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Introduction 

The 38th Annual Sanibel Symposium, orga- 
nized by the faculty and staff of the Quantum 

Theory Project of the University of Florida, was 
held on February 21-27, 1998. This year, the Ponce 
de Leon Conference Center in St. Augustine, 
Florida, was the site of the gathering of more than 
300 scientists. 

The symposium followed the established format 
with plenary and poster sessions. A compact 7-day 
integrated program of quantum biology, quantum 
chemistry, and condensed matter physics was pre- 
sented. The topics of the sessions covered by these 
proceedings included Spectroscopy of Base Pairs, 
Quantum/Classical Molecular Mechanics, Simula- 
tions of Biological Systems, Metals in Biology, and 
Linear Scaling. 

The articles were subjected to the ordinary ref- 
ereeing procedures of the International journal of 
Quantum Chemistry. The articles presented in the 
sessions on quantum chemistry, condensed matter 
physics, and associated poster sessions are pub- 
lished in a separate issue of the International Jour- 
nal of Quantum Chemistry. 

The organizers acknowledge the following 
sponsors for their support of the 1998 Sanibel 
Symposium: 

■ Army Research Office through Grant 
#DAAG55-98-l-117. "The views, opinions, 
and/or findings contained in this report are 
those of the authoKs) and should not be 

construed as an official Department of the 
Army position, policy, or decision, unless so 
designated by other documentation." 

■ The Office of Naval Research through Grant 
#N00014-98-l-0215. "This work relates to 
Department of the Navy Grant #N00014-98- 
1-0215 issued by the Office of Naval Re- 
search. The United States Government has 
the royalty-free license throughout the world 
in all copyrightable material contained 
herein." 

■ IBM Corporation 
■ HyperCube, Inc. 
■ Q-Chem, Inc 
■ The University of Florida 

Very special thanks go to the staff of the Quan- 
tum Theory Project of the University of Florida for 
handling the numerous administrative, clerical, 
and practical details. The organizers are proud to 
recognize the contributions of Mrs. Judy Parker, 
Ms. Coralu Clements, Ms. Sandra Weakland, Dr. 
Greg Pearl, and Mr. Cristiän Cardenas. All the 
graduate students of the Quantum Theory Project 
who served as "gofers" are gratefully recognized 
for their contributions to the 1998 Sanibel Sympo- 
sium. 

N. Y. Öhrn 
J. R. Sabin 

M. C. Zerner 

International Journal of Quantum Chemistry, Vol. 70, 1099 (1998) 
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 / 98 / 0601099-01 
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Bartlett, Rodney J. 
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ABSTRACT: Two closely related N-substituted valpromide derivatives: N-valproyl 
glycinamide and N-valproyl glycine are comparatively analyzed, the first of which is 
antiepileptic active whereas the second is not. The study is based on a conformational 
analysis using an AMI Hamiltonian that not only search for the lower energy structures 
of each derivative but also for the energy involved in their mutual interconversion. Open 
structures have been compared with cyclic ones, the latter including those stabilized by 
either inter or intra molecular hydrogen bonds (dimers and monomers, respectively). 
H-bond formation has been also evaluated by means of ab initio G94(6-31 + G(d,p)) 
calculations for a smaller system (N-formylglycine/glycinamide) modeling both vacuum 
and solvent conditions. The conformational and electronic characteristics of the open and 
cyclic monomers, as well as of the dimer N-valproyl glycinamide and N-valproyl glycine 
structures are discussed. On the basis of the results of their comparative analysis, we 
have redefined the pharmacophore previously proposed for N-substituted valpromides 
[Tasso, Bruno-Blanch, Estiu, Int. J. Quant. Chem. 65(6), 1107 (1997)], relaxing some of the 
associated requirements. The corrected model requires one carbon atom or any bioisosteric 
substituent in an anticlinal conformation relative to the aminic nitrogen of the amide 
moiety, in addition to one hydrogen atom that should be antiperiplanar to the carbonyl 
oxygen. This model offers an explanation to the different response of N-valproyl 
glycinamide and N-valproyl glycine against convulsion, which is based on conformational 
restrictions.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1127-1136, 1998 
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Introduction 

7-amino butyric acid (GABA) and glycine are 
among the most important inhibitory neuro- 

transmitters, which play an important role in the 
control of neuronal activity in the mammalian cen- 
tral nervous system (CNS) and are thus related to 
convulsion and epilepsy [1-8]. Consequently, a 
tendency has developed to incorporate GABA and 
glycine derivatives into the newest antiepileptic 
agents, like gabapentin [9], milacemide [10], and 
N-benzyloxycarbonylglycine [11] among others. 

The traditional therapy, on the other hand, in- 
cludes valproic acid (vpa) as one of the four major 
antiepileptic drugs [12-14], whose main advantage 
is related to its wide spectrum of antiepileptic 
activity [12]. One of its main disadvantages, terato- 
genicity, has been assigned, on the basis of struc- 
ture-teratogenicity relationships, to the carboxylic 
moiety, a fact that has deviated the research effort 
to the study of the derivatives of its primary amide, 
valpromide (vpd) [15]. Vpd was found to be more 
potent than vpa and less teratogenic [16, 17]. How- 
ever, the importance of vpd over vpa in humans 
has no clinical implications, as vpd serves as a 
prodrug of vpa in humans [18]. Therefore, research 
in this line is presently related to the development 
of stable vpd analogs that will not undergo bio- 
transformation to the corresponding acid [19-22]. 

Following an ongoing research centered on vpa, 
vpd, and their derivatives [19, 23], in this study we 
focus our interest on two glycine-containing com- 
pounds: N-valproyl glycine (glyvpd) and N- 
valproyl glycinamide (glydvpd). 

N-valproyl glycine, a minor metabolite of vpa 
in rats [24], has not shown qualitative antiepileptic 
activity in mice [20]. N-valproyl glycinamide is a 
more recently tested compound, more effective 
than vpa [20]. Recent pharmacokinetic studies have 
concluded that, in dogs, none of the investigated 
compounds serve as a prodrug or a chemical de- 
livery system for vpa and glycine. Among them, 
N-valproyl glycinamide shows a better pharmaco- 
kinetic profile, a fact capable of explaining its 
larger antiepileptic activity [20]. 

A previous structure-activity relationship (SAR) 
analysis of several N-substituted derivatives of 
vpd [19] has allowed us to identify a pharma- 
cophoric pattern that has to be complied in order 
for the compounds to be  active.  The pharma- 

cophore, shown in Figure 1, was mainly related to 
the anticlinal orientation of the amide function 
relative to the hydrocarbon chains of the valproyl 
moiety. Its definition involved both the nuclear 
coordinates and the local charges on the atomic 
centers. Because valproyl glycine and valproyl 
glycinamide are also N-substituted valpromides, 
we have extended the conformational analysis to 
these molecules in order to discern whether their 
stable conformations comply or not with the defi- 
nition of the pharmacophore. Moreover, from their 
comparison, our goal is to find out whether their 
different response against convulsion can be ex- 
plained on a structural basis, a fact that would 
reinforce the concepts derived from the study of 
their pharmacokinetic properties [20]. 

On the basis of the knowledge that N-acetyl 
glycine stabilizes as a dimer structure through 
intermolecular hydrogen bonds [25], the stability 
of monomers and dimers of glyvpd and glydvpd 
has been compared within the conformational 
study. Cyclic monomers, stabilized through in- 
tramolecular H bonds have been also included in 
the comparative analysis. However, the strength of 
the H bonds, and the consequent stabilization of 
the previously described structures, is largely de- 

FIGURE 1. Pharmacophore proposed for N-substituted 
valpromides. T5 is defined in Figure 4. Blue, nitrogen; 
red, oxygen; light blue, carbon; gray, hydrogen; yellow, 
alkyl or aryl substituents. 
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termined by the dielectric constant of the media. In 
this framework, because no information about the 
valpromide receptor is presently accessible, no in- 
ference can be made about the polarity of the 
environment in the interaction site. In order to 
gain insight in the influence of the media on the 
biological response, calculations in vacuum and 
for the solvent simulated by water as a continuum 
have been used to approach low and high polarity 
media, respectively, and have been evaluated in a 
comparative manner. 

Outline of the Calculation Procedure 

A conformational analysis has been performed 
in order to discern whether the pharmacophore, 
shown in Figure 1, is defined in the conformation 
of minimum energy of glyvpd (Fig. 2) and/or 
glydvpd (Fig.3). Because the size of the molecules 
is not compatible with good-quality ab initio calcu- 
lations, an AMI model Hamiltonian [26] (MOPAC 
7.0 package [27]) has been chosen for the confor- 
mational search in vacuum, which implies the 
comparison of open and cyclic structures. The 
choice of AMI among the available semiempirical 
methodologies has been largely justified in Refs. 
[12, 28]. 

For the open monomers, the structures associ- 
ated with the initial guesses for a gradient-driven 
full-geometry   optimization   were   generated   by 

means of modifications of the torsional angles 
T5-T8 (Fig. 4) and of those defined in the hydrocar- 
bon chain (T^T^. These, and the other geometry 
parameters were completely relaxed during the 
optimizations. In this framework, the conforma- 
tional search has been performed as follows: 

1. The T5 value was modified in 90° steps from 
0° to 270° for both glyvpd and glydvpd. In- 
termediate values were not considered be- 
cause all the optimizations starting from the 
above-mentioned ones converged to values 
close to either T5 = 0° or T5 = 180°. 

2. For each of the T5 values, T6 has been varied 
in 90° steps. In a similar fashion to that de- 
scribed for T5 two minima were found, asso- 
ciated, respectively, with the orientation of 
the hydrogen atom toward 09 (Fig. 4) or 
opposite to it. The first one is the most stable 
because it minimizes steric repulsion. 

3. As the next step of the optimization, modi- 
fications of T7 in 60° and T8 in 90° steps 
have been performed for each pair of T5, T6 

values. 
4. It is well known that the "all trans" confor- 

mation is the most stable for the hydrocarbon 
chain. A thorough discussion of this subject 
can be found in Ref. [23]. This conformation 
has been confirmed, however, for the differ- 
ent derivatives, by means of distortions of 
the TJ-T4  angles in 60° and 90° from their 

(a) (b) 

FIGURE 2. Most stable conformations of glyvpd. (a) Open monomer, (b) Cyclic monomer. 
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(a) (b) 

FIGURE 3. Most stable conformations of glydvpd. (a) Open monomer, (b) Cyclic monomer. 

starting 180°, followed by full optimization of 
the resulting structure. 

The initial structures for the cyclic monomers 
have been built by means of the definition of the 
appropriate combination of the T(-T8 torsional 
angle values that lead to the stabilization of an 

FIGURE 4. Atom numbering and torsional angles in 
the glydvpd molecule. N15 is replaced by 015 in glyvpd. 
Ti = CiC2C3C4, 
T4 = C4C5C6C7, T, 

T7 = C8N10C12C 

r2 — C2C3C4C5, '3 ~~ C3C4C5C6, Tn — V-/3V 

5 — u9ueu4i I-,-,,   T6 = O9C8N10C12 

13'   T8 = Ni0Ci2C13N15 

: OgC8C4H11, 

intramolecular H bond between the carboxylic 
oxygen of the valproyl moiety and the H atom of 
the hydroxy or amide group of the gly or glyd 
moieties, respectively. 

Cyclic and open monomers have been used to 
build the dimers (Figs. 5 and 6), which comprise 
H-bond formation between the carbonyl oxy- 
gen and the amine nitrogen of the glycine moiety 
(Ou—N10). Syn- and antiperiplanar conformations 
of the monomers, comprising both open and cyclic 
units, have been used to build the starting struc- 
tures. Their stability has been compared after a full 
geometry relaxation. 

For both the cyclic and open monomers, as well 
as for the dimeric structures, AMI calculations 
have been also used to evaluate the torsional bar- 
rier around the CC bond associated with T5. The 
keyword PRECISE has been always used through- 
out the calculations. 

The difficulties associated with the accurate 
quantum chemical description of the interactions 
involved in H bonds are well documented [29-31]. 
It is well known that the results of their semi- 
empirical evaluation have to be considered with 
caution. In order to confirm the conclusions from 
them derived, ab initio G-94(HF/6-31 + G(d, p) 
calculations [32] have been performed for 
molecules that, being smaller than glyvpd and 
glydvpd, retain the local characteristics in the moi- 
eties involved in the H bonds: N-formyl glycine 
and N-formyl glycinamide. The stability of cyclic 
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FIGURE 5. Most stable conformation of dimeric glyvpd. 

and open monomers, as well as dimer structures, 
has been compared for these molecules, at this 
level of theory, for both vacuum and solvent simu- 
lated conditions. The solvent to be approached, 
physiological media, is mainly defined by water. It 
has been modeled, thus, by water as a continuum 
within an Onsager approach [33]. 

Electronic descriptors have been derived from a 
Mulliken population analysis [34] performed at the 
AMI level. In spite of the lack of precision of this 
analysis for absolute calculations, their results are 
widely accepted in this field for the study of the 
trends in their variation on well-defined atomic 

centers that follow structural modifications per- 
formed to a parent structure [35, 36]. 

Results and Discussion 

GLYVPD AND GLYDVPD MONOMERS 

In agreement with the results of our previous 
calculations for a set of N-substituted vpd [19], 
two minima result from the AMI geometry opti- 
mization procedure, which are related to values of 
T5 close to 0° and 180°, respectively, and define 

FIGURE 6. Most stable conformation of dimeric glydvpd. 
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synperiplanar and antiperiplanar 09 to Hn confor- 
mations (Fig. 4). According to the results shown in 
Tables I and II, the synperiplanar conformation 
is preferred by both glyvpd and glydvpd. The pre- 
vious discussion is valid for open and cyclic 
monomers. Although only the antiperiplanar 
conformation has been found to be associated 
with the antiepileptic activity [19], the energy dif- 
ference between both orientations within a given 
cyclization pattern is close to 1 kcal/mol (Tables I 
and II), showing that both conformers can coexist 
in equilibrium. Moreover, the calculated energy 
barrier for their mutual interconversion (close to 
2.6 kcal/mol) demonstrates that the active confor- 
mation can be easily attained, at a low energy cost, 
in the receptor site. 

Whereas the cyclic conformation is more stable 
for the amide at the semiempirical AMI level, the 
open structure is preferred for the acid (Tables I 
and II). Cyclization does not imply, however, that 
the structure become rigid, and the torsional free- 
dom around the C4C8 bond does not depend on 
the internal array of the glycine moiety. The re- 
sults of the ab initio calculations for the isolated 
molecules (Tables III and IV) are in close agree- 
ment with the semiempirical ones, stabilizing in a 
larger extent the cyclic structure for the N-formyl 

glycinamide. When the physiological media is 
modeled by water as a continuum, the energy 
difference between open and cyclic structures re- 
mains almost unchanged, showing that the possi- 
bility of cyclization, which may influence the inter- 
action at the receptor site, is not dependent on the 
nature of the environmental solvent. 

It can be concluded, from the comparison of the 
energies associated with the different stable 
monomeric conformations of glyvpd and glydvpd, 
that the structural requirements imposed by the 
pharmacophoric pattern previously defined [19] 
can be easily attained by both molecules at a very 
low energy cost, because of their rotational free- 
dom around T5. NO difference between them, capa- 
ble of justifying their different response against 
convulsion, can be derived from the study of the 
isolated units. 

GLYVPD AND GLYDVPD DIMRRS 

According to the semiempirical calculations, 
dimeric conformations are more stable than the 
monomeric ones (Tables I and II). Whereas the 
coordination of open units leads to more stable 
structures than the cyclic ones for glyvpd, imply- 
ing an energy gain close to 6 kcal/mol, the coordi- 

TABLE I  
Stable Conformers of N-valproyl-glycine derived from the AM1 conformational analysis.' 

Conformer d 0-Hintra        d 0-Hinte AE 

Monomers 

Dimers 

1-syn 
2-anti 
3-syn 
4-anti 
5-syn 
6-anti 
7-syn-syn 

8-anti-anti 

9-syn-syn 

10-anti-anti 

>5.0 
>5.0 
>5.0 
>5.0 

2.2 
2.1 

>5.0 
>5.0 
>5.0 
>5.0 

2.1 
2.1 
2.1 
2.1 

2.2 
2.2 
2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

5.8 9.0 113.6 22.8 0.0 
166.7 13.0 100.0 6.7 0.4 

0.4 -166.2 91.7 56.4 3.5 
168.6 -174.6 98.3 50.2 2.9 
-2.6 0.1 81.3 -69.5 3.0 

164.0 -3.0 80.9 -70.3 4.0 
1.7 -2.1 150.1 -162.5 -5.9b 

4.0 -0.3 145.5 -148.8 
173.5 6.8 115.1 -164.3 -6.2b 

177.8 5.9 120.5 -162.1 
10.1 -4.7 80.6 -113.5 -3.3b 

13.1 -2.1 80.6 -112.8 
175.7 -2.2 77.6 -114.6 -1.4b 

179.8 -2.8 79.4 -113.2 

ad O—Hintra =  distance (A) between Og and H33 of the same molecule 
d O—Hinter =  distance (Ä) between 014 and H30 of different monomers 
TS = dihedral angle defined by OgCgC^H,, atoms. 
T6 = dihedral angle defined by O9C8N)0C12 atoms. 
T7 = dihedral angle defined by C8N10C12C13 atoms. 
T8 = dihedral angle defined by N10C12C13Ol5 atoms. 
AE = energy difference (kcal) relative to the most stable conformer [AE = £(1syn)l 

■ energy difference (kcal) relative to twice the energy of the most stable conformer [i£ = E - 2 x £, (1-syn)J 
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TABLE II 
Stable Conformers of N-v alproyl-glycinamide derived from the AM1 conformational analysis.3 

Conformer d 0-Hintra d 0-Hintra T5 T6 T7 TB A£ 

Monomers 1-syn 2.2 -2.7 -2.6 -80.7 53.3 0.0 
2-anti 2.2 159.3 0.2 80.7 -63.0 0.9 
3-syn >3.7 3.3 8.3 143.6 58.6 4.4 
4-anti >3.7 166.3 168.8 91.1 -4.4 4.8 
5-syn >3.7 2.2 -170.3 90.9 35.7 5.9 
6-anti >3.7 -169.3 9.1 122.4 55.6 5.3 

Dinners 7-syn-syn 2.2 2.1 5.6 0.0 81.0 -107.6 -10.1b 

2.2 2.1 2.0 4.6 77.8 -111.0 
8-anti-anti 2.2 2.1 174.2 3.1 79.2 -104.6 -7.8b 

2.2 2.1 174.3 1.8 79.5 -106.9 
9-anti-anti 4.3 2.2 -171.4 5.3 111.1 -146.7 -1.8b 

4.3 2.1 -171.5 6.2 109.9 -148.2 

ad O—Hintra = distance (A) between Og and H33 of the same molecule. 
d O—Hinter = distance (A) between 014 and H30 of different molecules. 
T5 = dihedral angle defined by OgCgC^.,, atoms. 
T6 = dihedral angle defined by OgC8N10C12 atoms. 
T7 = dihedral angle defined by C8N10C12C13 atoms. 
T8 = dihedral angle defined by N10C12C13N15 atoms. 
AE = energy difference (kcal) relative to the most stable conformer [A£ = -E-E, (1-syn) 

= energy difference (kcal) relative to twice the energy of the most stable conformer [AE = E - 2 x £(1.syn)]. 

nation of cyclic glydvpd units stabilizes the dimers 
in almost 10 kcal/mol more than that of open 
ones. For both molecules, syn- and antiperiplanar 
conformations of the monomers lead to structures 
of similar energies after dimerization. 

The coordination of antiperiplanar conforma- 
tions retains, in the dimer, the molecular portion 
that defines the pharmacophore (Figs. 5 and 6). On 
the other hand, the energy difference between the 
anti-anti and syn-syn conformers is as small as the 
energy difference between the anti and syn confor- 
mations of the monomers (Tables I and II). This 

fact demonstrates that anti-anti, anti-syn, and syn- 
syn dimers can be formed, and in the first two 
cases result, according to our structural model for 
the pharmacophore, in biologically active struc- 
tures for both glyvpd and glydvpd. 

The N-substituted carboxamide portion of 
dimeric glyvpd and glydvpd bears a disubstitu- 
tion on the nitrogen atom (Figs. 5 and 6), and, 
regarding its conformation, complies with the re- 
quirements imposed by the pharmacophore when 
the anti-anti and the anti-syn dimers are consid- 
ered for both molecules. However, recent pharma- 

TABLE III  
Most relevant ab initio calculated structural data 
of the stable conformers of N-formyl-glycine.a 

Con- 
former Of O—Hin)rs, TR T7 To 

TABLE IV 

AE 

In vacuo 1 5.4 
2 2.0 

In solvent 1 6.1 
2 1.8 

-176.0 106.5 35.3 0.0 
-6.0    79.0 -60.5 0.2 

-171.3    82.5 172.7 0.0 
-13.1     75.4 -52.9 0.3 

ad O—Hir distance (A) between 09 and H33. 
T6 = dihedral angle defined by O9C8N10C12 atoms. 
T7 = dihedral angle defined by C8N10C12C13 atoms. 
T8 = dihedral angle defined by N10C12C13O15 atoms. 
AE = energy difference (kcal) relative to the most stable 
conformer [AE = E - £(1)]. 

Most relevant ab initio calculated structural data 
for the stable conformers of N-formyl-glycinamide.a 

Con- 
former d O—Hintra T6                T7             To      AE 

In vacuo       1            2.2 
2            3.8 

In solvent     1            2.1 
2             3.8 

2.8 -85.3 66.6 0.0 
-173.7 -112.6     8.8 2.4 

7.7 -82.9 48.9 0.0 
-174.7    -94.6 -9.7 4.0 

ad O—Hintra =  distance (A) between Og and H33. 
T6 = dihedral angle defined by OgC8N10C12 atoms. 
T7 = dihedral angle defined by C8N10C12C13 atoms. 
T8 = dihedral angle defined by N10C12C13N15 atoms. 
AE = energy difference (kcal) relative to the most stable 
conformer [A£ = £ - £(1)]. 
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cological tests performed in our laboratory have 
demonstrated that disubstitution on the nitrogen, 
when it implies voluminous groups, larger that 
ethyl, leads to inactive structures, even when the 
conformational requirements imposed by the phar- 
macophore are satisfied. This effect, which is 
presently under investigation, seems to be associ- 
ated with a steric hindrance to approach the recep- 
tor site. 

Both glycine (glycinamide) and monomeric 
glyvpd (glydvpd), which are the N-substituents in 
the dimers, are large enough to block, in some 
way, the activity. However, there is another —NH2 

group in the glycinamide moiety of glydvpd 
(Fig. 6). Its orientation is fixed in glydvpd by 
dimerization, synclinal to one hydrogen on the C 
atom adjacent to the one to which it is bonded. 
This H atom is antiperiplanar, thus, to the oxygen, 
and satisfies, in this way, the geometric require- 
ments defined by the pharmacophore (Fig. 1). 
When electronic descriptors are considered, the 
electronic distribution of this group also matches 
the one calculated for the group shown in Figure 1 
(Table V). This group can be considered, thus, 
responsible for the pharmacophoric activity. Pro- 
vided that this group can approach the receptor 
site, the energy involved in the interaction will be 
large enough to break the H bond that may hinder 
the availability of the carbonyl oxygen. The com- 
parison of this group with the one shown in Fig- 
ure 1 shows that the similarities between them 
apply to the H atom but not to the other sub- 
stituents of the tertiary carbon atom (C12). Whereas, 
in agreement with our model, the H atom is oppo- 
site to the carbonyl oxygen, the other substituents 
are not carbon atoms, but one nitrogen and one 

hydrogen. This evidence can lead to two different 
conclusions: 

1. We can redefine our pharmacophore relaxing 
the requirement of having two carbon-con- 
taining groups bonded to the s/>3 carbon atom 
of Figure 1. The corrected model requires one 
carbon atom or any bioisosteric substitution* 
in an anticlinal conformation relative to the 
aminic nitrogen of the amide moiety, in addi- 
tion to the hydrogen atom that is antiperipla- 
nar to the carbonyl oxygen. No requirements 
are posed on the nature of the third sub- 
stituent of the carbon atom. 

2. We can reconsider the new group to which 
the activity is assigned. It becomes evident 
that the portion involved resembles more 
closely glycinamide than vpd. On this basis, 
and with the knowledge that glycine is also 
an inhibitory neurotransmitter, we can asso- 
ciate the antiepileptic activity of glydvpd 
with its glycinamide moiety. A question is 
now open of whether the activity of glydvpd 
is originated in the binding of either the vpd 
or the glyd moieties to their specific receptor 
sites. 

We strongly support the first conclusion be- 
cause the second one does not explain, again, the 
lack of activity of glyvpd, which should also be 
capable of reaching the glycinergic receptors. 

We can accept, on this basis, that a second 
pharmacophoric group in the glydvpd molecule, 
which is lacking in glyvpd, is responsible for its 
antiepileptic activity. This explanation does not 
have to disregard the pharmacokinetic evidence, 

* NH substitutes bioisosterically a C atom [37]. 

TABLE V   
AM1 calculated charges on the atoms that define both pharmacophoric groups; 

Conformer qo8 qOg 9N10 gc13 qO, QN15 

Pharmacophore +0.30 -0.38 -0.37 +0.30 -0.38 -0.37 
glyvpd: 2-anti +0.30 -0.35 -0.35 — — — 
glydvpd: 2-anti +0.31 -0.39 -0.37 +0.27 -0.38 -0.43 
glyvpd: 10-anti-anti +0.31 -0.37 -0.38 — — — 

+0.31 -0.37 -0.38 — — — 
glydvpd: 11-anti-anti +0.31 -0.40 -0.37 +0.28 -0.43 -0.42 

+0.31 -0.40 -0.37 +0.28 -0.43 -0.42 

In the glyvpd molecule the second group is lacking. 
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which shows a large retention time (half-life) of 
glydvpd in the body, in dogs [20], a fact that 
improves the possibility of interaction of the drug 
before elimination. Both interpretations, pharma- 
cokinetical and structural, refer to different steps 
of the interaction: transport inside the body and 
interaction at the receptor site, respectively. Even 
if a lower concentration of glyvpd can reach the 
receptor site, it will not show antiepileptic activity 
according to the results of the conformational anal- 
ysis and the structural pattern here proposed. 

