into a three dimensional one. This three
dimensional problem is manifested in several ways. First, the transverse direct stress in the vicinity
of the applied load becomes important. Second, as the shell thickness increases, the parabolic
transverse shear strain assumption loses accuracy. From the development of the kinematics, the
transverse shear strain was solved for by forcing the value of the shear to be zero at the upper
and lower surfaces. The result was parabolic shear distribution through the panel thickness. In
the SLR FEM, transverse shear strains were assumed and forced to be continuous through the
thickness, while transverse shear stresses were discontinuous. In reélity, the transverse shear stress
is continuous. For thin shells, the SLR assumptions are reasonable. However, as the thickness
increases and the problem becomes three dimensional, the parabolic transverse shear assumption
loses accuracy.

Changing the radius while holding the thickness, span and material properties constant allowed

for an investigation into the effect that the “§/S” ratio had on the shell. As the panel radius was
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increased, the SLR and experimental differences in the shell force-deflection response increased as
well, although the SLR FEM shell instability characteristics were consistent with the experimen-
tal data. As discussed previously, the SLR theory included transverse shear effects. Because the
transverse shear was not considered as crucial as the in-plane effects in an analysis of thin panels,
only the linear terms of the respective Green’s strain-displacement relations were used. Therefore,
for generally large rotations and displacements, like those experienced in the snapping phenomenon
of shells, the through-the-thickness transverse stresses and displacements were not accurately rep-
resented. However, through the use of the higher order kinematics and nonlinear in-plane Green’s
strain relations, the displacement and rotation of the panel midsurface was represented reasonably
well [27]. Thus, the shell snapping phenomenon was generally well predicted as seen in the “ra-
dius” comparison. However, recall that in the SLR kinematic formulation, small to moderate rota-
tions were assumed. The “R1”, “R2” and “R3” SLR specimens experienced maximum rotations
in the circumferential direction, in the vicinity of the applied load at the critical snapping point of
approximately 21°, 120 and 80 respectively. As the rotation of the shell midsurface increased, the
small to moderate rotation assumption began to lose accuracy. In other words, the rotations were
too large for the SLR theory to predict accurate displacements, thus the greatest discrepancy was
noted for the “R1” or the deepest of the three shells considered.

Finally, a thin shell specimen was chosen as the baseline for future comparisons including
composite and sandwich composite failure criteria. The shell chosen was a relatively shallow
shell, with a “§/S” ratio of 8.6%. The SLR data was compared with both the experimental data as

well as the results generated from the ABAQUS®

finite element program. The baseline SLR data
compared favorably with both the ABAQUS® and experimental data, exhibiting reasonably close
similarity with respect to the critical snapping and post buckling characteristics. The SLR force-

deflection response was slightly stiffer with the critical snapping point occurring at a lower value
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of transverse deflection, when compared with the experimental data. The SLR response was also
stiffer than the ABAQUS® data, however the transverse deflection at the critical snapping point

®

was the same as the corresponding ABAQUS ™ deflection.

4.2 Composite Panel with Failure Analysis

The Hashin, Lee and maximum stress failure criterion were added to the SLR FEM in order
to provide a more realistic representation of the total physical response of the shell. An analysis
was made of the baseline configuration using each of the various failure criterion. For each of
the failure analyses, the first ply failure, as well as the first of each form of failure for each ply
was determined. For example, the Hashin failure criteria predicts three forms of failure, fiber
breakage, matrix cracking and delamination. Therefore, for any case involving the Hashin criteria,
the location of the first of each of those failures was determined. The location refers to the specific
element as well as the ply that failure occurred in. For all specimens, the type and extent of
failure for significant points on the load-deflection curve were recorded. For the composite shell
analysis, significant points include the “snapping” phenomenon and the corresponding snapping
distance point, described in previous sections. The failures leading up to this phenomenon as well
as failures at the corresponding snapping distance point, shown in Fig. 15, were analyzed.

The experimental analyses considered in this comparison was the previously discussed anal-
ysis carried out by Wardle and Lagace [44]. The specimen referred to as the general baseline
specimen was again used as a standard against which the modified SLR FEM was compared. One
specimen from the experiment was chosen as a baseline, and the SLR FEM with the failure criteria
capability incorporated was used to analyze the shell response. The AS4/3501-6 graphite/epoxy

material strengths used in the analysis are listed in Table 2, where “F” , “M” and “D” refer to ma-
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trix, fiber and delamination, “N” and “S” refer to normal and shear, and “T” and “C” to tension

or compression [13].

OFN = 1.5 G’Pa
ors = 0.22 GPa
omnT = 43.8 MPa
OMNC =43.8 M Pa
oMS = 43.8 M Pa
opn = 0.05 GPa
ops = 0.086 GPa

Table 2. AS4/3501-6 material strengths

Before entering into a discussion of the analysis and results, there are several points that need
to be explained with respect to the experimental data. First, none of the experimental specimens
reached final ply failure within the deflections recorded. Second, the type of failure analysis de-
tail available with the SLR FEM greatly exceeds the information available from the experimental
data. While there was limited information available from the experiment, only general trends can
be made concerning the analyses. Each of the chosen failure criteria allowed the user to determine
the type and location of failure. Because of the format of the SLR finite element method, the lo-
cation of failure includes the ply or layer, element and Gaussian point. Obviously, the detail of
this type of damage evaluation exceeds that available in most experimental analyses. As a result,
only general comparisons can be made between the analytic and experimental results. Those com-
parisons include specimen stiffness reduction, peak loads or general load-deflection characteristics,

and general failure characteristics.

4.2.1 Composite Comparison using Hashin Failure Criteria

The Hashin failure criteria is ideally suited for use in the SLR finite element method, as it
combines in-plane direct stresses with in-plane and transverse shear stress effects. Important in
the development of the SLR theory was the ability to include transverse shear effects. However,

the SLR theory also makes simplifying assumptions concerning those transverse effects. Namely,
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the linear transverse shear strain approximation, parabolic through-the-thickness transverse shear,
and the insignificance placed upon the direct transverse effects. Since the Hashin criteria consid-
ers the effects of both in-plane and transverse shear stress, the simplifying assumptions concerning
the SLR transverse effects should be balanced with the complete modeling of the in-plane effects.
Also important for any failure criteria used in a composite progressive failure analysis is the deter-
mination of the mode of failure. The Hashin criteria allows the user to predict and identify a failure
mode, thus allowing for accurate stiffness reduction. For the purposes of this portion of the re-

®

search, the baseline configuration, previously compared to the ABAQUS™ and experimental data,
was used. The specimen had six plies in a [+45/0], configuration, with a radius, span and thick-
ness of 152, 102 and 0.804 mm respectively. A 12212 mesh configuration was used along with
0.5 mm displacement increments and a user specified displacement convergence criteria of 0.1%.
Unless otherwise noted, references to displacement or transverse deflection refer to the center point
of the shell, where the transverse point load was applied.

The total response of the baseline specimen analyzed with Hashin failure criteria can be seen
in Fig. 20. The shell stiffness at the critical snapping load was reduced by approximately 6%,
or to within 100 IV of the experimental data through the reduction method explained earlier. The
transverse deflection at which the critical snapping load occurred, remained constant. Given the
entire physical response of the shell, the next step in the data analysis was to determine first failures.
In order to accomplish this, the displacement increments were reduced to 0.005 mm. This provided
the necessary detail required to accurately determine first ply failures. The term “accurately” is
used with respect to the finite element code and not as a reference to any comparison with the
experimental data. As previously mentioned, the experimental data did not provide that level

of detail. The displacement increments were initially kept small to determine the first instance

of a particular failure. Using relatively large increments resulted in numerous types of failures
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in multiple layers occurring all at once. Therefore, using the small, 0.005 mm displacement
increments, the first of each mode of failure was determined. Results of these failures can be seen
in Fig. 21, where “M” refers to matrix, “F” refers to fiber, and “D” refers to delamination.
The ply orientation precedes the previously mentioned failure mode descriptor. If no distinction is
made between the £45° layers in the nomenclature, then a representative of each orientation failed
at that respective increment. It should be noted that all of the first ply failure modes occurred along
the axial edge encompassing elements 133 through 144, where the element numbering is displayed
in Fig. 13. First failure was defined as the first failure detected for a particular ply. The first
ply failure detected using the Hashin failure criteria was matrix cracking in the £45° layers. This
failure occurred at a transverse deflection of 0.10 mm and a corresponding load of 27 N. The first
failure in the 0° layers was fiber breakage occurring at a transverse load and deflection of 40 NV
and 0.15 mm. The next failures to occur were matrix cracking in the 0° layers and fiber failure in
the +45° layers, at a corresponding load and deflection of 0.25 mm and 61 N. The next detected
failure was delamination in the ply interfaces encompassing the 0° layers at a load and deflection
of 257 N and 1.5 mm.. Delamination occurred next in the ply interfaces encompassing the —45°
layers at a load and deflection of 311 NV and 2.5 mm. Finally, delamination occurred in the ply
interfaces encompassing the outermost layers, or the +-45° layers, at a load and deflection of 514
N and 4 mm respectively.

At the critical snapping load, the general shell had experienced failure, as evidenced in the
stiffness reduction in Fig. 20. In order to present the failure results in as understandable a format as
possible, a “scan” of the failures for each ply is presented. Each layer was separated into individual
elements and the failed elements were identified as a “darkened” element. Therefore, the results of
the Hashin failure case at the critical snapping load are displayed in the following three figures, or

Figs. 22 through 24.
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Figure 22. Baseline convex shell illustrating fiber failure using Hashin failure criteria
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Matrix Failure
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Figure 23. Baseline convex shell illustrating matrix failure using Hashin failure criteria
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Figure 24. Baseline convex shell illustrating delamination using Hashin failure criteria
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As mentioned earlier, two locations along the shell load-displacement curve were analyzed
for failure, the critical snapping point and the corresponding load on the second equilibrium path,
or the snapping distance point. The reasoning for the choice of evaluation points was the effect
of the critical snapping load and its relation to damage resistance. The corresponding snapping
point allowed the author to study the effect that achieving the critical snapping load on the second
equilibrium path had on ply damage. The elements exhibiting failure at the critical snapping
point are displayed as the dark gray areas on the shell, and the elements exhibiting failure at the
“snapping distance point” are displayed as the light gray areas on the shell. The shell layers, failure
type and location are easily identified in Figs. 22 through 24. While the previously mentioned
figures illustrate the various failures in terms of layers and elements, there was no attempt made to
distinguish between the individual Gaussian points of each element. One indicator of the success
of the convergence study was that for all elements, the Gaussian points all indicated the same
failure with the exception of a single element. Therefore, all “shaded” elements, or those elements
representing failure, did accurately represent all four failed Gaussian points.

At the critical snapping point, the Hashin failure criteria detected all three forms of failure
for all plies. Note that delamination was limited to the far end of the axial edge for all layers, as
indicated in Fig. 24. That fiber failure in the 0° plies occurred to a much greater degree than the
+45° plies was expected, given the difference in ply orientation. In other words, the fibers in the
0° plies were oriented as shown in Fig. 22. This orientation exposes the fibers to larger stresses
experienced during the shell snapping phenomenon, than those seen by the fibers of the £45° plies.
In other words, 17 in the 2=45° plies, or the stress in the material fiber direction, is a function of 6,
Oy and o, or the ply 6rientation angle with respect to the SLR axis system, in-plane shear stress
and direct axial stress in the SLR axis system respectively. On the other hand, for the 0° plies,

o011 is a function only of oy, or the stress in the “v” direction in the SLR axis system, as shown in
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Fig. 5. This assertion is further validated by noting that the 0° plies experienced fiber failure at
an earlier point in Fig. 21 than did the +45° plies. Therefore, as expected, there was greater fiber
failure for the 0° plies. Conversely, given the orientation of the +45° plies, greater matrix cracking
was experienced in those layers, as evidenced in Fig. 23.

At the snapping distance point, or the point on the second equilibrium path where the trans-
verse load is equal to the transverse load at the critical snapping point, the pattern of matrix and
fiber failure continued along the +45° directions. There was a noticeable increase in the number
of elements experiencing both fiber and matrix failure for all layers. However, there was little in-
crease in delamination at the snapping distance point. An investigation into the volume percent of
failure yields some interesting results. Specifically, at the critical snapping point, 4.2%, 4.9% and
9.0% of the 45°, —45° and 0° layers experienced fiber failure, while at the snapping distance point,
the percent of shell volume experiencing fiber failure increased to 11%, 11% and 17% respectively.
Similarly, at the critical snapping point, 11%, 12% and 4.9% of the 45°, —45° and 0° layers experi-
enced matrix failure, while at the snapping distance point, the percent of shell volume experiencing
matrix failure increased to 20%, 20% and 11% respectively. Finally, at the critical snapping point,
1.4%, 4.9% and 4.9% of the interfaces between the 45°, —45° and 0° layers experienced delami-
nation, while at the snapping distance point, the percent of shell volume experiencing delamination
only increased to 4.2% at the interfaces encompassing the 45° plies. Therefore, at the snapping

distance point, fiber and matrix failures predicted by the Hashin criteria essentially doubled.

4.2.2 Composite Comparison using Lee Failure Criteria
The Lee failure criteria, like the Hashin criteria, is also an interactive criteria. That implies
that the loads, displacements and resulting stresses interact to define the failure environment. How-

ever, unlike the Hashin failure criteria, the Lee criteria relies solely on the shear effects to define the
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failure environment. Once again, the 12212 mesh discretization was used, along with 0.5 mm dis-
placement increments and a 0.1% displacement convergence. Unless otherwise noted, references
to displacement or transverse deflection refer to the center point of the shell, where the transverse
point load was applied.

The total response of the baseline specimen analyzed with Lee failure criteria can be seen in
Fig. 25. The shell stiffness at the critical snapping load was reduced by 15 IV, or to within 170 N
of the experimental data through the stiffness reduction method explained earlier. The deflection at

which the critical snapping load occurred, remained constant. Next, the displacement increments
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Figure 25. Physical response of the baseline convex shell with Lee failure criteria

were reduced to 0.005mm, while holding all other variables constant in order to determine first
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failures. This provided the necessary detail required to accurately determine the first ply failure. -
Using the small, 0.005mm displacement increments, the first of each mode of failure was deter-
mined. Results of these failures can be seen in Fig. 26, where “M” refers to matrix, “F” refers to
fiber, and “D” refers to delamination. All of the first failures detected using the Lee criteria were
detected along the same axial edge as they were detected using the Hashin criteria. The first ply
failure detected using the Lee criteria was matrix cracking in the +45° plies at a transverse load
and deflection of 27 N and 0.10 mm. Fiber breakage in the +45° plies occurred next at a load
and deflection of 98 NV and 0.5 mm. Next, matrix cracking in the 0° plies occurred at a load and
deflection of 150 N and 0.85 mm. Fiber failure occurred in the 0° plies at a load and deflection
of 457 N and 3.5 mm. Delamination was again noted to occur from the inner layer interfaces out-
ward, as a result of the parabolic transverse shear stress distribution. The load and displacement of
the first detected delamination failures for the ply interfaces encompassing the 0°, —45°, and 45°
plies was 209 NV and 1.5 mm, 380 N and 2.5 mm, and 523 N and 4.0 mm respectively.

