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Analytical Models for
Battlespace Information Operations

(BAT-IO)

Donald P. Gaver
Patricia A. Jacobs

Part 2

Battlespace Information War:
Attack and Defense of a Region with Adaptive

Opponent Behavior, Including Deterrence

EXECUTIVE SUMMARY

The coordination of information acquisition and interpretation to direct force

application is increasingly recognized as a crucial military systems design and

investment issue. This paper illustrates tradeoffs between Blue/own regional

Attacker sensor and shooter capabilities: it studies a deep strike or SCUD-

hunting scenario in a low-resolution, aggregated manner using an analytical

state-space approach that recognizes gross aggregated regional Defender (Red),

and regional Attacker (Blue), system capabilities and limitations. Emphasis is

accordingly placed on explicitly modeling the availability and utilization of

information to a striking Attacker, as it becomes available from a realistically

finite sensor and C2 capability. The (imperfect) information on opposition units,

the Defenders, that are candidates for prosecution by the Attackers is passed to



the finite, hence saturable (here missile-firing) Attacking force, the shooters, that

then responds by prosecuting those units.

The models specifically recognize that regional Defenders will not be detected

immediately, nor recognized perfectly, nor are Defender shots (e.g. SCUD

launcher) fired perfectly, or immediately. Furthermore, attempts to effectively

target are also realistically modeled as afflicted by imperfect Attacker battle damage

assessment (BDA), an incapability that, if pronounced, will tend to non-linearly

saturate shooters, increase their response times, and hence reduce targeting

effectiveness and efficient ammunition expenditures. Such models can allow for

adaptation by both attackers and defenders to recent fortunes: if Defender

presence and activity is effectively countered by Attackers, then the former may

tend to be deterred or withdraw; if not, the Defenders are motivated to press

their apparent advantage. Sharp, threshold-like, responses can follow from the

possibly multi-stable dynamics. This behavior will be explored in this report.

The present models are mainly deterministic or pseudo-stochastic in that they

represent the non-linear effect of stochastic saturation approximately, but

adequately. However, they can straightforwardly be "made stochastic",

especially Markovian, and so realized using Monte Carlo simulations. Computer

programs exist to provide numerical results; some are given. A simple one-

dimensional stochastic (Markov birth-death) model is given as an appendix to

this paper. This model can be shown analytically and numerically to exhibit
"stochastic bi-stability" properties (two attractors) that under certain circum-

stances (parameter combinations) lead to bimodal steady-state distributions (if

such are allowed to happen by the dynamics, and are of interest). Such a

tendency will occur also in more detailed, but less analytically tractable models..

There are many problem elements that have been initially and purposefully

ignored. They are addressed in later work; see Gaver and Jacobs (1999). For

instance, the effects of different target types, false targets, and decoys must be

added (some "decoys" are in effect present, in the form of killed Defenders, not
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so recognized, that are mistakenly re-targeted). The effect of different principles

for Attacker target prioritization under uncertainty, i.e. dynamic scheduling,

requires systematic attention. In the present models Attackers are invulnerable to

attack; this is not always realistic, and can be changed to a duel-like scenario

involving suppression of enemy (Defender) air defense (SEAD); a first paper on

this topic is Gaver and Jacobs (1998). In the current paper Attackers employ

generic missiles only, but the use of (vulnerable, manned) Attack aircraft can

similarly be modeled, as can combinations of Attack aircraft, Naval gunfire, and

missiles, recognizing the coordination difficulties. Employment of cued

reconnaissance aircraft, possibly UAVs, can likewise be represented

quantitatively as state-space components. In addition, refinements that more

faithfully represent spatial and perhaps other environmental constraints can be

incorporated, as can details of communications assets and message-handling

protocols in use by both Attackers and Defenders.