CONCLUSIONS 

We have performed a conformational analysis 
of glyvpd and glydvpd at a semiempirical AMI 
level, considering H-bond formation in the stabi- 
lization of monomer and dimer structures. The 
results related to H-bond formation have been 
confirmed by ab initio G94(6-31 + G(d,p)) calcula- 
tions for a smaller system (N-formylglycine/gly- 
cinamide), for both the isolated molecules and 
solvent simulated conditions. 

Both methodologies give similar results, stabi- 
lizing the dimers over the monomers, and favor- 
ing the cyclic monomers over the open ones for 
glydvpd. In relation to the different response of 
glyvpd and glydvpd against convulsion, we con- 
clude that no justification can be given on the basis 
of the structural data of the monomers. Both of 
them, either as cyclic or as open units, satisfy the 
requirements imposed by the pharmacophore that 
we have previously proposed [19]. 

Dimerization leads to disubstitution of the 
aminic nitrogen of vpd, a fact that, depending on 
the size of the substituents, has been found to 
block the anticonvulsant activity. 

We associate the antiepileptic activity of glyd- 
vpd to the —NH2 group of the glyd moiety which, 
while not present in glyvpd, defines, with the 
adjacent groups, a similar pattern to the one shown 
in Figure 1. On the basis of their differences we 
have redefined our pharmacophore. The corrected 
model requires one carbon atom or any bioisos- 
teric substituent in an anticlinal conformation rela- 
tive to the aminic nitrogen of the amide moiety, in 
addition to one hydrogen atom that should be 
antiperiplanar to the carbonyl oxygen. No addi- 
tional requirement concerning the third sub- 
stituent of the sp3 carbon atom of Figure 1 is 
included in the definition of the pharmacophore. 
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ABSTRACT: The computed molecular surface electrostatic potentials of a group of 
anticonvulsants of various chemical types were investigated with the objective of 
identifying common features that may be related to their activities. The calculations were 
carried out with the density functional B3P86/6-31G* procedure, using HF/STO-3G*- 
optimized geometries. Analysis of several statistically based properties of the surface 
potentials indicates that the negative regions are of primary importance and that an 
optimum intermediate level of local polarity, or internal charge separation, is required. 
© 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1137-1143, 1998 

Introduction 

Anticonvulsant or antiepileptic drugs are com- 
pounds that are found clinically to help control 
epileptic seizures [1-3]. They cover a range of 
chemical categories, which act upon different types 
of convulsive disorders. For example, certain bar- 
biturates and hydantoins are effective against 
grand mal and psychomotor epilepsy, while some 
succinimides are used against petit mal epilepsy. 
The mechanisms of action of these and other anti- 
convulsants are not fully understood; one explana- 
tion for their selectivity is that they interact, ini- 
tially or finally, with different receptors. 

The interaction of a molecule with a receptor is 
an example of a "recognition" process, in which 

Correspondence to: P. Politzer. 

the receptor recognizes that the molecule has cer- 
tain key features that will promote their interac- 
tion. This occurs before any processes of bond 
breaking or bond making take place. Such key 
features have often been identified through the 
analysis of the electrostatic potential V(r) that is 
created in the space surrounding a molecule by its 
nuclei and electrons. It is through this potential 
that a molecule interacts with other systems in its 
vicinity. The affinity of a particular molecule for a 
specific receptor has been shown in a number of 
cases to depend upon the degree to which the 
electrostatic potential of the former possesses cer- 
tain characteristics that have been established as 
being necessary for effectively interacting with that 
receptor [4-11]. 

Our objective in this work was to use the molec- 
ular electrostatic potential V(r) as a tool for com- 
paring and analyzing a large group of anticonvul- 

Intemational Journal of Quantum Chemistry, Vol. 70, 1137-1143 (1998) 
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sant drugs of various chemical types. 1-6 are 
derivatives of the five-membered hydantoin ring. 
7-9 are barbiturates, related to the six-membered 
heterocycle barbituric acid; 10 is obtained from 7 
by the reduction of one carbonyl group. 11-13 are 
carbamazepine and two of its derivatives, respec- 
tively. 14 is an acetyl urea, phenacemide. 15-17 
are derivatives of the five-membered heterocycle 
succinimide, and 18-21 are an assortment of other 
types. A striking feature of most of these 21 
molecules is the prevalence of ureide and amide 
linkages, usually in cyclic form. All of them except 
5 and 6 exhibit anticonvulsant activity, to varying 
degrees [1-3]. Some also have rather severe side 
effects, including skin rashes, fever, and dizziness, 
and in the case of phenacemide (14), bone marrow 
depression and hepatocellular damage [1]. 

Our approach was to analyze the electrostatic 
potentials on the molecular surfaces of 1-21, both 
qualitatively in terms of relative patterns of posi- 
tive and negative regions and quantitatively using 
a number of statistically derived descriptors. We 
have sought to identify features of the surface 
electrostatic potentials that may be related to anti- 
convulsant activity. 

Methods 

The electrostatic potentials on the molecular 
surfaces of 1-21 were computed with the density 
functional B3P86/6-31G* procedure, using struc- 
tures optimized at the HF/STO-3G* level and the 
Gaussian 94 code [12]: 

NO, 

,N"S) HJX^O 

11 12 
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H,N^O 
13 

f2Hs 

16 

H3C 

H3O-A  

H2C    NH2 

14 

17 

-J. 
CH, 

19 

CH3 

15 

'^A ©~c£: ° 
20 

Following Bader et al. [13], the surfaces were taken 
to be the 0.001 au contour of the molecular elec- 
tronic density, p(r). 

The electrostatic potential V(r) created in the 
space surrounding a molecule by its nuclei and 
electrons is given rigorously by Eq. (1): 

V(r) 
_^A_ _ c pix')dt' 

h IR. - rl     J   |r' - rl 

Z 

A   '"A 
(1) 

ZA is the charge on nucleus A, located at R^. The 
sign of V(r) at any point r is the net result of the 
positive and negative contributions of the nuclei 
and electrons. Sites reactive toward electrophiles 
can be identified and ranked by means of the 
locations and magnitudes of the most negative 
potentials, either on the molecular surface (Vs in) 
or in three dimensions (Vmin), while the most posi- 
tive surface potentials (Vs x) play an analogous 
role for nucleophilic attack [14-17]. 

To extract additional information from the elec- 
trostatic potential on the molecular surface, we 
have introduced several statistical quantities that 
reflect its detailed pattern and physically meaning- 
ful features [18-21]. These quantities (II, at

2
0t, and 

p) are given by Eqs. (2)-(4), which involve sum- 
mations over a grid of points covering the entire 
surface: 

n = - D iv(r,.) - vs\ 
"»•=1 

1 

(2) 

— , l2 
aL = al+ a2_=-Z [v+(r{) - Vs

+\ 
m 1=1 

'tot 

n 

+ -L[V-{rj) Vc (3) 
;=i 

1 
Vs   is  the  average  potential:   Vs = — E^VCr,). 

n 
V+(ti) and V (r-) are the positive and negative 
values of V(r) on the surface, and Vs

+ and Vs~ are 

the   averages:    Vs
+  = — EfLi^+(r,)   and   Vs~ = 

1 m 

2     2 

(14) 

II is the average deviation of the potential on 
the surface; it is interpreted as a measure of the 
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local polarity, or internal charge separation, that is 
present even in molecules with zero dipole mo- 
ments, such as BF3 and para-dinitrobenzene 
[18,19,21]. a2

0t is the sum of the variances of the 
positive and negative surface potentials, a\ and 
a-2, respectively. The variance is a measure of the 
spread, or range, of a collection of values, and by 
definition emphasizes the extremes. cr\, a2, and 
a2

0t are viewed as indicating the net positive, 
negative, and total electrostatic interaction tenden- 
cies of a molecule. The effectiveness of at

2
0t can be 

increased in some instances by combining it with 
an index of "electrostatic balance." This refers to 
the degree of similarity between a^ and a2, which 
indicates the extent to which the molecule can 
interact through both its positive and its negative 
surface regions. The quantity v is a measure of this 
similarity; as crl and a2 approach each other in 
magnitude, whether they be large or small, v ap- 
proaches an upper limit of 0.250. The product vat

2
0t 

is an important term in representing properties 
such as boiling points, critical temperatures, and 
heats of vaporization and sublimation, in which 
the molecules are interacting with others of the 
same kind [18,19,21]. 

Results 

Examples of the molecular surface electrostatic 
potentials of 1-21 are shown in Figures 1-3, for 
phenytoin   (1),   phenobarbital   (7),   and   carba- 

FIGURE 1. Calculated electrostatic potential on the 
molecular surface of phenytoin (1). Potential ranges, in 
kcal/mol: (red) more positive than 30; (yellow) between 
15 and 30; (green) between 0 and 15; (blue) between 
-15 and 0; (pink) more negative than -15. 

FIGURE 2. Calculated electrostatic potential on the 
molecular surface of phenobarbital (7). Potential ranges, 
in kcal/mol: (red) more positive than 30; (yellow) 
between 15 and 30; (green) between 0 and 15; (blue) 
between —15 and 0; (pink) more negative than -15. 

mazepine (11). In general, the most positive poten- 
tials (red regions) are associated with amine, 
amide, or hydroxyl hydrogens; the most negative 
(pink regions) are due to carbonyl oxygens and/or 
nitrogen lone pairs. As seen in Figures 1-3, the 
local maxima and minima are generally in close 
proximity,   on  protruding  portions  or  ends   of 

FIGURE 3. Calculated electrostatic potential on the 
molecular surface of carbamazepine (11). Potential 
ranges, in kcal/mol: (red) more positive than 30; (yellow) 
between 15 and 30; (green) between 0 and 15; (blue) 
between -15 and 0; (pink) more negative than -15. 
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TABLE I  
Calculated molecular surface properties. 

Molecule 

area n ^ a? ^tOt ^S, max ''S, min 

(A2) (kcal / mol) (kcal/mol)2 
V (kcal / mol) 

270.0 11.72 69.6 95.5 165.1 0.244 47.4 -34.1 
249.9 11.41 43.8 93.8 137.5 0.217 43.3 -33.9 
240.3 11.64 43.6 120.4 164.0 0.195 38.6 -34.4 
301.4 10.26 18.3 105.6 123.9 0.126 17.5 -34.4 
290.7 11.19 62.9 99.0 161.9 0.238 46.7 -34.7 
297.1 13.84 92.6 86.2 178.9 0.249 50.7 -31.7 

244.7 11.03 86.7 74.2 161.0 0.248 44.7 -28.6 
262.8 10.00 50.2 75.9 126.1 0.240 43.6 -28.4 
221.4 10.79 43.3 80.9 124.2 0.227 43.1 -28.2 

Hydantoins 
Phenytoin (1) 
Mephenytoin (2) 
Ethotoin (3) 
A/,A/'-Dimethylphenytoin (4) 
p-Methylphenytoin (5) 
m-Nitrophenytoin (6) 
Barbiturates 
Phenobarbital (7) 
Mephobarbital (8) 
Metharbital (9) 
Desoxybarbiturate 
Primidone (10) 
Carbamazepines 
Carbamazepine (11) 
1-Hydroxycarbamazepine (12) 
Epoxycarbamazepine (13) 
Acetyl urea 
Phenacemide (14) 
Succinimides 
Methsuximide (15) 
Ethosuximide (16) 
Phensuximide (17) 
Others 
Diazepam (18) 
Trimethadione (19) 
Felbatol (20) 
Lamotrigine (21) 

237.7 

215.5 

12.77 

14.38 

120.7       102.9       223.7       0.248 

113.4       116.9       230.4       0.250 

43.7 

47.4 

-35.4 

259.6 11.44 44.4 105.0 149.4 0.209 33.3 -42.2 
267.0 12.36 97.6 97.4 195.0 0.250 54.3 -42.3 
262.1 11.87 55.3 110.7 166.0 0.222 35.8 -38.5 

-40.2 

236.7 10.79 22.1 88.1 110.3 0.160 21.1 -32.9 
179.3 12.78 46.2 97.6 143.8 0.218 43.6 -33.3 
225.3 12.66 27.5 116.5 144.0 0.155 23.0 -36.3 

298.5 10.08 36.3 88.2 124.6 0.206 26.9 -35.9 
177.2 13.52 17.4 90.2 107.6 0.136 20.5 -35.7 
259.9 13.71 108.4 111.2 219.6 0.250 46.4 -39.2 
249.6 12.53 99.4 94.5 193.9 0.250 38.5 -38.7 

the molecules. The computed surface properties 
of 1-21, including their areas, are presented in 
Table I. 

Discussion 

Table I contains at least three representatives of 
each of four chemical categories, plus six molecules 
of various other types. While the near-ubiquity of 
ureide and amide linkages is a common element, 
there are also substantial differences. There is a 
considerable range of sizes, the surface areas being 
between 177 and 301 A2. The molecules contain 
one to three rings, sometimes fused, which may be 
five-, six- or seven-membered, saturated or unsat- 
urated. While a heterocyclic ring appears to be a 

key structural constituent in many instances, this 
is not the case in 14 and 20. 

The positive regions of the surface electrostatic 
potentials of these molecules provide further con- 
trasts. As mentioned above, the strongest positive 
potentials, with Vs>max between 33 and 54 
kcal/mol, are produced by amine, amide, or hy- 
droxyl hydrogens. However, there are no such 
hydrogens in 4, 15, and 17-19, and their VSimax 

are, consequently, much weaker, between 17 and 
27 kcal/mol. These five molecules also have among 
the lowest <r\ and v values, indicating that the 
positive regions on their surfaces are relatively 
weak. 

On the other hand, the negative surface regions, 
while less extensive in area, are much more uni- 
form in strength. The VSitnin are all within a rela- 
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tively narrow range, -28 to -42 kcal/mol, as are 
the o\?, 74 to 120 (kcal/mole)2. [In contrast, the o-2 

are between 17 and 121 (kcal/mol)2.] It seems 
reasonable to infer that it is the negative potentials 
that are of primary importance in anticonvulsant 
activity. 

A particularly striking point of similarity among 
the molecules in Table I is the local polarity, II. In 
earlier work [18,19,22], encompassing well over 
100 molecules, mostly organic, we found II to 
vary between 2 and 24 kcal/mol; most often, how- 
ever, it is less than 10 kcal/mol. What is notable in 
Table I is that 17 of the 21 IT values are between 10 
and 13 kcal/mol and the largest overall is 14.38 
kcal/mol. Thus, the internal charge separations in 
these molecules are quite significant, but are rather 
strictly circumscribed in magnitude. This suggests 
a need for a substantial but not excessive degree of 
hydrophilic character. 

It is interesting to note that the surface electro- 
static potentials of the inactive molecules, 5 and 6, 
do not differ dramatically from those of the others. 
Their lack of anticonvulsant activity may reflect an 
interplay of several factors. For example, 5 and 6 
are among the largest molecules in Table I; only 
two others are slightly larger. Thus, steric effects 
could be involved. 5 and 6 also have among the 
highest VSmax values; this increases the possibility 
of a nonproductive interaction with some negative 
site. The inactivities of 5 and 6 might be the results 
of several such contributing factors. 

Summary 

Our investigation of the molecular surface elec- 
trostatic potentials of anticonvulsants of different 
chemical types has identified two common fea- 
tures that may be related to their activities: 

(a) Surface regions of relatively strong negative 
potentials. This suggests that the interac- 
tions with the receptor(s) involve positive 
sites on the latter, which may, for instance, 
be acting as hydrogen-bond donors. 

(b) Local polarities within a rather narrow range 
of intermediate values. This may reflect a 
need for an optimum balance between hy- 

drophilicity and hydrophobicity, such that 
the molecules be able to pass through the 
cell membrane but not enter into interac- 
tions that prevent them from reaching the 
appropriate receptoKs). 
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ABSTRACT: Higher plants use the protein phytochrome as a photosensor. In 
physiological temperatures phytochrome exists in two forms: Pr and Pfr. The chromophore 
of phytochrome is an open-chain tetrapyrrole. On the pathway from Pr to Pfr four 
intermediates (Lumi-R, Meta-Ra, Meta-Rb, and Meta-Rc) can be distinguished, while 
only two (Lumi-F and Meta-F) can be seen on the way back from Pfr to Pr. We have used 
the x-ray structure of the C-Phycocyanin protein Fremyella diplosiphon bacteria as a 
template to build a model ( ~ 200 atoms) that includes only the chromophore and five 
amino acids of the phytochrome (Arg316-Cys321-His322-Leu323-Gln324) around it. 
Using the existing experimental evidences, we have proposed a three-dimensional (3D) 
structure for Pr, Pfr, and intermediates and a mechanism for the photoisomerization as 
well. Structures were fully optimized using AMI (Unichem package on a Cray J90- 
NACAD). Using the INDO/S method of Zerner and co-workers, we calculated the 
absorption spectra of the model compounds and compared them with the experimental 
data. The oscillator strength ratio is an indicator of the chomophore conformation in 
biliproteins. The calculated spectra reproduces well the spectra of the phytochrome (Pr, 
Pfr, and intermediates) except for the lower energy band. This result is attributed to the 
small number of amino acids in the models. The calculated ratios (/vis//uv — /osc °f 
visible band over /osc of UV band and f2/f\ ~ /osc °f second absorption band over /osc of 
first absorption band) for the models match very well the experimental ratios obtained 
for the phytochrome (Pr, Pfr, and intermediates). This supports the proposed mechanism 
for the photoisomerization process.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
1145-1157, 1998 
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Introduction 

Organisms can use light in two ways: either 
to use its energy to keep its cells functioning 

or to translate optical signals into some kind of 
biological response. Among the latter, there are the 
so-called visual pigments, rhodopsins in verte- 
brates and phytochrome in higher plants. Most 
biological photosensors are photochromic, i.e., af- 
ter the initial photochemical event (a photochemi- 
cal reaction in a generally very complex biochemi- 
cal cycle), the system is restored to its initial, 
"ready" state [1] (for recent reviews on light signal 
transduction in plants, see [2-4]). Higher plants 
use only visible light for photosynthesis, but they 
respond to a much wider range of the electromag- 
netic spectrum, including the ultraviolet (UV) and 
the near-infrared (or far-red) light. Moreover, be- 
cause higher plants have developed a very sophis- 
ticated sensory apparatus, they are able to identify 
the direction and the intensity of the incoming 
light [3]. The very diverse biological responses to 
the radiation are called photomorphogenesis. 

The red/near-infrared region of the spectrum is 
recognized by photoreceptors known as phy- 
tochromes. Up to now, five phytochrome genes 
have been cloned in Arnbidopsis tlwlinnn, which 
correspond to five different proteins (phyA to 
phyE) [4, 5]. These different phytochrome 
molecules have specialized photosensory functions 
[6-8]. In this study, we will be referring to phy- 
tochrome A, the most studied phytochrome. All 
phytochrome molecules have the same basic struc- 
ture: they are biliproteins with a molecular weight 
of 124-129 kDa (1100-1170 residues) and a single 
chromophore bound to a cysteine residue in the 
~ 70-kDa N-terminal [9]. Phytochrome molecules 
exist as a dimer, with dimerization occurring 
through the C-terminal region [10]. The chro- 
mophore of phytochrome is a phycobilin, an 
open-chain tetrapyrrole [11]. In physiological tem- 
peratures, phytochrome exists in two forms: a 
red-absorbing inactive form (Pr, 660 nm) and a 
far-red-absorbing active form (Pfr, 730 nm). Satu- 
ration of the environment with 730-nm light in- 
duces a shift in the equilibrium between the two 
forms toward 99% of the Pr form, whereas satura- 
tion with 660-nm light shifts the equilibrium to 
88% of the Pfr form, thus, triggering a physiologi- 
cal response [11]. 

The primary photochemical event is a double 
isomerization at the methine bridge between the 
pyrrole rings C and D (Fig. 1) [11]. However, Z-E 
isomerization of the chromophore requires some 
space in the protein pocket for rings C and D. 
Minimum space would be required for a corota- 
tion of the single bonds between C and D rings 
(syu-anti) [12]. Furthermore, there are contradic- 
tory results between Fourier transform infrared 
(FTIR) and Raman resonance methods related to 
the protonation state of the pyrrole nitrogen of 
ring B (Fig. 1). The FTIR method shows that both 
Pr and Pfr forms are protonated, whereas the Ra- 
man resonance (RR) spectrum shows a protonated 
Pr chomophore and a deprotonated Pfr chro- 
mophore [12]. 

Since it was first discovered by Borthwick, Hen- 
dricks, and their co-workers in the 1950s [13], 
phytochrome has been studied by many spec- 
troscopy methods, including time-resolved absorp- 
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FIGURE 1. Proposed structure of the phytochrome 
chromophore in the native protein (Pr and Pfr forms) 
[11]. 
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tion (TROD) [14], fluorescence [15], circular di- 
chroism [16], FTIR [17], FT-RR spectroscopy [18], 
low-temperature spectroscopy [19], nanosecond 
laser flash photolysis [20], and femtosecond T-re- 
solved spectroscopy [21]; on the other hand, up to 
now no X-ray cristallographic structure of phy- 
tochrome has been obtained. Both the primary 
structure and some aspects of the secondary struc- 
ture of phytochrome from several different vege- 
tals have been determined [22], but because phy- 
tochrome exists in very low concentrations in 
plants, the preparation of single crystals for X-ray 
analysis remains elusive. 

From the theoretical point of view, a few at- 
tempts to study this problem have been made. In 
1993, Smit and co-workers made a force field vi- 
brational analysis of the chromophore using 
biliverdin dimethyl esters as model compounds 
[23]. Also in 1993, Scharnagl and co-workers stud- 
ied the chromophore using molecular dynamics 
and INDO-S [24] and electrostatic calculations [25] 
to develop a model of the phycoerythrocyanin 
chromophore (from phycobiliproteins obtained 
from bacteria for which some X-ray structures had 
been previously obtained). More recently, using 
semiempirical and ab initio techniques, Korkin and 
co-workers calculated some neutral and proto- 
nated pyrromethenes of biological interest [26]. 

Based on the X-ray structure of C-Phycocyanin 
protein from Fremyella diplosiphon [27], Parker and 
co-workers [28] modeled the phytochrome chro- 
mophore binding pocket. They changed 20 residues 
around the chromophore binding site of C-Phyco- 
cyanin to the corresponding residues of Avena 
phytochrome A and minimized the model using 
sophisticated matching procedures, which in- 
cluded AMI geometry optimization of the chro- 
mophore moiety. 

Relaxation products observed in the conversion 
Pr-Pfr or Pfr-Pr with different absorption spectra 
are described as intermediates. From Pr to Pfr, at 
least four intermediates can be distinguished, while 
at least two can be seen from Pfr to Pr. Figure 2 
shows schematically the phytochrome cycle, in- 
cluding the distinct intermediates as detected by 
time-resolved and low-temperature absorption 
spectroscopy [11]. 

Pr hv 

A \ 
>230K 

Lumi-R 

Meta-F 

>170K 
Us 

>180K 

Lumi-F 

\" 
hv 

Pfr 

>250K 

Meta-Ra Ibl - (bleached 
phytochrome) 

>210K 
ms 

Meta-Rc 
hv_ 

dark 
Mcta-Rb 

FIGURE 2. Schematic diagram of the photoconversion 
of the two phytochrome forms. Temperatures given are 
the minimum values for the individual relaxation steps; 
the times indicate the order of magnitude of the relaxation 
process at room temperature [11]. 

of the phytochrome is unknown. We used the 
X-ray structure of the C-Phycocyanin protein of F. 
diplosiphon bacteria [27] as a template. Then, we 
built a reduced model including only the chro- 
mophore and five residues around it. Our aim was 
to evaluate the configurational and conformational 
changes that occur on the chromophore during 
photoisomerization. We also decided to examine 
the protonation state of the intermediates and of 
the Pfr form (Fig. 2) [12]. 

The C-Phycocyanin protein coordinates of F. 
diplosiphon were obtained from the Protein Data 
Bank. The model geometries (Pr, Pfr, and interme- 
diates, ~ 200 atoms) were fully optimized using 
AMI [29, 30] with keywords GNORM = 1.0, PRE- 
CISE, within the MOP AC program version 7.0 on a 
workstation IBM RISC/6000 and the UNICHEM 
package on a Cray J90 (NACAD-COPPE-UFRJ). 

Absorption spectra were calculated using the 
INDO/S method of Zerner and co-workers [31, 
32]. Solvent effects were included using a self-con- 
sistent reaction field (SCRF) routine, with dielec- 
tric constant s = 78.54 (the chromophore selected 
is near the surface of the protein). 

Results and Discussion 

Method and Computational Details 

Due the small amount of the protein in the 
plant tissue, the three-dimensional (3D) structure 

The central point of this work is an analysis of 
the electronic absorption spectra of Avena phy- 
tochrome A (Pr and Pfr forms) and the photoprod- 
ucts observed during conversion between these 
forms [11]. As the spectra of tetrapyrroles is known 
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to be sensitive to conformation, we thought it 
worthwhile to try to use the experimental spectra 
to model the unknown conformations. The key to 
this is the empirical evidence that the ratio of the 
oscillator strength of the visible band to the UV 
(Soret) band is an indicator of the conformation of 
the tetrapyrrole chromophore [33, 34]. The five 
amino acids used served two purposes: to mimic 
the peptide chain of the protein near the chro- 
mophore and to provide the interactions (protona- 
tion or otherwise) needed to stabilize the different 
conformations which correspond to the different 
intermediates. Therefore, the first step was to de- 
velop an operational model of the phytochrome 
molecule. 

MODEL CONSTRUCTION 

In the absence of an X-ray crystal structure of 
phytochrome, among other structures of analogue 
chromophores available from PDB (Protein Data 
Bank), we selected to use C-Phycocyanin of F. 
diplosiphon as a template. The C-Phycocyanin pro- 
tein has three chromophores very similar to the 
phytochrome's chromophore (the only difference 
being in the D ring: the C-Phycocyanin chro- 
mophore has an ethyl group bound in the D ring 
instead of a vinyl group). Due to its high homol- 
ogy and because the amino acids close to the 
chromophore play the same role as in phy- 
tochrome [12], we have selected the ß unit (ß- 
CPC1) chromophore (Fig. 3). 