At the critical snapping point, the shell again experienced all three forms of failure. The results
of the Lee failure analysis are displayed in Figs. 27 through 29.  The critical snapping point and
the corresponding load on the second equilibrium path, or the snapping distance point were again
analyzed for failure. The same coloring scheme used in the Hashin analysis was used for the
Lee analysis. Elements exhibiting failure at the critical snapping point are displayed as the dark
gray areas on the shell, and the elements exhibiting failure at the corresponding snapping distance
point are represented as light gray elements. The shell layers, failure type and location are easily
identified in Figs. 27 through 29. Again, there was no attempt made to distinguish between the
individual Gaussian points of each element. All “shaded” elements, or those elements representing
failure, did accurately represent all four failed points. Note that the shell again experienced matrix

failure in the £45° directions. Also, as in the Hashin failure analysis, delamination was only
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Figure 26. First failures identified using Lee failure criteria
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Figure 27. Baseline convex shell illustrating fiber failure using Lee failure criteria
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Matrix Failure
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Figure 28. Baseline convex shell illustrating matrix failure using Lee failure criteria
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Delamination Failure
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Figure 29. Baseline convex shell illustrating delamination using Lee failure criteria
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predicted between plies along the axial edge as shown in Fig. 29. Unlike the Hashin analysis, there
was not a noticeable increase in the number of elements experiencing fiber, matrix and delamination
failure for all layers. Again, examining the percent volume of failure, approximately 2.7%, 2.1%
and 1.4% of the 45°, —45° and 0° plies experienced fiber failure at the critical snapping point, while
at the snapping distance point, the percent of shell volume experiencing fiber failure increased to
4.2%, 4.2% and 2.7% respectively. Similarly, at the critical snapping point, 10%, 10% and 2.1%
of the 45°, —45° and 0° layers experienced matrix failure, while at the snapping distance point, the
percent of shell volume experiencing matrix failure increased to 15%, 15% and 5.5% respectively.
Finally, at the critical snapping point, 2.7%, 3.5% and 3.9% of the ply interfaces encompassing the
45°, —45° and 0° layers experienced delamination, while at the snapping distance point, the percent
of shell volume experiencing delamination increased marginally at the respective ply interfaces to
4.2%, 4.8% and 5.5%. Therefore, the Lee criteria predicted twice as much fiber failure at the
snapping distance point, although the total percent volume of fiber failure was minimal. Predicted
matrix failures increased by 150% in the +45° plies, while doubling in the 0° layers. Finally,
delamination increased by approximately 150%, 140% and approximately 800% in the interfaces
encompassing the 45°, —45° and 0° layers, although the location of delamination continued to

remain along the same axial edge shown in Fig. 29.

4.2.3 Composite Comparison using Maximum Stress Failure Criteria

The maximum stress failure criteria is an independent failure criteria, which implies that there
is no accounting for stress interaction when determining the state of failure. For example, fiber
failure has occurred when the stress along the fiber exceeds the allowable material strength in the
fiber direction. This is different from the Hashin and the Lee criterion, which both considered

the effects of shear stress. The same 12212 mesh discretization used in the Hashin and Lee anal-
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ysis was again used for the maximum stress analysis, along with the same 0.5 mm displacement
increments and 0.1% displacement convergence criteria. Unless otherwise noted, references to dis-
placement or transverse deflection refer to the center point of the shell, where the transverse point
load was applied. Referencing Eqns. 54, 56 and 57, the identification of matrix and fiber failure
was straightforward.

The total response of the baseline specimen analyzed with the maximum stress failure criteria
can be seen in Fig. 30. The load at the critical snapping point was reduced Ey approximately 30 IV,
or to within 100 NV of the experimental critical snapping load. The deflection at which the critical

snapping load occurred for the SLR shell remained constant. The next step in the data analysis was
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Figure 30. Physical response of the baseline convex shell with maximum stress failure criteria
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to determine the first failures predicted by the maximum stress theory. Again, the displacement
increments were reduced to 0.005 mm, while holding all other variables constant. This provided
the necessary detail required to accurately determine the first failures. Using the small, 0.005 mm
displacement increments, the first of each mode of failure was determined. Results of these failures
can be seen in Fig. 31, where “M” refers to matrix, “F” to fiber, and “D” refers to delamination. If
no distinction is made between the +45° layers in the nomenclature, then a representative of each
orientation failed at that point. ~ As in the Hashin and Lee failure cases, all of the first failures
for the maximum stress failure criteria occurred along the axial edge, in elements 139 through 144,
where the element numbering is displayed in Fig. 13. The first ply failure was matrix cracking in
the :45° layers at a transverse load and deflection of 27 N and 0.1 mm. The next failure to occur
was fiber failure in the 0° plies, at a transverse load and deflection of 40 IV and 0.15 mm. Next,
matrix failure in the 0° plies and fiber failure in the +45° layers occurred at a load and deflection
of 61 N and 0.25 mm respectively. As in the Hashin and Lee cases, delamination predicted by the
maximum stress theory occurred first in the ply interfaces encompassing the inner 0° plies and then
proceeded to occur in the ply interfaces encompassing the —45° layers and finally the ply interfaces
encompassing the +-45° layers. Therefore, delamination first occurred at the interfaces surrounding
the 0° layers at a load and deflection of 210 N and 1.5 mm. Delamination next occurred in the
interfaces surrounding the —45° plies at a load and deflection of 380 N and 3.0 mm. Finally,
delamination occurred in the interfaces encompassing the +45° plies at a load and deflection of
480 N and 5.0 mm.

The graphical representation of failure at the critical snapping point and the corresponding
snapping distance point, or Figs. 32 through 34, illustrate the three forms of failure considered,
fiber, matrix and delamination. The critical snapping point and the corresponding load on the

second equilibrium path, or the snapping distance were analyzed for failure using the maximum
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Figure 31. First failures identified using the maximum stress failure criteria
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Fiber Failure

Layer4, (° Layer 5, -45° Layer 6,450

;3;& Failures at the “Snapping Distance” Point

Failures atthe “Snapping Point”

Figure 32. Baseline convex shell illustrating fiber failure using maximum stress failure criteria
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Matrix Failure
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Figure 33. Baseline convex shell illustrating matrix failure using maximum stress failure criteria
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Figure 34. Baseline convex shell illustrating delamination using maximum stress failure criteria
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stress failure criteria. The same coloring scheme used in the Hashin and Lee analyses was also
used for the maximum stress analysis. Elements exhibiting failure at the critical snapping point are
displayed as the dark gray areas on the shell, and elements exhibiting failure at the corresponding
snapping distance point are represented as the light gray elements. The shell layers, failure type
and location are easily identified in Figs. 32 through 34. Just as in the Hashin and Lee criteria,
there was no attempt made to distinguish between the individual gaussian points of each element.
Note the similar 45° failure patterns for the fiber and matrix failure modes, especially in the +-45°
plies illustrating matrix failure and in the 0° layers illustrating fiber failure. Delamination was also
determined to exist in the same interfaces, as was calculated with Hashin and Lee failure criterion.

Examining the percent volume of the shell experiencing failure again yields some interesting
results. Specifically, at the critical snapping point, 1.4%, 1.4% and 7.6% of the 45°, —45° and 0°
layers experienced fiber failure, while at the snapping distance point, the percent of shell volume
experiencing fiber failure increased to 4.8%, 4.8% and 11% respectively. Similarly, at the critical
snapping point, 9.7%, 9.0% and 3.5% of the 45°, —45° and 0° layers experienced matrix failure,
while at the snapping distance point, the percent of shell volume experiencing matrix failure in-
creased to 17%, 17% and 6.9% respectively. Finally, at the critical snapping point, 1.4%, 4.8% and
4.8% of the interfaces between the 45°, —45° and 0° layers experienced delamination, while at the
snapping distance point, the percent of shell volume experiencing delamination only increased to
4.2% at the interfaces encompassing the 45° plies. At the snapping distance point, matrix failures
predicted by the maximum stress criteria essentially doubled. Fiber failures more than doubled in
the £45° plies and increased by approximately 150% in the 0° plies. Delamination increased only

marginally.
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4.2.4 Results of the Comparison

Typically, the success or relevance of this type of failure comparison would be quantified using
several comparison metrics. In addition to force-deflection curves, a damage comparison would
also be beneficial, allowing insight into the strengths and weaknesses of the various assumptions
made, as well as the various failure criterion used. Unfortunately, the level of detail required for
the damage comparison was not available, and the success of the comparison was therefore based
on thé force-deflection curves, or the effect that the stiffness reduction had on the SLR FEM and on
limited damage characteristics noted in the experimental analysis. Comparisons were also made
with respect to the three failure criterion used. In other words, the type, location and extent of
failures detected will be discussed as well as the extensive failure along the axial edge noted for all
criterion.

Based upon the metrics just mentioned, all of the progressive failure analysis provided rea-
sonably good results as compared to the experimental data. That conclusion is based upon several
factors. First, note the failure patterns obtained for matrix cracking detected using all of the cri-
teria. At the critical snapping point, the dominant matrix cracks are noted to extend in the +45°
directions. This pattern was noted by Wardle and Lagace in their experimental analysis [44]. Re-
sults for impact specimens in the experimental analysis also indicated the same 4-45° delamination
patterns, which were not seen in the SLR analytical failure analysis. Again, it should be stressed
that the interply delamination calculated using all of the criterion was based upon the stress field
at the center of each ply. Second, there were no significant drops in transverse load, i.e., the load-
deflection curve for the reduced SLR data did not have sudden extreme load drops indicative of
sudden failures. As this type of failure would have been revealed in the experimental quasi-static
analysis, again the SLR results proved comparable. Finally, as in the experimental analysis, the

SLR results did not achieve final ply failure, which would indicate too conservative an analysis.
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A comparison between the failure criterion also reveals some interesting results. Note the
first failures predicted in Figs. 21, 26 and 31. There are several conclusions that can be made with
respect to those first failures. First, all of the respective criterion predicted matrix cracking in the
+45° plies as the first ply failure. Second, the Hashin and maximum stress criterion predicted the
same first failures for all three failure modes considered. In fact, matrix cracking and fiber breakage
for all plies were detected at the same transverse loads and displacements. The delamination
results were similar as well. The similarities between the Hashin and maximum stress criterion
should not come as a surprise, given the thinness of the shell essentially resulting in a plane stress
condition and the Hashin criteria’s reliance on both direct and shear stresses to define the failure
environment. Although the first failure modes were similar between the Hashin and maximum
stress criteria, a close examination of Figs. 22-24 and 32-34 reveal significant differences in the
extent and frequency of further progressive failure modes. The Lee criteria also predicted the
same delamination as the Hashin and maximum stress criterion as well as the same first ply failure.
However, fiber breakage in both of the 0° plies was not detected until just prior to the shell critical
snapping point. Again, the predicted delamination similarities and nature of occurrence for all
three cases were expected. First, note that the Hashin criteria reduced to the Lee criteria since the
transverse direct stress o33 was neglected in the SLR theory as shown in Eqn. 59, repeated hear for
convenience.

Lee criterion [9]:

1
2

(032 +0%)? 2 0ps

Hashin criterion [9]:

2 2 2
( 033 ) + 013 —2|_ 0713 > 1 (61)
OZN 9Ds
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Second, the maximum stress delamination failure envelope was also defined by the transverse
stresses. Finally, the parabolic transverse shear stress generated as a result of the SLR FEM for-
mulation, resulted in the maximum transverse shear stress occurring at the shell midsurface and
tapering off to zero at the upper and lower surfaces of the shell. Therefore, the first and greatest
occurrence of the delamination should and did occur in the interfaces encompassing the inner plies.

Examining the force-deflection curves for all three cases reveals little difference in the out-
come of the progressive failure analysis as shown in Figs. 20, 25 and 30. However, a closer exam-
ination of Figs. 22-24, 27-29, and 32-34 reveal the differences in individual failures detected using
the various criteria. The Hashin failure criteria yielded the most conservative results, followed by
the maximum stress and then the Lee criteria. The phrase “most conservative” implies the max-
imum amount of failures predicted and therefore the greatest reduction in the shell stiffness. As
noted previously, the experimental results indicated the same matrix cracking patterns noted for all
three cases [44]. However, the similarities between all three criterion ended there. Again, note the
agreement between the Hashin and maximum stress predicted matrix and fiber failures. Both cases
predicted the greatest occurrence of matrix cracking in the £-45° layers and conversely the greatest
amount of fiber breakage in the 0° layers. On the other hand, the Lee criteria predicted minimal
fiber breakage for all layers, both at the critical snapping point and at the corresponding snapping
distance point. Again, the differences can be attributed to the maximum stress and Hashin reliance
on direct, in-plane stress and the Lee reliance solely on shear stress, indicating the dominance of
the in-plane stress field.

Finally, a discussion is warranted regarding the propensity for failure along the axial edge
encompassing elements 133 through 144. As mentioned several times, all of the first failures
occurred in this general region. The reason for the occurrence can be traced back to the discussion

on the asymmetry of angle-ply laminates. Consider the topographical views of the shell midsurface
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at the critical snapping point, both with and without the effects of progressive failure analysis,
shown in Fig. 35. Asin Fig. 12, the various shaded regions represent differences in elevation above
the base of each respective diagram. The use of this format aids in the representation of asymmetry
brought about by the progressive failure analysis. Using the Hashin results as an example, note
the loss of diagonal symmetry at the critical snapping point. Especially note elements 139 through
144 pointed out in part (b) of Fig. 35. Those are the elements where the first failures were
detected and also the elements where delamination was predicted. The loss of symmetry, seen
in the darkly shaded area above elements 139 through 144, resulted in an increase in the moment
seen at that axial edge and therefore greater stress, thus the greater occurrence of failure, i.e., a
greater tendency to exceed the respective failure envelopes. Remember, as shown in Fig. 13, the
axial edges boundary conditions were all fixed with the exception of w1 and w2, although w;
was implicitly zero, as the boundary conditions u, v and w were also fixed along the same axial
boundaries. This condition allowed for the occurrence of transverse shear at the axial edges. The
possibility of asymmetrical deformation modes was expressed by Wardle and Lagace [44]. In fact,
future areas of study recommended by Wardle and Lagace included investigations into the effects
of boundary conditions and possible asymmetrical deformation modes as a result of ply failures
[44]. All of the failure criterion used in this analysis resulted in asymmetrical deformation modes

as a result of the asymmetrical predicted failures as shown in Fig. 35.