The present paper describes some of the possibilities for insights inherent in

an enhanced state-space approach. As pointed out, many elaborations are

possible. The objective is to recognize only that detail in the (preliminary) models

that is sufficient to hint at payoff from adding suitable assets and strategies at

appropriate points in the entire system. Finer detail and resolution is left to

others to include, and possibly profit by. More elaborate and high-resolution

models within such tools as NSS (METRON), and JWARS eventually can focus

with greater intensity on some of the issues raised here.

In general we believe that this report is in accord with many of the views and

suggestions of Ilachinski (1996), and also of Dockery and Woodcock (1993), and

others. Those two publications contain many references, some to previous work

on related topics. Our emphasis on explicit representation of protagonists'

information state is of interest at the time of writing.
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Battlespace Information War:

Attack and Defense of a Region with Adaptive
Opponent Behavior, Including Deterrence

(BAT-IW)
Part 2

D.P. Gaver

P.A. Jacobs

M.A. Youngren

1. Introduction: Generic Adaptive Staging

Suppose a particular territorial region, X is selected by an attacking force,

denoted as Red, as one possible stage from which to assemble, maneuver, and

possibly launch attacks. An example is the designation of R as a region in Iraq

from which TELS/SCUDS missile systems launched attacks on Israel at the time

of the Gulf War; another such region was the staging arena for attacks on Saudi

Arabia. But the region could equally well be occupied by various armed units

that would converge on a particular location within or on the boundary of Rin

case it were attacked, e.g. by amphibious landing operation.

Let the force opposing Red utilization of region Rbe denoted generically as

Blue. In the present scenario Blue's assets consist of C4ISR systems ("sensors"

plus a communication system) capable of detecting, tracking and targeting Red

assets, plus weapons for attrition (or suppression) of those assets (the



/'shooters"). Importantly and realistically, the Blue sensors and shooters are

represented as of limited and fallible capability: Red forces in Rare detected and

targeted by Blue C41SR only after delay, and then with occasional error, and

shooter assets are sometimes saturated and hit and kill Red assets with less than

perfect success. Shooter assets considered here are a generic surface-surface

missile system, e.g. ATACMS; with some additional effort a force of manned

aircraft could alternatively, or as a complement, be envisioned and modeled.

Included in the above model properties is the explicit recognition that follow-up

of a Blue attack on a detected Red, i.e. battle damage assessment (BDA), is error-

prone: not only may a dead target be mis-identified as alive and wastefully

retargeted, acting effectively as a decoy, but an alive target, the subject of an

unsuccessful attack, can be ignored and hence allowed to profitably reposition or

re-attack.

1.1 Adaptive Staging

It is natural to expect that the conflict scenario portrayed occur dynamically.

For example, Red forces may first infiltrate Rwith intention of establishing a

prescribed strength there, perhaps occasionally carrying out individual attacks.

In response, Blue forces will focus increased sensor and shooter attention on the

region. If such resistance is quick and effective Red activity will tend to adapt by

tactics that reduce vulnerability, but also effectiveness: they will be deterred (at

least in the region under consideration). Correspondingly, Blue force attention to

the region may well then be limited, perhaps re-directed. Red occupancy of R

settles at an annoyance level. On the oiher hand, if Red forces once surpass the

combined sensor-shooter forces of Blue the region will tend to settle at a

considerably higher threat level - one considerably more difficult for Blue to

dislodge.
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The purpose of this paper is to connect various aspects of the above

information-influenced scenario described by simple dynamic models that

dramatically exhibit the sensitivity of conflict outcome to opponent's assets and

operational behavior. The models proposed for first study are aggregated and

deterministic, but still provocative. They can both be readily, and informatively,

extended to far more detailed higher resolution tools that give more refined and

hence perhaps useful (or at least easily defensible) guides to investment decisions

(e.g. sensor and weapons mix, target prioritization, etc.). The approaches of the

present paper provide a quick preliminary appraisal of a hypothetical situation;

polish-up can be accomplished subsequently.