We started building our model with the frag- 
ment W-Cys84-Leu85-Arg86-Asp87 (W, the te- 
trapyrrole   chromophore,   is   in   the   Z,Z,Z   syn 

Bacteria   $_ Unit 
Selected aminoacid sequence 

•Arp79-....-  Cvs84 - Leu85 - Arg86 - Asp87 - 

Chromophore -<_ 

Phytochrome 
Equivalent aminoacid sequence 

-Are316 -....-Cvs321 - His322 - Leu323 - Gln324 - 
I                                     [     .o 

Chromophore  \ 
I        NH2 

FIGURE 3. Comparison of the selected amino acid 
sequence in the bacteria ß-subunit and the equivalent 
amino acid sequence in the phytochrome. 

conformation). In doing this, we took into consid- 
eration that the chromophore of phytochrome is 
similarly linked to Cys321 and that it has the same 
conformation. We then included Arg79 as a coun- 
terion to the propanoate side chains of rings B and 
C of the tetrapyrrole. A very important point is 
that full optimization of the model did not signifi- 
cantly change the conformation of the tetrapyrrole 
in relation to the X-ray structure. The root mean 
square (RMS) of superimposed structures was 1.4 
A for the C-Phycocyanin optimized model against 
the C-Phycocyanin crystal: 172 atoms superim- 
posed, H excluded [Fig. 4(a)]. This suggests that 
the five selected amino acids are sufficient to rep- 
resent the main interactions between the chro- 
mophore and the protein. 

The next step was to model the phytochrome 
chromophore. To do this, we used as a template 
the AMI optimized structure of the C-Phycocyanin 
model described above. We kept the coordinates of 
the backbone atoms of the peptide chain and of the 
chromophore and changed its ethyl group for a 
vinyl group. Next, we made the following substi- 
tutions: Cys84 is renamed Cys321, Leu85 —> 
His322, Arg86 -> Leu323, and Asp87 -» Gln324. 
We conserved the Arg79 fragment coordinates and 
renamed it Arg316. The new model was fully 
optimized at the AMI level. It is important to 
notice that this procedure did not significantly 
change the conformation of the tetrapyrrole chro- 
mophore. The RMS of superimposed structures 
was 1.3 A for the phytochrome-optimized model 
against the C-Phycocyanin crystal: 150 atoms su- 
perimposed; H excluded; superimposition back- 
bone only, except for the Arg and Cys, which are 
conserved in both structures [Fig. 4(b)]. As men- 
tioned above, we took this as a confirmation that 
the five selected amino acids in the C-Phycocyanin 
protein play the same role as the equivalent amino 
acids in phytochrome. 

Asp87 is supposed to balance the positive charge 
of the protonated chromophore in the C-Phyco- 
cyanin protein. However, no aspartate is found in 
the corresponding position of the phytochrome 
sequence. As the phytochrome is believed to be 
protonated, at least in the Pr form [18], the positive 
charge must be balanced by an aspartate or gluta- 
mate further away from the chromophore [12]. If 
this is the case, then the conformational changes 
that occur during later stages of the phototransfor- 
mation could remove the negative charge from 
near the chromophore, and hence lead to deproto- 
nation. 
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FIGURE 4. (a) Superimposed structures of the C-Phycocyanin-optimized model (green) against the C-Phycocyanin 
crystal (gray), (b) Superimposed structures of the phytochrome-optimized model (green) against the C-Phycocyanin 
crystal (gray). 
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A POSSIBLE MECHANISM FOR THE 
PHOTOCHEMICAL CYCI,K 

Nuclear magnetic resonance (NMR) and RR 
studies have shown that the Pfr form has ZZE anti 
configuration and is deprotonated [11]. Besides, 
these techniques have shown that the first interme- 
diate (Lumi-R) on the pathway Pr -> Pfr has a 
ZZE anti configuration and that there are modifi- 
cations on the hydrogen bonding network involv- 
ing interactions of the N-H groups of rings B and 
C with the protein environment [18]. Therefore, 
the first photochemical event would be the ZZZ 
syn-ZZE anti isomerization. Raman resonance 
studies have also shown that the primary photo- 
chemical event on the pathway Pfr -> Pr is the 
double-bond reisomerization at the methine bridge 
C-D, i.e., the reversal of the photoreaction of Pr 
[18]. So, the first intermediate (Lumi-F) on the 
pathway Pfr —> Pr has ZZZ syn isomerism. An- 
other RR study has shown that the proton release 
on the pathway Pr -» Pfr occurs between the 
Lumi-R intermediate and Meta-Ra intermediate 
[35]. 

Based on such experimental evidences and on 
the schematic photochemical cycle, first proposed 
by Eilfeld and Rüdiger [36], we propose a possible 
mechanism for intermediate conversion. We, then, 
proceed to model this mechanism. 

The sequence starts with the protonated phy- 
tochrome in its Pr form, which has ZZZ syn con- 
figuration [18]. Its positive charge is balanced by 
either an aspartate or glutamate ion hydrogen 
bonded to the N+-H group of ring B and N-H 
group of ring C. The primary photochemical event 
is the absorption of red light (~ 660 nm) leading to 
ZZZ syn —> ZZE anti isomerization (Fig. 5). Steric 
hindrance between ring D and the negative amino 
acid residue disrupts the hydrogen bond (HB) 
network by moving the amino acid farther. To 
counterbalance the positive charge, the carbonyl 
group of Gln324 approaches and restores the HB 
network, thus forming the first intermediate 
(Lumi-R). Proton transfer from the N+-H group 
of ring B to the carbonyl oxygen of Gln324 
(N---H + 0=C) generates the second intermediate 
(Meta-Ra). A subsequent proton transfer to the 
negative amino acid displaced in the first step 
generates the Meta-Rc intermediate. We believe 
that the major differences between Meta-Rc, Meta- 
Rb, and Pfr are conformational because in all three 
intermediates the chromophore is deprotonated, 
with Pfr as the most stable of the three. 

The other leg of the cycle starts with the Pfr 
form. Under far-red light (730 nm) ZZE anti -* 
ZZZ syn isomerization occurs. Steric hindrance 
from ring D is released and the neutral amino acid 
generated in the forward leg can reprotonate the 
nitrogen atom of ring B. The main differences 
between the intermediate Lumi-F and Meta-F are 
probably the conformation of the tetrapyrrole chro- 
mophore and the position of the neutral amino 
acid. In the case of Lumi-F and Meta-F, the amino 
acid is probably neutral and hydrogen bonded to 
the nitrogen atom of ring B, at least in the Meta-F 
intermediate (—O—H---N). As the temperature 
increases to 230 K (Fig. 2), the structure relaxes 
and complete proton transfer occurs (—0~--- 
H— + N), closing the cycle (Fig. 5). 

MODELED INTERMEDIATES 

Having thus rationalized the chemical transfor- 
mations which occur upon photoisomerization, in 
order to establish the feasibility of our proposal, 
we proceeded to calculate the pertinent structures 
at the AMI level. To simplify, we used an acetate 
as a probe instead of an aspartate or a glutamate. 
We started with our model of the Pr conformation, 
and after full optimization of the most stable con- 
formation, we obtained the acetate anion hydrogen 
bonded to the chromophore. Next, we calculated a 
structure forcing ZZZ syn —> ZZE anti isomeriza- 
tion and took the acetate group away from the 
chromophore. After full optimization, we obtained 
a structure in which the carbonyl oxygen of Gln324 
replaced the acetate group as hydrogen bond ac- 
ceptor, as expected for the Lumi-R intermediate. 
We transferred the proton from the chromophore 
(protonated nitrogen of ring B) to the carbonyl 
oxygen of Gln324 and fully optimized this inter- 
mediate (Meta-Ra). We saw then that there were 
no relevant hydrogen bonds in the model. The 
next step was to force proton transfer from Gln324 
to the acetate probe. The fully optimized structure 
corresponds well to the expected structure for the 
Meta-Rc intermediate. The nitrogen of ring C, the 
acetic acid probe, and the carbonyl oxygen of 
Gln324 are hydrogen bonded. In order to build a 
putative Meta-Rb structure and restore the Pfr 
model, conformational changes and hydrogen 
bonds on the Meta-Rc model were necessary. To 
construct a model of Lumi-F from Pfr, we had to 
force the isomerization ZZE anti —> ZZZ syn and 
to approach the protonated acetic acid to the nitro- 
gen of ring B. After full optimization, we obtained 
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Pr 

t I 
Cys(321) 
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Pfr, Meta-Rb, Meta-Rc 

FIGURE 5. Proposed mechanism for the phytochrome intermediates (P = CH2CH2COO "). 

a stable structure that we assigned to Lumi-F. In 
this intermediate the hydroxyl oxygen of acetic 
acid is hydrogen bonded to the N-H group of ring 
C (N—H—O—H). To build the Meta-F model, we 
had to force a hydrogen bond between the hy- 

droxyl group of the acetic acid and the nitrogen of 
ring B. After full optimization, the carbonyl oxy- 
gen of the probe was hydrogen bonded to the 
N-H group of ring C (C=0—H—N), and the 
hydroxyl group of the probe was hydrogen bonded 
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FIGURE 6. Relevant hydrogen bonds of the fully optimized Pr, Pfr, and intermediate models. 
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to the nitrogen of ring B (N---H—O). Complete 
proton transfer from Meta-F restored the original 
Pr model, thus closing the cycle. Figure 6 shows 
the relevant hydrogen-bonding network of the in- 
termediates. Figures 7-10 show the fully opti- 
mized AMI 3D structures of Pr, Pfr, and interme- 
diates. 

Table I shows the principal dihedral angles of 
the fully optimized phytochrome and intermedi- 

ates forms and also of the C-Phycocyanin protein 
X-ray structure. These results show that the fully 
optimized ZZZ syn models (Pr, Lumi-F, and Meta- 
F model) have almost the same C-Phycocyanin 
X-ray structure conformation. This again suggests 
that the amino acid sequence in the C-Phycocyanin 
protein plays the same role as the equivalent amino 
acid sequence in the phytochrome. Moreover, be- 
cause of the syn-anti conformational change, the 

Pr model 
Meta-Ra model 

Lumi-R model Meta-Rc model 

FIGURE 7. Fully AM1 optimized 3D structures of Pr FIGURE 8. Fully AM1 optimized 3D structures of 
and Lumi-R. Meta-Ra and Meta-Rc. 
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Meta-Rb model 

Pfr model 

FIGURE 9. Fully AM1 optimized 3D structures of 
Meta-Rb and Pfr. 

Lumi-F model 

Meta-F model 

FIGURE 10. Fully AM1 optimized 3D structures of 
Lumi-F and Meta-F. 

only difference between the ZZZ syn and ZZE anti 
configuration (Lumi-R, Meta-Ra, Meta-Rb, Meta- 
Rc, and Pfr model) in the phytochrome models 
besides the double-bond dihedral angle (Z-E iso- 
merization) is the y dihedral angle. 

ELECTRONIC SPECTRA 

To further support our proposal, we calculated 
the electronic spectra of the above phytochrome 

models and compared them with the experimental 
(UV-Vis) spectra of Pr, Lumi-R, Meta-Ra, Meta-Rb, 
Meta-Rc, Pfr, Lumi-F, and Meta-F [11]. Here, it is 
important to calculate the position of the absorp- 
tion bands, but it is more important to obtain the 
oscillator strength ratio of the visible to the UV 
(Soret) bands and the oscillator strength ratio of 
the second absorption band to the first absorption 
band. These ratios are considered indicators of the 
conformation of the tetrapyrrole rings in bilipro- 
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TABLE I  
Conformation of proposed models. 

-Cys(321> 

STRUCTURE «(") /3(°) y(°) 

Crystal structure (bacteria) 158.0 0.5 143.0 
Pr model 129.2 -1.0 145.0 
Lumi-R model 130.5 -1.7 -59.2 
Meta-Ra model 132.7 -10.8 -25.3 
Meta-Rb model 130.6 -3.0 -74.6 
Meta-Rc model 139.9 -3.5 -66.5 
Pfr model 141.2 -6.5 -60.9 
Lumi-F model 140.1 3.1 143.4 
Meta-F model 140.4 -5.2 134.7 

teins and in the free chromophores. When the 
chromophore conformation is extended, the fvis/ 
/uv ratio is over 3.0; when it is semicyclic or 
semihelical, the /Vis//uv rati° *s between 0.8 and 
2.0; when it is cyclic or cyclohelical, the /Vis/fuv 
ratio is ~ 0.4; and, finally, when the chromophore 
conformation is cyclic, the /Vis//uv rati° is "~ 0-15 
[28], 

Table II shows the calculated absorption spectra 
of the phytochrome models (Pr, Pfr, and interme- 
diates). Calculations show three systems of peaks 
of mainly ir character, which correspond to the 
experimental spectrum of phytochrome obtained 
by Thiimmler and Rüdiger [11]. The two band 
systems of higher energy are in very good agree- 
ment with the observed spectra. The low energy 
band, however, shows only poor agreement. This 
might be due to the size of the model we have 
chosen since only five amino acid residues would 
hardly account for all field effects found in the 
chromoprotein. There is experimental evidence 
supporting this latter hypothesis [34, 37-39]. 

As stated above, the oscillator strength ratio is 
considered an indicator of the chromophore con- 
formation in biliproteins [28]. Here, we used the 
experimental oscillator strength ratio of the second 
absorption band over the first absorption band 

TABLE II  
Comparison of spectroscopic data (UV-Vis) with the calculated spectra of the proposed models. 

Form i>(1) (cm-1) v{2) (cm" v(3) (cm"1) 

pra 

Pr model 
Lumi-Ra 

Lumi-R model 
Meta-Raa 

Meta-Ra model 
Meta-Rba 

Meta-Rb model 
Meta-Rca 

Meta-Rc model 
pfra 

Pfr model 
Lumi-Fa 

Lumi-F model 
Meta-Fa 

Meta-F model 

14,992 
19,607 
14,430 
20,408 
15,082 
20,202 
15,037 
21,459 
13,793 
20,618 
13,495 
20,894 
14,858 
21,141 
15,151 
21,052 

26,315 
28,653 
26,041 
27,472 
25,906 
28,011 
26,315 
26,041 
25,839 
25,252 
24,813 
26,659 
25,773 
27,700 
26,246 
26,954 

35,714 
37,453 

n.a. 
36,101 

n.a. 
34,013 

n.a. 
35,087 

n.a. 
34,482 
35,714 
34,746 

n.a. 
38,610 

n.a. 
34,364 

'Experimental spectra [11]: (1), first absorption band; (2), second absorption band; (3), third absorption band. 
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TABLE III  
Comparison of experimental and calculated oscillator 
strength ratio.3 

Form V'i 'VIS'MJV 

Pr 1.10 
Pr model 0.70 
Lumi-R 0.86 (0.73) 
Lumi-R model 0.83 
Meta-Ra 1.37(1.24) 
Meta-Ra model 1.01 
Meta-Rb 2.29(2.16) 
Meta-Rb model 2.93 
Meta-Rc 1.45(1.32) 
Meta-Rc model 1.73 
Pfr 1.10(0.97) 
Pfr model 1.70 
Lumi-F 1.02 (0.89) 
Lumi-F model 0.78 
Meta-F 1.15(1.02) 
Meta-F model 0.72 

aWfuV-V('2+f3)- The values in p 

1.36 
1.25 
n.a. 
n.c. 
n.a. 
n.c. 
n.a. 
n.c. 
n.a. 
n.c. 
0.88 
0.72 
n.a. 
n.c. 
n.a. 
n.c. 

0.13, the contribution of the equilibrium Pr-Pfr. 

(/2//1HII] and the experimental oscillator strength 
ratio of the visible band (first absorption band, fx) 
over the UV band (second absorption band, f2, 
plus third absorption band, /3) (/Vis//uv) [28]. 
Saturation with 660-nm light shifts the equilibrium 
to the 88% Pfr form [1]. As a result, we discounted 
this contribution from the intermediates f2/f\ ra- 
tio and from the Pfr f2/f\ ratio. The /Vis//uv rano 

of Pfr was obtained excluding the Pr contribution 
[28]. Therefore, we concluded that the oscillator 
strength ratios calculated for the phytochrome 
models (Pr, Pfr, and intermediates) are in good 
agreement with the experimental results (Table 
III). 

Concluding Remarks 

Except for the lower energy band, the calculated 
spectra reproduce well the spectra of the phy- 
tochrome (Pr, Pfr, and intermediates). This result 
is attributed to the small number of amino acids 
included in the models (five amino acids + 
chromophore). 

The calculated ratios (/Vis//uv and /2//1) f°r 

the models match very well the experimental ra- 
tios obtained for the phytochrome (Pr, Pfr, and 
intermediates). This supports the proposed mecha- 
nism for the photoisomerization process. 
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ABSTRACT: We follow the initial activation of the nitrogen molecule at the FeMo 
cofactor of nitrogenase and subsequently model the hydrogenation of N2 up to the fourth 
protonation step using the intermediate neglect of differential overlap quantum-chemical 
model. The results obtained favor a reaction mechanism going through hydrazido 
intermediates on the 4-Fe surfaces, externally to the FeMo cofactor. Calculations using 
density functional theory on smaller model systems also support the suggested 
mechanism over other possible schemes that involve early release of the first molecule of 
ammonia as a product of the enzymatic reaction. We also demonstrate that dielectric 
stabilization due to the protein around the cofactor could lower markedly the barrier for 
the product release as an ammonium ion.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 
70: 1159-1168, 1998 

Key words: nitrogenase; nitrogen fixation; INDO; DFT, PM3tm 

INTRODUCTION 

The mechanisms of biological nitrogen fixation 
(nif) have been a challenge for scientists for 

over a hundred years, following the discovery of 
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the bacterial process by Hellriegel and Willfart in 
1886 [1]. Much of the interest in this area stems 
from the important role that nitrogen compounds 
play in biology and commerce and that no indus- 
trial process exists that competes well with nature. 
The interest in this area has increased dramatically 
in the last several years after the solution of the 
X-ray structure of the enzyme nitrogenase (N2ase) 
at near-atomic resolution for different nif-type bac- 
teria [2-4]. Various types of nitrogenases (FeMo, 
FeV, and Fe only) have been reported exhibiting 
similar chemistry [3]. Among other similarities, the 

International Journal of Quantum Chemistry, Vol. 70, 1159-1168 (1998) 
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presence of a six-atom prism built of coordination- 
ally unsaturated Fe atoms at the center of the 
metal cofactor has been the primary target of theo- 
retical speculation on the possible mechanism that 
involves the interaction of the substrate(s)—N2 

and a number of other small molecules—with the 
metal cluster [2-4]. Several theoretical models were 
examined and reviewed critically in the literature 
in the last few years [5-18]. 

In previous works [8, 9] we have proposed and 
examined a theoretical model for the active site of 
Azotobacter vinelandii FeMo cofactor based on the 
experimental structure by Rees et al. [2], spectro- 
scopic evidence for the ground electronic state of 
the cluster and the intermediate neglect of the 
differential overlap (INDO) as a theoretical method 
[8]. We have shown that the initial activation of 
the N2 molecule inside the cofactor is favored [8] 
and the access of the substrate to the cluster inte- 
rior can be further facilitated by the electron addi- 
tion to the cofactor prior or during the enzymatic 
reaction [9, 10]. We have compared two possible 
models for the active site having 39 and 41 open- 
shell electrons and have shown that these two 
models produce very similar results [8, 9]. The 
spin distributions within the native, reduced, and 
oxidized forms of the FeMo cofactor were also 
examined using the projected unrestricted Har- 
tree-Fock (PUHF) methodology [9] implemented 
recently in the ZINDO program [11] and have 
reproduced to a good extent the available experi- 
mental data, pointing to a significant delocaliza- 
tion of the electron density over the metal open 
shells (d-orbitals), and the existence of two distinct 
groups of unpaired spin on the Fe atoms coupled 
anti-ferromagnetically through the three yu.-sulfur 
bridges [9]. 

In this work we examine further the above 
theoretical model [8] in attempts to provide infor- 
mation on the reaction intermediates that can pos- 
sibly form during the hydrogenation of the acti- 
vated N2 molecule. As in our previous work we 
use the INDO model in the restricted open-shell 
Hartree-Fock (ROHF) approximation and the 
model structure discussed in detail earlier [8]. 
Density functional theory (DFT), employing the 
Becke-Lee-Yang-Parr (BLYP) functional [12] and 
a double-zeta basis set (DZVP) with polarization 
including the Turbomole program [13], supple- 
ment parts of this work, especially in the cases 
where a preference is given to a particular inter- 
mediate over other possible structures. 

Results and Discussion 

Several nif reaction schemes have been pro- 
posed and discussed in the literature [4]. Among 
them, the reaction model by Thorneley and Lowe 
[14] has been well established based on kinetic 
studies of the reaction. This model suggests the 
early release of the first ammonia molecule as a 
most probable event in the course of the nif reac- 
tion. Other schemes have also been studied by 
Coucouvanis and co-workers [15] on the basis of 
model Mo/Fe/S compounds showing a particular 
reactivity with hydrazine and leading to its reduc- 
tion to ammonia in which the heteroatom (Mo or 
V) plays an important role. As N2H4 is on the 
nitrogen fixation reaction path [16], it could be that 
the biological process may turn to the formation of 
hydrazine (fully or only partly) during the reac- 
tion. Studies on model nif-Fe/S complexes done 
by Sellmann and Sutter [17] also point strongly to 
such a possibility. In addition, chemical quenching 
of the bacterial nif reaction does, indeed, show the 
presence of hydrazine [14]; however, the observed 
N2H4 can also be formed from N—NH2 or N=NH 
intermediates when a strong acid or base is used 
to halt the nif reaction and intercept the intermedi- 
ates. Other types of nitrogenase, such as the FeV 
type with a similar structure [3], also produce 
N2H4 as a regular product of the bacterial nif 
reaction. 

In any case, the reaction mechanism is presently 
unclear. 

Figure 1 shows the catalytic cycle of the N2 

fixation process the way we model it through 
single H steps. It starts and ends with the bare 
model cofactor and involves, as a first step, the 
incorporation of the N2 molecule in the cluster 
interior where it forms multiple Fe—N bonds with 
the six irons of the central prism, as shown in 
Figure 2. The number of metal-nitrogen bonds, 
however, may vary given the substrate mobility 
and the dynamics of the system due to vibrations 
or electron transfer to the active site which we 
studied in some detail [8, 9]. Spatial limitations, 
however, do not allow the cluster at its present 
structure to accommodate any of the intermedi- 
ates, and we find further stages of the hydrogena- 
tion process to occur outside the cofactor, predom- 
inantly on the 4-Fe face described by Dance [6]. 
Besides the largest contact area provided by this 
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H++e" 
H++e" 

H2 
N2 

NH3 

H++e- 

4..FeN-NH 
4..FeN=N 

^ 

a. M0..NH2 + NH3 «*- 

b. 4..FeNH2 

a. 4..FeNH-NH 
b. 4..FeN-NH2 

a. 4..FeNH-NH2 
b. 4..FeN + NH3 

a. 4..FeNH2-NH2 
b. 4..FeNH 

H++e- 

V 
b?i* 

NH3 

a? 

NH3 H++e- 

 7^ 
a? 
1 

NH2-NH2 H++e- 

2H+ + 2e" 

FIGURE 1. A schematic for the reaction N2 + 8H++ 8e~-> 2NH3 + H2 catalyzed by the enzyme nitrogenase. In the 
present modeling, the evolution of H2 has not been examined. It is tempting to speculate, however, that these added 
protons that eventually evolve as H2 are used to free the Mo binding site for hydrazine migration. 

His-442 
Cys-275 

Homocitrate 

FIGURE 2. The FeMo cofactor and the nitrogen molecule attached to it, see Refs. [2, 8]. 
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4-Fe site (compared to the other two 4-Fe faces), it 
is also less crowded by the protein environment 
(nearest residue Arg-359) as seen from the experi- 
mental structure [2] and discussed widely in the 
literature [4, 5]. The protein and the cluster dy- 
namics may, however, modify the picture signifi- 
cantly and allow for intermediates located on the 
two other alternative 4-Fe places that are available 
in the cluster. 

Figure 3 shows the minimized positioning of 
the first N—NH intermediate on the FeMo cofac- 
tor surface. The structure has been obtained after 
the addition of an electron to the initially activated 
cofactor-N2 system and subsequent protonation of 
the N2 molecule. Although we find occasionally a 
small difference between the structures obtained 
after the addition of an H atom to the model 
system and that obtained via three-step hydro- 
genation (electron addition, relaxation, and proto- 
nation), we prefer the latter type of modeling, as it 
seems more natural and is supported by experi- 
mental   findings   implying   similar   sequence   of 

events in Fe/S systems [18]. As in our previous 
work [8], we allowed for a complete freedom of 
movement of the substrate around the cofactor 
and we used the configuration-averaged 
Hartree~Fock methodology in its ROHF form to 
obtain the pure spin states [19]. The geometry 
optimizations and the relative energies that follow 
from them were calculated using the default set of 
geometric parameters in ZINDO, while the re- 
ported electronic properties are obtained using the 
spectroscopic model (INDO/S) on the relaxed 
structures. We have applied this approach success- 
fully in a number of studies [20]. 

The calculated geometric and electronic proper- 
ties (distances, atomic charges, bond indices) for 
the intermediates that we calculate in this work 
are summarized in Table I. As seen in this table, 
the charge on the nitrogen atoms remains negative 
and declines during the hydrogenation, due to the 
charge transfer from the metal rf-orbitals into the 
77* orbitals on the N2 system. The hydrogenation 
has a relatively small effect on the N—N bond, 

His-442 
Cys-275 

Homocitrate 

FIGURE 3. The most favored position of the N^ intermediate on the 4-Fe face of the obtained after energy 
minimization of the substrate. 

TABLE I  
Calculated N-N bond lengths (Ä), Mulliken charges on the two nitrogen atoms, g(N), and the N-N Wiberg 
bond index (b.i.) between the N atoms for the reaction intermediates obtained after a geometry optimization. 

System AK QK) <7(N2 N—N b.i. 

FeMo + N2H0 1.263 
FeMo-fN^ 1.367 
FeMo+N2H2 1.364 
FeMo+N2H3 1.371 
FeMo+N2H4 1.370 

-0.486 
-0.544 
-0.407 
-0.281 
-0.298 

-0.385 
-0.216 
-0.176 
-0.149 
0.048 

0.999 
0.947 
0.951 
0.969 
0.952 

1162 VOL. 70, NO. 6 



HYDROGENATION STEPS OF NITROGEN MOLECULE 

however, as judged from the equilibrium N—N 
distances and bond indices shown in Table I. This 
is not unexpected as the final intermediate exam- 
ined in this work, hydrazine, is a stable compound 
with a relatively long N—N bond (1.47 A). The 
intermediate obtained on the surface of the cofac- 
tor has a shorter N—N bond (1.37 A), most proba- 
bly due to specific bonding to the metal surface. 