4.3 Composite Sandwich Panel Analysis

Understanding the physical response, including failure, of a sandwich composite panel is crit-
ical, given their increased use in the aerospace industry. The Hashin, Lee and maximum stress
failure criterion were added to the SLR finite element method in order to provide a more realis-

tic representation of the total physical response of a sandwich shell. An analysis was made on
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Figure 35. Baseline convex shell at the critial snapping point (a) without failure analysis and (b)
with Hashin failure analysis
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the baseline sandwich configuration using each of the various failure criterion. The primary pur-
pose of this comparison was to investigate the assumptions made in modeling the sandwich core.
The maximum stress, Hashin and Lee failure criterion were evaluated in the same manner for the
core, as they were evaluated for the facesheets. Although failure of the sandwich core was consid-
ered using the same criterion used for the composite facesheets, only transverse core failures were
accounted for. In other words, the conditions of fiber failure and matrix cracking had no real sig-
nificance with respect to the sandwich core. Furthermore, in-plane core material strengths were
unavailable for an in-plane core failure analysis. Therefore, for any transverse failure calculated
‘using the respective criterion, all of the material constitutive relations were incrementally reduced
to a nominal value per the discussion in Chapter 3. In modeling the failure of the core, several
assumptions were required. Since the transverse direct stress was neglected in thé SLR theory,
the resulting core transverse stiffness was completely modeled by the transverse shear strength.
Therefore, the primary core failure mode, core shear crushing, was modeled by the transverse shear
strengths. In order to reiterate, although a facesheet failure analysis was carried out along with
the core analysis, the primary purpose of this comparison was to quantify the sandwich core mod-
eling and failure. For each of the failure analyses, first core failures were determined, as well as
significant points along the load-deflection curves. Significant points were defined as any sudden
“load-drop” as seen in Figs. 1 and 2.

The general baseline specimen used in the composite shell analysis, was again used for the
sandwich analysis, with the addition of a sandwich core material. In other words, the material
(AS4/3501-6 graphite-epoxy face sheets), geometry of the shell (radius, span and ply thickness
of 152, 102 and 0.134 mm respectively) and facesheet orientation, [+45°,0°] were constant. A
1.27 em (0.5 in) sandwich core was added to the baseline composite specimen resulting in a total

panel thickness of 13.5 mm, or approximately 0.54 in. The baseline sandwich specimen was first
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modeled without failure to provide a means of gauging the failure analysis. The sandwich material
modeled in this analysis was a HRH10-1/8-4.0 honeycomb core material with material properties

listed in Table 3,where “X” , “Y” and “Z” are the strengths in longitudinal, lateral and transverse

E, =804 MPa
Ey =804 MPa
E5 =1.005 GPa
G23 =T75.8 GPa
G13 = 120.6 M Pa
G192 =322 MPa
Vog = 0.02

Vi3 — 0.02

Vig = 0.25

X; = NJ/A
X.=NJ/A

Y; = N/A

Y. = N/A
Z.=3.83 M Pa
So3 = 142.3 M Pa
S13 =177.9 M Pa
S1g = N/A

Table 3. HRH10-1/8-4.0 core material strengths

lamina directions and S;; are the shear strengths [15].

Modeling the composite sandwich panel for the SLR finite element analysis was accomplished
in the manner described in Chapter 3. To reiterate, the sandwich core was treated as an orthotropic
lamina, oriented at 0° from the SLR panel axis system, where the orientation is displayed in Fig.
13. The core was separated into five layers, thereby allowing the elasticity relations and tangent
stiffness calculations to be calculated in the same manner as the face sheets. To put it another
way, each core layer was treated as a simple ply. Given the angle-ply orientation of the sandwich
shell facesheets, the full panel was again modeled for the analysis, with the same 1212 shell
discretization. Boundary conditions for the sandwich composite were also the same as those chosen

for the composite analysis and are shown in Fig. 13.
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4.3.1 Composite Sandwich Failure Comparison
Using the 12212 mesh to model the sandwich shell, the boundary conditions of Fig. 13, a
displacement convergence criteria of 0.1%, displacement increments of 0.25 mm, and the respec-

tive failure criterion, resulted in the load deflection curves shown in Fig. 36.  The most notable

200
— SLR without Failure
- Hashin
150 | - Lee \
-=- Max
g
o 100 4
(]
5]
oy
50
0 T T T T T I T [ T

0 1 2 3 4 5 6 7 8 9 10

Deflection (mm)

Figure 36. Illustration of core failure modeling in a sandwich shell using Hashin, Lee and maximum
stress failure criteria

difference between the load-deflection curves with and without the sandwich core, is the dramatic
increase in shell stiffness as a result of the core addition. Note that all of the criterion resulted in
a reduction in stiffness to varying degrees. Again, it should be pointed out that the transverse Lee

and the Hashin criterion used for the sandwich core reduced to the same expression, as o33 was
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neglected in the SLR FEM, as shown in Eqn. 59 and repeated here for convenience.

Lee criterion [9]:

=

(03, +0%3)* > ops

Hashin criterion [9]:
2 2 2
o 0l t+0
() +2ams s ©)
OZN ODps
Therefore the differences in the progressive stiffness reduction due to the two criterion were a result

of the manner in which the face sheet damage was evaluated. Furthermore, the maximum stress
criteria for the core is also based solely on transverse shear and as a result all three criterion should
predict similar core failure patterns. The first core failure predicted using the Hashin criteria was
at a load and deflection of 12576 N and 0.75 mm. Not surprisingly, the Lee criteria predicted
the initial core failure at the same transverse load and deflection. The maximum stress criteria
predicted first core failure at a transverse load and deflection of 8445 IV and 0.5 mm.

When examining the response generated using the Hashin failure criteria, the significant load
drop occurring at a transverse load and deflection of 110 kN and 9 mm, shown in Fig. 36, bears
consideration. Specifically, what caused the drop in load and why, when utilizing the same trans-
verse core failure inequality, was there not a similar load drop seen in the Lee and maximum stress
failure cases. In other words, what was the impetus behind the load drop and why did it not occur
when using the other criterion. An examination of the state of failure at the point in question sheds
light on the issue. Looking at Figs. 37 through 45, illustrates the similarities and differences be-
tween the failures predicted by the three criterion. Notice the similar state of core failure predicted
in all three cases. Again, using the volume percent of failure as a comparison metric, all of the
criterion predicted approximately 35% of the inner most core layer or layer 6 of the shell, 32% of

layers 5 and 7, and 23% of layers 4 and 8 experienced core failure. However, the state of facesheet
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Figure 37. Baseline convex sandwich shell illustrating Hashin transverse core failure
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Fiber Failure
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Figure 38. Baseline convex sandwich shell illustrating Hashin fiber facesheet failure
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Matrix Failure
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Figure 39. Baseline convex sandwich shell illustrating Hashin matrix facesheet failure
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Core Failure
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Figure 40. Baseline convex sandwich shell illustrating Lee transverse core failure
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Fiber Failure
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Figure 41. Baseline convex sandwich shell illustrating Lee fiber facesheet failure
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Matrix Failure
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Figure 42. Baseline convex sandwich shell illustrating Lee matrix facesheet failure
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Core Failure
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Figure 43. Baseline convex sandwich shell illustrating maximum stress transverse core failure
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Figure 44. Baseline convex sandwich shell illustrating maximum stress fiber facesheet failure
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failure was quite different. With respect to the predicted facesheet fiber failures, the Hashin criteria
predicted a percent volume of fiber failure for the +45° and 0° plies of 20% for each layer. The
Lee criteria predicted a percent volume of fiber failure for the +45° plies of 1.4% for each layer,
while no fiber failures were predicted in the 0° plies. The maximum stress criteria predicted a
percent volume of fiber failure for the +45° and 0° plies of 13%, 11% and 10% respectively. Con-
sidering matrix failure, the Hashin criteria predicted a percent volume of failure in the +45° plies
of 28%, while only predicting a percent volume of failure of 22% in the 0° plies. The Lee cri-
teria predicted a percent volume of matrix failure for the +45° plies of 27% for each layer, while
no matrix failures were predicted in the 0° plies. Finally, the maximum stress criteria predicted
a percent volume of matrix failure in the +45° plies of 28%, while only predicfing 20% in the 0°
plies. Therefore, the reason for the dramatic load drop seen in the Hashin failure case was due to
the significant facesheet “softening” as a result of the predicted fiber and matrix facesheet damage.
The resulting facesheet softening allowed the sudden loss of transverse stiffness or core damage to
be recorded as the load drop in question. Specifically, the sudden load drop in the Hashin analysis
was a result of the sudden failure of three elements, throughout the core thickness, shown in Fig.
37. Remember that the core is 12.7 cm thick, so although only three elements failed, they failed
through the entire sandwich thickness, resulting in a significant loss of transverse strength.

The progression of failure in the sandwich shell occurred in the following manner. For all
three criterion, matrix cracking in the facesheets was the first detected failure. These failures were
followed by transverse shear failures in the core layers. Core failures were initially detected in
the inner most core layers and progressed outwards, a result of the SLR parabolic transverse shear
stress assumption. As the core failed in shear and the appropriate constitutive relations reduced,
the sandwich facesheets, previously carrying little shear but the majority of the bending moment,

were required to compensate for the sudden loss of transverse strength. Therefore, the facesheets
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were acting as individual panels, carrying both moment and shear. With the sudden increase
in transverse shear stress, facesheet fiber failures began to occur. Notice that fiber damage was
negligible when considering the Lee criteria and noticeably less in the maximum stress criteria as
compared to the Hashin analysis. Remember that the Hashin criteria is a combination of direct and
shear stress components, the Lee criteria is defined solely by shear, and the maximum stress criteria
is defined solely by direct stress. That fiber failure occurred to the greatest extent in the Hashin
case, followed by the maximum stress case and occurred at a minimum in the Lee case, explains
the significance of the in-plane as well as transverse shear stresses with respect to fiber failure. In
other words, the Hashin criteria, a combination of direct and shear stress components, predicted the
greatest occurrence of fiber failure, followed by the maximum stress case and finally the Lee failure
case. Note that for all three cases, the patterns of failure were consistent and continued in the 4-45°

failure patterns seen in the baseline composite shell specimen.

4.3.2 Results of Comparison

Several conclusions can be drawn from the sandwich shell failure analysis. First, as noted
previously, all three failure criterion predicted similar failure frequency as well as failure patterns,
with the exception of facesheet fiber failure. Damage trends were consistent with the composite
shell analysis, with the Hashin criteria predicting the greatest amount of matrix cracking and fiber
breakage, followed by the maximum stress and Lee criterion. Note that there was little fiber
breakage predicted by the Lee criteria, resulting in minimal stiffness reduction as shown in Fig. 36.
Since facesheet softening was the dominant factor with respect to the sudden load drop scenario,
it was also anticipated that the order of criteria conservatism would remain consistent with the
order noted in the composite shell analysis. In other words, the most conservative, or the criteria

predicting the greatest amount of failure, was the Hashin criteria, followed by the maximum stress
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and finally the Lee criteria. Therefore, the Hashin criteria was the most likely to exhibit the load
drop characteristics.

Even with the extensive core failures noted in Fig. 37 through 45, the sandwich panel contin-
ued to maintain significant strength. In fact, composite facesheet damage or the lack of damage
was the dominating driver in the sandwich load-deflection results, i.e., the sudden load drop ex-
hibited in the Hashin case. Similar results were noted in the analytic effort of reference [15]. In
other words, while the initial point of core failure was modeled reasonably well in the aforemen-
tioned referenced analysis, the loss of stiffness as a result of the core damage was offset by the
lack of significant stiffness reduction in the sandwich facesheets as lamina failures occurred. For
the purposes of this research, this was likely due to the kinematic and resulting displacement-strain
relations of the SLR theory. Specifically, the in-plane stresses dominated the response, with the
transverse strains and stresses having less of an effect in the general response characteristics.

Finally, the transverse loading in the SLR FEM was applied at the shell center node or inter-
secting lines of symmetry, in effect a point load. As a result, there was no in-plane distribution
of the applied loading. Likewise, there was no modeling of the shell-load applicator interface.
Therefore, the transverse point load application combined with the SLR FEM transverse shear ver-
sus in-plane stress assumptions are thought to be the reasons behind the lack of distinguishing core

failure patterns in the vicinity of the applied loading for all three failure cases considered.
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Chapter 5 - Conclusions

As the use of composite and sandwich composite material increases in the aerospace commu-
nity, understanding their physical response to loading is critical. The inclusion of failure analysis
into a finite element method is an important step in gaining insight into the behavior of damaged
composite and sandwich composite shells. Namely, how do composite and sandwich composites
react to first ply failures and the resulting progressive failures under continued use or loading. This
research has generated some interesting conclusions as well as opened the door to new areas of
study.

There were several goals with respect to this analysis. First was the need to quantify the SLR
analytical results. In other words, how did the SLR theory predict the behavior of composite shells
with respect to actual experimental results and compared to an industry standard finite element
package. A comparison was made between the SLR FEM and both a recently conducted experi-

®

mental investigation, as well as the finite element program ABAQUS™ . Some general results are

as follows. First, the SLR theory reasonably predicted the snapping phenomenon seen in some

shell structures, for the baseline case evaluated with ABAQUS®

and the results generated from
the aforementioned experiment. Further investigation into the snapping phenomenon showed the
SLR theory more accurately predicted “snapping” in both thin and shallow shells. Second, as the
shell thickness was increased and the problem became three dimensional, the SLR results tended
to diverge from the experimental data. Finally, as the shell becamé deeper and the magnitude of
rotations increased, the SLR theory again overpredicted the general stiffness of the shell structure.
In the development of the SLR theory, simplifying assumptions were made both with respect to the

thickness of the shell and the rotations exhibited by the shell, thus the discrepancies for both pa-

rameters was exaggerated. However, consideration should also be made with respect to material
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defects, experimental load application and boundary condition discrepancies and geometric vari-

ances in the experimental specimens.

Next, a thin and relatively shallow baseline specimen was chosen for the first of two failure
investigations. Three failure criterion, Hashin, Lee and the maximum stress theories, were incor-
porated into the SLR FEM and the resulting load deflection responses compared to the undamaged
baseline response. All three criterion predicted failures resulting in stiffness reduction, with the
Hashin predicting the greatest occurrence of failure, followed by the maximum stress and Lee cri-
terion. The Hashin and maximum stress criterion predicted similar first ply failures, while further
failure progression resulted in significant differences in fiber and matrix failures between all three.
theories. The delamination predicted were very similar between all three criterion. Results of
the failure analysis compared reasonably well with the experimental analysis. First, none of the
failure cases considered resulted in final ply failure. Next, the matrix cracking predicted by all of
the criteria occurred in the =45° directions, as observed in the experimental analysis [44]. Fiber
breakage predicted by the SLR theory was also seen to occur in the same patterns, however no
mention was made of fiber failure patterns in the experimental analysis. An interesting result of
the failure investigation were the asymmetrical failure modes resulting from the predicted failures.
The possibility of this asymmetry was raised by Wardle and Lagace [44].