2. Model I: The "SCUDWORM"Analogy

About twenty years ago, D. Ludwig identified and explored an intriguing

dynamic situation pertaining to the interlinked behavior of a pest, the spruce

budworm, and birds that feed upon populations of them. See Ludwig et al. (1978)

and more recently Murray (1989.). When spruce are hospitable, presumably when

buds appear, populations of budworms appear to feed upon them and grow; in

turn, the population of worms attracts birds that consume the worms, with

attractiveness increasing with worm population size. If both budwor.m and bird

population sizes are ultimately limited the dynamics are sometimes consistent

with two (non-zero) local stable points for worm (and local bird) populations: one

low, and one high. The simple deterministic model implies that once (initial)

conditions bring worm and bird populations near either such point they remain

t&ere indefinitely, even though all descriptive rate parameters are otherwise

unchanged. Only by adding more to the problem, e.g. by modifying the process

to become stochastic or by incorporating time dependence, will escape from
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quasi-steady state occur; this may occur as a result of smallish change of

conditions, and hence appear instantaneous.

We exploit the analogy with the above predator-prey ecological situation in

the first model below. Qualitative correspondence to the region-invasion scenario

and simplicity and transparency are its major virtues. It is blatantly over-

simplified, a fault that is partially rectified in Model II.

2.1 Mathematical Model I: the "SCUDWORM" Problem

What follows is a small modification of the work of Ludwig. Let

A(t) = number of attackers in Rat t;

D(t) = number of defenders in Rat t.

Here t is any real number, although discrete-time versions of the problem are

certainly possible, and possibly attractive.

Stipulate that these differential equations describe the evolution of -the

populations:

dA(t) - 1,4(t)(1 - A(t)/-A} - yD(D(t)/l + D(t))pK (2.1)

dt 1
(logistic) arrival rate of kill rate of

attackers into R attackers by defenders

dD(t) - A(t) - OD(t)/A(t) (2.2)
dt '-ý I

rate of rate of defender
defender force removal

force from R
allocation

to region R

The above setup cavalierly attributes certain simplistic behavior to both attacker

(logistic increase in the region), and the defender (attacker queuing for

deterministic service). More realistic and inclusive representations appear in the

next model.
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The model of (2.1) and (2.2) can be modified to allow attackers to enter the

region when A(t) = 0 and for numerical stability as follows.

dA(t) _ ['A,0 + )A(t)][1 - A(t)/A]- -uD[D(t)/(1 + D(t))]pK (2.2a)

dt

dDt)

where c is a small constant.

The rightmost term of (2.1) deterministically represents the expected

• "service" rate of a D-server/missile shooter; see Filipiak (1988) which relies on

the ideas of Rider (1967) and Agnew (1976). The first right-side term of (2.2)

states that defender force allocation to the region is enhanced at a rate

proportional to the current attacker population size; presumably refinable to

fP = fl*ý where t* is a decision parameter and ý is the rate of Blue sensor coverage

of R. The second, or rightmost, term of (2.2) postulates that defense force

depletion is proportional to that force, but inversely proportional to attacker

force size: if the latter becomes small, defenses become smaller. These rules are

arbitrary but plausible (e.g. f3A(t) could be replaced by almost any increasing

function of A(t), and OD(t) /A(t) by, a decreasing function of A(t), without altering

qualitative effects). It is again acknowledged that certain limited-information olr

incomplete battle-damage assessment (BDA) is not represented in the present

abbreviated model. For those features see Model II, detailed in Section 3.