As further seen from Figures 3-6, the N2H.,. 
intermediates tend to form stable configurations 
on the same 4-Fe face of the FeMo cofactor, and, 
most importantly, symmetrically hydrogenate the 
N—N molecule over other possibilities that in- 
volve sequential attachment of the H atoms to 
preferentially one N atom. This is a very important 
observation which, if proven true, may speak in 
favor of a dominant path for the nif reaction going 
through hydrazido intermediates rather than re- 
leasing the first ammonia at the third protonation 
step. This problem has been given some attention 
in the literature using model systems [22], and 
there are indications that the addition of three 
protons may lead to the formation of NH-NH2 

intermediates rather than N-NH3. Our calcula- 
tions, summarized in Figure 7, support this idea, 
showing increasingly higher energy differences be- 
tween the N2HX isomers with the increase of x. 
Large barriers are expected to exist for the release 
of the first ammonia at the third and even fourth 
protonation steps, typically over 200 kcal/mol. Al- 
though seemingly high (ZINDO is known to 
overbind, often by a factor of 2-3) the calculated 
energy differences clearly indicate that hydrazine 
should be formed, provided the cluster and the 

protein relaxation effects are assumed to be small. 
The latter effects are difficult to estimate because 
the size of the system makes optimizing all struc- 
tures completely a task almost impossible, even 
for a semiempirical method such as ZINDO. We 
have tried, however, at least to verify the energy 
differences between the N2H2 isomers using more 
reliable theories on smaller model systems. Table 
II, for example, shows the contribution to the total 
energy difference between the two N2H2 isomers, 
which comes from the intermediate alone. The 
calculations, done at various levels of theory, show 
that the NH-NH has a considerably lower energy 
ground state as that of the the N-H2 analog and 
that the metal system in fact contributes to de- 
creasing this difference to approximately -20 
kcal/mol; see Figure 7. The same observation holds 
obviously for the N2H3 intermediates where the 
energy difference is even larger, - 90 kcal/mol, in 
favor of the NH-NH 2 form (Fig. 7). The consis- 
tency of the results we obtained using the much 
faster ZINDO model and the more accurate DFT- 
ACM (B3LYP) and ab initio MP2 models (Table II) 
gives us some confidence in proceding with the 
former. 

We have tried to further verify at least the trend 
for the above-mentioned energetics using DFT 
similar to that explored by others [23], the BLYP 
functional and the DZVP basis set. We used a 
bimetallic Fe cluster (Fig. 8) to model part of the 
3-coordinated Fe site and the preferential attach- 
ment of the N2HX intermediates to it. The calcula- 
tions have been done using the Turbomole DFT 
program [13]. Full geometry optimizations were 

His-442 
Cys-275 

Homocitrate 

FIGURE 4. The most favored position of the N2H2 intermediate on the 4-Fe face of the obtained after energy 
minimization of the substrate. 
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His-442 
Cys-275 

Homocltrate 

FIGURE 5. The most favored position of the N2H3 intermediate on the 4-Fe face of the obtained after energy 
minimization of the substrate. 

done to include the effects of the Fe-S-Fe relax- 
ation. The results obtained confirm the ZINDO 
observations qualitatively, though the energy dif- 
ferences are much smaller than those obtained 
from the semiempirical calculation: -6.1 kcal/mol 
for the N2H2 isomers and -4.6 kcal/mol in the 
case of N2H3 intermediates from the DFT calcula- 
tions, compared to -39.7 and -56.2 kcal/mol, 
respectively, for the ZINDO calculations. Poor DFT 
energy convergence in the case of N2H4 interme- 
diates did not allow an estimation of the differ- 
ences between them. The ZINDO results give a 
preference for the NH2-NH2 over NH-NH3 by 

-93 kcal/mol on the 2-Fe model system. Compar- 
ing the DFT and the ZINDO results on this 
metal-substrate model, we observe a significant 
difference, 7 to 9 times for the first two couples of 
isomers above, between the calculated energy dif- 
ferences (in absolute value) obtained using ZINDO 
for the same DFT optimized structures based on 
the 2-Fe model calculations. It is difficult to say 
whether these differences, in the scale of the ener- 
getics, stem from overbinding in INDO, or under- 
binding in DFT, or both. Perhaps more elaborate 
approaches can reveal the origin of this effect, but 
as far as the trend is concerned, both methods 

His-442 

Homocltrate 

Cys-275 

FIGURE 6. The most favored position of the N2H4 (hydrazine) intermediate on the 4-Fe face of the obtained after 
energy minimization of the substrate. 
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Mo/Fe/S 

No 

4-6-Fe-N-N 

I   H 

4-Fe--N-N-H 

4-Fe--N-NH2    ►   4-Fe--NH-NH 
-20 kcal/mol 1 

H H 

4-Fe--N-NH3 
i 

+200    % -NH3 
kcal/mol  ! 

t 
4-Fe--N 

-90 kcal/mol 

-NH3 * 

4-Fe--NH-NH2 

/ H 

4-Fe-NH -+ X 4-Fe--NH-NH3 -#* 4-Fe--NH2-NH2 
+230 unstable 
kcal/mol H 

MO--NH2-NH2 

-NH, 

Mo--NH2 

4-Fe--NH2 -*  4-Fe-NH2-NH3 
-NH, 

H 

-NH 3 

4-Fe~NH3 

-NH3! 

Mo/Fe/S 

H 

4-Fe~NH3-NH3 
-2NH3 

FIGURE 7. Calculated energy differences between the substrate isomers as intermediates and the favored reaction 
path (in bold) suggesting the nif reaction going through hydrazido intermediates. 

TABLE II  
Calculated energy differences, A£HNNH_NNH2 (kcal/mol), between the HN—NH and N—NH2 fragments using 
various methodologies.3 

ZINDO MOPAC DFT ACM HF MP2 

-39.7 -33.2 -36.2 -35.5 -23.3 -48.0 
aACM stands for the adiabatic connection model (here B3LYP), HF are all-electron ab initio calculations. The nonempirical 
calculations utilize DZVP basis set. MOPAC calculations were done using the AM1 Hamiltonian. The BLYP functional is used in the 
DFT calculations. 
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Ü j 

FIGURE 8. The model 3-coordinated bimetallic Fe site 
used to compare the DFT and INDO calculations. 

predict more stable hydrazido over nitrido inter- 
mediates, which is the main target of the present 
study. 

Even if we assume that hydrazine is formed as 
a reaction intermediate, several difficult questions 
remain unanswered at this stage of our study: 
Does the substrate stay and get further reduced to 
ammonia at this particular 4-Fe site? How mobile 
is the NJHJ system and can it leave and reattach 
to a different metal site? How, indeed, can one 
break even a single N—N bond under these condi- 
tions given the relative stability of the calculated 
N—N bonding parameters with respect to hydro- 
genation? Are charged species, such as NH|, in- 
volved in the dissociation and to what extent can 
they contribute to it? What is the role of the 
protein environment in the dissociation process? 

We would like to speculate on this process. 
Table III gives the sum of the calculated bond 

indices for the four intermediates and the FeMo 
cofactor. It includes also the hydrogen bonding 
between the H atoms and the sulfurs present at 
the 4-Fe face where the intermediate stabilization 
occurs. We observe that the binding between the 
substrate and the FeMo cofactor decreases sharply 
with the hydrogenation process; this could lead to 
desorption of the hydrazido intermediates from 
the surface of the cofactor, as recently suggested 
by Coucouvanis and co-workers [15] examining 
the reduction of hydrazine on similar (mono- 
cubane) Mo/Fe/S compounds. This idea is illus- 
trated in Figure 9 and finds support through the 

TABLE 
Sums of the calculated Wiberg bond indices between 
the N2H2 intermediates and the FeMo cofactor.8 

System 2N—FeMo xH. Total 

FeMo + N2H0 4.471 0.000 4.471 
FeMo + NgH, 4.018 0.012 4.030 
FeMo + N2H2 3.207 0.033 3.240 
FeMo + N2H3 1.203 0.109 1.312 
FeMo + N2H4 0.655 0.134 0.789 

aThe hydrogen bonding indices between the H atoms of the 
intermediates and the S-atoms of the cofactor are also 
added to form the total bond index. The later is used as a 
measure the holding force between the FeMo cluster and 
the reaction intermediates, see also text. 

Cys-275 

Homocitrate 

FIGURE 9. Speculated migration of the hydrazine substrate, alone or upon protonation, suggested by Coucouvanis 
and co-authors; see Ref. [15]. 
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decrease of the Fe—N bond orders we observe 
and the relatively small H-bonding effects that 
contribute to it. To date, we are unable to find a 
more favorable site for the hydrazine, either at the 
Mo atom or elsewhere. As shown in a previous 
study [9], the Mo atom could open its environment 
with the addition of electrons to the FeMo cofactor. 
If this happens, structural rearrangement of the 
Mo coordination could be favored, either through 
a temporary detachment of the His-442 end or the 
carboxyl O atom bonded to the Mo, both prone to 
bond weakening upon reduction [9]. It is also 
possible that the two carboxyl groups present in 
the homocitrate group are protonated, detaching 
from Mo coordination, and thus play a central role 
in the reduction [15]. Further addition of electrons 
could then evolve hydrogen and regenerate the 
original Mo environment. In addition to these con- 
siderations, environmental effects may play a cru- 
cial role. The latter can be modeled, to a certain 
extent, using a reaction field as a substitute for the 
rest of the protein system. We have seen in a 
previous study [8] that the reaction field has no 
significant effect on the reaction profile of the N2 

attachment to to FeMo cofactor, and this is easy to 
believe given the fact that the reaction takes place 
mostly in the interior of the cofactor and there are 
no changes in net charge species involved in it. 
The formation and release of ammonia, however, 
especially externally to the cofactor, could be 
greatly affected by the protein surroundings. Also, 
N—N bond breakage either may result in neutral 
species, with ammonia as a product of the reac- 
tion, or NH4 might be released instead. Small 
charged species are especially stabilized in the 
protein (dielectric) environments. The flow of pro- 
tons to the FeMo cofactor can greatly contribute to 
the latter release. The net media effect of the reac- 
tion leading to the formation of ammonium ion 
can be estimated (Scheme 1) from our reaction 
field calculations to be as much as 36 kcal/mol, 
quite enough to promote the breakage of the al- 
ready weakened ... N—N... bond. The last dif- 
ference originates from the magnitude of the two 
leading electrostatic terms in the reaction field 
expressions, the charge, or Born term, and the 
dipole moment, or Onsager term [21]. The dielec- 
tric constant e (set equal to 4 in this case, closer to 
similar estimates for proteins [24]) has a much 
smaller effect on the energetics of neutral species, 
as can be seen from the two expressions in Scheme 
1. We thus point out that dielectric stabilization 

M-N^ 

-U-l/e).q2/2a0 

M-NH NH, 

AG. solv -40.3 kcal/mol 

M-N^ j M-NHj NH 3/ 

-{(e-l)/(£+0.5)}.|a2/2a^ AGSO1V= -4.1 kcal/mol 

SCHEME 1. The effect of dielectric relaxation on the 
reaction energetics with charged and neutral species as 
reactants and products. A spherical cavity self-consistent 
reaction field model [21 ] was used to model the solvent 
(e = 4 for the protein). The formulas indicate the leading 
term in the electrostatics; q is the Coulomb charge and 
/A is the dipole moment. 

due to the presence of the protein surrounding the 
cofactor may contribute measurably to the N—N 
cleavage needed for the release of ammonia, in 
this case as an ion. We are presently examining in 
much greater detail the final stages of the process. 

Conclusions 

On the basis of the present theoretical model, 
we suggest that the biological nitrogen fixation, 
believed to take place at the M cluster of nitro- 
genase, should preferentially lead to the forma- 
tion on hydrazido intermediates along the NN -» 
NNH -» NHNH -» NHNH2 -> NH2NH2 path. 
We further speculate upon the release of NH4. 
The formation of the ammonium ion is suggested 
as an aid to the final N-N cleavage due to dielec- 
tric stabilization of the small ion in the protein 
environment. 
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ABSTRACT: RHF/6-31G* investigations of 4-, 5-, and 6-ethyl(Et)-indole-3-acetic acid 
(I A A) yielded 11 symmetry-unique local minima with syn-periplanar orientation of the 
—COOH group for each of these compounds. The global minima are of Q symmetry in 
all cases. Comparison with earlier results shows that ethylation or chlorination in position 
5 or 6 introduces only minor changes on the orientation of the acetic acid side group, 
with no effect on the reaction paths related to this group. For 4-Et-IAA, the deviations 
from unsubstituted IAA are larger but preserve the pattern of reaction paths that is 
present in unsubstituted IAA, which is in contrast to 4-C1-IAA, where local minima and 
reaction paths are completely different.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
1169-1175, 1998 

Introduction 

Auxin plant hormones govern many biological 
processes in higher plants such as cell divi- 

sions and enlargement, developmental differentia- 
tion, and the syntheses of specific proteins. Among 

Correspondence to: M. Ramek. 
* Permanent address: Instut Ruder Boskovic, HR-10000 Za- 

greb, Croatia. 

this class of compounds, we are specifically inter- 
ested in indole auxins, the parent compound of 
which is indole-3-acetic acid (IAA). IAA and its 4- 
and 6-chlorinated derivatives are naturally occur- 
ring auxins [1-5]. In addition, a large number of 
indole auxins have been synthesized and tested on 
various plant cultures [1-16]. Several auxin-bind- 
ing proteins (ABP) have been distinguished, and, 
among them, ABP1 is considered to be the main 
candidate for an auxin receptor [17-26]. The effec- 
tiveness of auxins as growth promoters depends 

International Journal of Quantum Chemistry, Vol. 70, 1169-1175 (1998) 
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 / 98 / 061169-07 



RAMEK AND TOMIC 

not only on their binding affinity, but also on 
several other factors, for example, lipophilicity or 
correlation with other compounds in plants, like 
cytokinines, another type of plant hormone [27- 
29]. However, Rescher et al. [16] determined the 
correlation between the binding affinity and the 
maximum growth rate of meize coleoptil section 
at the optimum concentration of 1CT6 mol/L for 
the following compounds: naphthalene-1-acetic 
acid (NAA1) > 4-C1-IAA > 4-methyl (Me)-IAA > 
IAA > 4-ethyl(Et)-IAA > 2-Me-IAA. Regarding 
this, and the other available biological tests per- 
formed on IAA derivatives, it seems that the bind- 
ing affinity is very sensitive to the type and size of 
the indole ring substituent in position 4. 

Ab initio RHF structure investigations have been 
performed for IAA [30] and several mono- and 
dichlorinated derivatives [31, 32]. These studies 
yielded an interesting result, namely, that a chloro 
substituent at position 4 changes the potential en- 
ergy surface (PES) completely, whereas chlorina- 
tion at positions 5, 6, and 7 has only a marginal 
effect upon reaction paths and potential barriers. 
Although the properties of isolated molecules can 
be compared only to a limited extent with experi- 
mental binding data, these RHF results indicate 
possible binding conformations of indole auxins. 
The knowledge about the complex influence of 
weak nonbonded intramolecular interactions on 
the PES of these compounds makes us aware of 
similar influences of intermolecular interactions on 
the ligand conformation upon binding. The present 
study is an extension of these earlier RHF investi- 
gations, scrutinizing the influence of an ethyl sub- 
stituent at positions 4, 5, and 6. 

Computational Details and Results 

Local minima and transition states were deter- 
mined via RHF optimizations. Only conformers 
with the —COOH group in syn-periplanar orien- 
tation (i.e., values for the torsion angle H—O—C- 
=0 = 0°) were considered, since the correspond- 
ing AMfr'-periplanar conformers (H—O—C=0 ~ 
180°) were 30-40 kj/mol less stable in previous 
studies. The standard 6-31G* basis set was em- 
ployed, which was proven to be adequate in the 
case of IAA [30]. The calculations were performed 
with the program GAMESS [33] on a variety of 
machines. All structures were fully optimized to a 
remaining root mean-square (rms) gradient less 

than 0.33 X 10~4 Hartree/bohr; the nature of all 
stationary points was verified via computation of 
the eigenvalues of the Hessian matrix: Local min- 
ima had no negative eigenvalues and transition 
states had exactly one negative eigenvalue. 

The position of the carboxyl group relative to 
the indole ring depends on two torsion angles 
called Tl and T2 in the following. Using the atom 
numbering shown in Figure 1, Tl is the torsion 
angle C2—C3—C8—C9 and T2 is the torsion an- 
gle C3—C8—C9=02. The orientation of the ethyl 
group is described by T3, which is the torsion 
angle Cll— CIO—Cn—C» + 1 for n-Et-IAA. The 
values of Tl, T2, and T3 as well as the energy of all 
symmetry-unique local minima (i.e., those with 
Tl > 0°) are collected in Tables I—ITT. 

Discussion 

The energies of the various local minima of 5- 
and 6-Et-IAA follow a rather simple pattern: Those 
conformers, in which the ethyl group is in-plane 
with the indole ring, are approximately 5 kj/mol 
higher in energy than those with a tilted ethyl 
group. This energy difference can clearly be re- 
lated to repulsive H —H interactions. For an in- 
plane orientation of the ethyl group, there are two 
such interactions (Cll—H ••• H—C4 in 5-Et-IAA, 
Cll-H-H—C7 in 6-Et-IAA) with H-H dis- 
tances around 2.4 A and two (C10—H ••• H—C6 in 
5-Et-IAA, C10—H-H—C5 in 6-Et-IAA) with 

o 

H •■• H distances around 2.65 A; if the ethyl group 
is approximately perpendicular to the plane of the 
indole ring, there is a total of only two such 
interactions (C10—H ••• H—C4 and C10—H- 
H—C6 in 5-Et-IAA, C10—H ••• H—C7 and 
C10—H-H—C5 in 6-Et-IAA), the distances of 

o 

which are around 2.42 and 2.52 A, respectively. 
It is interesting to compare the data of 5- and 

6-Et-IAA to those of the parent compound IAA. 

HH 
V 

H 

R        ,C4 

HH 
V 

NC5*~*NC C3-C8NC9-°kH 

W        XC10       ^C7        N'     XH 
i\ I I 

HH H H 

FIGURE 1. Definition of atom labels, shown for 
6-Et-IAA. 
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TABLE I  
Energy (kJ / mol) and torsion angles (degree) of all symmetry-unique local minima in the PES of 4-Et-IAA. 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C4—C5) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C4—C5) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3 (C11 —C10—C4—C5) 

Zero energy corresponds to an absolute value of -666.1894024 Hartrees. 

5.395 5.893 6.906 4.219 
0.00 103.21 78.95 92.21 
0.00 2.07 -96.47 107.17 
0.00 -2.24 -4.43 -6.95 

1.476 4.540 10.292 4.886 
8.50 107.98 87.14 109.79 

-2.90 -20.77 -92.25 133.72 
90.31 -78.11 -70.13 -79.60 

2.876 2.987 0.000 
102.46 81.41 94.87 

0.19 -96.68 110.83 
91.50 94.26 92.03 

The 6-31G*-PES of IAA contains four symmetry- 
unique local minima [30], with the following val- 
ues of Tl and T2: 0°/0° (Erel = 0), 112.51°/103.57° 
(Erel = 0.50 kj/mol), 99.06°/- 96.41° (Erel = 2.00 
kj/mol), and 111.85°/1.60° (Erel = 4.36 kj/mol). 
The T1/T2 values of 5- and 6-Et-IAA therefore 
deviate less than 3° from those of unsubstituted 
IAA. A similar correspondence can be observed for 
the energies: For conformers with a tilted ethyl 
group, the maximum deviation from the IAA en- 
ergy pattern is 0.31 kj/mol (for 6-Et-IAA with 
T1/T2 = 112.95°/102.49°), and for those with the 
in-plane ethyl group, the maximum difference is 
0.55 kj/mol. The latter deviation occurs for the 
5-Et-IAA    conformer   with    T1/T2/T3 = 

112.50°/101.42°/179.58° and is remarkable because 
only in this case is the energy lower than that of 
the conformer with the same orientation of the 
ethyl group and Tl = T2 = 0°. This deviation can 
be explained by the weak electrostatic C9=02 ■•• H 
—C4 interaction, which occurs in all 5- and 6- 
Et-IAA conformers with Tl ~ T2 ~ 100°. The 
O ■ • • H distances of this interaction are around 2.9 
o 

A. In the specific 5-Et-IAA case, it reduces the net 
charge of the hydrogen atom on C4 just enough to 
weaken the repulsive H • • • H interactions, which 
were discussed above. As a result, the increase in 
energy for this specific conformer is less than that 
of all others with an in-plane ethyl group, which 
results in the interchange in energy. For the corre- 

TABLE II  
Energy (kJ / mol) and torsion angles (degree) of all symmetry-unique local minima in the PES of 5-Et-IAA. 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C5—C6) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C5—C6) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C5—C6) 

Zero energy corresponds to an absolute value of -666.1926655 Hartrees. 

5.426 9.461 7.141 5.376 
0.00 112.13 98.34 112.50 
0.00 2.67 -98.94 101.42 

80.00 -179.70 -179.79 179.58 

0.000 4.104 1.902 0.207 
0.01 112.02 98.36 112.46 
0.04 2.54 -99.06 101.62 

81.34 -81.09 -81.05 -81.47 

4.274 1.918 0.247 
111.66 98.42 112.58 

1.40 -98.85 102.04 
81.31 81.20 81.51 
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TABLE III  
Energy (kJ / mol) and torsion angles (degree) of all symmetry-unique local minima in the PES of 6-Et-IAA. 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11—C10—C6—C7) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C6—C7) 

Energy 
T1 (C9—C8—C3—C2) 
T2 (02=C9—C8—C3) 
T3(C11— C10—C6—C7) 

Zero energy corresponds to an absolute value of -666.1932497 Hartrees. 

5.148 9.175 6.691 5.216 
0.00 113.18 99.53 113.02 
0.00 4.26 -99.19 101.02 
0.00 0.20 0.14 0.01 

0.000 4.129 1.701 0.194 
0.20 112.63 98.89 112.95 

-0.07 3.35 -99.75 102.49 
-97.22 -97.94 -98.20 -98.14 

4.161 1.708 0.190 
112.97 98.83 112.56 

3.98 -98.91 101.76 
98.11 98.62 98.33 

sponding 6-Et-IAA conformers, in which the ori- 
entation of the ethyl group is toward C7 instead of 
C4, the sequence of relative energies is identical to 
that of IAA. 

A notable difference between 5- and 6-Et-IAA, 
on the one hand, and unsubstituted IAA, on the 
other hand, is that the global minima in the former 
are not mirror-symmetrical, which also is a conse- 
quence of the increased H • • • H repulsion in the Cs 

orientation. The acetic acid side chain, however, is 
coplanar with the indole ring in the global minima 
of 5- and 6-Et-IAA, as it is in IAA. This arrange- 
ment results in a weak C9=02 •■• H—C2 hydrogen 
bond with a bond order [34] of 0.016 and 0---H 
distances of 2.391 A (5-Et-IAA), 2.394 A (6- 
Et-IAA), and 2.391 A (IAA). This hydrogen bond 
also occurs in the mirror-symmetrical conformer of 
5-Et-IAA and 6-Et-IAA, with the same bond or- 
der of 0.016 and O-H distances of 2.392 and 
2.396 A, respectively. 

The similarity between the PES of IAA and 
those of 5- and 6-Et-IAA is not limited to the 
position of the local minima: It also extends to the 
T1/T2 reaction paths. Figure 2 compares the posi- 
tions of all local minima and saddle points of IAA 
and 5-Et-IAA, and Figure 3 does the same for IAA 
and 6-Et-IAA. Despite the energy shift of approxi- 
mately 5 kj/mol for the conformers with an in- 
plane orientation of the ethyl group, the energy 
barriers for the internal rotations (with constant 
orientation of the ethyl group) are almost identical 
in all cases. Figure 4 shows this for the internal 
rotations of T2 (with Tl ~ 100°) in IAA and 5- 
Et-IAA. 

For 4-Et-IAA, the situation is significantly dif- 
ferent, because of a variety of intramolecular inter- 
actions. One is the C9=02---H—C2 hydrogen 
bond, which is also present in 5- and 6-Et-IAA. It 
occurs for the conformers with Tl = T2 ~ 0° and 
is slightly stronger in 4-Et-IAA, with a bond order 
of 0.018 (both forms) and O ••• H distances of 2.314 
A (Cs form) and 2.323 A (C, form). Another slightly 

180° 

Tl 
120° 

180°     -120' 

FIGURE 2. Positions of all symmetry-unique stationary 
points in the PES of IAA and 5-Et-IAA that relate to 
internal rotations of the acetic acid side chain. The solid 
lines indicate the reaction paths in the PES of 
unsubstituted IAA: (x) IAA, local minima; (®) IAA, saddle 
points; (+) 5-Et-MA, local minima; (e) 5-Et-MA, saddle 
points. 
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Tl 

-60' 

FIGURE 3. Positions of all symmetry-unique stationary 
points in the PES of IAA and 6-Et-IAA that relate to 
internal rotations of the acetic acid side chain. The solid 
lines indicate the reaction paths in the PES of 
unsubstituted IAA: (x) IAA, local minima; (®) IAA, saddle 
points; (+) 6-Et-IA, local minima; (e) 6-Et-IAA, saddle 
points. 

10.0 i 

AE     8. .0-fe 

6.0 

4.0- 

2.0 

0.0 
180° -120° -60°       0° 60° 120° 

T2 

180° 

FIGURE 4. Energy of the stationary points of IAA and 
5-Et-IAA with T1 ~ 100° along the internal rotation of T2; 
zero energy corresponds to the conformer with T2 = 
100° in all cases. (•) IAA; (*) 5-Et-IAA, T3 = 180°; (e) 
5-Et-IAA, T3 « -80°; (®) 5-Et-IAA, T3 ~ 80°. 

stronger hydrogen bond, CIO—H —02=C9, oc- 
curs in the conformers with T1/T2/T3 = 92.21°/ 
107.17°/ - 6.95° (H-O distance: 2.560 A, bond 
order: 0.019) o and T1/T2/T3 = 94.87°/l 10.83°/ 
92.03° (2.552 A, 0.021). Because of the stabilizing 
effect of this hydrogen bond, the latter conforma- 
tion, characterized by both side chains more or less 
perpendicular to the indole ring plane and point- 
ing toward opposite sides of this plane, is the 
global minimum in the PES. Other distances of 
interest in this structure are those between Ol and 

o 

the hydrogen atom at position 2, which is 3.358 A, 
and C10—H ••• H—C8, which is 2.323 A. A weaker 
form of the C10—H — 02=C9 hydrogen bond is 
also present in the conformer with T1/T2/T3 = 
102.46°/0.19°/9o1.50°; the H-O distance in this 
case is 2.750 A and the bond order 0.011. Yet 
another weak hydrogen bond, C10—H ••• Ol—C9, 
occurs in the conformers with T1/T2/T3 = 
78.95°/ - 96.47°/- 4.43° (H ••• O distance: 2.607 A, 
bond order: 0.011) and T1/T2/T3 = 98.42°/ 
-98.85781.20° (2.585 A, 0.012). 