Finally, the same baseline specimen used in the composite shell failure comparison was again
analyzed, however, this time a sandwich core was added to the shell. The purpose of the compar-
ison was to analyze the core modeling and failure assumptions made with respect to the changes
incorporated into the SLR theory. The same failure criterion were used to model failure, and again
the Hashin was the most conservative, followed by the Lee and maximum stress theories. Similar
core damage was predicted by all three theories, while facesheet damage was significantly different

amongst the various criterion. The Hashin criteria was the only failure theory to result in a sudden
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load drop, resulting from the sudden loss in transverse stiffness due to core failure. The Hashin
criteria also exhibited the greatest amount of facesheet damage, particularly fiber failure, therefore,
facesheet damage or the softening of the sandwich facesheets due to failure, was seen as the domi-

nating variable in the sandwich shell analysis.
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APPENDIX A - Elasticity Relations

A.1 Green’s Strain Relations in Cylindrical Shell Coordinates

The following relations are written in general curvilinear coordinates, followed by a descrip-

tion of the cylindrical shell shape factors used to derive the strain relations in general cylindrical

shell coordinates. The displacement vector, (1,2, 3) is defined as, @ = uii + uﬁ + u3/k\: [36].
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The physical strain €;; (¢ = j = 1,2,3) is related to the Green’s strains by the following
relation:
h’yz (No Sum)
where the & terms are the scale factors and are defined in detail in Refs. [27], [36].

Eij =
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A.2 Strain-Displacement Relations for Cylindrical Shells

¢=1/R, k= —4/3h% [27]
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APPENDIX B - MATHEMATICA Input File

Included in this appendix is the MATHEMATICA input file for incorporating the B;;, E;;, G;; and I;;
arrays into the K stiffness matrix. Given the shear size of the output files, only the input file for this case
is included. The format for both the NV; and N5 stiffness matrices is the same. Note that only the
first line of the output, i.e., “Write[”’K.f”...” was included, as the remainder of the output is repeti-
tious, i.e., the same commands continue for all terms in the 18218 kmat matrix. Therefore, for the
K stiffness matrix:

% For K Matrix

otrl1={{0,1,0,0,0,0,0,0,0,0,0.0,0,0,0,0,0,0} }

otr2={{0,0,0,0,0,1,-P1,0,0,0,0,0.0,0,0,0,0,0}}

otrl6={£0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0} }

ttr11={{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0} }

ttr12={{0,0,0,0,0,0,-P1"2,0,0,0,0,0,0,0,0,0,0,1} }

ttrl6={{0,0,P1,0,-P1,0,0,0,0,0,0,0,0,0,1,0,1,0} }

twtrl2={{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,P1} }

twtrl6={{0,0,0,0,0,0,0,0,0,0,0,0,0,0,P1,0,0,0} }

thtr11={{0,0,0,0,0,0,0,0,0,K1,0,0,0,0,0,0,0,K1} }

thtr12={{0,0,0,0,0,0,0,0,0,0,K1,0,0,0,0,0,0,K 1}}

thtrl6={{0,0,0,0,0,0,0,0,0,0,0,2¥K 1,0,0,K1,0,K1,0}}

fotr12={{0,0,0,0,0,0,0,0,0,0,K1*P1,0,0,0,0,0,0,K1*P1}}

fotrl6={{0,0,0,0,0,0,0,0,0,0,0,K1*P1,0,0,K1*P1,0,0,0}}

otrsd={{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0} }

otrs5={{0,0,0,0,0,0.0,1,0,0,0,0,1,0,0,0,0,0} }

twtrsd={{0,0,0,0,0,0,0,0,3*K 1,0,0,0,0,0,0,3*K 1,0,0}}

twtrs5={{0,0,0,0,0,0,0,3*K1,0,0,0,0,3*K1,0,0,0,0,0}}

ol1=Transpose[otrl1]

ol2=Transpose{otr!2]

ol6=Transpose[otrl6]

tl1=Transpose[ttrl1]

tI12=Transpose[ttr12]

tl6=Transpose[ttrl6]

twl2=Transpose[twtr2]

twl6=Transpose[twtrl6]

thl1=Transposefthtrl1]

th12=Transpose[thtrl2]

thl6=Transpose[thtrl6]

fol2=Transpose[fotrl2]

fol6=Transpose[fotri6]

os4=Transpose[otrs4]

os5=Transpose[otrs5]

twsd=Transpose[twtrs4]

tws5=Transpose[twtrs5]

k11=b11*(ol1.ttrl1+t11.otrl1)+e11*(ol1.thtrl1+thl1 otrl1);

k12=b12*(ol1.ttrl2+tl11.otrl2)+e12*(ol1.thtr12+thl1.otrl2)+

e12*(t11.twirl2)+g12% (111 fotrl2)+g 12* (thl1 twtrl2)+

{12*(thl1.fotrl2);
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k16=b16* (ol 1.ttrl6+tl1.otrl6)+e16*(ol1.thtrl6+thl1.otrl6)+

el6*(t11.twtrl6)+g16*(tl1.fotrl6)+g16*(thl1 twtrlo)+
i16*(thl1.fotrl6);
k21=b21*(012.ttr11+t12.0trl1)+e21*(012.thtrl 1+thI2.otrl1 )+
2 1*(twl2.ttrl1 ) +g2 1% (fol2.tirl 1)+g2 1 (twl2.therl 1)+
i21*(fol2.thtrl1);
k22=b22%(0l2.ttrl2-+t12.0trl2)+e22*(ol2.thtrI2+th{2.otri2)+
€22*(t12.twtrl2-+twl2.ttrl2)+g22*(t12.fotrl2+fol2.ttrl2)+
g22*(tw12.thtrl2-+th12.twtrl2)+i22*(thi2.fotr12-+fol2.thtrl2);
k26=b26*(0l2.ttrl6-+t12.0trl6)+e26*(012.thtrl6+thI2.otrl6 )+
€26*(t12.twirl6+Hwl2.ttrl6)+g26*(t12. fotrl6+fol2. trl6)+
g26*(twl2.thtrl6+th12.twtrl6)+i26*(thl2.fotrl6+fol2.thtrl6);
k61=b61*(ol6.ttrl1+t16.0trl1)+e61*(0l6.thtrl 1+thl6.otrl 1 )+
e61*(twl6.ttrl1)+g61* (fol6.ttrl 1y+g61* (twl6.thtrl 1)+
i61*(fol6.thtrl1);
k62=b62*(016.ttr12-+t16.0tr12)+e62*(016.thtri2+thl6.otrl2)+
€62*(t16.twtrl2-+twl6.ttr12)+g62*(116.fotr12+fol6. ttrl2)+
g62*(twl6.thtr12-+thl6.twirl2)+i62*(thl6.fotr12+fol6.thtr]2);
k66=b66*(016.ttrl6+t16.0trl6)+e66*(0l6.thirl6+thi6.otrl6 )+
€66*(t16.twirl6+twl6.ttrl6)+g66*(t16.fotrl6+fol6.1trl6)+
g66*(twl6.thtrl6+thl6.twirl6)+i66*(thl6.fotrl6+fol6.thtrl6);
kmat=(k11+k12+k16+k21+k22+k26+k61+k62+k66);
OpenWrite[”K.f”,PageWidth -> 60,FormatType -> FortranForm]
Write[’K.f,” KS2(1,1)=",kmat[[1,1]]]
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APPENDIX C - SLR Program Guide

The input file for the program is defined as follows. Note that integer values begin with letters i-n,
while real (double-precision) values begin with a-h, o-z.

e Card1: title

The first line of the program is a title. It is printed on the first line of the output file and may
not exceed 133 characters.

e Card 2: iel, npe, nanal(1),nanal(2),nanal(3),imesh,nprnt,nprint,ncut

Variable iel indicates the structure type: 1 for plate or beam, 2 for circular cylindrical shell.
Variable npe indicates the element type: 4 for a four noded element, 8 for an eight noded
element.

Variable nanal(1) specifies linear (no iteration) or nonliner analysis: 0 for nonliner, 1 for
linear, 2 for eigenvalue analysis.

Variable nanal(2) is used to denote the material type: 0 is used for an arbitrary laminate, 1
is used for isotropic materials, 2 is used for symmetric laminates and 3 is used for sandwich
composites.

Variable nanal(3) is used to indicate SLR (full nonlinear theory) or Von Karman
plate/Donnell shell analysis: 0 for SLR, 1 for Von Karman plate/Donnell shell analysis.
Variable imesh indicates automatic or manual mesh generation. Setting imesh=1 (automatic
mesh generation) is the only recommended selection.

Varable nprat is used to indicate whether or not to print the elasticity arrays: 0 will not
print the arrays, 1 will print the arrays. Note, only the initial arrays, prior to failure, will be
printed.

Variable nprint indicates whether or not to print the elemental stiffness matrices: 0 will not
print the matrices, 1 will print the matrices.

Variable ncut defines cutouts in the panel: 0 for no cutouts, "n” indicates ”n” cutouts.

e Card 3: If nanal(1)=2, read rstep, which defines the eigenvalue ”step”. If nanal(1)=0, then
read intyp,ninc,imax,ires,tol

Variable intyp indicates load or displacement controlled incrementation: 0 for load control,
1 for displacement control.

Variable ninc specifies the number of load or displacement increments.

Variable imax indicates the maximum number of iterations performed in a given increment.
The program halts when imax is reached.

Variable ires specifies the stiffness matrix update: 0 for every iteration, 1 for every
increment.

Variable tol represents the convergence criteria. If nanal(1)=1, then this variable will be
skipped.

e Card 4: If nanal(1)=1, or nanal(1)=0 and intyp=0 then skip this card. If nanal(1)=0 and
intyp=1, then read table(ninc), which is the table of multipliers for the displacements specified
in Card 3.

e Card 5a: If you choose imesh=0, then read nem,nnm,nx,ny, if imesh=1, then only read nx
and ny.

Variable nem specifies the number of elements in the mesh.
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—  Variable nnm specifies the number of nodes in the mesh.

—  Variable nx indicates the number of elemental divisions in the x-direction.

—  Variable ny indicates the number of elemental divisions in the y-direction.
Card 5b: Ifimesh=0 then read nod(i,j),x(i),y(i) where nod(i,j) is the i" row of the connectivity
matrix, X(i) and y(i) are the x and y coordinates of node i. If imesh=1, then read dx(i) and dy(i)
which are the distances between nodes in the x and y directions respectively.
Card 6: Skip this card if ncut=0, otherwise read icut(ncut) as the element numbers that need
to be deleted. This should equal ncut.
Card 7: LD,PO

—  Variable LD defines the load type: 0 for no load, 1 for transverse load, 2 for dead weight
and 3 for axial loading.

—  Variable PO is used to denote whether or not there is distributed loading: 0 for no distributed
loading, otherwise the value indicates the intensity of the distributed load. Note, for no
distributed loading, choose LD=0, PO=0.

Card 8: When LD=3, read nedge, which indicates the number of nodes with inplane loading.
Card 8a: When LD=3, read iedge(nedge), which indicates the nodes at which the inplane
loading is required.

Card 9: nbdy, which specifies the number of nodes where degrees of freedom are specified.
Card 9a: nbound This is where the specific degrees of freedom specified in Card 9 need to be
defined. The number of degrees of freedom specified should be equal to nbdy. On each card,
there should be eight entries. The first entry corresponds to the node number and the next seven
correspond to the nodal degrees of freedom, whether or not they are specified. A ”1” is used to
indicate that the degree of freedom is specified while a *0” is used to represent a free degree of
freedom. A node need only be listed if one or more of its degrees of freedom are prescribed.
For example, if node 112 has degrees of freedom u, v, and w prescribed, its entry would look
like: 112,1,1,1,0,0,0,0.

Card 9b: vbdy(i) This vector contains an entry for each of the prescribed displacements from
Cards 9&9a. The example node, 112, would contribute 3 entries.

Card 10: nbsf, which is the number of degrees of freedom having specified loads.

Card 10a: ibsf(i) This is an array of nbsf degree-of-freedom numbers with prescribed loads.
Card 10b: vbsf(i) These are the loads associated with the degrees of freedom specified in
ibsf(i). Note that the order of the degree-of-freedom numbers must match the order of the
prescribed loads.

Card 11: This card is where material properties are entered. The properties entered will vary
with the nanal(2) type.

—  For nanal(2)=1, then the material is isotropic and the material data entered are ey,pnu,ht,
where ey is Young’s modulus, pnu is the poisson’s ratio and ht is the thickness.

—  For nanal(2)=0,2 then the material is a composite and the material data entered for the
lamina are el,e2,g12,pnul2,g13,g23, where el and €2 are the modulus along the fiber and
matrix directions, g12, g13, g23 are the shear moduli in the 1-2, 1-3 and 2-3 directions, and
pnul2 is poisson’s ratio in the 1-2 plane.

—  For nanal(2)=3 then the material is a sandwich composite and the same variables entered
for nanal(2)=0,2 are entered for the sandwich facesheets only.

Card 11a: Use this card only when nanal(2)=3, otherwise skip. Read the core material
properties els,e2s,g12s,pnul2s,g13s,823s, where els and e2s are the modulus along the fiber
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and matrix directions, g12s, g13s, g23s are the shear moduli in the 1-2, 1-3 and 2-3 directions,
and pnul2s is poisson’s ratio in the 1-2 plane.
Card 11b: Skip this card if nanal(2)=1.

—  If nanal(2)=0,2 then read np,pt, where np is the number of layers and pt is the thickness of
each layer. :
—  If nanal(2)=3 the read np,pt,pts where np is the number of layers in the facesheet, pt is the
thickness of each facesheet layer and pts if the thickness of the core.
Card 11c: Skip this card if nanal(2)=1. If nanal(2)=0,2,3 then read the(i) which is the
orientation of the ply lay up. For a sandwich case, it is the orientation of the top and bottom
facesheets.
Card 12: Skip this card if iel=1 (plate or beam), otherwise read rad, or the radius of the shell.
Card 13: nfor, or the variable that specifies the number of nodal forces to be calculated at the
end of each converged increment.
Card 13a: ifor(nfor), which is an array of nfor degree-of-freedom numbers for the force
calculations.
Card 14: nstress,ifail,icrit

—  Variable nstress specifies the number of elements for which to calculate stresses and strains
at the end of each increment.

—  Variable ifail is used to specify whether failure criteria will be incorporated into the analysis:
0 for no failure analysis, 1 for failure analysis. If ifail=1, then nstress is automatically set
to the entire number of elements.

—  Variable icrit defines the failure criteria to be used in the analysis: 1 for Hashin, 2 for Lee
and 3 for maximum stress. Note, if ifail=0, or failure analysis will not be accomplished,
then the value of icrit is irrelevent.