Look for the possible stable points of (2.1), (2.2). These (A = A(-), D = D(-))

satisfy

0 1~ I)-UK5 D (2.3)
1-D

O= kA(1-A/A)- #pKD D (2.3

0= flA-OD/A. (2.4)
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Substituting the solution of (2.4), i.e. D =: ()Aa, into (2.3) we get

IAl-A/Af) =(.PU )A2 .(2.5)

= LPD+(P~)A'

a cubic with the possibility of one or three real roots. Notice that if we apply the

quasi-steady static approximation (QSSA), cf. Segel and Slemrod (1989), letting j3

and 0 be relatively fast in (2.2) and putting the result into (2.1), the result is

dA(t) - AA(t)(1- A(t)/A)- /2PKD (0)A2(t) (2.6)

dt 1+ (1)A2 (t)

which is equivalent, to the original model proposed by Ludwig and hence subject

to nearly the same analyses, accessible in Murray (1989). These are based on

identifying A(t) = A = 0 as one stable point and factoring it out, then examining

1 -A/1+pK) 0 (2.7)

graphically, i.e. plotting the left-hand and the right-hand sides:

1 g (a)

(c)

A A

FIGURE 1
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The crossings/intersections of left-hand and right-hand sides of (2.6) are stable or

local equilibrium points. The curve (a) can represent relatively rapid and

effective shooter service, and so provides for a small equilibrium attacker

population (intersection of (t) and (a)). The curve (c) represents the opposite:

slow shooter service or perhaps inadequate sensor coverage (/3 = /3* with

small) hence a single equilibrium point very near the maximum regional

occupancy chosen by Red (intersection of (t) and (c)). Finally, the curve (b)

represents the interesting bi-stable case: the basic parameters are consistent either

with a small attacker population (provided the initial population is small), (left-

most intersection of (L) and (b)), or a much larger population if the initial

population size is near the rightmost intersection of (t) with (b).

It is suggestive to "stochasticize" the above system, replacing the system (2.3)

and (2.4), or more accurately (2.6) by a birth-death Markov process approxi-

mation that possesses a stationary distribution. See the appendix for details.

3. Model II: Model with Arrivals and Departures of Attackers and

Defenders and Simplified Surveillance: Delayed BDA

Consider this more elaborate and realistic model: Red units (attackers) enter R

at a specified rate which is proportional to the number of Red units that are in the

region and becomes 0 when the number of Red units reaches a maximum A, i.e.

following logistic growth as in (2.1); (modifications allowed without violating

qualitative effects). The Red units are the subject of a prescribed level of

surveillance/reconnaissance, are identified (possibly incorrectly) as alive, and are

eventually targeted by members of' a group of Defenders (Shooters). The

Defenders also arrive at, or focus assets on, the region at a rate proportional to

the number of attackers that have been detected. The arrival rate becomes 0 once

a prescribed number of defenders is in the region.
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Note that the present model explicitly accounts for realistic effects that Model

I explicitly ignores, namely imperfect BDA, track loss, defender evasion (leaving

the region to shake off pursuit - possibly inferred or imagined - and other such

realisms).

Parameters for Model II

A = Maximum number of attackers in the region R

D = Maximum number of defenders in the region R. This is the number
of individual shooters that can engage attacker targets at a time.

/ = Arrival rate of defenders to the region R

0 = Departure rate of defenders from the region R

Cs = constant

A = Attacker arrival rate into region R. Although this is first treated as a
positive constant, it can be made a function of time, or even of the
state of Red forces in the region. For example, Red may wish to
amass a certain force size by a particular time to oppose an

amphibious landing. In short, A, again stands for a simple control
variable ("knob") that in reality can be adjusted by Red.

= Attacker'attack/"service" rate (1/y = mean time to track, shoot, flight
time of missile).

v = Track-loss rate (1/v = mean of a holding time of attacker in track)..

a = Attacker (e.g. TEL = SCUD launcher) shoot rate (1/a = mean time
between shots by a single attacker). This parameter is irrelevant
under certain circumstances; it is relevant to SCUD-like attack.

y = Rate attackers leave region (1 / y = mean holding time of attacker unit
in region). An attacker decision variable.

= Rate undetected/tracked attackers are acquired by sensors/C 2

system.