Similar to 5- and 6-Et-IAA, repulsive H • • • H 
interactions are present in all 4-Et-IAA conform- 
ers. In contrast, however, not all of them are be- 
tween aromatic and aliphatic hydrogen atoms. In- 
stead, some H • • • H interactions occur between the 
two side chains; in the mirror-symmetrical con- 
former of 4-Et-IAA, for example, the hydrogen 
atoms of both methylene groups are pointing di- 
rectly toward each other (with two H • • • H dis- 
tances of 2.320 A). In the local minimum of highest 
relative energy (Erel = 10.292 kj/mol), the 
C10—H — H—C8 distance is as low as 2.015 A. 
(For this specific local minimum, an increase of T2 
immediately leads to a saddle point at T1/T2 = 
87.96°/ - 84.90°, which is only 0.003 kj/mol higher 
in energy. The harmonic, unsealed vibration fre- 
quencies, which correspond to that reaction path, 
are 13.83 i and 19.19 cm-1 for the saddle point and 
the minimum, respectively. The latter value is 
equivalent to a zero-point energy of 0.115 kj/mol, 
which means that this local minimum is just a 
mathematical feature of the PES, but does not 
produce a stable conformer.) 

The considerable steric strain, which is caused 
by these short H • • • H distances, is reflected by the 
absolute energies of the global minima: 5-Et-IAA 
is about 8.6 kj/mol and 6-Et-IAA about 10.1 
kj/mol lower in energy than is 4-Et-IAA. It also 
affects the positions of the local minima and the 
saddle points in the T1/T2 space. In contrast to 5- 
and 6-Et-IAA, these positions vary significantly 
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Tl 

180°     -120°    -60°       0° 60°       120°      180° 

T2       —» 

FIGURE 5. Positions of all symmetry-unique stationary 
points in the PES of IAA and 4-Et-IAA that relate to 
internal rotations of the acetic acid side chain. The solid 
lines indicate the reaction paths in the PES of 
unsubstituted IAA: (x) IAA, local minima; (®) IAA, saddle 
points; (+) 4-Et-IAA, local minima; (©) 4-Et-IAA, saddle 
points. 

with the orientation of the ethyl group and deviate 
up to 30° from those of the parent compound IAA. 
Figure 5 shows the T1/T2 positions of all local 
minima and saddle points of 4-Et-IAA in compari- 
son to those of IAA. Despite these deviations, the 
pattern of T1/T2 reaction paths in the PES of 
unsubstituted IAA is still recognizable in that of 
4-Et-IAA. This is a remarkable result in view of 
the data for 4-C1-IAA [31], where the symmetry- 
unique local minima are at T1/T2 positions of 
0°/0°, 105.45°/- 14.01°, 110.92°/162.94°, and 
6.25°/114.29° and the pattern of reaction paths is 
completely different (e.g., there is no internal rota- 
tion of T2 with Tl ~ 100°). 

Summary and Conclusion 

The PES of 4-, 5-, and 6-Et-IAA were inves- 
tigated via ab initio RHF/6-31G* calculations. 
For each compound, 11 symmetry-unique local 
minima with syn-periplanar orientation of the 
—COOH group are present in the PES. In contrast 
to IAA and its chlorinated derivatives, the global 
minima of 5- and 6-Et-IAA are not mirror-sym- 
metrical but characterized by the acetic acid side 

chain coplanar with the indole ring and the ethyl 
group almost perpendicular to this plane. In 4- 
Et-IAA, a weak hydrogen bond between the two 
side chains yields a geometry for the global mini- 
mum, in which both side chains point toward 
opposite sides of the indole ring plane. In all three 
cases, the PES, therefore, has two global minima, 
which are "degenerate" in the terminology of 
quantum mechanics. 

Comparison with the results obtained earlier for 
unsubstituted IAA [30] shows that ethylation in 
position 5 or 6 introduces only minor changes of 
the PES, which do not affect the reaction paths 
related to the acetic acid side chain. The same has 
been found for 5- and 6-C1-IAA [32]. In the case of 
4-Et-IAA, the deviations from unsubstituted IAA 
are much larger, but despite these deviations, the 
pattern of T1/T2 reaction paths of the IAA PES is 
also present in that of 4-Et-IAA. This is a remark- 
able contrast to the situation in 4-C1-IAA [31], 
where some local minima appear at significantly 
different positions in T1/T2 space, and the reac- 
tion paths are completely different. This compari- 
son shows that the different PES of 4-C1-IAA is an 
effect that is specifically related to the chloro sub- 
stituent at position 4. Interestingly, the qualitative 
picture, which one obtains from the PES of 4- 
Cl-IAA, IAA, and 4-Et-IAA, is well in accord 
with the measured biological data. 

The results of this study also show that rela- 
tively weak intramolecular interactions can signifi- 
cantly influence the orientation of the acetic acid 
side chain in IAA derivatives. The same can be 
expected from the intermolecular interactions that 
enable the binding to any auxin receptor. Hence, 
the combined results of the current work and the 
previous studies of indole auxins present a basis 
for the investigation of the actual binding process. 
The acetic acid side chain, as well as any nonrigid 
substituent, can be expected to show a significant 
amount of flexibility, that is, it can easily adopt 
different orientations. Therefore, in the auxin-re- 
ceptor complex, considerable deviations from the 
structures of the isolated compound or the respec- 
tive solid-state structures can be anticipated. 
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piCa of Cytosine on the Third Strand of 
Triplex DNA: Preliminary 
Poisson-Boltzmann Calculations 
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ABSTRACT: The energetics of formation of a triple-helical structure in 
homopurine-homopyrimidine mixtures has been modeled using Poisson-Boltzmann 
calculations. Oligomers with the sequence d(TC)„ and d(AG)„ form hydrogen-bonded 
triple-helical structures of the form rf(TC)„ • d(AG)„ • d(JC+)„. The third base, a 
pyrimidine in this case, forms Hoogsteen-type hydrogen bonds with the purine, requiring 
that the cytosine residues of the third strand protonate at N3. The pKa of cytosine, 4.3 in 
the isolated solvated molecule, is raised by the strong electrostatic field in the triple helix. 
We have done calculations of the effective pK„ of this cytosine and compared the results 
with experimental studies of triple-helix formation as a function of pH. This provides a 
test of various models of the dielectric constant for triplex DNA and its local environment. 
© 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1177-1184, 1998 

Key words: pKa shift; acid dissociation constant; triple helix; dielectric constant 

Introduction 

Oligonucleotide hybridization is sufficiently 
robust to include formation of triple-helical 

constructs besides the more familiar double he- 
lices. Hybridization to form duplex structures is 
highly sequence specific. The high degree of com- 
plementarity of G with C and of A with T is 

* Present address: Myriad Genetics, Salt Lake City, Utah. 
Correspondence to: G. R. Pack 
Contract grant sponsor: National Institute of General Medi- 

cal Sciences, NIH. 
Contract grant number: GM29079. 

essential for gene function. In triplex formation the 
third strand associates with an existing duplex 
through hydrogen bonding of the third-strand 
bases with the Watson-Crick duplex base pairs 
with significant specificity. The most prevalent 
type of triple helix is formed by binding of a 
homopurine or homopyrimidine single strand in 
the major groove of a homopurine-homopyrimi- 
dine duplex with the two pyrimidine strands an- 
tiparallel [1]. When a G-C base pair is recognized 
by a C on the third strand, the interaction is pH 
dependent, increasing with greater acidity. Arnott 
et al. [2] showed that protonation of the cytosine 
N3 allows the formation of Hoogsteen hydrogen 

International Journal of Quantum Chemistry, Vol. 70, 1177-1184 (1998) 
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p. 
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'"        //• CH- 

FIGURE 1. C+-G-C triad triad of triple-helical DNA. 

bonding to G as shown in Figure 1, providing a 
rationale for the pH dependence. 

The pKa of deoxycytidine is 4.3 in aqueous 
solution and varies by about 0.1 as the ionic 
strength goes from 0 to 1 M [3]. Measurements of 
the pH dependence of the formation of triplexes in 
which the third strand is rf(CTTCCTCCTCT) show 
the midpoint of the association to occur at pH 5.8 
[4]. A similar analysis of triple-helix formation 
in hairpin regions with the third strand being 
d(TTCTTCTTC) or rf(CCTCCTCCT) yielded mid- 
points at 6.15 and 6.19, respectively [5]. Callahan 
and co-workers [6] found a triplex-formation mid- 
point at pH 5.6 for d(CT\-d(AG)8-d(CT\, while 
Singleton and Dervan [7] found a midpoint in the 
association constant curve for a rf(CT)5-containing 
oligonucleotide to occur at pH 5.5. Lavelle and 
Fresco [8] provided evidence that the midpoint of 
the triplex-association constant versus pH curve 
was a measure of the cytosine pKa by showing 
that on dissociation of the triplex at pH 7, one H+ 

per cytosine residue is released into solution. The 
experimental evidence seems to indicate that the 
third-strand cytosine pKa is increased by about 1.5 
units when it is bound in the major groove as part 
of triplex DNA. 

Calculations of the pKa of titratable groups in 
proteins using numerical solutions to the Pois- 
son-Boltzmann equation have met with varying 
degrees of success. Tanford and Kirkwood [9] de- 
veloped a theory of protein titration curves based 
on a model of a low-dielectric spherical protein 
with discrete unit charges at fixed locations all 
embedded in a high-dielectric (aqueous) contin- 

uum. When numerical methods for solving electro- 
static equations based on higher resolution protein 
structures became available, more accurate calcu- 
lations of the pK/s of buried groups soon fol- 
lowed. Using Poisson's equation, Rogers et al. [10] 
relied on the method of Warwicker and Watson 
[11] to calculate the change in potential at one site 
due to protonation at another. Sternberg et al. [12] 
used this same procedure to predict pKa shifts in 
subtilisin caused by mutation of charged residues. 
Coupling Poisson's equation with the Boltzmann 
equation leads to a Poisson-Boltzmann (PB) de- 
scription of the electrolyte environment of DNA. 
Using a dielectric constant of 2 or 4 for the protein 
interior and 80 for the environment, the pX„'s of 
several proteins have been calculated (see, e.g., 
[13-16]). 

Representing the anisotropic atomic environ- 
ment by a single dielectric constant can be a seri- 
ous approximation. Warshel [17] and Warshel and 
Aqvist [18] have pointed out that its value de- 
pends on the property under consideration and 
can vary from 4 to greater than 40. Nevertheless, 
the computational convenience of the PB approach 
has prompted several groups to seek optimal rep- 
resentations of a single dielectric constant for the 
protein interior. Demchuk and Wade [19] identi- 
fied two location-dependent classes of ionizable 
sites. To get the best agreement with experimen- 
tally determined pKlt's, solvent exposed sites were 
assigned a dielectric constant close to that of the 
aqueous solvent while buried sites had lower val- 
ues between 10 and 20. In a study of 60 sites 
within 7 proteins, Antosiewicz [20] found that the 
best accuracy could be obtained with a interior 
protein dielectric constant of 20. This rather high 
value has recently been used by Schaefer et al. [21] 
in an application of the PB approach to the calcula- 
tion of free energy differences between protein 
conformations. Antosiewicz et al. [20] compared 
computed and experimental pKa shifts at 63 sites 
using a parametrized set of atomic charges and 
radii, PARSE, which was specifically optimized to 
reproduce measured solvation energies of small 
molecules. They found that PB-calculated pKlt 

shifts averaged over a set of nuclear magnetic 
resonance (NMR) determined protein conforma- 
tions could be more accurate than the null model, 
in which all pKn shifts of a titratable group are the 
same for all members of that group whatever their 
location within the protein. On the other hand, 
Antosiewicz et al. [20] concluded that even when 
the  extra  computational  effort  was  made  "the 
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pKfl's calculated using a protein dielectric constant 
of 4 are less accurate than those computed with a 
less plausible protein dielectric constant of 20." 
Relatively little effort has been devoted to deter- 
mining internal dielectric constants for nucleic 
acids. Yang et al. [22] analyzed a long molecular 
dynamics simulation of triplex DNA and found 
the general dielectric constant of DNA to be about 
15 with the subgroups of bases, sugar atoms, and 
phosphates to be 4.2, 2.3, and 48.5, respectively. 
Lamm and Pack [23] calculated the dielectric con- 
stant of the ionic environment near the surface of 
the B-DNA and found it to be about 30 in the 
minor groove and 50 in the major groove, agreeing 
well with available experiments. 

In the presence of the strong electrostatic poten- 
tial at the DNA surface, the intrinsic pKa of cyto- 
sine would be expected to increase due to the 
higher local H+ concentration [24]. In fact, a sim- 
ple PB cell model calculation [25] predicts an in- 
crease in pKa of about 2.2 units for duplex DNA. 
This agrees well with measurements of the appar- 
ent pK/s of amino acids that were covalently 
bound to the minor groove of duplex DNA, which 
show an increase of 1.5 to 2.4 units over the pKa's 
in aqueous solution [26]. For triplex DNA, a simi- 
lar PB cell model calculation yields a somewhat 
larger intrinsic pKa change of almost 3 units due 
to the increased surface charge density in the 
model. PB calculations on a more detailed, all-atom 
model of triplex-helical DNA predict a pKa change 
of over 5 units. These relatively simple calculations 
are qualitatively correct but exaggerate the experi- 
mentally determined pKtt change. This study de- 
scribes initial attempts to apply the more detailed 
protein-based methods described above to calcu- 
late the pKa of the cytosine of the third strand of 
triplex DNA. Results and conclusions follow a 
brief discussion of the methods used. 

finite volume cells in planar cross sections perpen- 
dicular to the DNA helical axis. The finite dif- 
ference version of the Poisson equation for the 
electrostatic potential 4>t at cell location i on a 
curvilinear grid is 

4>i 
4TP,-P,-A,- + ^j(^-e,7S,-;-/r,-;-) 

where o, is the volume of cell i, p{ is the total 
charge density, etj = (e, + e-)/2 is the arithmetic 
average of the dielectric constants of cells i and j, 
Sjj is the shared surface area of these cells, and r,- ■ 
is the distance between cell centers. Summations 
are taken over all cells / sharing a surface with a 
given cell i. Inside the DNA the charge within 
each cell was fixed as calculated from the overlap 
with the atomic van der Waals spheres and pro- 
vided a charge density p, = <J,/ü,. The total charge 
density in each cell in the environment was ob- 
tained from the individual ionic charge densities 
by summation: p, = Et p\. The Boltzmann equa- 
tion for each ion type can be written as 

,       Nkexp(-ßzrfj 

Liviexp(-ßzk<j)i)' 

in which zk is the ion valence and Nk is the total 
number of ions of type k within the system. A 
finite stretch of DNA was chosen as a repeat unit 
and the intercell links and shared surface areas 
between the cells in the planar cross sections at 
either end of the repeat were calculated, effectively 
wrapping the finite element grid around to achieve 
an infinite repeat of linear DNA. 

The thermodynamic cycle illustrated in Figure 2 
was used to define the free energy of protonation 

model Cyt H+(sol) Cyt(sol) H*(sol) 

Methods 

The system chosen was an infinite repeat of the 
homopyrimidine-homopurine-homopyrimidine 
triplex in which the third strand is protonated. 
The sequence for the parent duplex was poly 
d(A-G)-poly rf(T-C); the third strand was poly 
d(T-C). Numerical Poisson-Boltzmann calcula- 
tions were performed using methods previously 
described [25]. Briefly, the space occupied by the 
DNA and its environment was divided into many 

DNA Cyt H*(DNA) Cyt(DNA) H*(sol) 

FIGURE 2. The thermodynamic cycle used in the 
definition of the pKa difference between the model 
compound, deoxycytidine, in water (top arrow) and 
deoxycytidine on the third strand of triple-helical DNA 
(bottom horizontal arrow). The top horizontal process is 
an experimental quantity that—combined with the two 
processes represented by the vertical arrows—defines 
the pKa of the bottom horizontal process, the protonation 
of deoxycytidine on the third strand of triple-helical DNA. 
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of a cytosine residue in triplex DNA (bottom ar- 
row) in terms of the known pK„ of cytosine in 
solution (top line) and the energies required to 
transport the charged (left vertical arrow) and un- 

charged (right vertical arrow) cytosine from solu- 
tion into the DNA triplex. Following Bashford and 
Karplus [14], the expression for the fraction 0, of 
cytosine i protonated is 

0,= 
E(X)*,exp[EMsM(2.303(pKinlriM - pH)) - ^,,(*Ms,WM,,,({X}))] 

£(X)exp[E^(2.303(pKintri/J - pH)) - ^„.„(^^„({X}))] 
(1) 

in which {X} is a set of "protonation state" vec- 
tors, each of which has n elements xM that are 
either 1 or 0, depending whether site fi is pro- 
tonated or not. There are 2" members of {X} 
corresponding to each possible protonation state 
shown above. As discussed below, the fact that we 
are using an infinitely long model for DNA intro- 
duces some difficulties into the definition of all 
possible protonation states. 

The intrinsic pK„, determined by neglecting in- 
teractions between protonated sites, is given by 
Eq. (2), 

pKi, P^model 

-[AAGBorn AAGback]/(2.303kT),    (2) 

in which the following quantities are calculated 
from the PB-determined potentials and charges: 

AAG 

and 

Bom _  2 l^Qf l 0DNA,;        $model,iJ 
i 

-5EQ"[*DNA,,--Codel./]       O) 

5AGback =   E<7/[0ßNA,j _  «/»model,/] 
/ 

Codel,/]-      W 

AAGBorn is the difference in the Born free energy 
between charging site i in the model (solvated 
cytosine) and in DNA. Qf and Q" are the charges 
at the titrating sites when protonated and unproto- 
nated, respectively, </>fiNA,, and </>DNA,; similarly 
represent the calculated electrostatic potentials at 
site i when the site is protonated and unproto- 
nated, and  </>mode, ,•  and  ^„0H„I ,  are the corre- 

sponding potentials calculated in the model com- 
pound. AAGbnck is the interaction of the titrating 
sites with the nontitrating charges qr The electro- 
static repulsion between simultaneously proto- 
nated sites is given by Eq. (5): 

<V„=E[Q£,- Q::,,][^NA,/,,-^NA,/,J- 

(5) 

^model, / 

Clß „ is the interaction of the titrating sites of DNA 
with each other and represents the fact that site fx 
is more difficult to protonate if site v is already 
protonated. The pH at which 0, = 0.5 is defined as 
the pK„ of the site. 

The finite repeat unit chosen for these calcula- 
tions was the d(A-G)6-d(T-C)6-d(T-C)6 dode- 
camer. The geometry of the triplex was generated 
from the x-ray diffraction structure of poly(dT)- 
poly(rfA)-poly(rfT) [27] by replacing alternate 
T-A-T triads with OG-C+ triads. Six equivalent 
sites of protonation, the N3 of the cytosines of the 
third strand, are available within this repeat unit 
so that 64 (26) protonation states are possible for 
the six sites. The fact that these are exactly re- 
peated along the helical axis results in the approxi- 
mation that the infinite number of protonation 
states possible is represented by the repeating of 
each of the 64 states. The calculation of the intrin- 
sic pK„, reflecting the tendency of a site to accept a 
proton when all other sites are neutral, cannot be 
exactly determined with this approach because 
protonating a single site in the repeat results in 
that site being protonated in each of its images. 
However, the repeat unit extends 39.36 A making 
this image-site-central-site interaction energy 
small. We present a value for the intrinsic pK„ but 
note its approximate nature. 
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The 64 states include 6 singly protonated, 15 
doubly protonated, 20 triply protonated, 15 with 
four of the six sites protonated, and 6 with five of 
the six sites protonated. In addition there is one 
state that is not protonated and one that is fully 
protonated. The summations in Eq. (1) are over 
these 64 states. Because the sites are equivalent, 
the extent of protonation of a single site is all that 
needs to be considered. 

The site-site interaction term W^ „ for an in- 
finitely repeating polymer was determined using 
the nearest-neighbor (1,2) and next-nearest (1,3) 
interactions calculated using Eq. (5) based on the 
PB-determined electrostatic potentials. Recogniz- 
ing that the PB calculation includes the effect of 
images of the central repeat, the PB-calculated 
effect of charging site 2 in the presence of a charge 
on site 1 (and its images) can be written as: 

%i+, = fiu = wu = wu + 2Ew1( 6/ + 1- (6) 

Similarly, the next-nearest site-site interactions 

fl|,i+2 = öu = W1,3 + 2EW1,6),,       (7) 

The indices on ft^ „ range from 1 to 6 while the j 
subscript on Wh can increase without bound. To 
calculate the remaining O „, we calculated the 
coulombic sums 

WM+1(«) = l/rM+1 + 2£l/r1#6y+I.+1 
/ 
n 

WM+2(«) = l/rM+2 + 2£l/r1#6/+I.+2 
; (8) 

WM+5(«) = l/rM+5 + 2El/ri/6/+1.+s. 

The PB calculations were performed for a variety 
of conditions, leading to different calculated val- 
ues of ft12 and ft1/3. For each PB calculation the 
ratio fl12/ß13 = x23 was determined. The cou- 
lomb sums were then truncated at n such that 
Wli2(tt)/W1/3(tt) = *23- Tlus value of n was then 
used to determine the ratios xu = W1/3(n)/ 
Wl4(n), xi5, and x56. Finally, we invoked the 
approximation ft14 = fti/3/x34, ft1/5 = ft1/4/x45, 
and i\6 = ni/5A56. 

Results and Conclusions 

Poisson-Boltzmann calculations were per- 
formed using methods previously described [25]. 
The DNA and counterions were confined to a 

o 

cylindrical cell of radius 100 A corresponding to a 
nucleotide concentration of 40 mM. A concentra- 
tion of 100 mM 1:1 monovalent salt was added to 
the DNA-counterion mixture resulting in 140 mM 
monovalent cations and 100 mM monovalent an- 
ions surrounding the central DNA molecule. Fol- 
lowing Bashford and Karplus [14], PB calculations 
were done on the model compound (neutral and 
protonated) deoxycytidine, with the same grid 
used for the full DNA calculations. Several PB 
calculations were required for the central DNA. 
The fully unprotonated (i.e., the triplex had a 
charge of —36) calculation was done along with 
cytosine 1 protonated, cytosines 1 and 2 proto- 
nated, and cytosines 1 and 3 protonated. The dou- 
bly protonated calculations were required for the 
evaluation of fl     [Eq. (5)]. 

Calculations were performed assuming that the 
internal dielectric constant of DNA had a uniform 
value of 4 and that of the environment was 78.4. 
This gave a pKa of 4.1 for the third-strand cyto- 
sine. Based on a pK, of 4.3 for the model com- 
pound, incorporation of cytosine into the negative 
electrostatic potential environment of DNA would 
be expected to raise its pKa by perhaps 2 units, as 
discussed earlier. The intrinsic pKa [Eq. (2)] of 6.7 
calculated for these conditions is not unreasonable, 
but this value is lowered to 4.1 by the site-site 
interactions. This result suggests that the internal 
DNA dielectric constant to be used in the calcula- 
tion of ft „ should be larger than the value of 4 
used in the intrinsic-pKa determination [17, 18]. 

A second set of calculations using an internal 
DNA dielectric constant of 10 yielded a pKa of 8.7, 
a value high compared to experiment. The titration 
curves for protonation of the third-strand cytosine, 
calculated using Eq. (1) are shown in Figure 3. The 
intrinsic pKa curve, assuming no site-site interac- 
tions, is shown along with the full titration curve 
to emphasize the role of those interactions, which 
shift the midpoint of the curve from 10.2 to 8.7. A 
third set of calculations with a DNA dielectric 
constant of 4 and a variable dielectric constant for 
the environment [23] was also done. The results of 
all these calculations are summarized in Table I. 
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FIGURE 3. Proton titration curve for the N3 of cytosine on the third stand of triple-helical DNA. The internal dielectric 
constant for DNA was 10 and for the environment it was 78.4. The curve to the right represents the curve calculated 
assuming no site-site interaction. 

Further insight into the free energy differences 
accompanying protonation of the third-strand cy- 
tosine can be gained by molecular orbital calcula- 
tions. Using a geometry determined from an un- 
constrained optimization, we calculated the wave 
function for the C+-G-C base triad within the 
PM3 approximation. Figure 4 shows the electro- 
static potential in the regions surrounding each 
base. When the proton is removed and the electro- 
static potential recalculated (without further opti- 
mization) a highly negative region appears at the 
position vacated by the proton, as indicated in 
Figure 5. (Additional optimization leads to a struc- 
ture in which the exocyclic amine of the third-stand 
cytosine forms hydrogen bonds with both the gua- 
nine N7 and carbonyl oxygen.) This supports the 

TABLE I 
p/Ca and intrinsic pKa for the three dielectric 
constant combinations described in the text. 

e(DNA)/e(env) pKintrin 
P*a 

4./variable 
10/78.4 
4./78.4 

14.23 
10.18 
6.73 

10.00 
8.70 
4.05 

suggestion of Lavelle and Fresco [8] that the pres- 
ence of the proton is not primarily to stabilize the 
triplex by forming another hydrogen bond but 
rather to negate the strong electrostatic repulsion 
caused by overlapping of the lone-pair electrons 
on the guanine N7 and cytosine N3 atoms. 

Conclusions 

The calculation of the pKa shift of an ionizable 
site at the DNA surface can be accomplished with 
a fair degree of accuracy by calculating the electro- 
static potential in the environment adjacent to the 
site of protonation [26]. The calculation of this 
potential is affected little by assumptions regard- 
ing the dielectric constant of the DNA interior. 
Sites such as the N3 of the third-strand cytosine, 
however, present a greater challenge. Buried within 
the DNA, the dielectric constant chosen for the 
polyion interior has a great influence on the calcu- 
lated pKa shift. The assumption that the dielectric 
constant of the interior of DNA can be represented 
by a single, isotropic, scalar quantity presents a 
further difficulty. At this stage it seems that the 
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FIGURE 4. Electrostatic potential map for the C+-G-C triad calculated using the semiempirical molecular orbital PM3 
method. 