Card 14b: If “ifail=1
and nanal(2)=0,2 then read the allowable strengths sigfn,sigfs,sigmt,sigmc,sigms,sigdt,sigds,
where the fourth letter f corresponds to fiber strength, m corresponds to matrix strength and d
corresponds to delamination strength. The last letter n, ¢ or s refers to tensile, compressive or
shear. If nanal(2)=3, then these values are the facesheet strengths.

Card 14c: If ifail=1 and nanal(2)=3, then read the allowable strengths for the core as siger,
sigl3c,sig23c where siger is the transverse direct strength, and sigl3ec and sig23c are the
transverse shear strengths for the core in the 1-2 and 2-3 directions.
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This is the baseline convex shell input deck for the SLR program, with Hashin failure criteria:
Cntr load shell AS4/3501-6, r=152mm(5.98in), t=.804mm(.032in), 12x12 mesh,displ
2,8,0,2,0,1,0,0,0

1,55,50,0,0.001

0.05,.1,.1,0.15,0.15,.2,.2,0.25,0.25,

.3,.3,0.35,0.35,.4,.4,0.45,0.45,.5,

0.55,.6,0.65,.7,0.75,.8,0.85,.9,0.95,1.0,

1.05,1.1,1.15,1.2,1.2,1.25,1.25,1.3,1.3,1.35,

1.35,1.4,1.4,1.45,1.45,1.5,1.5,

1.55,1.55,1.6,1.6,1.65,1.65,1.7,1.7,1.75,1.75

12,12
4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,
4.25e-3,4.25¢e-3,4.25¢-3,4.25¢-3,4.25¢e-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3,4.25¢-3
4.33¢-3,4.33¢-3,4.33¢e-3,4.33¢-3,4.33¢e-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33e-3,4.33¢-3,4.33¢-3,
4.33e-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33¢e-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33¢-3,4.33e-3,4.33¢-3
0,0.

51

1,1,1,1,0,0,1,1

2,1,1,0,0,0,0,0

3,1,1,1,0,0,1,1

4,1,1,0,0,0,0,0

5,1,1,1,0,0,1,1

6,1,1,0,0,0,0,0

7,1,1,1,0,0,1,1

8,1,1,0,0,0,0,0

9,1,1,1,0,0,1,1

10,1,1,0,0,0,0,0

11,1,1,1,0,0,1,1

12,1,1,0,0,0,0,0

13,1,1,1,0,0,1,1

14,1,1,0,0,0,0,0

15,1,1,1,0,0,1,1

16,1,1,0,0,0,0,0

17,1,1,1,0,0,1,1

18,1,1,0,0,0,0,0

19,1,1,1,0,0,1,1

20,1,1,0,0,0,0,0

21,1,1,1,0,0,1,1

22,1,1,0,0,0,0,0

23,1,1,1,0,0,1,1

24,1,1,0,0,0,0,0

25,1,1,1,0,0,1,1

241,1,1,1,0,0,0,0

457,1,1,1,0,0,1,1

458,1,1,0,0,0,0,0

459,1,1,1,0,0,1,1

460,1,1,0,0,0,0,0
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461,1,1,1,0,0,1,1
462,1,1,0,0,0,0,0
463,1,1,1,0,0,1,1
464,1,1,0,0,0,0,0
465,1,1,1,0,0,1,1
466,1,1,0,0,0,0,0
467,1,1,1,0,0,1,1
468,1,1,0,0,0,0,0
469,1,1,1,0,0,1,1
470,1,1,0,0,0,0,0
471,1,1,1,0,0,1,1
472,1,1,0,0,0,0,0
473,1,1,1,0,0,1,1
474,1,1,0,0,0,0,0
475,1,1,1,0,0,1,1
476,1,1,0,0,0,0,0
477,1,1,1,0,0,1,1
478,1,1,0,0,0,0,0
479,1,1,1,0,0,1,1
480,1,1,0,0,0,0,0
481,1,1,1,0,0,1,1
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,10.0e-3,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.

0
142.0d9,9.8d9,6.d9,0.24,6.0d9,4.8d9
6,0.134d-3
45.,-45.,90.,90.,-45.,45.
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144,1,1
1500.¢6,220.¢6,43.8¢6,43.8¢6,43.8¢6,50.€6,86.¢6,120.7¢6
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APPENDIX D - SLR STRESS Subroutine

Included in this appendix is the STRESS subroutine, with the changes incorporating progressive fail-
ure analysis.

SUBROUTINE STRESS (NM,NPE,NDF,IEL,ELXY,RAD K 1,iCRIT,iFLAG,iCNT,iLOAD,NSTRES,SIG13¢,SIG23c)
C21SEP92 —

C CON(M,N).....IN-PLANE CONSTITUTIVE MATRIX USED IN STRESS

C SUBROUTINE

C CONS(M,N)....IN-PLANE CONSTITUTIVE MATRIX USED IN STRESS

C SUBROUTINE

C DIHRM(M,N)...FIRST DERIVATIVES OF HRM(M,N) WITH RESPECT TO XI
C D2HRM(M,N)...FIRST DERIVATIVES OF HRM(M,N) WITH RESPECT TO ETA
C DD1HRM(M,N)..SECOND DERIVATIVES OF HRM(M,N) WITH RESPECT TO XI
C DD2HRM(M,N)..SECOND DERIVATIVES OF HRM(M,N) WITH RESPECT TO ETA
C D12HRM(M,N)..SECOND MIXED DERIVATIVE OF HRM(M,N)

C DQSF(M,N)....DERIVATIVE OF QSF(M) WITH RESPECT TO XIIF N =1

C AND WITH RESPECT TOETAIF N =2

C DSF(M,N).....DERIVATIVE OF SF(M) WITH RESPECT TO XIIF N =1

C AND WITH RESPECT TO ETAIF N =2

CEll...... LINEAR PORTION FOR EPSILON 11 STRAIN

CEl2...... LINEAR PORTION FOR EPSILON 12 STRAIN

CEIl3........ LINEAR PORTION FOR EPSILON 13 STRAIN

CE22.......... LINEAR PORTION FOR EPSILON 22 STRAIN

CE23.......... LINEAR PORTION FOR EPSILON 23 STRAIN

C ELD(M)......ELEMENT DISPLACEMENT VECTOR

C ELXY(M,N)....Nth COORDINATE OF ELEMENT NODE M (N=1,2)
CETA.......... NATURAL COORDINATE AT A GAUSS POINT FOR AN ELEMENT
C GAUSS(M,N)...ARRAY OF VALUES USED IN GAUSS QUADRATURE
CIEL...... INDICATOR FOR THE ELEMENT TYPE:

CIEL =1, PLATE ELEMENT

CIEL =2, CYLINDRICAL SHELL ELEMENT

C IEL =3, SPHERICAL SHELL ELEMENT

CKl........... CONSTANT FROM KINEMATICS

CNANAL(M).....ANALYSIS PARAMETERS

C NANAL(1) =0, FOR NONLINEAR ANALYSIS

C=1, FOR LINEAR ANALYSIS

C =2, FOR EIGENVALUE ANALYSIS

CNANAL(2) =0, FOR ARBITRARY LAMINATE

C =1, FOR ISOTROPIC MATERIAL

C =2, FOR SYMMETRIC LAMINATE

CNANAL(3) =0, FOR FULL NONLINEAR SHELL

C ANALYSIS
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C=1,FOR VON KARMAN PLATE ANALYSIS

C OR DONNELL SHELL ANALYSIS

CNDF.......... DEGREES OF FREEDOM PER CORNER NODES =7
CNGP.......... NUMBER OF GAUSS POINTS USED IN GAUSS QUADRATURE,
C N IMPLIES A NxN GAUSS QUADRATURE

CNLI11........ NONLINEAR PORTION OF EPSILON 11 STRAIN

CNL12......... NONLINEAR PORTION OF EPSILON 12 STRAIN

CNL22......... NONLINEAR PORTION OF EPSILON 22 STRAIN

CNP........... NUMBER OF PLIES (LAYERS)

CNPE.......... NODES PER ELEMENT, 4 OR 8

CNUM.......... NUMBER OF Z VALUES PER PLY (LAYER)

CPl........... CONSTANT (1/RAD) WITH RESPECT TO Y-DIRECTION
CPIN.......... CONSTANT USED TO DETERMINE LOAD INTENSITY, BASED
C UPON SF(M) OR QSF(M) DEPENDING UPON NUMBER OF

CNODES PER ELEMENT

CQM)......... DISPLACEMENT GRADIENT VECTOR

C QSF(M).......QUADRATIC INTERPOLATION FUNCTION FOR NODE M OF
C THE ELEMENT

CRAD......... SHELL RADIUS OF CURVATURE (CYLINDER OR SPHERE)

C SIG11........ COMPUTED STRESS FOR SIGMA 11

C SIG12........ COMPUTED STRESS FOR SIGMA 12

CSIG13........ COMPUTED STRESS FOR SIGMA 13

C SIG22........ COMPUTED STRESS FOR SIGMA 22

C SIG23........ COMPUTED STRESS FOR SIGMA 23

C SF(M)........LINEAR INTERPOLATION FUNCTION FOR NODE M OF THE
C ELEMENT

CXIL.oues NATURAL COORDINATE AT A GAUSS POINT FOR AN ELEMENT
C ZZ(M,N)......LOCATES Z VALUES, USED IN STRESS SUBROUTINE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INCLUDE °disp.cbk’

INCLUDE ’shap.cbk’

INCLUDE ’strs.cbk’

INCLUDE ’elas.cbk’

INCLUDE ’elasl.cbk’

INCLUDE ’mat.cbk’

DOUBLE PRECISION LJ,K,L

DIMENSION QBAR(3,3),QSBAR(2,2),D(3,3)

DIMENSION iSIGFT(20,5,200),iSIGMC(20,5,200),iSIGMT(20,5,200)
DIMENSION iSIGFT¢(20,5,200),iSIGMCc(20,5,200),iSIGMTc(20,5,200)
DIMENSION iSIGC(20,5,200),iSIGD(20,5,200),iSIGS6(20,5,200)
DIMENSION iSIGS4(20,5,200),i1SIGS5(20,5,200),iSIGDc(20,5,200)
DIMENSION iSIGS4¢(20,5,200),iSIGS5¢(20,5,200),iSIGS6¢(20,5,200)
EQUIVALENCE(D(1,1),DD(1,1))

DOUBLE PRECISION K1

DIMENSION GAUSS(7,7),ELXY(8,2)
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DIMENSION AQ11(5,5),AQ22(5,5),AQ12(5,5),AQ44(5,5),AQ55(5,5)

DIMENSION AQ66(5,5),UU1(100),UU2(100),UU3(100),UU4(100),UU5(100)
DIMENSION UG23(100),UG13(100)
L e e L e L L L s L

C LOAD UP THE GAUSS MATRIX
C***********************************************************************

DATA GAUSS/0.00000000D0,0.00000000D0,0.00000000D0,0.00000000D0,

. 0.00000000D0,0.00000000D0,0.00000000D0,

. ~57735027D0,0.57735027D0,0.00000000D0,0.00000000D0,

. 0.00000000D0,0.00000000D0,0.00000000D0,

. =77459667D0,0.00000000D0,0.77459667D0,0.00000000D0,

. 0.00000000D0,0.00000000D0,0.00000000D0,

. -86113631D0;,-.33998104D0,0.33998104D0,0.86113631DO0,

. 0.00000000D0,0.00000000D0,0.00000000D0,

. ~90617985D0,-.53846931D0,0.00000000D0,0.5384693 1DO,

. 0.90617985D0,0.00000000D0,0.00000000D0,

. ~93246951D0;-.66120939D0,-.23861919D0,0.23861919D0,

. 0.66120939D0,0.93246951D0,0.00000000D0),

. ~94910791D0;-.74153119D0;-.40584515D0,0.00000000D0,

. 0.40584515D0,0.74153119D0,0.94910791D0/
C***********************************************************************
C INITIALIZE THE NGP, P1, AND P2 VARIABLES
C***********************************************************************
C***********************************************************************
C INITIALIZE THE ELASTICITY MATRICES
C***********************************************************************

iFLAG = iFLAG + 1
IF (IFAIL .EQ. 0) GOTO 1021
DO 10M=1,3
DO11N=13
QBAR(M,N) = 0.

AMN)=0.

B(M,N) = 0.

D(M,N) = 0.

E(MM,N) =0.

F(M,N) = 0.

G(M,N)=0.

H(M,N)=0.

I(M,)N) = 0.

J(MN) = 0.

KM,N) = 0.

L(MN) = 0.

P(M,N) = 0.

R(M,N) = 0.

S(M,N) =0.

11 T(M,N) = 0.

10 CONTINUE
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DO 15M=1,2

DO 16N=1.2
QSBAR(M,N) =0.
AS(M,N) =0.

BS(M,N) =0.

DS(M,N) =0.
ES(M,N)=0.

16 FS(M,N) = 0.

15 CONTINUE

1021 CONTINUE

NGP = 2*NANAL(1)**2 - 5*NANAL(1) + 7
NGP =5

P1=0.

P2=0.

IF (IEL.EQ.2) P1 = 1./RAD
IF (IEL.EQ.3) P1 = 1./RAD
IF (IEL.EQ.3) P1 = 1./RAD

Ok Aok ok Rk ok ok ok kR R R R Rk ok kR o ok ko ok

C CALCULATE THE DISPLACEMENT GRADIENT VECTOR Q(I) FOR THE ELEMENT
C***********************************************************************
WRITE(8,*)’ No of Layers=",NP

IF( NANAL(2) .EQ. 3 THEN

NPBY2=NP/2

NP5=NP+5

ELSE

NP5=NP

ENDIF
C**********************************************************************
C INITIALIZE THE FAILURE CRITERIA "FLAGS?”, i.e., THE FLAGS THAT

C ENSURE ONCE A PLY HAS FAILED , IT REMAINS FAILED. CURRENTLY,

C THE FLAGS CAN HANDLE UP TO 20 LAYERS AND A 14X14 MESH.
C**********************************************************************
IF (iIFLAG .EQ. 1)THEN

DO 17, 11 = 1,NSTRES

DO 18, 77 = 1,NP

DO 19, LL = 1,NGP

iSIGFT(JJ,LL,II) = 0

iSIGMC(J,LL,II) = 0

iSIGMT(IJ,LL,IT) = 0

iSIGFTc(JT,LL,IT) =0

iSIGMCc(TT,LL,IT) = 0

iSIGMTc(JI,LL,II) = 0

iSIGD(JJ,LL,IT) = 0

iSIGC(UI,LL,II) =0

iSIGS4(JI,LL,II) =0

iSIGS5(JI,LL,II) = 0

iSIGS6(JI,LL,II) = 0
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iSIGS4c(JT,LL,I) = 0
iSIGS5c(JT,LL,IT) = 0
iSIGS6¢(JI,LL,IT) = 0
iSIGDc(JJ,LL,I) = 0
19 CONTINUE

18 CONTINUE

17 CONTINUE
ENDIF

DO 22 JI=1,NP5
TQ11=0.