PK = Probability an attacked target is killed. This parameter is currently/
presently taken to be non-range-dependent.
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Raa = Probability that an alive target that is correctly classified as being
alive by the sensors/C 2 system. 1 - Raa = Rad = P(target classified or
perceived as dead I alive).

Rda = Probability that a dead target is misclassified as being alive (hence'

potentially retargeted; effectively a decoy).

State Variables for Model II

The following state variables are needed to describe the above dynamical

system:

Au(t) = Number of undetected live (hence potentially active and threatening)
Red attackers present in region Rat time t.

Ad(t) = Number of detected live Red attackers present at time t. These are on
the Blue shooter's target list, and will be engaged unless lost by the
sensor system (they may go into hiding, or even leave the region
covered by the surveillance, e.g. JSTARS).

Da(t) = Number of detected and perceived to be alive, hence potentially Blue-
targeted, but actually dead Red attackers at t. These are present
because Blue battle damage assessment (BDA) is realistically ."
imperfect.

Du(t) = Number of dead attackers in region that are not yet classified.
Classification'to be done by the surveillance/reconnaissance system.

S(t) = Number of defenders (shooters) in the region R

'For the deterministic modeling of saturable' service by the defense

shooters (presumably missile launchers in the present context) we make use of

the following approximation, cf. Filipiak (1988), Agnew (1976), and also Rider

(1967), for the saturable rate of processing by the shooters,

H5 (t) = [Ad(t) + Da(t)]PS(t)
1 + [Ad(t) + Da(t)1
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Transition Equations for Model II

dAu(t) = (Au(t) + Ad(t)) [. Au(t)+Ad(t)]

+ Ad(t) + Hs(t)[1-PK] (3.1a)
Ad(t) + DA(t)

+vAd(t) - Au(t)(a + y) - ýRaaAu(t)

dAd(t) RaaAu(t) + aAu(t) -(y + v)Ad(t)

dt
(3.1b)

Ad(t) HS(t)

Ad(t) + Da(t)

dDa(t) ____(t__

dt = RdaDu(t)- Da(t) HS(t) (3.1c)
t _ AAdd(t)+ Da (t)

dDu(t) Ad(t)+ Hs(t)pK - Du+(t) + Da(t)HS(t) (3.1d)
dt Ad (t)t+Da (t) Ad (t) +Da (t)HSt

dS(t) (Ad(t) + Da(t)) 1 AS(t) - +0 S(t) (3.1e)dt '-- Ad tW + Da W) ÷ Cs

Solutions

It is possible to obtain some initial information in the form of steady-state or

long-run solutions. Set the derivatives of the equations (3.1a) - (3.1e) equal to 0 to

find:

O=[Au+Ad] [ 1 Au +Ad]
(3.2a)

+ Ad HS[1-PK]+vAd-Au(a+y+ ,Raa)
"Ad + Da

0 = ýRaaAu + aAu -(y + V)Ad- Ad HS (3.2b)

Ad + Da

0 = ýRdaDu - Da HS (3.2c)
Ad + Da

10



0 Ad W + Da HS (3.2d)
Ad + Da Ad + Da

SSI6 S (.e
O=13(Ad+Da) 1- -OAd (3.2e)

Solving (3.2d) for Du and substituting the expression into (3.2c) results in

D=1 Ad. HSPK+ a HS
Du Ad+Da PK-Ad +Da

and
O0= Rda Ada HS DaHS

Ad + DaHSPK Ad + Da Ad + Da

Da(1 Rda) = RdaAdPK

Da = RdaPK Ad cAd.
1 - Rda

Solving (3.2e) for S results in

S= f3(Ad + Da) 8(l + c)AdD((l + c)Ad + Cs)
f(Ad+Da) + 0 f3(l+c)Ad((1+ c)Ad +c,) + OD

5 Ad+Da+cs

Equation (3.2b) results in

"A Raa +a (y+v)Ad++(Ž+c)Ad .I

Substitute A& into equation (3.2a) and (numerically) solve for Ad.