FIGURE 5. Electrostatic potential map for the C-G-C neutral triad calculated using the semiempirical molecular 
orbital PM3 method. The geometry is that calculated for C+-G-C. 
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accurate prediction of pKa shifts within the inte- 
rior of DNA awaits further developments. 
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ABSTRACT: The integrated molecular transform (FTm) is a unitary numerical index 
of structure that is capable of uniquely representing different molecular structure 
conformations with the exception of enantiomers. Other molecular indices have been 
derived from FTm as well as from the normalized molecular moment (M„), for example, 
the analogous electronic and charge transforms (FTe and FTC) and moments (Me and 
Mc). In this study, each of these indices was calculated for up to 10 sampled conformations 
of each of the CJ-CJQ normal alkanes as they were subjected to a standard annealing 
process. Statistical analyses of the resulting data in the individual series and subsequent 
box plots, permitting facile examination of those results, indicated that the respective 
transform indices (FTm, FTe, FTC) are unique, that is, with no statistically significantly 
overlap across the series. For the Mn and Me indices, the numerical values for methane 
overlapped those of ethane in the first instance and both ethane and propane in the 
second. The Mc index values overlapped in several instances in the series. Inasmuch as 
the noted molecular indices are based only on parameters of structural origin, these 
results have profound implications for the correlation and estimation of properties 
derived not only from a general structure representation, but also for those properties 
which may be dependent on specific molecular conformations. This includes the potential 
for indices of molecular flexibility and conformationally dependent atomic electron 
densities.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1185-1194, 1998 

are unitary numerical surrogates of either opti- 
IntrodllCtion mized (at any level) or nonoptimized structures. 

The indices are derived from considerations based 
solely on structure parameters, that is, bond dis- 

he integrated molecular transform (FTm) and        tances,   interatomic   distances,   atomic   number, 
normalized molecular moment (M„) indices        atomic weight, and/or quantum mechanical calcu- 

and their analogous electronic and charge indices        lations. In the most literal sense, the indices are the 
Correspondence to: J. w. King. result of mapping down processes that convert a 
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descriptorially multivariate entity, the molecule, 
into a single number, and with each index, a 
specific feature of the molecule may be empha- 
sized. Inasmuch as the indices have been precisely 
defined in a recent publication [1], their origins 
will not be further reviewed herein. 

In general, the application of the various indices 
has been to correlate the structure with the chemi- 
cal, physical, and pharmacological properties with 
a view toward extrapolation or interpolation capa- 
bilities [1-12]. However, their versatility permits 
an emphasis on specific molecular aspects as well, 
for example, only the structure (FTm and M„), or, 
if desired, the electronic (FTe and Mc) or charge 
nature (FTC and Mc) of molecules or a combina- 
tion of the indices in a multivariate correlation 
equation. Thus, any molecular attribute may be 
incorporated by mathematical representation in 
one of the indices. 

One of the concepts resulting from the existence 
of the unitary indices is that a measure of molecu- 
lar similarity is permitted by a comparison of 
ratios or, perhaps, other mathematical formula- 
tions of the respective indices [5, 12]. But also of 
importance is the fact that, with the exception of 
enantiomers, the indices have been shown to 
uniquely represent conformers [9]. In that study, 
different conformations of ethane, toluene, and 
biphenyl were shown to be uniquely represented 
by the integrated molecular transform (FTm). With 
such a result in hand, it seemed prudent to at- 
tempt a more general demonstration of this index 
capability and extend it to the corollary indices 
noted above. That, then, was the objective of the 
work reported herein. In this context, each of the 
Cj-C10 alkanes was subjected to an annealing pro- 
cess and up to 10 conformations sampled. The 
structure indices were then calculated for each 
conformer and a statistical comparison of the re- 
sults depicted by box plots of the data. 

Methodology and Results 

The initial alkane structures were entered into 
the Chem3D Pro molecular mechanics program 
[13]. The molecular dynamics subset of this pro- 
gram provided the annealing process for each of 
the 10 alkanes to give conformational continuums. 
Each continuum was then randomly sampled to 
give nine or ten conformations which yielded the 
interatomic distances needed for calculation of the 

FTm and M„ indices. The single-point energies 
were then calculated for each conformer by the 
GAMESS program (operating in the MOP AC mode 
with the AMI Hamiltonian [14]) to give the neces- 
sary electron densities for calculation of FTC and 
Mc and charge distributions for calculation of FTC 

and Mc. The transform and moment indices were 
then calculated by previously described methods*; 
these are shown in Table I. The resulting indices 
for each conformer series were then statistically 
examined with the SCAN program [15] to give the 
summary data shown in Table II. The box plots 
shown in Figures 1-6 were generated with Sigma 
Plot [16]. 

CHARACTERISTICS 01   BOX PLOTS 

For ease of interpretation of the box plots, it 
should be noted that the width of the box is 
arbitrary and has no meaning in respect to the 
plotted data. The top and bottom limits of the box 
are the 75th and 25th percentiles of the data, re- 
spectively, while the data median is noted by the 
horizontal line across the center of the box. The 
line crossing the "T" on the top of the box shows 
the 95% confidence limit of the data; the inverted 
"T" on the bottom of the box represents the 5% 
confidence limit. 

Discussion 

The previous study of numerical conformer rep- 
resentation proved that conformers may be 
uniquely represented by their integrated molecular 
transform (FTW) [1]. However, the question can be 
posed as to whether there might be some numeri- 
cal overlap in a more regular compound series, 
such as alkanes, differing by only a methylene 
group. Further, the application of the integrated 
electronic (FTC) and charge (FTC) indices, the nor- 
malized molecular moment (M„), and its analo- 
gous electronic (Me) and charge moments (Mt.) to 
conformational representation, had not been 
demonstrated. 

The results of this study are best seen by a 
perusal of the figures. In Figure 1, the most un- 
usual aspect is the slightly lower displacement of 
the methane conformer group as compared to the 
other groups. It is not difficult to account for this 
inasmuch as there appears to be a linear relation- 

*See [1] and citations therein. 
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TABLE I  
Calculated indices for C^-C^ normal alkanes (see text for an explanation of column headings). 

Carbons FT„ FTe FT„ Mn M„ Mr 

C1 6.987576 4.579256 0.024590 0.810334 1.124986 0.428260 
C1 6.712426 4.390923 0.023975 0.935001 1.125000 0.392177 
C1 6.578948 4.297664 0.024565 0.935001 1.125000 0.399510 
C1 6.458280 4.222586 0.023499 0.748001 0.874989 0.465629 
C1 6.210833 4.050942 0.022874 0.872668 0.999988 0.415565 
C1 6.421484 4.197506 0.023717 0.623334 1.000013 0.498238 
C1 6.173242 4.023162 0.022598 0.498667 0.750000 0.530247 
C1 6.513076 4.255519 0.024212 0.872668 1.125000 0.411798 
C1 6.147553 4.011489 0.023019 0.685668 0.750000 0.495021 
C1 6.290279 4.104471 0.022979 0.748001 0.999988 0.424484 
C2 41.179925 24.746405 0.057962 0.798147 0.857143 0.336114 
C2 41.047766 24.656884 0.057628 0.798147 0.857143 0.337408 
C2 41.096322 24.707458 0.057960 0.798147 0.857143 0.334909 
C2 41.196547 24.758945 0.057378 0.798147 0.857137 0.334263 
C2 41.291619 24.768512 0.057351 0.798147 0.857143 0.340662 
C2 40.614203 24.365527 0.056042 0.764891 0.857143 0.339907 
C2 40.465850 24.285497 0.056734 0.798147 0.857137 0.340457 
C2 41.404900 24.811028 0.056462 0.764891 0.857137 0.341087 
C2 40.239286 24.168651 0.057318 0.798147 0.857143 0.339892 
C2 41.119917 24.718319 0.058000 0.764891 0.857143 0.335669 
C3 61.730045 35.366721 0.073667 1.065844 1.050000 0.439550 
C3 61.583751 35.281740 0.074173 1.065844 1.050000 0.441290 
C3 61.509062 35.254482 0.073042 1.043166 1.049995 0.439138 
C3 61.942748 35.432699 0.073217 1.020489 1.050000 0.434095 
C3 60.412583 34.717018 0.074872 1.065844 1.049990 0.449778 
C3 62.748389 35.919357 0.073979 1.020489 1.049995 0.437397 
C3 62.052411 35.487362 0.070601 1.088521 1.050000 0.438612 
C3 62.015678 35.468971 0.074696 1.020489 1.000000 0.443057 
C3 61.930000 35.284296 0.070664 1.043166 1.000005 0.432263 
C3 59.822879 34.274096 0.073421 1.065844 1.050005 0.454840 
C4 79.241786 44.492780 0.092804 1.376382 1.461561 0.498671 
C4 78.494188 44.057310 0.091857 1.376382 1.461533 0.499229 
C4 79.409604 44.548020 0.093429 1.359177 1.461550 0.498600 
C4 77.188174 43.300959 0.091158 1.376382 1.461533 0.496246 
C4 78.901902 44.267885 0.094077 1.359177 1.423071 0.502933 
C4 78.251678 43.921354 0.090537 1.359177 1.461533 0.504800 
C4 77.297306 43.358956 0.088922 1.359177 1.461533 0.503471 
C4 76.735552 43.077931 0.088287 1.393587 1.461527 0.494185 
C4 77.007562 43.161377 0.086065 1.376382 1.461527 0.486074 
C4 77.637438 43.435717 0.092562 1.359177 1.423077 0.506593 
C5 92.856293 51.446007 0.109185 1.593895 1.625010 0.558995 
C5 92.930752 51.405263 0.106200 1.607755 1.625000 0.560091 
C5 93.120414 51.538966 0.106176 1.607755 1.593740 0.568756 
C5 92.914801 51.512217 0.110178 1.593895 1.656250 0.545212 
C5 93.569230 51.788255 0.107119 1.593895 1.593750 0.566034 
C5 91.997341 50.835562 0.102806 1.621615 1.656255 0.556445 
C5 93.675362 51.862599 0.105841 1.593895 1.593745 0.556779 
C5 90.718127 50.260480 0.108838 1.635475 1.656250 0.573272 
C5 92.203865 51.060317 0.104319 1.607755 1.624995 0.547331 
C5 90.992395 50.251630 0.099873 

(Continued) 

1.663195 1.625000 0.585893 
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TABLE I _ 
(Continued). 

Carbons FTm FTa FL Mn M0 M„ 

C6 111.808612 61.709386 0.128761 1.879848 1.894727 0.593127 

C6 110.495134 60.809936 0.122568 1.891452 1.921053 0.606570 

C6 109.231913 60.246225 0.126034 1.914660 1.894732 0.598337 

C6 108.588437 60.239320 0.127193 1.984284 1.947368 0.598246 

C6 111.569415 61.740502 0.118918 1.903056 1.868426 0.609694 

C6 109.237809 60.094957 0.119726 1.926264 1.894732 0.552992 

C6 112.687464 61.918144 0.117628 1.845036 1.789474 0.628347 

C6 111.881502 61.679248 0.117797 1.891452 1.842110 0.630124 

C6 109.855346 60.412243 0.118532 1.879848 1.842105 0.583331 

C7 127.835993 70.024476 0.145468 2.215480 2.090909 0.612861 

C7 127.201751 69.660087 0.142529 2.185541 2.136349 0.625831 

C7 127.993452 70.097949 0.143057 2.155602 2.091384 0.641087 

C7 129.428918 70.853597 0.141977 2.135642 2.136364 0.646357 

C7 127.633380 69.857448 0.138810 2.165581 2.068182 0.622345 

C7 125.677923 68.741534 0.137854 2.155602 2.090919 0.610405 

C7 122.874897 67.052826 0.142038 2.155602 2.136359 0.618217 

C7 46.974974 24.615089 0.086652 4.141550 4.227273 1.208002 

C7 127.022915 69.493979 0.137449 2.145622 2.181808 0.650266 

C7 127.061895 69.649755 0.138369 2.175561 2.113636 0.646219 

C8 149.080229 81.497520 0.165194 2.363633 2.439995 0.651653 

C8 149.613119 81.806698 0.164695 2.407404 2.420000 0.662258 

C8 149.735516 81.845108 0.163517 2.389896 2.439995 0.660822 

C8 148.852683 81.309880 0.162809 2.398650 2.440000 0.674522 

C8 148.508235 81.056824 0.159152 2.389896 2.440005 0.673042 

C8 147.340604 80.509246 0.160919 2.407404 2.440005 0.649816 

C8 146.021563 79.811669 0.161177 2.424913 2.420005 0.636731 

C8 143.321614 78.244635 0.158898 2.389896 2.419995 0.615587 

C8 142.850651 77.994129 0.161490 2.381142 2.359995 0.631566 

C8 145.980078 79.584763 0.156405 2.424913 2.419981 0.627274 

C9 171.063920 93.322880 0.184141 2.736676 2.625000 0.644124 

C9 171.351757 93.438945 0.183369 2.728879 2.660710 0.650103 

C9 169.148191 92.130596 0.181065 2.760066 2.785714 0.655126 

C9 170.326638 92.865610 0.181896 2.697692 2.678581 0.675747 

C9 170.302665 92.800450 0.177425 2.721082 2.714291 0.686287 

C9 170.352554 92.947907 0.181377 2.697692 2.696424 0.701479 

C9 170.100057 92.730363 0.180439 2.752269 2.696424 0.672828 

C9 170.100057 92.730363 0.180439 2.752269 2.696424 0.672828 

C9 165.154138 89.781148 0.171287 2.619724 2.607138 0.624933 

C9 164.730054 89.728341 0.177340 2.565146 2.535719 0.651846 

C10 192.191653 104.606044 0.203915 3.001026 2.967747 0.670474 

C10 192.191653 104.606044 0.203915 3.001026 2.967747 0.670474 

C10 192.261743 104.551337 0.200315 3.022110 3.032243 0.686215 

C10 189.540819 103.000049 0.198518 3.029138 2.983866 0.705895 

C10 189.303787 102.864455 0.196671 3.029138 2.983866 0.711553 

C10 191.010092 103.860264 0.197011 2.979941 2.935489 0.705731 

C10 192.270043 104.492034 0.199814 3.015082 2.967742 0.666907 

C10 187.802697 101.936861 0.194529 3.029138 3.032258 0.646869 

C10 188.894104 102.551026 0.195955 3.008054 2.983876 0.633660 

C10 186.937441 101.260288 0.189922 2.902632 2.854830 0.672898 

1188 VOL. 70, NO. 6 



PARAMETRIC TRANSFORM/MOMENT INDICES IN MD OF n-ALKANES 

— (8 

CD .5 
<5 
I-CO 

|v 
o 

o 

o 

CO ■* O CO 03   i- CO 
o co ■* co oo  <* •* 
■* Ovl CO lO i-         ifr  o 
O CM CO O)  CO         |v  O 
■* i- co co co      n N 
CM O CO ■*  O         03  CM 
OCviOT^CMOCÖCM 
0"> i- CO 03 

CO lO O CO 03 ■* |v 
Offi^t (M  S LO LO 
O ■* CM CO  00 O |v 
CO CO ■* CO  CO O i- 
co in ■* oo i- co w 
CM co iv co •* h- co 

CO T-(0N 

03  O  i-  i-  O) i- CO 
CM   CO   CO  O  CO LO i- 
ifr   ■*   O  03  CO CO LO 
OMDOS O IT) 
CO   i-   OS  O   CO LO CO 
i- ifi Noo w oo iv 

N W  O CM  O CO  03 
1- tf t 

LO CM ifr i- CM N 00 
CM 03 CO -i- LO 03 1- 
i- 00 03 CO 00 00 03 
O 03 03 CD CO <* 00 
|v CM O O ■>*■ S(M 
OS CO CO ■* O 00 f 
lO^dr^wocJoi 
CM i-  CM   CM 

Oi- OWN tv  ■* 
|v i- t-  i-  i- CO CO 
O  LO i-  03 O >*  "* 
LO  CO CM   T-  00 CO  N 
03   ^t" CO  i—  i— CO   00 
LO  •* <*  i-  CO LO  CD 
OVO^T^OICON 
T- O    1- 

00 LO |v CO   |v tv   CM 
LO 00 T- CO   <* CM   CD 
co o t in T- T- co 
s o a w to 00 LO 
OS ■>- t- CM  CO i-l*- 
>t o n so N to 
Nr^dd^odri 
03 i— OS 03 

03 i- LO "* LO CM "* 
i- O 03 -tf CM LO O 
lOSIDION LO CD 
CD CM I*- LO OS LO O) 
i- |v O O) OS CO O 
O 03 CO CO 03 |v •* 
cdddddocdoi 
|V i-   |v   |v 

in  0)  LO  01  N 03   03 
Ln tv ■*■ o o s co 
h-   ■*   03   i*   i— CO  CO 
■*OOC0* CM   00 
snsios CM ■* 
LO  00   CM   CD  00 O   K 
rddddooiw 
CD 1-   LO   CD 

* W N i- O CO O 
co CD co m i- oo o 
CO 00 CO Iv CD 00 03 
LO CD CM CD |v O) ■* 
CD 00 CM I*- 03 CO O 
O) CO i- CM CO CM ■* 
ÖÖÖÖÖOÖr2 

■* 1- ■* "*■ 

O O ■* 00 i- CO CD 
SOSIDU) ION 
CO CO CO CM 03 LO in 
03 ■* CO OS i- I*- tv 
"* CD 00 00 |v «*■ CO 
"* CM O i- CM i- OS 
cdddddocdco 

c c 
o o o o 

O CO i- •* LO 00 it 
>* tv CO * CM CO ■* 
oo in in I-- co CM o 
IN mS (OO! O CO 
i-~ CM oo r- m co o 
CO CM CO CO CM CM CD 
rirdd^o^* 
O i- o o 

o <* 03 ■* iv i- m 
CO OS 00 O 03 <tf * 
CO CO CM >tf ifr CO 03 
SOOOOO 00 00 
■* CD CO tv OS CM CO 
CM CO "* 03 CO |v "* 
CMi^doT^ocxicd 
03 i- 00 03 

|v Q3 LO ■<*• CM 03 CO 
id" CO i- i- CO CM O 
O CM 03 O LO 1-1- 
CO CO CO i- CM ■* LO 
co i- •* i- in 03 <*• 
co ■* •* o "* 03 oo 
di^d T-'I^OST^ 
00 i- |v 00 

co o o s in co N 
O CM ■* O 03 CM 03 
* to io in s co in 
N W N ^f O) CM CO 
o) sin w es in in 
"* O CO CO i- O 00 
oi^dd^os'd 
CD (0 S 

03 CM i- lO 03 tv "* 
CM co CM <* <a- m ■* 
co in in CM ■* 03 i- 
co co in 03 h- ■* oo 
oo CD m co m oi T- 
o) s w in co oo) 

CD CO CD 

O O 00 i- CM O 03 
co in i- co co co 03 
i- CD CD CO h- CD   LO 
CD O CO LO CO i-   CM 
en oo oo i- en in co 
i- in i- ■* in CM oo 
i^ddddodi^ 
in i- in m 

ffl 00 CO S (fl T- o 
CM O "3- CO 00 CO CM 
CM 00 CO i- CO 03 O 
CM O S i- CD tv 00 
CD CO tv O tv N *f 
sin v; * in p in 

cdddddocd'* 
■*                     1- "* ■* 

ifr CO LO CM  i- CD N 
s o o oo co OS w 
CO OS 03 CM <* O CO 
CO i- CM CO ■* ■* 03 
^ LO ■* CM CD fv i- 
CM ■* i- CO ■* CM O) 
Loddddo-tfLO 
CO            i- CO CO 

CO 03 CM 00 O 1-00 
CM CO CO CO i- LO CM 
S 0) CD ID ■* CD O 
CO CM CO CD 03 00 i- 
03 CO tv CD CO CD i- 
LO CM O i- CM i- CO 
itddddo'*'* 
CM i- CM CM 

CM i- "* 00 I*- 03 CD 
m •* ■* co CM oo in 
CO ■* IV CO ■* ■* CM 
CO 03 CO 00 ■* i- OS 
i- N 10 CM CO i- tv 
CM i- o i- i- o in 

■^ddddo'*'* 

s s to m in CM m 
io in * ^ s CM i- 
O CM CO  O CO 03 01 
CO >tf 1-  CO -tf O) CO 
03 O O  O O 00 O 
i- O O O O i- CM 
00000000 

oo rv co CD o tv T- 
N OJ S (D n CO •* 
OO Iv i- CD  00 CM  i- 
03 CO i- CO  CO i-  ^T 
|v O O O O N  CO 
1- O O  O O 1-1- 
ÖÖÖÖÖOÖÖ 

co •* i- o i- m ■* 
CM LO s s n O 03 
"t S CO ffl CO ■* 1- 
i- CM O 1- CM CD m 
CD O O O O LO CD 
T- O O O O i— i— 
ÖÖÖÖÖOÖÖ 

OS CO CM O 00 03 CO 
CO 03 CO LO CM ■* CO 
00 [v CO i- i- ^- ■* 
O CM O CM CO IV LO 
■* O O O O CO "tf 
i- O O O O 1-1- 
dddddudd 

CO O) CD 00 CD 00 i- 
o CD m m oo CM CD 
O) CO ■* CO   00 CD   |v 
i- ■* i- CO   "* tv   00 
CM O O O   O i-   CM 
i- O O O O 1-1- 
ÖÖÖÖÖOiÖÖ 

■* 03 CO i-  LO CO 00 
in i- co co o tv tv 
O i- 03  CM   CM CO i- 
CD CO O CM  CO 03 O 
O O O   O   O 03 T- 
i- O O  O O O i- 
ÖÖÖÖÖOÖÖ 

o o co tv o in K 
S<f Oi-r CD |v 
03 LO 00  00  CD o o 
O  CM O   1-   CM CD ■* 
03  O O   O  O 00 03 
o o o o o o q 
ÖÖÖÖÖOÖÖ 

CO CO CM CO ■* 1- CM 
CO O) |v CO CO O IV 
CM ■* ■* o m co oo 
CO i- O T- T- O >* 
tv o O O O N N 
o o o o o o o 
ÖÖÖÖÖOÖÖ 

"t ■* CO CM CM CM O 
00 |v i- 00 03 ■* O 
CM CD CM ^ CD O O 
|v o O O O CD 00 
LO o o o o in in 
o o o o o o o 
ÖÖÖÖÖOÖÖ 

CO CO O) tv CO 00 o 
O CM CM i- 'S- O) 03 
co iv CM in iv in in 
CO O O O O CM <tf 
CM O O O O CM CM 
o o o o o o o 
ÖÖÖÖÖOÖÖ 

03 CO CO 03 CD 
CM Iv O tv CO 
tv CM 1- CO CO 
i- 00 CM tv 03 
O CO i- CM CO 
o o o o o 
cd d d d d o 

O CO CD CO CD 
in m CD 03 1- 
i- •* O CO CM 
co co o in in 
O CD CM ■* CO 
|v O O O O 
CM d d d d o 

in co ■* co ■* 
IV 1- Tt |V ■* 
tv ,- O  CD  CO 
tv 03 CO   CO  03 
03 i- O i-  i- 
co o o o o 
ciddddo 

i- i- iv m co 
CO CO iv 03 CD 
in O) O) co iv 
in co iv co co 
CO CM O i- CM 
i- o o o q 
cvi d d d d as 

|v o CO CO CD 
CD CO 03 CO CO 
tv CO 00 |v CM 
i- 00 CM 03 CO 
O CO i- CM •* 
03 O O O O 
voodoo) 

co o CM in o 
i- CO |v CM i- 
03 CD 1- CM CO 
1- CM |v CD CO 
i- CM O i- CM 
CD O O O O 
T^ d d d d o 

O O ■* CD ■* 
O CO O O CD 
LO O CO CD CO 
03 CM CO CO CM 
CO i- O  O i- 
co o o o o 

■^ Ö Ö Ö Ö o 

O CO tv CD T- 
tv CM 03 CO 03 
03 o m i- co 
03 ■* tv tv TJ- 
•* CM O 1- CM 
o o o o o 
T^ Ö Ö Ö Ö o 

O ■* O CM O 
tv CD 00 OS i- 
i- o o ■* in 
CO CO LO i- CD 
CO i- O i- i- 
tv O O O O 
Ö Ö Ö Ö Ö o 

■* co iv as m 
co co m ■* CD 
03 in |v CM ^f 
CM 1- ■* i- m 
|v -4- >* O ■* 
|V I- O 1- 1- 

Ö Ö Ö Ö Ö o 

03 

c 
'■*—' 

c 
o 
o 

c 

l~.E^ 

> 2 
CO   t 

CO CO O) 03 

Q LU 

c c c  c 
o o o o 

M
ea

n 
S

tD
ev

 
S

tE
rr

or
 

95
%

 C
 

99
%

 C
 

c 5 S M
ea

n 
S

tD
ev

 
S

tE
rr

or
 

95
%

 C
 

99
%

 C
 

c 

> oOO 

c CD Q Lu & s; 
t ^ Ä Ä "1 ffl 

§  S  CO  CO  03  03 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1189 



MOLNAR AND KING 

_ TJ 
= a 
mi 
m *A 

o 
O 

CD 
O 

00 
Ü 

o 

CD o 

in 
O 

O 

CO 
O 

CM 

O 

O 

(M 00 
CO CO 
CO i- 
CM CD 
O CM 
O) O 
CM CO 

CD CO 
^r to 
i- o 
in o 
CD CD 
in c- 
C\i C\i 

CM O 
"d- CO 
CD ■* 
in m 
CO i- 
i- CM 
c\j c\i 

CD ■* 
CO CO 
O (M 
in •* 
■* CO 
00 CD 

in in 
CD CD 
CO i- 
CO CO 
CD CD 
in CD 

K CO 
i- in 
CD CO 
in CD 
CO CO 

CD i- 
00 CM 
■* in 
O CO 
CM 00 o o 

T- K 
CD ■* 
00 i- 
■tf 00 
CD CD 

d d 

N- 1- 
CD O 
CD O 
co in 
CD CO 
*fr CD 
d d 

CO   O)   CM N N 
CD  i-   T- CD i- 
CD  CO   CD CD h- 
o o in in i- 
■     - i- co in 

o o o 
odd 

r^- in 
CD  O 

c\i d 

O 00 
co in 
00 CM 
-3- CM 
in co 
co o 
CM CO 

CO N CO CO CO CD ■* 
•* CD O ■* CO T- -i- 
CD CD 10 CD CO (^ C-- 
CD r-~ T- co en in in 
CD CD CM -tf CD CO CO 
CD o o o o in N 
CMOddoOCMCM 

CO   CO 00 t~- in CD   O in in 
CO   i- CD oo K CO   N CD o 
CO   CD CD LO h- m CM CD o 
CO   ■sf CO ■* K r-- in CD o 
CD  CM CM CM o i-  CM in "t 
CO   ^ ■* o o o o co rf 