TQ22=0.

TQ12=0.

TQ44=0.

TQ55=0.

TG12=0.

DO 40 NI = 1,NGPNGP-1
DO 40 NJ = 1,NGPNGP-1
IF( NANAL(2) .EQ. 1 .or. NANAL(2). EQ. 2) THEN

AQII(NLNJ)=Q11
AQI2(NINI)=QI2
AQ22(NLNJ)=Q22
AQ44(NLNT)=G23
AQ55(NINJ)=G13
AQ66(NLNT)=G12
ENDIF

IF(NANAL(2) .EQ. 3)THEN
IF(JJ. LE. NPBY2 .OR. JI. GT. NPBY2+5)THEN

AQII(NLNT)=Q11
AQI2(NLNJ)=Q12
AQ22(NLNJ)=Q22
AQ44(NLNT)=G233
AQ55(NLNJ)=G133
AQ66(NLNJ)=G12
ELSE
AQII(NINI)=Q11S
AQ22(NINJ=Q228
AQI2(NLNJT)=Q12S
AQ66(NLNT)=G12S
AQ44(NLNJ)=G23S
AQS55(NLNJ)=G13S
ENDIF

ENDIF

XI = GAUSS(NLNGP)

ETA = GAUSS(NJ,NGP)

CALL SHAPE (NPE,XILETA,ELXY,DET)
CALL DISGRAD (NPE)

X=0.
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Y=0.

DO 20 IT = 1,NPE

PIN = SF(II)

IF (NPE.EQ.8) PIN = QSF(II)
X =X + PIN*ELXY(IL1)
20Y = Y + PIN*ELXY(IL,2)

CoH koo s ok oo Ao ok kR kR sk ok ok ok

C INITIALIZE THE LINEAR AND NONLINEAR STRAIN VARIABLES
C***********************************************************************
El1=0.

El12=0.

E22=0.

E23=0.

E13=0.

NL11=0.

NL22A =0.

NL22B=0.

NL22=0.

NL12A=0.

NL12B=0.

NL12=0.

NUM=3

IF (NP5.EQ.1) NUM =5

WRITE(8,*)’ No of Layers =",NP5
¢DO24M=1NUM

m=2

El1=Q(2)

.+ ZZ(M,IT)*Q(14)

.+ ZZ(M,IT)**3*K1*(Q(10)+Q(14))

E22 =Q(6) - P1*Q(7)

.+ ZZ(MIN*(Q(18)-P1**2*Q(7))

.+ ZZ(M,IN**2*¥P1*Q(18)

.+ ZZ(MIT)**3*K1*(Q(11)+Q(18))

.+ ZZ(MIT**4*P1*K1*(Q(11)+Q(18))

E12=Q(3)+ Q(5)

.+ ZZM,IT)*(Q(3)*P1-Q(5)*P1+Q(15)+Q(17))

.+ ZZ(MIT)**2*4P1*Q(15)

.+ ZZ(MID**3*¥K1*(2.*Q(12)+Q(15)+Q(17))

.+ ZZ(MID**4*P1*K1*(Q(12)+Q(15))

E23 = Q(9) + Q(16) + ZZ(M,I1)**2*3 *K1*(Q(9)+Q(16))

E13 = Q(8) + Q(13) + ZZ(M,ITy**2*3 *K1*(Q(8)+Q(13))
C***********************************************************************
C FOR NONLINEAR ANALYSIS CALCULATE THE NONLINEAR STRAINS
C***********************************************************************
IF(NANAL(1).NE.0) GOTO 270

NL11 = .5%(Q(2)**2+Q(8)**2+Q(5)**2)+ZZ(M,IN)* (-Q(5)**2*P1+Q(14)*

1 Q*QB)Y*QUU ) FZZ(M,IN**2*(Q(5)**2*P1*#*2/2.-Q(17)*Q(5)*P1+
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2 5%(Q(I4)**2+Q(I 7))+ ZZ(M,IT)**3*(Q(2)*K1*(Q(10)+Q(14))+
3 Q(5Y*K1*(QUI2)+QUI T))+ZZ(M,IT)**4*(-Q(5)*K 1*P1*(Q(12)+Q(1 7))+

4 Q(I4Y*K1*(Q(10)+Q(14))+Q(I7)*K1*(Q(12)+Q(I 7))} +ZZ(M,IT)**6*

5 K1%#2% 5%(Q(10)**2+2*Q(10)*Q(14)+Q(14)¥*2+Q(12)**2+2*Q(12)*

6 Q(L7)y+Q(17)**2) .
NL22A = .5*(Q(6)**2+Q(9)**2+Q(3)**2+Q(4)**2*P1#*2)-Q(6)* Q(7)*P1+

1 Q(4)*Q(9)*P1+Q(7)**2* S¥P1#*2+ZZ(M,IT)*(Q(3)**2*P1+Q(9)**2*P1+

2 Q(7)**2*P1*+*3-P1**2*(Q(6)*Q(7)-Q(4)*Q(9))+Q(4)*Q(16)*P1**2+Q(6)*
3 Q(18)+Q(3)*Q(15)-P1*(Q(18)*Q(7)-Q(16)* QN+ ZZ(M,IT)**2*(2*P1*

4 Q(15)*Q(3)+P1*Q(18)*Q(6)+Q(4)*Q(16)*¥P1**3-2*P1**2*(Q(18)*Q(7)-

5 Q(16)*Q(9))+.5*P1**2*Q(16)**2+.5%(Q(18)**2+Q(15)**2)+ZZ(M,IT)**4
6 *(2*K1*P1*Q(3)*(Q(12)+Q(15))+K 1*P1*Q(6)*(Q(11)+Q(18))+K 1*P1#*3
7 *Q(4)*(Q(OY+Q(16))-2*K1*P1#*+2+Q(7)*(Q(11)+Q(18))+2*K1*P1¥*2*Q(9)
8 *(Q(9)+Q(16))+K1*Q(I18)*(Q(1 1)+QUIgN+KI*Q(15)*(Q(12)+Q(15)+

9 K1*P1#*2*Q(16)*(Q(9)+Q(16)))

NL22B = ZZ(M,JJ)**3*(P1*(Q(18)**2+Q(15)**2)+Q(16)

1 #*%2*P1**3+K 1*Q(6)* (Q(11)+Q(I8))+K1*Q(3)*(Q(12)+Q(15))+Q(4)*K1*
2 P1**2*(Q(9)+Q(16))-K1*P1*(Q(7)*(Q(1 1)+Q(18))-Q(9)*(Q(9)+Q(16)))+

3 ZZ(M,JT)**5* 2K 1*(P1*(Q(18)* (Q(11)+Q(18))+P1*Q(15)*(Q(12)+Q(15))+
4 P1*#3*Q(16)*(Q(9)+Q(I6))))+ZZ(M,IT)**6*K 1##2% 5*(Q(11)**2+2*Q(11)
5 *Q(18)+Q(18)**2+Q(12)**2+2*Q(12)*Q(15)+Q(15)**2+P1**2+(Q(9)**2+
6 2*Q(9)*Q(16)+Q(LE)**2)+ZZ(M,IT)* ¥ T*K 1%*2+(P1*(Q(1 1)+Q(18))**2+
7 P1*(Q(12)+Q(15))**2+P1**3*(Q(9)+Q(16))**2)

NL22 = NL22A + NL22B

NL12A = Q(2)*Q(3)+Q(5)*Q(6)+Q(8)*QO)+P1*(-Q(Sy*Q(M+Q(4)* Q&)+

1 ZZ(M,I1)*(P1*(Q(2)*Q(3)-Q(5)*Q(6)+Q(8)* QM) +Q(2)*Q(15)+Q(3)*

2 Q(14)+Q(5y*Q(18)+Q(6)*Q(I7)+P1*(-Q(7)*Q(17)+Q(8)*Q(16))+

3 ZZ(M,IT)**2*(Q(14)*Q(15)+Q(17)*Q(18)+P1*(Q(15)*Q(2)+Q(14)*Q(3))+
4 P1¥*2*(-Q(7)*Q(17)+Q(B)*QIONH+ZZ(M,IT)**3*(K1*Q(3)*

5 (Q(10Y+Q(14)+K1*Q(2)*(Q(12)+Q(IS)+K1*Q(5)*(Q(18)y+Q(I )+

6 K1*Q(6)*(Q(12)+Q(17))-KI*P1*Q(7)*(Q(12)+Q(17)+KI*P1*Q(8)*(Q(9)+
7 Q(16))+P1*(Q(14)*Q(15)+Q(17)*Q(18)))

NLI12B = ZZ(M,J)**4*(K1*P1*Q(3)*(Q(10)+Q(14))-K 1#P1%*2*

8 (QMM*(QUI2Y+Q(17))-Q&)*(Q+QUEHKI*(Q(14)*(Q(12)+Q(15)+

9 Q(15*(Q(10)+Q(14))+QI7)*(Q(I 1)+Q(18))+Q(18)*(Q(12)+Q(1 7))+

1 KI*P1* Q)Y QU2)+Q(IS))H+ZZ(M,IT**5*K 1*P1*(Q(14)*(Q(12)+Q(15))+
2 Q(IS*(QUOYQUMN+QUT*(Q(I1+Q(18))+

3 Q(18)*(QUI2)+QUTNIHFZZ(M,IT)**6*K1**2*((Q(10)+Q(14))*(Q(12)

4 +Q(15))HQU2+QUT)H(Q( 1) +QUIB))HZZ(M, ITyF* THPT+K 1% 2%

5 ((Q(LOY+Q(14)*(Q(12)+Q(ISN*(Q(12)+Q(ITN*(Q(11)+Q(18)))
NL12=NLI2A + NLI12B

El1l =EI1+NLI11

E22 = E22 + NL22

E12=EI2+NLI2

Ok ook ok kR kAR Rk kR b R ok ko

C CALCULATE THE STRESSES

Ok ook ko ok Rk R R Rk ok kR o o ook o
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270 SIG11 = CON(1,J1)*E11 + CON(2,JT)*E22 + CON(3,JJ)*E12
SIG22 = CON(2,J1)*E11 + CON(4,JT)*E22 + CON(5,J1)*E12
SIG12 = CON(3,J)*E11 + CON(5,1T)*E22 + CON(6,J1)*E12
SIG23 = CONS(1,JI)*E23 + CONS(2,JI)*E13

SIG13 = CONS(2,JT)*E23 + CONS(3,J1)*E13

Ok ko SRRk Rk R R Rk kR o Rk ok ok o o

C TRANSFORM THE STRESSES INTO THE MATERIAL AXIS SYSTEM
C***********************************************************************

SIG1 = SIG11*(COS(RTHE(J)))**2+SIG22*(SIN(RTHE(JI)))**2+

1 2*SIG12*COS(RTHE(J]))* SIN(RTHE(IJ))

SIG2 = SIG11*(SIN(RTHE(J])))**2+S1G22*(COS(RTHE(J]))**2-

1 2*SIG12*SIN(RTHE(JJ))*COS(RTHE(JI))

SIG6 = -SIG11*COS(RTHE(JT))*SIN(RTHE(J1))+SIG12*

* (COS((RTHE(JT)))**2-(SIN(RTHE(JJ)))**2)+

* SIG22*(SIN(RTHE(17))* COS(RTHE(J])))

SIG4 = -SIG13*SIN(RTHE(JT))+SIG23*COS(RTHE(J)))

SIGS5 = SIG13*COS(RTHE(J)))+SIG23* SIN(RTHE(IT))

24 WRITE (8,250) ZZ(M,1]),X,Y,SIG1,SIG2,S1G6,S1G4,SIG5
¢ 24 continue

WRITE(8,*)’ ’

250 FORMAT (5X,10E12.4)

IF(IFAIL. EQ. 0)GOTO 22
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeereeeeeeeceeeeeeceeeeeecccceeccccecc
ccC
C iCRIT = 1 FOR HASHIN FAILURE THEORY C
C iCRIT =2 FOR LEE FAILURE CRITERIA C
CiCRIT = 3 FOR MAXIMUM STRESS FAILURE THEORY C
ccC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeeeeeeeceeeeecececceccceeececce

IF(iCRIT .EQ. 1) THEN
C Hashin Criteria for Isotropic or Composite Laminate

IF( NANAL(2) .EQ. 1 .or. NANAL(2). EQ. 2) THEN

FFHA=(SIG1/SIGFT)**2+(SIG6**2+SIG5**2)/(SIGFS**2)

FFMT 1=(SIG2/SIGMT)**2+(SIG6**2+SIG5**2)/(SIGFS**2)

FFMT2=(SIG4/SIGMS)**2

FFMT=FFMT1+FFMT2

FFMC1=(SIG2/SIGMC)*(((SIGMC/(SIGMS*2.))**2)-1.)