Numerical Example

For the parameters Rad = Rda = 0.3, /3 = 10, 2 = 10, D = 10, • = 500, a = 5,

PK = 0.7, v = 0.5, y= 0.1, 0 = 10, cs = 0.1, y = 20, the steady state equations (3.2a) -

(3.2e) have 4 solutions

(Au, Ad, Da, Du, S) = (0, 0, 0, 0, 0)

(Au, Ad, Da, Du, S) = (0.04, 1.07, 0.32, 0.03, 1.72)
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(Au, Ad, Da, Du S) = (0.4, 13.4,4.0,0.28,9.7)

(Au, Ad, Da, Du, ) = (0.48, 33.7, 10.1, 0.30, 9.95).

The solutions (0, 0, 0, 0, 0) and (0.4, 13.4, 4.0, 0.28, 9.7) are unstable

equilibrium points. The solutions (0.04, 1.07, 0.32, 0.03, 1.72) and (0.48, 33.7, 10.1,

0.30, 9.95) are stable equilibrium points. That is, for the present example there are

two distinct steady states: inhabitation of one or the other depends on where the

system started from, i.e. the. initial conditions.

Thus, the differential equations can have different limiting solutions

depending on the initial conditions, a classical multistable situation. In particular,

for the present numbers:

if Au(O) = 5, Ad(O) = 0, Da(0) = 0, S(0) = 0, Du(O) = 0,

then Au(-) = 0.05, Ad(o-) = 1.07, Da(o) = 0.32, S(-) = 1.73; Du(-) = 0.031.

In this case the defenders were able to oppose the attackers before buildup

occurred, and to force the number present to nearly zero. This might well be the"

fruit of superior intelligence and the available assets to capitalize on it. However,

if Au(0) = 30, Ad(O) = 0, Da(O) = 0, S(0) = 0, Du(0) = 0,

then Au(-) = 0.48, Ad(-) = 33.7, Da(H) = 10.1, S(o) = 9.95, Du(-) = 0.30.

Then in this case the Blue force was presumably oblivious to attackers until their

number became substantial, (possibly a failure of intelligence and/or overall

surveillance) after which defenders swung into action and detected and targeted

those defenders in the region. The number of shooters appears inadequate

because the number of attackers queued for shooter service eventually is higher

than the initial number in the region. If assets are available this deficiency might

well be corrected in real time. But the present model allows anticipation of such a

possible state of affairs, and might allow forestalling it. This is "real dynamics"

that is unmodeled, but for which models are useful.
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APPENDIX

A Birth-Death Markov "SCUDWORM" Model

Suppose that A(t) now represents a Markov chain in continuous time with

state space {0, 1, 2, . .. , AX . Here A is an integer. Furthermore, let defender

adaptation dynamics, as represented by P3 and 0 be fast as compared to

parameters A and y, and invoke QSSA. Then we replace the deterministic

differential equation (2.6) by a birth-death process with generator

P{A(t + dt) = A(t) + 11A(t)} = 1 A(t)(1 - A(t)/A)dt + o(dt) (A.1)

and

5(0)A2(t)
P{A(t + dt) = A(t) - ljA(t)} = /1PK 1 + ()A2(dt + o(dt); (A.2)

there is .a natural boundary at A(t) = 0 so no transition to negative values is

possible. Additionally,
P{ADt+ dt)= -1

P{A(t + dt) = A(t)A(t)= 1- 1(t)(1-A(t)/'A) 0 + (,•-- 2-t dt + o(dt). (A.3)