CMOOOOOCMCM 

CM in in co o 
7- r- CM o i- 
CM CO CO 00 O 
- ■* T- CD CD 

CO T- (M CO 
O O O O 

CD 

CM CO 
CO O 
i- 00 
CO i- 
CD CO 
O i- 

CMOOOOCDCMCM 

co CD in 
1- CD CD 
00 ■* o 
m CD co 
i- co in 
o o o 

CD 
CO 

1-1- i-OOOOCDi-i- 

o oo o in r- 
o i- h~ in CM 
o in o CM <M 
in m oo co CD 
CM CM O i- CM 
CD O O O O 
^0000 

m r-- 
■<t   i-   CM 
00   CM 

CO   CM   CO 
-'   O   CD 

CD   CD 
co co in i- co 
in 1- o 

~ o ■* o 

■r^ d 

o o 
d d 

CD O CD O  CD 
CD 00 CD CO   CD 
CD O CD O   — 
CD i- co in 
CO CM O i- o o o o 
i^ d d d 

CD 

CM o 
d 

o in 
•* in 
N- CM 
CO CD 
CD in 
m co 

h- CD 
o in 
CO i- 
CM CD 
t <3- 

o in 
o o 
o o 
o o 
o in 
o o 

i- co i- CM co r-~ co 
■* o o o o cot 
i- O O  O O 1-1- 
K O O O O K  N 
m o o o o m in 
oo o o o o oo co 

ÖÖÖÖÖOÖÖ 

(0 CM t N 
CD in CM in 
t CD CO O 
K CD K f» 
00 t t o 
CD i- O i- 

o o 
o o 
o o 
o in 
in CM 
K T- 

OOOOOOOi- 

c 
ro , ■ «my 

> 
CD 
Q 

c  c 
o o 
o o 

CO N N W O 
CD CD 1- CD CO 
O CD i- CO CO 
N- in CO 00 CD 
r- CM O T- CM 
CD O O O O 
Ö Ö Ö Ö Ö 

O CO 
CD in 
CD in 
CO i- 
co 
CD 
d 

o in co CD co 
co •* CD m co 
-~ ■ o o o 

C-- ■ 
o 
o 

in **■ 
C0 CM 
CD CM 
CD O 

CD CO 
i- CM 
o o 

o o o o o o 

CO CD 
CO K 
CD Tf 
■* T- 
CM O 
CD N- 
d d 

i^- in r-- o o h- CM 
CM K i- CD CO CO CM 
co CD co CM in mm 
co CD co ■* o in *t 
■<f i- O i- CM i-   h- 
CO O O O O CO  CO 
ÖÖÖÖÖOÖÖ 

CD i^ i- CO 
CD CO i- i- 
CO CD CM O 
o in m CM 
CO i- O i- 
CD O O O 

o o o 

m CM 
00   CM o ^ o o 
CD 

f CD 
O CD 
O i- 
00 CD 
i- CM 
o o 

m co 
O CO 
^ CM o o 
i- m 
CD CD 

CM -S" 
CD CM 
CD i- 
CM O 
in co 
in CD 

OOOOOCDOO 

T- in i- co CM 
00   <fr   *t 00 00 
CO   i-   00 CO •sf 
i-   CM   CO CO CM 
CO   i-   O O 1- 

o o o o 
Ö  Ö Ö Ö 

m 
d 

CM CO 
i- CD 
CM CO 
in m 
■5J- 00 
m m 
d d 

o CO o CO in <fr C0 
00 o o CD r^- r*~ CD 
o O  CD CM i— o in 
CD CD  i- "fr CO CD CO 
CD O  O o o 00 o 
"3- O  O o o M- in 

o o o o o o 

CM o o 

d 

i- CO ■* T- 
-t CO CD CO 
CO i- CO o 
CO OJ t s 
o o o o 
o o o o 
d d d d 

h- o in co co 
co ^t co co 
O CD CO 00 
CO CM O i- 
co o o o 
CO o o o 

odd 

CM o o 

CO o 
CD 't 
CM 00 
CM ■O- 
co in 

d d 

CO N- 
CD 00 
CM O 
t 1- 
CO ^ 
CO CO 

o o o o o 

h- co CM co m 
CO 00 
o r~- 
CD N 

•* o 
■*  CD 
CO   •* o o 

1- *t 
i- CM 
CM O 
CD CO 
co m 

*5r  ^   Ä  Ä   "'   a' 
< S CO CO  CD  CD   c 

OOOOOOOO 

r r 
o o 

> o O O 
CD n in ^^ 

in CD w C/J CD CD 

CO 

c 
o 
o 

IS 
a 
en 

1190 VOL 70, NO. 6 



PARAMETRIC TRANSFORM/MOMENT INDICES IN MD OF n-ALKANES 

200 

150 

£  10° 

50 

12 3 4 5 6 

Carbon Number 

"1 I i I 

7 8 9 10 

FIGURE 1. FTm versus carbon number. 

ship between the other groups consistent with 
the general characteristic of larger FTm values as 
molecular weight increases. For methane, it may 
be that there is not enough structural variation in 
its conformers in respect to those of the C2-C10 

alkanes. But, more importantly, there is no overlap 
of index values in the series. The same comments 
may be noted for the FTe indices plotted in Figure 
2. In Figure 3, the displacement from strict linear- 

ity of the FTC index of the methane conformers 
with respect to the remainder of the series appears 
to be less than for the previously noted indices; 
this may be due in part to the somewhat artificial 
consideration of the alkanes as charged species. 
Again, there are no overlaps of index values. 

Figure 4 is a plot of M„ for the series. In this 
case, the behavior of methane in respect to the 
other hydrocarbons is unusual. Inasmuch as there 

100 

2 3 4 5 6 7 

Carbon Number 

FIGURE 2. FTP versus carbon number. 
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FIGURE 3. FTr versus carbon number. 

can be only limited structural variation in this 
molecule as it is subjected to an annealing process, 
an explanation of the wide index range, as re- 
flected by the vertical dimensions of the box, re- 
mains obscure. This is true also for the Mc index 
plotted in Figure 5. Figure 6 is the plot of Mc for 
the series and is the most unusual of all, with 
methane again having the most variant behavior. 
But the appearance of the plots for the C5-C10 

alkanes also defies explanation other than, as noted 

for the FTC data, to consider that a general repre- 
sentation of the alkanes as charged species is not 
appropriate. 

Perhaps the most interesting aspect of the box 
plots are that, for each alkane, they give a visual 
indication of the variation in the index range. For 
instance, in Figure 1, one could surmise that the 
C4, Cfl, C8, and C10 alkanes, by virtue of their 
greater index ranges as compared to the rest of the 
series, are more flexible than are the compounds 

2 3 4 5 6 7 8 

Carbon Number 

FIGURE 4. M„ versus carbon number. 
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10 

with an odd number of carbon atoms. In Figure 4, 
the reverse appears to be the case, that is, com- 
pounds with an odd number of carbon atoms 
generally appear to have the wider index range. 
While this introduces a degree of dichotomy, inas- 
much as these two indices (FTm and M„, respec- 
tively) are really structure indices in a strict sense, 
such generalizations may really be indicative of 
experimental behavior, with the FTm index, be- 
cause of the nature of its derivation, being the 

most reliable. The FTe index of Figure 2 appears to 
follow the pattern of Figure 1 and thus would be 
confirmatory. The Me index of Figure 5 is less 
consistent in its pattern than its Mn counterpart, 
and as it reflects the electronic nature of the 
molecules, probably no pattern should be pre- 
sumed. For the respective charge indices shown in 
Figures 3 (FTC) and 6 (Mc), no clear pattern 
emerges except for a tendency toward a nonlinear 
relationship between the compounds and this again 

0,50 

0.40 

FIGURE 6. Mc versus cargon number. 
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suggests that these alkanes may not be well repre- 
sented as charged species or that the energy rela- 
tionships in the series may not be adequately re- 
flected in the present calculations. One must also 
consider that the transform indices distance pa- 
rameters are interatomic while the moment dis- 
tances are from each atom to the geometric center 
of the molecule. The molecular representational 
quality of this difference in conformer depiction 
remains to be established. 

Conclusions 

This study has shown that conformers of each 
normal alkane in the C^-C^ series may be 
uniquely numerically represented by the inte- 
grated molecular transform (FTHI). Similarly, the 
integrated electronic and charge transforms (FTC, 
and FTC, respectively) uniquely interpret those as- 
pects across the series, that is, there are no numeri- 
cal overlaps of index values, although the specific 
methane conformer values in each case prevent a 
strict linear relationship in the series. For the nor- 
malized molecular moment (M„) and the normal- 
ized electronic moment (M(,), methane is an outlier 
whose numerical values overlap those of ethane in 
the first instance and both ethane and propane in 
the second. In the case of the normalized charge 
moment (Mr), the extreme range of values for each 
alkane results in several overlaps between the re- 
spective compounds, suggesting that this particu- 
lar index is not suitable for this series. 

The box plots of the data in this study visually 
articulate the respective index values for the com- 
pounds. The variation in the range of such data for 
each alkane may be an indicator of conformational 
flexibility in the case of the FTm and M„ indices. 
Similar considerations for the electronic indices 
(FT,, and Mc) may give an indication of the depen- 
dence of atomic electron density on structural vari- 
ation. Work continues to effect a numerical defini- 
tion of these considerations. 
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morpholinyl-acetic acid] has been used as a template for the amonium moiety in order to 
help to identify the active conformation. Both in vacuo, and solvent-simulated calculations, 
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analog, at ab initio (G94, 6-31 + G(d,p)) and semiempirical (PM3) levels, respectively. On 
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Introduction 

Inhibition and excitation in the central nervous 
system (CNS) are mainly controlled by either 

y-aminobutyric acid (GABA) or L-glutamate neu- 
rotransmitters. GABA, like other neurotransmit- 
ters, including L-glutamate, serotonin, and acetyl- 
choline, activates both ionotropic (GABAA) and 
metabotropic (GABAB) receptors [1-4]. Whereas 
the GABAA receptor was cloned a decade ago, 
success in cloning the GABAB receptor is more 
recent (1997) [1, 5]. The ionotropic GABAA recep- 
tors are ligand-gated ion channels that produce 
fast synaptic transmission. Metabotropic GABAB 

receptors, on the other hand, couple to G proteins 
(guanine-nucleotide-binding proteins) and pro- 
duce several divergent effects through intracellular 
effector systems: opening of adjacent potassium 
channels, closure of voltage-gated calcium chan- 
nels, and inhibition of the enzyme adenylyl cyclase 
[2, 5]. The effects of stimulating GABAB receptors 
are, thus, slower and lead to a more prolonged 
postsynaptic inhibition, associated with some types 
of learning and memory. 

Baclofen, a GABAB agonist, was introduced in 
the market in 1972 and mainly used for its thera- 
peutic potential in several respiratory diseases, 
such as asthma [2, 3]. Since then, analogs of ba- 
clofen, saturated and unsaturated, have been syn- 
thesized and tested for GABAB receptor affinity 
[6-9]. The phosphonic and sulfonic analogs 
(phaclofen and saclofen, respectively), as well as 
the 2-hydroxy derivative of the latter [10, 11], have 
been shown to be antagonists at the GABA B recep- 
tor and used as neuroprotective drugs [2] to treat 
spasticity, absence epilepsy, anxiety, depression, 
and cognition deficits, as well as the respiratory 
depression caused by excessive doses of GABAB 

agonists [1], Antidepressant properties have also 
became apparent for GABAB agonists [1, 3, 4]. In 
this framework, the conformational analysis of 
several baclofen analogs has demonstrated the im- 
portance of lipophilic substitutions in the het- 
eroaromatic ring to increase the binding affinity 
[6, 12]. 

The clinical importance of GABAB analogs has 
stimulated the research in this field. A new class of 
potent phosphinic GABAB antagonists has been 
recently described by Froestl and co-workers [3, 
13]. Lipophilic groups bound to both the phospho- 
rous and nitrogen atoms also appear as necessary 

for the GABAB binding affinity to become signifi- 
cant. Even later; morpholine-2-acetic acid deriva- 
tives have been reported as GABAB antagonists 
[14]. Their affinity also increases after lipophilic 
substitution in position 5 of the morpholine ring. 

Several conformational analyses have succeeded 
in identifying structural requirements for GABAB 

binding affinity [6, 12, 15]. They have been based, 
however, on the comparison of analogs of the 
same class, and the conclusions derived from them 
are only valid for the congeneric family to which 
they belong. With the aim of elucidating, in a less 
restrictive manner, the structural requirements in- 
volved in accessing the GABAB receptor, we have 
performed a conformational study, followed by a 
similarity analysis that is mainly based on the 
comparison of structural descriptors, including, in 
our research, analogs that belong to different fami- 
lies. Due to the consideration of dissimilar struc- 
tures in the comparative analysis, the number of 
requirements for binding affinity derived from it is 
smaller, but of more general applicability for the 
evaluation of the binding capability. 

Although cloning has given some information 
on the primary structure of the protein receptor, 
more detailed information about the GABAB bind- 
ing site is lacking. Among the relevant missing 
information, mainly relating to the secondary, ter- 
tiary, and quaternary protein structures, it should 
be noted that the nature of the environment at the 
receptor site is not known. However, the binding 
of a molecule to a proteic extracellular domain of 
the GABAB receptor [1, 5], together with the evi- 
dence that lipophilic substitutions improve the 
binding capability [6, 12, 14, 15], discourages the 
assumption that a polar extracellular domain is 
involved. From a theoretical standpoint this con- 
sideration is relevant, mainly when dealing with 
zwitterionic structures as GABA analogs. Extracel- 
lular hydrophilic interactions imply an environ- 
ment defined by the physiological media, of large 
dielectric constant, which is accurately modeled by 
water as a solvent. Intracellular, as well as extra- 
cellular interactions involving a proteic media, 
imply a nonpolar environment that can be ap- 
proached by calculations in vacua. In this frame- 
work, the comparison of the results of theoretical 
calculations obtained in both conditions can help 
in discerning the characteristics of the environ- 
ment in which the interaction occurs. The compu- 
tational scheme for the treatment of GABAB 

analogs is further complicated by the flexibility of 
the structures, that define several minima, very 
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close in energy, in the potential hypersurface, and 
also by the fact that the active conformations, 
associated with the conformations at the binding 
site, are not necessarily those of lower energy, 
although, in general, close to them. These compli- 
cations are generally overcome by means of the 
consideration of rigid analogs [16], whose struc- 
tural characteristics help in discerning the require- 
ments for the molecules to be active. However, in 
contrast to the case of GABAA [17], no rigid analog 
has been found for the GABAB receptor site. We 
have chosen, therefore, the partially rigid 2RS- 
(5,5-dimethyl)morpholinyl-acetic acid as our tem- 
plate, and have mainly centered our research on a 
conformational study that considers, for the other 
structures, the requirements imposed by it. More- 
over, on the basis of the previous discussion, we 
have decided to model our system in vacuo, al- 
though polar and proteic environments have been 
compared for the semirigid analog. 

The research presented in this article, which 
explores the conformational space of the GABAB 

analogs when interacting at the receptor site, gives 
insight, after the similarity analysis, into the con- 
formational preferences of the structures. We are 
presently searching for more detailed information 
as part of a more ambitious project, but this 
achievement relies, for the moment, on the synthe- 
sis of analogs with a higher degree of rigidity or 
the further knowledge of the receptor site, which 
would allow the application of other modeling 
resources. 

TABLE I 
Binding affinity of the GABAB analogs.3 

GABAB 

Binding affinity 
(brain membrane) 

Agonisti 
bO GABA 60 nM 
b1 beta-R-hydroxy-GABA 1.3 fiM 
b2 R(-)-Baclofen 60 nM 
b3 3-aminopropylphosphinic 

acid 1-5nM 
b4 3-aminopropyl (methyl)- 

phosphinic acid 0.3 nM 

Antagonists 
b5 3-aminopropanesulphonic 

acid 10|u,M 
b6 R-Phacofen 100 pM 
b7 R-Saclofen 100 pM 
b8 4-amino-3-(5-methoxy- 

benzo-[b] 
furan-2-yl)butiric acid 5.5 /xM 

(ileum) 
b9 CGP35348 
b10 CGP36742 100 pM 

(vas deferens) 
b11 CGP55845 35 pM 
b12 2RS-[(5,5-dimethyl)morpho- 

linyl]- 7nM 
acetic acid 

b13 y-Amino-(7-methyl-benzo- 
furan)- 3 + 1 pM 
butiric acid 

5.4 pM 

abn = short symbols used to refer to them. 

Details of the Calculation Procedure 

We have included in our analysis the set of 
compounds listed in Table I and shown in Figure 
1, whose elements are not restricted to a unique 
congeneric family. As the first step of the research 
a thorough conformational study was performed, 
which was followed by a similarity analysis where 
stable conformations were compared. These con- 
formations are partially defined by the structure of 
the morpholine acetic acid derivative, chosen as a 
template. 

Because there is no strong evidence that sup- 
ports the modeling of a polar environment sur- 
rounding the interaction site, we have based our 
study on the results derived from calculations in 
vacuo. However, as the influence of a polar media 
has not been completely rejected, solvent-simu- 

lated calculations are presently being done, for the 
solvent modeled as a continuum within an On- 
sager approach [18], in the framework of ab initio 
G94/6-31 + G(d,p) calculations [19]. The results of 
both approaches are presented in this article, in a 
comparative manner, for the case of the morpho- 
line acetic acid derivative, as a way of showing 
that solvent simulation does not become relevant 
when the conformations are partially defined by 
the requirements imposed by our template. 

In the present research, the first step of the 
calculation is associated with the conformational 
search of the fully relaxed isolated molecules. 
Dealing with very flexible zwitterionic molecules, 
in vacuo geometry optimization leads to severely 
curved structures, stabilized by proton transfer 
from the positive to the negative end. In order to 
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bO 

I  I 
b2 

b1 

«Mir* t   t 
b3 

FIGURE 1. GABAB analogs included in the comparative analysis: b12, rigid analog; b13, benzofuran derivative of 
baclofen whose X-ray structural data have been considered in the text. Torsional angles are shown for b12: 
T, = NC1C2C3, T2 = C^CgC,,, T3 = C2C3C405, r4 = C2C3C406, T5 = C^aCaY (Y = third substituent of C4, not 
shown), T6 = NC1C207, r7 = C^C^Cg. Red, O; blue, N; light blue, C; green, P; yellow, S. 

avoid this effect, which is known to be unreal from 
the consideration of the requirements imposed by 
the morpholine acetic acid derivative, the struc- 
tures have been partially frozen to the torsional 
angles defined by the rigid moiety of the semirigid 
analog. Thus, in order to perform a complete search 
for the accessible conformational space in the inter- 
action site, the unfrozen torsional angles have been 
varied in 10° steps, from 0° to 360°, with complete 
relaxation of the other variables at each fixed ge- 
ometry. In this way, starting with the morpholine 
acetic acid derivative (Fig. 1), for which the T, 

value is well defined, the values of T2 associated 
with minimum energy were determined. For these 

Tj, T2 values imposed on the other structures, the 
other torsional angles have been calculated by 
means of a complete search over the conforma- 
tional space. On the basis of our previous experi- 
ence, derived from the comparison of semiempiri- 
cal (PM3, AMI, MNDO) [20] and ab initio (G94/6- 
31 + G(d,p)) [19] calculations for the conforma- 
tional analysis of GABAA derivatives, which has 
shown that both the semiempirical and ab initio 
methodologies lead to similar results when per- 
formed in vacua [17], we have chosen PM3 for the 
conformational analysis. The lower computational 
requirements associated with this methodology al- 
low a more detailed analysis of the conformational 
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FIGURE 1. (Continued) 

space. Ab initio calculations are characterized, for 
these flexible systems, by a slow convergence to 
the structure of minimum energy, which is located 
in a very flat region of the potential hypersurface. 

Different environmental conditions have been 
modeled for the conformational analysis of the 
morpholine acetic acid derivative. The physiologi- 
cal media, which is the surrounding environment 
for hydrophilic interactions, has been simulated by 
water (through its dielectric constant) in the frame- 
work of an Onsager approach [18]. The active 
conformation for lipophilic interactions has been 
approached, on the other hand, by calculations in 
vacuo. Whereas ab initio (G94/6-31 + G(d,p)) cal- 
culations [18] have been performed in the first 
case, semiempirical PM3 calculations [20] have 
been done in the second. Far from being arbitrary, 

this decision is twofold. On one side, we have 
found that solvent-simulated PM3 calculations [21] 
do not lead to reliable results (in comparison with 
those derived from solvent-simulated ab initio 
ones). On the other side, we are interested in 
analyzing the confidence of the semiempirical PM3 
calculations that will be used throughout this re- 
search. They have been chosen on the basis of the 
knowledge of the computational cost that would 
demand G94/6-31 + G(d,p) calculations for the 
evaluation of the torsional barriers around the 
flexible bonds, and on the similarity of the results 
from both approaches when used for the analysis 
of GABAA analogs [17]. 

The similarity analysis that followed the confor- 
mational search has been mainly based on the 
comparison of the structural parameters and on 
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FIGURE 1. (Continued) 

the use of computer graphic molecular superimpo- 
sition in order to compare the structures as a 
whole. 

Results and Discussion 

STRUCTURAL CHARACTERISTICS OF THE 
MORPHOIJIXE ACETIC ACID DERIVATIVE. B12 

Regardless the calculation methodology and the 
simulated environment, the conformational analy- 
sis of the semirigid analog indicates the stabiliza- 
tion of two minima, mainly defined by the value 
of the C1C2C3C4 (T2) torsional angle. 

The calculated torsional angles derived from 
both methodologies (Fig. 1, b!2) are given in Table 

II. As previously mentioned, the value of T2 be- 
comes the most relevant calculated data to discern 
the conformation of the GABA chain in the bind- 
ing site, as TU T6, and T7, are defined by rigidiza- 
tion. T3 and T4, on the other hand, correspond to 
very flexible angles. Interatomic distances and pla- 
nar angles are comparatively shown in Figure 2. 

From the conformational analysis of the mor- 
pholin acetic acid derivative two results can be 
inferred: 

■ The conformation of the GABA chain in the 
GABAB analogs is defined by values of the 
torsional angles close to T, = 170° and T2 = 
60°/ - 60°. The energy involved in the con- 
version between the most stable conformers 
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FIGURE 1. (Continued) 

A Hj (Table III) is not large enough to disre- 
gard intermediate values of T2 for the defini- 
tion of the active conformation. 
The close agreement between the structural 
parameters calculated by both methodolo- 
gies demonstrate that solvent simulation 
does not become relevant for the analysis of 
the conformational space of the other deriva- 
tives of Figure 1 when, according to our 
interest in the active conformation, the struc- 
tures are frozen to the requirements imposed 
by the semirigid analog. For this conforma- 
tion, which is straight in the amonium side, 
the interaction between the charges in oppo- 
site ends followed by proton migration is 
precluded. The straight conformation of the 
semirigid analog reopens the question of 
whether a polar environment might be sur- 
rounding the interaction site and shows how 
the results of the calculations can help to 

PM3 calculated torsional an gles of the GABA B 
analogs.3 

T1 T2 1"3 U TS T6 T7 

bl2 178 60 158 -22 53 -60 
171 74 767 -14 52 -62 
159 -59 -144 36 51 59 

-177 -54 -160 24 57 -66 
BO 170 60 150 -30 

170 -60 -146 35 
B1 170 60 152 -28 

170 -60 -129 49 
B2 170 60 157 -23 48 54 

170 -60 -158 23 45 58 
170 60 -30 96 -143* 

B3 170 60 -142 -16 100* 
170 -60 20 146 -93* 
170 -60 -80 45 160* 

170 60 -151 -22 90** 
B4 170 60 -36 91 -150** 

170 -60 -92 37 150** 
170 -60 22 151 -90** 

B5 170 60 -135 -18 100 
170 -60 170 -65 50 
170 60 0.0 -30 80 + 47 58 

B6 170 -60 -116 19 130 + 44 54 
170 -60 -175 47 -60 + 36 52 

B7 170 60 -160 -42 75 56 60 
170 -60 157 -79 37 46 95 
170 60 156 -25 46 97 

b8 
170 -60 -150 30 43 98 
170 60 -168 -34 -80+ + 

B9 170 60 165 -57 50+ + 
170 -60 -124 11 120+ + 
170 -60 40 175 -70+ + 

170 60 -151 -20 90+ + 
170 60 102 -27 -140 + + 

b10 
170 -60 -92 37 150+ + 
170 -60 21 151 -90+ + 

170 60 -30 -99 -143+ + 
b11 170 -60 31 153 -89+ + 

170 -60 97 24 143 + + 

In all the cases but b12, T, and T2 are kept fixed to 170° 
and 60° / - 60°, the latter being close to the one that result 
from the optimization. Ab initio results for b12 are given in 
italics. Atoms considered in the definition of T5: (*); H; (**); 
primary C; (+); OH; (++); secondary C. Results for more 
than one minimum are given. 
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t..-«"1"' 

FIGURE 2. Comparison of the structural descriptors 
(bond distances and planar angles) that result from PM3 
and solvent-simulated ab initio calculations (italics) for 
b12. Bond distances are indicated in the conformation 
associated with T2 = 60°, planar angles in the 
conformation defined by T2 = -60°. Torsional angles 
are compared in Table II. 

understand the characteristics of the interac- 
tion in the binding site. 

ANALYSIS OF THE "SEMIRIGID" 
BACLOFEN ANALOGS 

As we are interested in the active conformation 
of the GABAB analogs, which is partially defined 
by bl2, we have frozen the value of T, to 170°, 
which is an intermediate value between those as- 
sociated with the two minima calculated for bl2. 
In order to perform the conformational analysis of 
the baclofen analogs, including saclofen and pha- 
clofen, we have worked on the other structural 
parameters scanning the conformational space by 

means of a 360° rotation of T2, in 10° steps, with 
complete relaxation of the other parameters. 

In agreement with the results derived from the 
study of bl2 two minima were found, defined 
by values of T2 close to + 60/ - 60. The energy 
involved in the mutual interconversion between 
both conformers is smaller than the one calculated 
for bl2. 

It should be mentioned that, when bl2 is ana- 
lyzed by means of a complete scanning of the 
active space through the rotation of T2 in 360°, a 
third minimum develops at -120°. However, this 
minimum implies a significant distortion of the 
morpholine ring. This fact supports the conclusion 
that values close to either 60° or -60° in T2, 

together with 170° in T,, will define the conforma- 
tion of the GABA chain in the binding site. 