FFMC2=((SIG2/SIGMS)**2)*0.25

FFMC3=(SIG4/SIGMS)**2

FFMC4=(SIG6**2+SIG5**2)/(SIGFS**2)

FFMC=FFMC1+FFMC2+FFMC3+FFMC4

FFDC=(SIG5**2+S1G4**2)/SIGDS**2

IF(FFHA .GE. 1 .or. iSIGFT(JJI,NLiCNT) .EQ. 1) THEN

iSIGFT(JJNLiCNT) = 1

AQ11(NLNJ)=0.0025*AQ11(NLNJ)

AQI12(NI,NJ)=0.0025* AQ12(NIL,NJ)

AQS55(INILNI=0.0025* AQ55(NI,NJ)
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AQ66(NI,NJ)=0.0025* AQ66(NI,NJ)

WRITE(S8,*)’ FIBER FAILURE FOR’, JJ, "LAYER’,FFHA
ENDIF

IF(SIG2 .GT. 0.) THEN

IF(FFMT .GE. 1 .or. iSIGMT(JJ,NLIiCNT) .EQ. 1) THEN
iSIGMT(INLICNT) =1

AQ22(NLNJ)=0.0025* AQ22(NIL,NJ)

AQI2(NLNI=0.0025* AQ12(NLNJ)
AQ44(NIL,NI=0.0025* AQ44(NLNJ)

AQ66(NI,NJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO TENSION FOR’, JJ, 'LAYER’,FFMT
ENDIF

ELSE

IF(FFMC .GE. 1 .or. iSIGMT(JINLiCNT) .EQ. 1) THEN
iISIGMT(INLICNT) = 1

AQ22(NINJ)=0.0025* AQ22(NIL,NJ)

AQI2(NI,NJI)=0.0025* AQ12(NL,NJ)

AQ44(NLNJ)=0.0025* AQ44(NLNJ)

AQ66(NI,NJ)=0.0025* AQ66(NINT)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP.’, 1], ’LAYER’,FFMC
ENDIF

ENDIF

IF(FFDC .GE. 1 .or. iSIGD(JJ,NLiCNT) .EQ. 1) THEN
iSIGD(JINLIiCNT) =1

AQ44(NI,NJ)=0.0025* AQ44(NI,NJ)

AQS55(NLNJ)=0.0025* AQ55(NL,NJ)

WRITE(8,*)’ FAILURE DUE TO DELAMINATION FOR’, JJ, 'LAYER’,FFDC
ENDIF

ENDIF

C Hashin Criteria for Sandwich Facesheets

IF(NANAL(2) .EQ. 3 ) THEN

IF(JJ. LE. NPBY2 .OR. JJ. GT. NPBY2+5)THEN
FFHA=(SIG1/SIGFT)**2+(SIG6**2+SIG5**2)/(SIGFS**2)
FFMT 1=(SIG2/SIGMT)**2+(SIG6**2+SIG5**2)/(SIGFS**2)
FFMT2=(SIG4/SIGMS)**2

FFMT=FFMT1+FFMT2
FFMC1=(SIG2/SIGMC)*(((SIGMC/(SIGMS*2.))**2)-1.)
FFMC2=((SIG2/SIGMS)**2)*0.25
FFMC3=(SIG4/SIGMS)**2
FFMC4=(SIG6**2+SIG5**2)/(SIGFS**2)
FFMC=FFMCI1+FFMC2+FFMC3+FFMC4
FFDC=(SIG5**2+SIG4**2)/SIGDS**2

IF(FFHA .GE. 1 .or. iSIGFT(JJ,NLIiCNT) .EQ. 1) THEN
iSIGFT(JINLIiCNT) = 1

AQ11(NILNJ)=0.0025* AQ11(NI,NJ)
AQI2(NILNJ)=0.0025* AQ12(NLN1J)

AQS55(NILNJ)=0.0025* AQS5(NL,NJ)
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AQ66(NILNI)=0.0025* AQ66(NINT)

WRITE(8,*)’ FIBER FAILURE FOR’, J], 'LAYER’
ENDIF

IF(SIG2 .GT. 0.) THEN

IF(FFMT .GE. 1 .or. iSIGMT(JJ,NLIiCNT) .EQ. 1) THEN
iSIGMT(QINLICNT) = 1

AQ22(NI,NJ)=0.0025* AQ22(NI,NJ)
AQI2(NILNJ)=0.0025* AQ12(NL,NJ)
AQ44(NLNT)=0.0025* AQ44(NI,NI)
AQ66(NI,NJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO TENSION FOR’, JI, "LAYER’
ENDIF

ELSE

IF(FFMC .GE. 1 .or. iSIGMT(JJNLiCNT) .EQ. 1) THEN
iSIGMT(JINLICNT) =1

AQ22(NLNI)=0.0025* AQ22(NI,NJ)
AQI2(NILNJ)=0.0025* AQ12(NI,NJ)
AQ44(NIL,NJ)=0.0025* AQ44(NI,NJ)
AQ66(NLNI)=0.0025* AQ66(NINJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP FOR’, JJ, 'LAYER’
ENDIF

ENDIF

IF(FFDC .GE. 1 .or. iSIGD(JJ,NLiCNT) .EQ. 1) THEN
iSIGD(JINLICNT) = 1

AQ44(NI,NJ)=0.0025* AQ44(NIL,NT)
AQS55(NILNJ)=0.0025* AQ55(NI,NJ)

WRITE(8,*)’ FAILURE DUE TO DELAMINATION FOR’, JJ, "LAYER’
ENDIF

ELSE

C Hashin Criteria for the Core .
FFDCc=(SIG5**2+SI1G4**2)/((SIG13c+S1G23c)/2.)¥*2
IF(FFDCc .GE. 1 .or. iSIGDc(JJI,NLiCNT) .EQ. 1) THEN
iSIGDc(JI,NLiCNT) = 1
AQI1(NLNJ)=0.0025*AQ11(NI,NJ)
AQ22(NILNJ)=0.0025* AQ22(NL,NJ)
AQI2(NLNT)=0.0025* AQ12(NINJ)
AQ66(NI,NJ)=0.0025* AQ66(NI,NJT)
AQ44(NINJ)=0.0025* AQ44(NI,NJ)
AQ55(NLNT)=0.0025* AQ55(NINJ)

WRITE(8,*)’ CORE FAILURE’, JI, "LAYER’

ENDIF

ENDIF

ENDIF

ENDIF

IF(iCRIT .EQ. 2) THEN

C Lee Criteria for Isotropic or Composite Laminate

IF( NANAL(2) .EQ. 1 .or. NANAL(2). EQ. 2) THEN
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FFEMT=(SIG6**2+S1G4**2)**0.5
FFMC=(SIG6**2+SIG4**2)**0.5
FFDC=(SIG5**2+SIG4**2)**0.5
FFFT=(SIG6**2+SIG5**2)**0.5

IF(FFFT .GE. SIGFS .or. iSIGFT(JJ,NLiCNT) .EQ. 1) THEN
iSIGFT(JJ,NLiCNT) = 1

AQI1(NLNJ)=0.0025*AQ11(NLNI)
AQI2(NI,NJ)=0.0025*AQ12(NLNJ)
AQ55(NLNJ)=0.0025*AQ55(NL,NJ)

AQ66(NI,NI)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ FIBER FAILURE FOR’, JJ, 'LAYER’,FFHA
ENDIF

IF(FFMT .GE. SIGMS .or. iSIGMT(JJ,NLiCNT) .EQ. 1) THEN
iSIGMT(JINLICNT) =1

AQ22(NL,NI)=0.0025* AQ22(NI,NJ)

AQI2(NILNJ)=0.0025* AQ12(NI,NJ)

AQ44(NI,NI)=0.0025* AQ44(NI,NJ)

AQ66(NLNI=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO TENSION FOR’, JJ, 'LAYER’,FFMT
ENDIF

IF(FFMC .GE. SIGMS .or. iSIGMC(JJ,NLiCNT) .EQ. 1) THEN
iISIGMC(JINLiICNT) =1

AQ22(NLNJ)=0.0025* AQ22(NI,NJ)
AQI2(NLNJ)=0.0025*AQ12(NI,NJ)

AQ44(NI,NJ)=0.0025* AQ44(NI,NJ)

AQ66(NILNJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP. ’, JJ, ’LAYER’,FFMC
ENDIF

IF(FFDC .GE. SIGDS .or. iSIGD(JJ,NLiCNT) .EQ. 1) THEN
iSIGD(JINLICNT) = 1

AQ44(NILNJ)=0.0025* AQ44(NI,NJ)
AQS55(NLNJ)=0.0025*AQ55(NI,NJ)

WRITE(8,*)’ FAILURE DUE TO DELAMINATION FOR’, J1, ’LAYER’,FFDC
ENDIF

ENDIF

C Lee Criteria for Sandwich Facesheets

IF(NANAL(2) .EQ. 3) THEN

IF(JJ. LE. NPBY2 .OR. JJ. GT. NPBY2+5)THEN
FEMT=(SIG6**2+SIG4**2)**(0.5
FFMC=(SIG6**2+SIG4**2)**(.5
FFDC=(SIG5**2+SIG4**2)**0.5
FFFT=(SIG6**2+SIG5**2)**(.5

IF(FFFT .GE. SIGFS .or. iSIGFT(JJ,NLIiCNT) .EQ. 1) THEN
iSIGFT(JINLICNT) =1

AQII(NILNI)=0.0025*AQ1 1(NI,NJ)

AQI2(NLNJ)=0.0025* AQ12(NI,NJ)

AQ55(NILNT=0.0025* AQ55(NI,NJ)
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AQ66(NINJ)=0.0025* AQ66(NI,NIJ)

WRITE(8,*)’ FIBER FAILURE FOR’, JJ, 'LAYER’ FFHA

ENDIF

IF(FFMT .GE. SIGMS .or. iSIGMT(JI,NLiCNT) .EQ. 1) THEN
iSIGMT(JINLICNT) = 1

AQ22(NINJ)=0.0025* AQ22(NL,NJ)
AQI12(NI,NJ)=0.0025* AQ12(NLNIJ)

AQ44(NI,NJ)=0.0025* AQ44(NL,NT)

AQ66(NI,NJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO TENSION FOR’, JJ, 'LAYER’ . FFMT
ENDIF

IF(FFMC .GE. SIGMS .or. iSIGMC(JJ,NLiCNT) .EQ. 1) THEN
iSIGMC(JJ,NLIiCNT) = 1

AQ22(NILNJ)=0.0025* AQ22(NL,NJ)

AQI2(NILNI)=0.0025* AQ12(NLNJ)

AQ44(NILNJ)=0.0025* AQ44(NI,NI)

AQ66(NI,NI)=0.0025* AQ66(NLNJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP. ’, JJ, 'LAYER’,FFMC
ENDIF

IF(FFDC .GE. SIGDS .or. iSIGD(JJ,NLiCNT) .EQ. 1) THEN
iSIGD(JINLIiCNT) = 1

AQ44(NLNJ)=0.0025* AQ44(NI,NJ)

AQS55(NI,NJI)=0.0025* AQ55(NIL,NIT)

WRITE(8,*)’ FAILURE DUE TO DELAMINATION FOR’, JJ, "TLAYER’
ENDIF

ELSE

C Lee Criteria for Sandwich Core
FFDCc=(SIG5**2+SIG4**2)/((SIG13c+S1G23c)/2.)**2

IF(FFDCc .GE. 1 .or. iSIGDc(JI,NLIiCNT) .EQ. 1) THEN
iSIGDc(JJI,NLiCNT) = 1

AQII(NLNI=0.0025* AQ1 1(NLNJ)
AQ22(NI,NJ)=0.0025* AQ22(NIL,NJ)

AQI12(NLNJ)=0.0025* AQ12(NLNI)

AQ66(NI,NJ)=0.0025* AQ66(NLNT)
AQ44(NI,NJ)=0.0025* AQ44(NI,NJ)

AQS55(NILNJ)=0.0025* AQ55(NI,NT)

WRITE(8,*)” CORE FAILURE’, JI, 'LAYER’

ENDIF

ENDIF

ENDIF

ENDIF

IF(iCRIT .EQ. 3) THEN

C Maximum Stress Failure Criteria for Isotropic and Composite Laminates
IF(NANAL(2) .EQ. 1 .or. NANAL(2). EQ. 2) THEN
IF(ABS(SIGS5) .GE. SIGDS .or. iSIGS5(JI,NLiCNT) .EQ. 1) THEN
iSIGS5(JJ,NLiCNT) =1

AQS55(NI,NJI)=0.0025* AQS5(NINI)
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WRITE(8,*)’ 13 DELAMINATION FOR’, JJ, 'LAYER’ ,FFHA
ENDIF

IF(ABS(SIG4) .GE. SIGDS .or. iSIGS4(JJ,NLiCNT) .EQ. 1) THEN
iSIGS4(JINLIiCNT) =1

AQ44(NI,NJI=0.0025* AQ44(NINJ)

WRITE(8,*)’ 23 DELAMINATION FOR’, JJ, "LAYER’,FFHA
ENDIF

IF(SIG1 .GE. SIGFT .or. iSIGFT(JI,NLiCNT) .EQ. 1) THEN
iSIGFT(JILNLIiCNT) =1

AQ11(NI,NJ)=0.0025* AQ1 1(NL,NJ)

AQI12(NLNJ)=0.0025* AQ12(NL,NJ)

AQ55(NLNJ)=0.0025* AQ55(NLNI)

AQ66(NINJ)=0.0025* AQ66(NINJ)

WRITE(8,*)’ FIBER FAILURE FOR’, JJ, 'LAYER’,FFHA

ENDIF

IF(SIG2 .GT. 0.) THEN

IF(SIG2 .GE. SIGMT .or. iSIGMT(JJ,NLIiCNT) .EQ. 1) THEN
iSIGMT(JJI,NLIiCNT) = 1

AQ22(NI,NJ)=0.0025* AQ22(NL,NJ)

AQ12(NI,NJ)=0.0025* AQ12(NL,NJ)

AQ44(NIL,NJ)=0.0025* AQ44(NL,NJ)

AQ66(NI,NJI)=0.0025* AQ66(NI,NJ)

WRITE(8,*¥)’ MATRIX FAILURE DUE TO TENSION FOR’, JI, "LAYER’,FFMT
ENDIF

ELSE

IF(ABS(SIG2) .GE. SIGMC .or. iSIGMT(JJ,NLiCNT) .EQ. 1) THEN
iSIGMT(JNLICNT) =1

AQ22(NI,NJ)=0.0025* AQ22(NLNIJ)

AQI12(NLNJ)=0.0025* AQ12(NLNI)

AQ44(NILNJ)=0.0025* AQ44(NLNJ)

AQ66(NILNJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP. °, J], 'LAYER’,FFMC
ENDIF

ENDIF

ENDIF

C Maximum Stress Failure Criteria for Sandwich Facesheets

IF( NANAL(2) .EQ. 3 ) THEN

IF(JJ. LE. NPBY2 .OR. JJ. GT. NPBY2+5)THEN

FFHA=SIG11

FFMT=SIG22

FFMC=SIG22

IF(ABS(SIG5) .GE. SIGDS .or. iSIGSS(JI,NLIiCNT) .EQ. 1) THEN
iSIGS5(JINLICNT) = 1

AQS55(NIL,NJ)=0.0025* AQ55(NL,NJ)

WRITE(8,*)’ 13 DELAMINATION FOR’, JI, 'LAYER’ ,FFHA
ENDIF

IF(ABS(SIG4) .GE. SIGDS .or. iSIGS4(JI,NLiCNT) .EQ. 1) THEN
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iSIGS4(JJNLIiCNT) = 1

AQ44(NI,NJ)=0.0025* AQ44(NLNJ)

WRITE(8,*)’ 23 DELAMINATION FOR’, JJ, 'LAYER’,FFHA
ENDIF

IF(SIG1 .GE. SIGFT .or. iSIGFT(JJNLiCNT) .EQ. 1) THEN
iSIGFT(JJNLIiCNT) = 1

AQI11(NLNJ)=0.0025*AQ1 1{NLNI)

AQI2(NI,NJ)=0.0025* AQ12(NLNIJ)

AQ55(NI,NJ)=0.0025* AQ55(NLNI)

AQ66(NL,NI=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ FIBER FAILURE FOR’, JJ, 'LAYER’ FFHA

ENDIF

IF(SIG2 .GT. 0.) THEN

IF(SIG2 .GE. SIGMT .or. iSIGMT(JJ,NLiCNT) .EQ. 1) THEN
iSIGMT(JJ,NLiCNT) =1

AQ22(NLNJ)=0.0025* AQ22(NI,NJ)