All other transitions have negligible probability o(dt) as dt -* 0. Because of the

non-linearity of the transition functions it is not true that E[A(t)] satisfies the

differential equation (2.6), although there will be qualitative resemblance

between E[A(t)] and the differential equation solution A(t) as functions of t. It

should also be possible to show that A(t)/ A tends weakly to a(t) = A(t)/A as A

becomes large, provided D = W A; furthermore it should be the case that, for

large A, A (t) can be well approximated as the sum of a deterministic trajectory

and diffusion process. This option is not investigated here; something simpler is.
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The stochastic model (A.1), (A.2), (A.3) is clearly richer than its deterministic

counterpart or approximation, (2.1) - (2.6). Furthermore, the present simplified

stochastic version can be studied reasonably explicitly and analytically, i.e.

without Monte Carlo simulation or intricate numerical computation. Various

questions will now be addressed. For simplicity put

P{A(t + dt) = a + lA(t) = a} = 2,adt + o(dt) (A.4)

and

P{A(t + dt) = a - 1A(t) = a} = Uadt + o(dt) (A.5)

where 2Aa and Na are gotten from (A.1) and (A.2). Look at some options.

(1) Stationary solution

As (A.1) is presented, it describes an absorbing chain with certain absorption

at A(t) = 0. Modify this by. introducing an attacker import rate AO (AO > 0): with

probability hjdt a new attacker appears if the region becomes empty. Now using

well-known formulas one can find

lim P{A(t) = aIA(0)}= -r0 O1 . .. a1 =7 a, 0•< a < A, (A.6)

where no normalizes ra to sum to unity. This probability mass function 7a can be

studied analytically, or, more easily, evaluated and studied numerically.

Exploration shows that it can be bimodal, with modes corresponding roughly to

the two stable points that may occur for the deterministic model. An example is

provided in Figure Al. The operational interpretation is that, over a long period

of ,time attacker numbers may typically reside near either a low value, or a

higher - obviously more dangerous - level. The chance of being at that level can

be controlled by enhancing defense shooter assets. In a rough sense the A(t)

process tends to be near one or the other of the two stable points, remaining at
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one place for a nearly exponential time period, then jumping to (near) the other,

and so on back and forth until the parameters change. The defender's job is to

cost-effectively lengthen the time attacker state resides at a low level, while the

attacker presumably wants her state to remain high, but also to carry out

aggressive acts, such as launching SCUDs.

(2) First-Passage or Exit Times

Suppose that initially, i.e. at t = t' (where t' can be taken to be 0 because of

stationary transitions) A(t') = i, any particular state value. Then it is of interest to

study

"ii = inf{t : A(t + t') = jJA(t') = i} (A.7)

the first-passage time (fpt) from i to j # i; this is the random time required to pass,

for the first time, from state A(t') = i to state j. For models of the present type it is

well-understood how to calculate all interesting probabilistic features of rij.- For

example,

(2.1) Expected fpt. Let mij = E[r-ij]. Then it is easily shown that mij satisfies a

backward equation:

mij(,i + YiO = mi+l,ji + m i-,jyi + 1 (A.8)

with boundary condition mii = 0, mq = 0 if £ < 0.

Example: Suppose A(t') = 0. Find E[r' 021 = m02.

From (A.8),

1 [m12,1 + m-1,2 9- 1 + i]m02 = 0 +/•(A.9.1)

=00[m12A,1 + 1]

by virtue of boundary conditions. Also
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1 [m22A2 + m02 u1 +1]

(A.9.2)

+ [m02M1 + 1].•1+ It1

The two equations (A.9.1) and (A.9.2) can now be solved simultaneously. This

pattern can be followed more generally.

Such stochastic models are usually not available in a form even as simple as

the above. Monte Carlo simulation will ordinarily be required in order to elicit

lessons and discover sensitivities. But a quite abbreviated model such as the

present "SCUDWORM" example is useful in that it may quickly indicate

particular sensitivities and tradeoffs, in this case to increased surveillance

defense surveillance or increased attacker activity (perhaps putting /3= (• + a)3*,

where • is surveillance rate and a is attacker rate of fire).
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