For the analysis of the other torsional angles a 
similar procedure has been followed. Keeping T, 

fixed to 170°, T2 has been kept to either 60° or 
- 60°, a value that is close enough to the one that 
results from the previous optimization. For the 
semirigid geometries thus defined, the conforma- 
tional space has been again scanned by means of 
a 360° rotation of T3 in 10° steps with complete 
relaxation of the other parameters. This rotation 
implies the simultaneous modification of T3 and 
r4. The resulting conformations, described by the 
torsional angles, are given in Table II. The opti- 
mized values of T3, T4, and T5 (Table II) are diffi- 
cult to compare, as they involve different groups, 
with either two or three atoms bonded to carbon, 
phosphorus, or sulfur atoms. It gives, however, 
good agreement for the carboxylate containing 
molecules. In relation to the baclofen analogs, T6 

and T7 have been also considered. The most stable 
conformation corresponds to T7 = 60°. The energy 
difference between this conformation and the one 
imposed by the semirigid analog, defined by r7 = 
-60° (Table II) amounts to 4 kcal/mol, with an 
associated rotational barrier of 6.0 kcal/mol. The 
latter is in close agreement with the —65.3 value 
determined by X-ray diffraction analysis for the 
7-methyl benzofuran analog of baclofen (bl3, Fig. 
1) [12]. 

COMPARATIVE ANALYSIS INCLUDING ALL THE 
COMPOUNDS OF THE SET 

The previously described conformational analy- 
sis, based on the partial rigidization of the 
molecules to the parameters imposed by bl2, has 
been extended to the other molecules of the series 
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(bO, bl, b3, b4, b5, b9, blO, bll). Data reported in 
Table II demonstrate that the previous discussion 
is not restricted to the baclofen analogs, but also 
applies to the other elements of the set. 

The first step of the optimization, for T1 fixed to 
170°, results in two minima, defined by T2 values 
close to 60 and   -60, respectively. The energy 

difference between them (A E, Table III) does not 
allow discernment among both possibilities for the 
definition of the characteristics of the active con- 
formation. In relation to the torsional barriers, the 
largest value among the flexible derivatives corre- 
sponds to bO, where the height is associated to the 
simultaneous rotation about the CC bond that 

TABLE 
Distance [A] from the positive center to each of the atoms that define the negative center a 

A£ AH, AH2 

T2 d(N —O) d(N —O) d(N —O) d(N —X) d (kcal / mol) (kcal / mol) (kcal / mol) 

b12 60 5.58 3.83 4.35 4.70 0.29 8 
-60 5.48 3.75 4.27 4.61 0.00 

bO 60 5.55 3.81 4.32 4.68 1.83 12 9 
-60 5.51 3.77 4.28 4.64 0.00 9 

b1 60 5.59 3.92 4.36 4.75 0.00 12 3 
-60 5.35 3.76 4.21 4.55 3.71 3 

b2 60 5.56 3.80 4.36 4.68 1.67 8 9 
-60 5.48 3.78 4.31 4.63 0.00 9 

b3 60 5.61 3.83 4.61 4.72 3.85 4 8 
60 5.51 3.80 4.59 4.65 3.58 

-60 5.50 3.60 4.49 4.55 0.77 8 
-60 5.41 3.74 4.46 4.57 0.00 

b4 60 5.68 3.74 4.56 4.71 0.00 8 8 
60 5.54 3.79 4.55 4.66 0.03 

-60 5.34 3.80 4.55 4.57 0.03 8 
-60 5.35 3.74 4.56 4.54 0.01 

b5 60 5.65 3.90 5.47 4.67 4.77 2.43 6 9 
-60 5.26 3.86 4.82 4.53 4.56 0.00 9 

b6 60 5.56 3.80 4.62 4.68 0.00 7 11 
-60 5.32 3.79 4.56 4.55 2.26 10 
-60 5.24 3.80 4.59 4.52 4.37 

b7 60 5.63 3.90 5.45 4.63 4.76 0.00 7 8 
-60 5.40 3.77 5.62 4.62 4.58 1.75 9 

b8 60 5.67 3.96 4.44 4.81 0.59 9 14 
-60 5.27 3.97 4.32 4.60 0.00 13 

b9 60 5.61 3.77 4.43 4.69 1.72 8 10 
60 5.63 3.70 4.42 4.66 0.00 

-60 5.24 3.80 4.58 4.52 3.50 10 
-60 5.28 3.73 4.60 4.51 3.64 

b10 60 5.68 3.81 4.60 4.74 2.79 7 9 
60 5.67 3.82 4.60 4.74 3.94 

-60 5.35 3.72 4.50 4.53 0.65 8 
-60 5.31 3.70 4.51 4.51 0.00 

b11 60 5.58 3.79 4.61 4.68 3.57 7 8 
-60 5.29 3.71 4.41 4.50 0.00 8 
-60 5.38 3.68 4.43 4.53 1.06 

d = distance from the N to the mean point of the overlapping negative charges. A£ = relative PM3 calculated energy differences 
between the conformations defined by T2. AH.,, AH2 = energy barriers around T,, T2, respectively. 
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defines the T3 value. Rotational barriers around 
the CC bond associated with T3 are also given in 
Table III. 

In order to learn about the structural require- 
ments associated with the binding affinity, we 
have superimposed the structures that result from 
the optimization, constrained in the TV T2 values, 
with our template, defined by bl2. The graphical 
superposition was preceded by the analytical com- 
parison of the distance between the positive and 
negative centers of charge, for the conformations 
defined by T2 = 60°/ - 60° (Table III). The distance 
between the positive nitrogen and two of the nega- 
tive oxygen atoms is the same, within 0.25 A, for 
the molecules under consideration, which is in- 
dicative of the fact that the centers of charge will 

be easily overlapped. If the mean position between 
the two centers of negative charge is considered, 
the calculated distance is in agreement with the 
one observed by X-ray crystallography for the fu- 
ran, thienyl, benzofuran, and benzothiophene ana- 
logs of baclofen (4.6 A) [12, 22-24] (bl3, Fig. 1) 
and with the one calculated by molecular dynam- 
ics for the phosphinic antagonist CGP55845 [15]. 

Figure 3 shows the results of the graphical su- 
perposition, exemplified by the superposition of 
bl2 with bO, b7, b8, and b9. The conformations 
defined by T2 = 60°/ - 60° have been compara- 
tively considered. Graphic superpositions for the 
other GABAB analogs are available upon request. 

In agreement with the previous analytical com- 
parison, the positive and negative centers of charge 

b12-b7 [t2=60] 

b12-b0 [t2=60] 

b12-b0[x2--60] b12-b7 [t2--60] 

FIGURE 3. Superposition of GABAB analogs with the template, fc>12. Although the superposition has been analyzed 
for all the molecules, 4 out of 11 are given as example. Superposition has been analyzed for both stable conformations 
defined by T2 = 60°/-60°. 
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FIGURE 3. (Continued) 

overlap for all the molecules of the series. For the 
case of the baclofen analogs, the aromatic sub- 
stituent in ß position overlaps with the oxygen 
atom of the morpholine ring. This superposition 
involves the R-configuration of the baclofen 
derivatives, which are known to be the active 
species for receptor binding. For the morpholine 
acetic acid derivatives, on the other hand, the 
active configuration is S on C2 of the morpholine 
ring. Estereoisomeric requirements should also be 
considered, thence, in the definition of the phar- 
macophoric pattern of GABAB analogs. Lipophilic 
substitutions in ß position have been extensively 
investigated. It has became evident that, in addi- 
tion to the estereoisomerism, requirements related 
to the size of the substituent have to be met. It has 
been found [15] that a size over a limit, defined by 

two methyl groups bonded to C5 of the morpho- 
line ring decrease the activity in the series of the 
morpholine acetic acid derivatives. 

On the basis of the previous analysis we are 
able to suggest a pharmacophoric pattern for 
GABAB analogs which is not restricted to a unique 
congeneric family. It is defined by: (1) a positive 
center associated with an ammonium group; (2) a 
negative center defined by two oxygen atoms; (3) a 
distance between them of 4.6 (- + 0.1) A, measured 
from the nitrogen atom to the mean point of the 
two overlapping oxygens; (4) a straight conforma- 
tion in the positive end; (5) a torsional angle T2 

restricted to values between 60° and -60°; and 
(6) a configuration in the ß position of the GABA 
chain superimposable on the R-enantiomer of the 
baclofen analogs. The characteristics of this pattern 
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b12-b9 [x2-60] 

b12-b9 [i2»-60] 

FIGURE 3. (Continued) 

indicate that T2 becomes relevant for its definition. 
Although 60° and -60° appear, at first glance, as 
equivalent, they do not define equivalent confor- 
mations but mirror images, and only one, defined 
by a value of T2  between these limits, will be 

TABLE IV  
Torsional angles for the GABA molecule at the 
GABAA and GABAB receptor sites.3 

T
1 T2 T3 T4 d(k) 

GABA-A 15 180 180 0 > 5.30 
GABA-B 170 60 150 -30 4.60 

170 -60 -150 30 

ad = distance from the positive to the negative end that 
defines the pharmacophore. 

capable of accessing the receptor site. The question 
remains pen and would probably need the design, 
synthesis, and biological evaluation of, at least, a 
new compound, rigidified in the negative end. 

CONFORMATIONS OF TIIK GABA MOLECULE 
IN THE G\BAA AND GABA„ RECEPTOR SITES 

Table IV and Figure 4 show the differences in 
the conformations of the GABA molecule when 
interacting with either GABAA or GABAB receptor 
sites. Tj and T2 define important differences be- 
tween both conformations. Whereas the value of T, 

implies opposite orientations of the positive end, it 
should be remarked that the value T2 = 180°, which 
corresponds to minimum energy for the GABAA 

agonists, belongs to a point of maximum energy in 
the conformational space of the GABAB analogs. 
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GABAA 
GABAB 

GABAA GABAB 

FIGURE 4. Superposition of the GABA molecule in the 
conformations associated with the GABAA and GABAB 

receptor sites, (a) GABAB conformation for T2 = 60°. 

chain superimposable on the R-enantiomer of the 
baclofen analogs. 

The main difficulty of this research was associ- 
ated with the flexibility of the structures and the 
lack of fully rigid GABAB analogs. This fact leaves 
a question open about the accuracy of the defini- 
tion of the conformational characteristics of the 
negative end. However, we have approached the 
pharmcophore closely enough to be able to discern 
the differences in the conformation of the GABA 
molecule at the GABAA and GABAB receptor sites. 

Present research is oriented to the design and 
synthesis of completely rigid analogs and to the 
homology modeling of the receptor on the basis of 
the comparison of the amino acid sequences of 
GABA and glutamate metabotropic receptors. 
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(b) GABAo conformation for T2 -60° 

Conclusions 

A conformational study, followed by the identi- 
fication of similar fragments taking into account 
the flexibility of the molecules, has led us to sug- 
gest a pharmacophoric pattern for GABAB binding 
affinity, revealing the following features: (1) a pos- 
itive center associated with an ammonium group; 
(2) a negative center defined by two oxygen atoms; 
(3) a distance between them of 4.6 A, measured 
from the nitrogen atom to the mean point of the 
overlapping negative oxygens; (4) a straight con- 
formation in the positive end; (5) a torsional angle 
T2 restricted to values between 60° and - 60°; and 
(6) a configuration in the ß position of the GABA 
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ABSTRACT: We report on optimal molecular connectivity descriptors for nitrogen 
atoms in amines for use in structure-property correlations. The descriptors represent 
generalized molecular connectivity indices with adjusted diagonal entries in the adjacency 
matrices of the corresponding molecular graphs, such that the standard error in a 
regression for boiling points in a set of amines is minimized. Advantages of the 
so-optimized descriptors for multivariate regression analysis in structure-property- 
activity studies are discussed.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1209-1215, 
1998 

Introduction 

One of the critical initial steps in modeling 
structure-property and structure-activity 

relationships is the selection of molecular descrip- 
tors to be used in such models. In the earlier 
development of QSAR, the quantitative struc- 
ture-activity relationship studies [1], the selected 
molecular properties have been often used as 
molecular descriptors. While this is quite legiti- 
mate, such an approach has been characterized as 
structure-cryptic [2], because it expresses biologi- 
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cal activities in terms of molecular properties, sim- 
pler and presumably better understood; neverthe- 
less, such an approach does not offer direct insight 
on the structure-property relationship. The suc- 
cess of such approach reflects the situation that 
the, although yet unknown, same structural factors 
may play the critical role in different molecular 
properties [3]. 

Chemical graph theory [4] advocates an alterna- 
tive approach to QSAR and to the structure-prop- 
erty-activity relationship studies based on math- 
ematically derived molecular descriptors. Such 
descriptors, often referred to as topological indices, 
include the well-known Wiener index W [5], the 
Hosoya index Z [6], and the connectivity index x 
[7], the latter one being the most widely used [8]. 
The Wiener index counts the number of carbon 
atoms on each side of bond in a molecule, the Z 
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index counts nonadjacent bonds in the carbon 
skeleton of a molecule, while x is a bond additive 
quantity in which bonds of different types (involv- 
ing primary, secondary, tertiary carbons) are given 
different weights. As initially introduced, all three 
indices (and the same is true for many, but by no 
means all, topological indices) were defined for 
carbon molecular skeletons. This leaves the prob- 
lem of their generalization to heteroatomic 
molecules open. Kier and Hall [9] recognized the 
importance of extending the definition of the con- 
nectivity index to heteroatoms and proposed the 
so-called valence connectivity indices for which 
the rules are given as to how to represent het- 
eroatoms. The concept of the valence connectivity 
indices also extends to "higher" connectivity in- 
dices [10]. Kupchik considered an alternative route 
to generalized connectivity indices by modifying 
empirically the difference in bond length between 
the heteroatom-carbon bond and the carbon- 
carbon bond [11]. The modifications were based on 
the differences in the covalent radius between the 
heteroatom and the carbon atoms. The correspond- 
ing extensions of W and Z for heteroatoms have 
not been yet considered, but, recently, weighted 
paths for heteroatoms were considered [12]. 

Representation of Heteroatoms 

It is apparent that in order to cover the in- 
creased variation in the structural features that the 
heteroatom introduces molecules involving het- 
eroatoms require additional descriptors. The ap- 
proach of Kier and Hall [8] implies that het- 
eroatoms differently weigh bonds of different 
kinds. The characterization of heteroatoms by 
graph-theoretical rather than physicochemical 
schemes has advantages, as it is independent of 
whether selected experimental data are available 
and, if available, whether they are reliable. 

An alternative approach of modifying the con- 
nectivity indices so that they can better character- 
ize the presence of heteroatoms to that of Kier and 
Hall was recently outlined for chlorine atoms in 
clonidine compounds [13]. The approach may be 
viewed as analogous to the early modifications of 
the Hückel molecular orbitals method for het- 
eroatoms [14], while the approach of Kier and Hall 
would be analogous to the approach of Slater for 
modification of simple atomic orbitals used in the 

early quantum chemical calculations. A way to 
differentiate heteroatoms in a Hückel matrix, or 
the adjacency matrix of a molecular graph, is to 
modify the diagonal and the off-diagonal ele- 
ments. An earlier study showed that modification 
of off-diagonal elements has produced a small 
effect [15]. 

Changes in the diagonal elements of adjacency 
matrices, as has already been seen on chlorine 
atoms in clonidine-type compounds, influences the 
magnitudes of computed weighted paths more 
strongly [13]. In Table I, we show how the paths of 
length one, paths of length two, and paths of 
length three vary as we change the diagonal entry 
corresponding to nitrogen in a graph of 1- 
aminohexane. The same table applies to other het- 
eroatoms placed at the end of the chain of six 
carbon atoms, for example, it equally applies to 
1-hexanol. The difference between 1-hexanol and 
fl-aminohexane will be in different corresponding 
values for the parameter y. 

The weighted paths for n-heptylamine were ob- 
tained from the ALL PATH program [16] by re- 
placing the zero diagonal entries in the input adja- 
cency matrix with the value of y selected. The 
weight of bonds in the calculation of the connectiv- 
ity index are defined as 1/ ]/m ■ n , where m and n 
are the valences of the incident atoms (vertices). 
By introducing parameters x and y to be assoc- 
iated with atoms of different kinds, here, car- 
bon and nitrogen atoms, respectively, the weight 
of bond OH, H) changes from 1/ ]/(m • n) to 

l/y/[(m + x)-(n + y)]. 

TABLE I 
Variation of path numbers 1TT, 2TT, and 3TT for 
1-aminohexane as a function of the diagonal entry 
for the nitrogen atoms (diagonal entries for carbon 
atoms are assumed zero). 

y 
1 
77 

2 
77 

3 
77 

0.5 3.2845 1.3922 0.5711 
0 3.4142 1.4571 0.6036 

-0.25 3.5236 1.5118 0.6309 
-0.50 3.7071 1.6036 0.6768 
-0.75 4.1213 1.8107 0.7803 
-0.80 4.2883 1.8941 0.8221 
-0.85 4.5326 2.0164 0.8832 
-0.90 4.9432 2.2216 0.9858 
-0.95 5.8694 2.6847 1.2175 
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In Table I, we show how the count of the paths 
changes as y decreases from small positive values 
and approaches the limiting value of — 1 (assum- 
ing x = 0). In general, both x and y will change. 
For example, as we will see in the next section, the 
values x = 1.25 and y = -0.65 are found as opti- 
mal for carbon and nitrogen atoms, respectively, 
when considering the boiling points in amines. The 
optimal value of x = 1.25 corresponds to a change 
of the valence for carbon atoms in a molecular 
graph from their values of 1 and 2 to the values 
2.25 and 3.25 for the terminal and the bridge car- 
bon atoms, respectively. Similarly, the formal va- 
lence of the terminal nitrogen atom becomes 0.35 
instead of remaining equal to 1. These changes in 
the x and y values alter the relative role that the 
carbon and nitrogen atoms play. The negative val- 
ues of y result in a more pronounced role of the 
heteroatom. However, the relative role of the 
shorter and longer paths for the carbon atom or the 
nitrogen atom have not changed. 

In Figure 1, we plotted 2
TT against V and 3

TT 

against V for the weighted path numbers given in 
Table I. Although as the diagonal entry of the 
adjacency matrix decreases and the magnitudes of 
the path numbers V, 2

TT, and 3
IT increase, their 

relative importance remains unchanged as is re- 
flected by the linear correlation (shown in Fig. 2) 
between them. 

-400 -200 

y x 10A-3 

FIGURE 1. Variation of the V as a function of the 
diagonal entry for the nitrogen atom in the adjacency 
matrix of the molecular graph of 1-aminohexane. 
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FIGURE 2. Plot of the magnitudes of 2TT against V for different values of y (assuming x = 0), showing a linear 
relationship. 
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Search for the Optimal Descriptors 

The outlined approach illustrates the potential 
of the modified descriptors to discriminate atoms 
of different kinds. The problem is to find the 
optimal values for x and y to be used in struc- 
ture-activity studies. One way to select the best 
values of x and y is to minimize the standard 
error s in the multiple-regression analyses (MRA). 
Having thus defined the procedure for discrimina- 
tion among heteroatoms by having the diagonal 
entries in the adjacency matrices as variables, we 
have to search for the best parameters to describe 
different atoms in different situations. Several fac- 
tors will influence such a search: 

1. The selection of the compounds. 

2. The selection of the property. 

3. The selection of the descriptors to be used. 

All these factors (and possibly other) have to be 
examined. Of particular interest is to find how 
sensitive are the so-derived parameters on the 
choice of compounds, on the choice of properties, 
and on the choice of the descriptors used and how 
they depend on the number of descriptors used. 
The early results on alcohols and their boiling 
points [17] are encouraging. In the case of alcohols 

and their boiling points, x = 1.5 and y = -0.85 
gave the best single-variable regression. Here, x 
and y stand for the carbon and oxygen atoms' 
diagonal entries, respectively. The use of the above 
values for x and y reduced the standard error s 
by more than one-half when a comparison was 
made with the similar regression in which the 
carbon and oxygen atoms were not discriminated. 

In this article, we report the corresponding anal- 
ysis for the regression of the boiling points in 
nitrogen-containing amines. The result is of inter- 
est possibly in the future search for optimal de- 
scriptors for nitrogen atoms when considering 
other molecular properties and when considering 
other nitrogen-containing compounds. 

Regression of Boiling Points 
for Amines 

In Table II, we list 16 primary amines, their 
experimental boiling points (as reported in [8]), the 
generalized connectivity indices based on the val- 
ues of x = 1.25 and y = —0.65, the calculated 
boiling points, and the difference between the ob- 
served and the calculated values. If we do not 
differentiate between the carbons and the nitro- 
gens (i.e., when x = y = 0), the regression of the 
boiling points against the connectivity indices has 

TABLE II  
The weighted paths numbers (1TT), experimental boiling points (Bpexp), calculated boiling points (Bp calcd), 
and the difference between the experimental and calculated values (Diff.) for a number of primary amines, 
with the values assumed for x and y corresponding to the optimal values x = 1.25 and y = -0.65. 

Molecule Bp exp Bp calcd Diff. 

1-Aminononane 3.46126 
1-Aminooctane 3.15357 
1-Aminoheptane 2.84588 
1-Aminohexane 2.53818 
1 -Amino-4-methylpentane 2.46883 
2-Aminohexane 2.39755 
1-Aminopentane 2.23049 
1 -Amino-2-methylbutane 2.16893 
1 -Amino-3-methylbutane 2.16114 
2-Aminopentane 2.08986 
3-Aminopentane 2.09766 
2-Amino-2-methylbutane 1.93152 
1-Aminobutane 1.92280 
1 -Amino-2-methylpropane 1.85344 
2-Aminobutane 1.78217 
1-Aminopropane 1.61511 

201 
180 
155 
130 
125 

114.5 
104 
96 
96 
92 
91 
78 
77 
69 
63 
49 

204.9 
179.2 
153.5 
127.8 
122.0 
116.1 
102.2 
97.0 
96.4 
90.4 
91.1 
77.2 
76.5 
70.7 
64.7 
50.8 

-3.9 
+0.8 
+ 1.5 
+2.2 
+2.9 
-1.6 
+ 1.8 
-1.0 
-0.4 
+ 1.6 
-0.1 
+0.8 
+0.5 
-1.7 
-1.7 
-1.8 
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for the standard error s = 3.49°C. It is desirable 
from a practitions' point of view to aim at the 
standard errors in the boiling points below 1°C, if 
possible. The standard error of almost 3.5°C is 
clearly unsatisfactory. It is not surprising that the 
simple connectivity index (x = 0, y = 0) cannot 
offer good results for alcohol boiling points. For 
example, the boiling points for 2-methylpentamine 
(114.5°C) and 4-methylpentamine (125°C) differ by 
more than 10°C, yet the two molecules have the 
same molecular graph (when the carbon atom and 
the nitrogens are not discriminated). 

If we vary x, the variable describing the carbon 
atoms, we can reduce the standard error s some- 
what. When x = 1.25 (see Table III), s is reduced 
to 3.01°C. However, by changing the diagonal pa- 
rameter for nitrogen, we achieve a dramatic im- 
provement in the reduction of the standard error. 
When y = -0.65°C (while x = 0), the standard 
error s becomes 2.08°C. To find the optimal values 
for these parameters and to locate the minimum in 
s by changing both, x and y, we screened some 20 
points in the x, y space. As we see from Table III, 
the minimal standard error, close to 1.90°C, is 
obtained when x = 1.25 and y = -0.65. The re- 
gression equation corresponding to the so optimal 
parameters of x and y is 

Bpcalc = 83.456 V - 83.992 

s = 1.91        r = 0.9990        F = 7298 

Here, r is the regression coefficient, F is Fisher 
ratio, and V stands for the weighted path of 
length 1 (i.e., the modified connectivity index us- 
ing  x = 1.25 and y = —0.65). Figure 3 shows a 

plot of calculated boiling points against the experi- 
mental values. 

Discussion 

The first thing to observe is that the variable 
graph descriptors (with optimal values of x and 
y) have reduced the standard error s in the regres- 
sion of the boiling points in primary alkylamines 
by almost one-half when compared with the re- 
gression based on simple molecular graphs. Typi- 
cally, in multivariate regression analysis, a reduc- 
tion of s by half is not easy to achieve, and when 
reported, often it is achieved by introducing one or 
more additional molecular descriptors. In contrast, 
we obtained improved regression still using a sin- 
gle molecular descriptor. The disadvantage of us- 
ing two or more descriptors over a single descrip- 
tor is in the difficulties in the interpretation of the 
results. Generally, molecular descriptors (topologi- 
cal indices) are interrelated, often strongly interre- 
lated. Due to the interrelatedness of the descrip- 
tors, it is not possible to identify the separate roles 
that individual descriptors play. Even though, re- 
cently, the question of interrelatedness of descrip- 
tors has finally been successfully resolved [18], 
nevertheless, it is easier to interpret correlations 
based on a single descriptor. 

Introduction of orthogonal descriptors [18] re- 
quires that one order the descriptors, that is, prior- 
ities the variables. This can sometimes be accom- 
plished naturally (like in the case of ordering paths 
according to their length), but sometimes the or- 
dering of the descriptors is not apparent. Hence, 

TABLE III  
Variation of the standard error s as a function of x and y when weighted paths 1TT are used as single descriptor 
in the regression analysis, x and y represent parameters for carbon and nitrogen atoms, respectively. 

0.80 -0.70 -0.65 -0.60 -0.50 

x = 0 2.0812 3.4876 
x = 1.00 2.6031 1.9632 1.9131 1.9471 2.1213 
x = 1.25 2.5366 1.9463 1.9069 1.9506 2.1336 3.0082 
x = 1.50 2.4697 1.9293 1.9137 1.9674 2.1615 
x = 1.75 1.9249 1.9270 
x = 2.00 1.9511 
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FIGURE 3. Calculated boiling points against the experimental boiling points for the amines examined. 

use of a single descriptor clearly has advantages in 
this respect. An optimal descriptor offers a direct 
structural interpretation for the property in terms 
of the dominant variable. In addition, single de- 
scriptors, or a set of structurally related descriptors 
[19], facilitates comparative studies. Recently, in 
an extensive comparative study of the properties 
of octanes [20], it was found that only a few 
molecular descriptors emerge as the best when 
compared to alternatives. The molecular connectiv- 
ity indices have been found often among those 
that give the best regressions. With the outlined 
procedure, we have initiated an important direc- 
tion in the search for best molecular descriptors for 
structure-property studies. We may expect not 
only improved regression analyses but, hopefully, 
better insights into the dependence of molecular 
properties on the shape, the size, and the function- 
ality of molecule forms. 
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