AQI12(NI,NJ)=0.0025* AQ12(NLNI)

AQ44(NI,NI)=0.0025* AQ44(NI,NJ)

AQ66(NI,NJ)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO TENSION FOR’, JJ, 'LAYER’,FFMT
ENDIF

ELSE

IF(ABS(SIG2) .GE. SIGMC .or. iSIGMT(JJ,NLiCNT) .EQ. 1) THEN
iSIGMT(JINLICNT) =1

AQ22(NINJ)=0.0025*AQ22(NI,NJ)

AQI2(NLNJ)=0.0025* AQ12(NI,NJ)

AQ44(NILNJ)=0.0025* AQ44(NI,NJ)

AQ66(NIL,NT)=0.0025* AQ66(NI,NJ)

WRITE(8,*)’ MATRIX FAILURE DUE TO COMP.’, JJ, 'LAYER’,FFMC
ENDIF

ENDIF

ELSE

C Maximum Stress Failure Criteria for Sandwich Core

IF(ABS(SIGS5) .GE. SIG13c .or. iSIGS5c(JI,NLiCNT) .EQ. 1) THEN
iSIGS5¢(JINLIiCNT) =1

AQ55(NLNJ)=0.0025* AQ55(NIL,NT)
AQI1(NLNJ)=0.0025*AQ11(NL,NJ)

AQ22(NI,NJ)=0.0025* AQ22(NI,NJ)

AQI2(NI,NI)=0.0025* AQ12(NI,NJ)

AQ66(NINT)=0.0025* AQ66(NL,NJ)

WRITE(8,*)’ 13 CORE FAILURE FOR’, JJ, "LAYER’,SIG13c
ENDIF

IF(ABS(SIG4) .GE. SIG23c .or. iSIGS4¢(JJ,NLiCNT) .EQ. 1) THEN
iSIGS4c(JI,NLiCNT) = 1

AQ44(NILNT)=0.0025* AQ44(NL,NJ)
AQI1(NLNI)=0.0025*AQ11(NI,NJ)

AQ22(NI,NJ)=0.0025* AQ22(NI,NJ)
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AQI2(NLNJ)=0.0025* AQ12(NL,NJ)

AQG6(NLNT)=0.0025* AQ66(NLNJ)

WRITE(S,*)’ 23 CORE FAILURE FOR’, JJ, "LAYER’,FFHA
ENDIF

ENDIF

ENDIF

ENDIF

TQ11=TQ11+AQ1I(NLNJ)/4.

TQ22=TQ22+AQ22(NL,NJ)/4.

TQ12=TQ12+AQ12(NLNJ)/4.

TQ44=TQ44+AQ44(NLNJI)/4.

TQ55=TQ55+AQ55(NI,NJ)/4.

TG12=TG12+AQ66(NLNJ)/4.
C***********************************************************************

C CALCULATE INVARIANTS
C***********************************************************************
UU1(IT) = (3.4TQ11+3.¥TQ22+2.*TQ12+4.*TG12)/8.

UU2(1T) = (TQ11-TQ22)/2.

UU3(JJ) = (TQ11+TQ22-2.*TQ12-4.¥TG12)/8.

UU4(IT) = (TQ11+TQ22+6.*TQ12-4.¥TG12)/8.

UUS5(IT) = (TQ11+TQ22-2.¥TQ12+4.¥TG12)/8.

UG13(IT)=TQ44

UG23(J1)=TQ55

40 CONTINUE

22 CONTINUE

IF(IFAIL. EQ.0)RETURN

DO 50 KK = 1,NP5

ZL=ZL1(KK)

ZU=ZU1(KK)

IF(NANAL(2) .EQ. 3) THEN

IF(KK .LE. NPBY2 .OR. KK .GT. NPBY2+5)THEN

G13=G133

G23=G233

ELSE

GI13=G13S

G23=G23S

ENDIF

ENDIF

QBAR(1,1) = UU1(KK) + UU2(KK)*DCOS(2. *RTHE(KK)) +UU3(KK)*DCOS(4. *RTHE(KK))
QBAR(1,2) = UU4(KK) - UU3(KK)*DCOS(4. *RTHE(KK))

QBAR(2,2) = UU1(KK) - UU2(KK)*DCOS(2. *RTHE(KK))+UU3(KK)*DCOS(4. *RTHE(KK))
QBAR(1,3) = .5*UU2(KK)*DSIN(2.*RTHE(KK)) +UU3(KK)*DSIN(4. *RTHE(KK))
QBAR(2,3) = .5*UU2(KK)*DSIN(2.*RTHE(KK)) -UU3(KK)*DSIN(4.*RTHE(KK))
QBAR(3,3) = UUS(KK) - UU3(KK)*DCOS(4. *RTHE(KK))

QBAR(2,1) = QBAR(1,2)

QBAR(3,1) = QBAR(1,3)

QBAR(3,2) = QBAR(2,3)

162



QSBAR(1,1) = G23*DCOS(RTHE(KK))**2. + G13*DSIN(RTHE(KK))**2.
QSBAR(2,2) = G13*DCOS(RTHE(KK))**2. + G23*DSIN(RTHE(KK))**2.
QSBAR(1,2) = -(G23-G13)*DCOS(RTHE(KK))*DSIN(RTHE(KK))
QSBAR(2,1) = QSBAR(1,2)

ok sk o ook ok ko ok sk ko ok kR ko

C FORM MATRICES CON,CONS,ZZ FOR STRESS SUBROUTINE
C***********************************************************************
CON(1,KK) = QBAR(1,1)

CON(2,KK) = QBAR(1,2)

CON(3,KK) = QBAR(1,3)

CON(4,KK) = QBAR(2,2)

CON(5,KK) = QBAR(2,3)

CON(6,KK) = QBAR(3,3)

CONS(1,KK) = QSBAR(1,1)

CONS(2,KK) = QSBAR(1,2)

CONS(3,KK) = QSBAR(2,2)

DO 51 M=1,3

DO52N=1.3

AM,N) = A(M,N) + QBAR(M,N)*(ZL- ZU)

D(M,N) = D(M,N) + QBAR(M,N)*(ZL**3-ZU**3)/3,
F(M,N) = F(M,N) + QBAR(M,N)*(ZL**5-ZU**5)/5.
H(M,N) = HMM,N) + QBAR(M,N)*(ZL**7-ZU**7)/7.
J(M,N) = J(M,N) + QBAR(M,N)*(ZL**9-ZU**9)/9.

IF (NANAL(1).EQ.1) GOTO 240

L(M,N) = L(M,N) + QBAR(M,N)*(ZL** 11-ZU**11)/11.
IF (NANAL(1).EQ.2) GOTO 240

R(M,N) = RO(M,N) + QBAR(M,N)*(ZL**13-ZU**13)/13.
TMN) = T(M,N) + QBAR(M,N)*(ZL**15-ZU**15)/15.
240 BOM,N) = B(M,N) + QBAR(M,N)*(ZL**2-ZU**2)/2.
E(M,N) = E(M,N) + QBAR(M,N)*(ZL**4-ZU**4)/4,
G(M,N) = G(M,N) + QBAR(M,N)*(ZL**6-ZU**6)/6.
I(M,N) = I(M,N) + QBAR(M,N)*(ZL**8-ZU**8)/8.

IF (NANAL(1).EQ.1) GOTO 52

K(M,N) = K(M,N) + QBAR(M,N)*(ZL**10-ZU**10)/10.
P(M,N) = P(M,N) + QBAR(M,N)*(ZL**12-ZU**12)/12.
IF (NANAL(1).EQ.2) GOTO 52

S(M,N) = S(M,N) + QBAR(M,N)*(ZL**14-ZU**14)/14,
52 CONTINUE

51 CONTINUE

DO 60 M= 1,2

DO61N=12

AS(M,N) = AS(M,N) + QSBAR(M,N)*(ZL-ZU)
BS(M,N) = BS(M,N) + QSBAR(M,N)*(ZL**2-ZU**2)/2.
DS(M,N) = DS(M,N) + QSBAR(M,N)*(ZL**3-ZU**3)/3.
ES(M,N) = ES(M,N) + QSBAR(M,NY*(ZL**4-ZU**4)/4.
61 FS(M,N) = FS(M,N) + QSBAR(M,N)*(ZL**5-ZU**5)/5.
60 CONTINUE
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50 CONTINUE
Ok Rk foob ok kR R Rk kR ko ko ook

C SET TO ZERO THOSE ENTRIES DUE TO ROUNDOFF ERROR
C***********************************************************************
29DO85M=1,3

DO8N=1,3

IF (DABS(A(1,1)).GT.DABS(A(M,N)*1.D08)) A(M,N) = 0.

IF (DABS(B(1,1)). GT.DABS(B(M,N)*1.D08)) B(M,N) = 0.

IF (DABS(D(1,1)).GT.DABS(D(M,N)*1.D08)) DIM,N) = 0.

IF (DABS(E(1,1)).GT.DABS(E(M,N)*1.D08)) E(M,N) = 0.

IF (DABS(F(1,1)).GT.DABS(F(M,N)*1.D08)) F(M,N) = 0.

IF (DABS(G(1,1)).GT.DABS(G(M,N)*1.D08)) G(M,N) = 0.

IF (DABS(H(1,1)).GT.DABS(H(M,N)*1.D08)) HM,N) = 0.

IF (DABS(I(1,1)).GT.DABS(I(M,N)*1.D08)) I(M,N) = 0.

IF (DABS(J(1,1)).GT.DABS(J(M,N)*1.D08)) J(M,N) = 0.

IF (DABS(X(1,1)).GT.DABS(K(M,N)*1.D08)) K(M,N) = 0.

IF (DABS(L(1,1)).GT.DABS(L(M,N)*1.D08)) L(M,N) = 0.

IF (DABS(P(1,1)).GT.DABS(P(M,N)*1.D08)) P(M,N) = 0.

IF (DABS(R(1,1)).GT.DABS(R(M,N)*1.D08)) R(M,N) = 0.

IF (DABS(S(1,1)).GT.DABS(S(M,N)*1.D08)) S(M,N) = 0.

IF (DABS(T(1,1)).GT.DABS(T(M,N)*1.D08)) T(M,N) = 0.

86 CONTINUE

85 CONTINUE

DO9OM=1,2

DO9IN=1,2

IF (DABS(AS(1,1)).GT.DABS(AS(M,N)*1.D08)) AS(M,N) = 0.
IF (DABS(BS(1,1)).GT.DABS(BS(M,N)*1.D08)) BS(M,N) = 0.
IF (DABS(DS(1,1)).GT.DABS(DS(M,N)*1.D08)) DS(M,N) = 0.
IF (DABS(ES(1,1)).GT.DABS(ES(M,N)*1.D08)) ES(M,N) = 0.
IF (DABS(FS(1,1)).GT.DABS(FS(M,N)*1.D08)) FS(M,N) = 0.
91 CONTINUE

90 CONTINUE

write(8,*)’ae=",a(2,2),/de=",d(2,2),’as=",as(2,2)
IF(NPRNT.EQ.0) GOTO 1212

1212 continue

aall(nm)=a(1,1)

aal2(nm)=a(1,2)

aal6(nm)=a(1,3)

aa22(nm)=a(2,2)

aa26(nm)=a(2,3)

aa66(nm)=a(3,3)

ball(nm)=b(1,1)

bal2(nm)=b(1,2)

bal6(nm)=b(1,3)

ba22(nm)=b(2,2)

ba26(nm)=b(2,3)

ba66(nm)=b(3,3)
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dall(nm)=d(1,1)
dal2(nm)=d(1,2)
dal6(nm)=d(1,3)
da22(nm)=d(2,2)
da26(nm)=d(2,3)
da66(nm)=d(3,3)
eal 1(nm)=e(1,1)
eal2(nm)=e(1,2)
eal6(nm)=e(1,3)
ea22(nm)=e(2,2)
ea26(nm)=e(2,3)
ea6b6(nm)=e(3,3)
fall(nm)=f(1,1)
fa12(nm)=f(1,2)
fal6(nm)=f(1,3)
fa22(nm)=f(2,2)
fa26(nm)=f(2,3)
fa66(nm)=f(3,3)
gal1(nm)=g(1,1)
gal2(nm)=g(1,2)
gal6(nm)=g(1,3)
ga22(nm)=g(2,2)
ga26(nm)=g(2,3)
ga66(nm)=g(3,3)
hall(nm)=h(1,1)
hal2(nm)=h(1,2)
hal6(nm)=h(1,3)
ha22(nm)=h(2,2)
ha26(nm)=h(2,3)
ha66(nm)=h(3,3)
aill(nm)=i(1,1)
ai12(nm)=i(1,2)
ail6(nm)=i(1,3)
ai22(nm)=i(2,2)
ai26(nm)=i(2,3)
ai66(nm)=i(3,3)
aj11(nm)=j(1,1)
2j12(nm)=j(1,2)
ajl16(nm)=j(1,3)
2j22(nm)=j(2,2)
2j26(nm)=j(2,3)
aj66(nm)=j(3,3)
akl1(nm)=k(1,1)
ak12(nm)=k(1,2)
akl6(nm)=k(1,3)
ak22(nm)=k(2,2)
ak26(nm)=k(2,3)
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| |

ak66(nm)=k(3,3)
all1(nm)=1(1,1)
al12(nm)=1(1,2)
all6(nm)=1(1,3)
al22(nm)=1(2,2)
al26(nm)=1(2,3)
al66(nm)=1(3,3)
ap11(nm)=p(L,1)
ap12(nm)=p(1,2)
ap16(nm)=p(1,3)
ap22(nm)=p(2,2)
ap26(nm)=p(2,3)
ap66(nm)=p(3,3)
arl 1(nm)=r(1,1)
ar12(nm)=r(1,2)
arl6(nm)=r(1,3)
ar22(nm)=r(2,2)
ar26(nm)=r(2,3)
ar66(nm)=r(3,3)
as11(nm)=s(1,1)
as12(nm)=s(1,2)
as16(nm)=s(1,3)
as22(nm)=s(2,2)
as26(nm)=s(2,3)
as66(nm)=s(3,3)
atl1(nm)=t(1,1)
at12(nm)=t(1,2)
at16(nm)=t(1,3)
at22(nm)=t(2,2)
at26(nm)=t(2,3)
at66(nm)=t(3,3)
aasl1(nm)=as(1,1)
aasi2(nm)=as(1,2)
aas22(nm)=as(2,2)
bas11(nm)=bs(1,1)
bas12(nm)=bs(1,2)
bas22(nm)=bs(2,2)
das11(nm)=ds(1,1)
das12(nm)=ds(1,2)
das22(nm)=ds(2,2)
east1(nm)=es(1,1)
eas12(nm)=es(1,2)
eas22(nm)=es(2,2)
fas11(nm)=fs(1,1)
fas12(nm)=fs(1,2)
fas22(nm)=fs(2,2)
RETURN
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