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FOREWARD 

Semi-automated forces (SAF) are human-controlled computer-based simulations 
built to work in real time with manned exercises. Use of SAF in Army training 
is expanding, especially for collective tasks (e.g., STOW-94). SAF offers 
reductions in cost, improved traceability, and far more scenario flexibility 
than corresponding live fully-equiped group exercises. 

Effective use of current and planned SAF capabilities is important to 
maintain Army readiness. To guide commanders in specifying training 
requirements using SAF, a model  of how instruction and training can use SAF is 
needed. The objective of the research reported here has been to build a 

foundation for such a model. The long-term goal is to construct a knowledge- 
based system to aid commanders in translating training objectives to training 
requirements. 

Trainers looking here for specific results, such as a new metric for the 
interpretation of National Training Center data, will be disappointed. We 
believe that before such metrics should be codified and promulgated in a 
knowledge based decision aid, an explicit model of training with SAF should be 
developed. This does not mean that discovery of such metrics is not a critical 
task. But a knowledge-based system is a knowledge-level model  of human 
reasoning (Newell 1982) . Constructing this model helps such metrics be 

productively integrated and applied (Clancey 1992). 
This kind of knowledge-level model building is difficult, and may seem very 

distant from the day-to-day concerns of the training community. The principal 
author recalls a talk at an expert systems conference in 1984. A speaker 
glibly claimed, to great laughter and applause from the mostly-industrial 
audience, that the ivory-tower types who wanted to talk about epistemology 
should be ignored. The ensuing decade has shown the speaker to be exactly 
wrong. The knowledge systems that have worked have been just those that have 
taken epistemology seriously (McDermott et al  1986; Hayes-Roth et al  1992) . 
This report addresses the intellectual foundations needed for a successful 
knowledge based system. Some trainers and training designers might consider 
the issues discussed here to be peripheral or irrelevant. There is strong 
sentiment in the knowledge systems community that they are not. 

Another spur to careful development of intellectual foundations is the 
dual-use mandate of the SBIR program. There is no commercial market for SAF- 
based training. There is a commercial market, though, for translating complex 
training objectives to specific requirements. A general foundation increases 
the potential for dual Army and commercial use. 

Three assumptions are made: 

• There are fundamental regularities in human learning 
• There are corresponding regularities in how effective training and 

instruction are carried out 
• These regularities can be articulated and applied productively to novel 

instructional and training circumstances and needs. 

A fourth assumption is also made, namely that there is a continuum linking 
training and instruction. Training is generally taken as in-the-field, hands- 



on practice. Instruction by contrast is thought of as a classroom activity. 
Some Army commanders might emphasize this distinction as the difference 

between talk and action. However, there are many intermediate cases—the 
training of command decision-making, the increasingly technological nature of 

weapons, and the provision of sophisticated automated support to lower and 
lower levels of the command hierarchy, even to the individual soldier. To 
argue about whether a tank commander in a SIMNET exercise is being instructed 
or trained seems pointless. We assume the continuum view. 

This work was performed under Contract MDA903-93-C-0144 f°r the Army 
Research Institute for the Behavioral and Social Sciences (ARI). It was very 
helpfully supervised by Dr. Frank Moses. Dr. Angelo Mirabella, also of ARI, 
also generously devoted time, effort, and insightful commentary. James 
Kornell, of Syukhtun Research, Inc., is the principal author. Contributors 
include Dr. James Geiwitz, of Advanced Scientific Concepts, Inc.; Dr. Susan 

Fischer, of Anacapa Sciences, Inc.; and Lt. Col. Ken Bell, ret., of THETA 
Technologies, Inc. 

All conclusions and procedures in this report are solely those of the 
authors and are not in any way an official position of the US Army or of ARI 
or its employees. 



THE PROBLEM 

Selection, implementation, and validation of training activities are a 

commander's most important peacetime activities. Constantly improving the 
results of those activities is a high priority. 

In the Phase I investigation detailed in this report, the feasibility of 
developing a method to generate training requirements from training objectives 
has been explored. This section describes the motivation, opportunity, and 
general outlines of the problem. It closes with a definition of "training 
requirement" in the context of semi-automated forces and a succinct statement 
of the Phase I objective. 

1.1 Motivation 

Training can separate victory and defeat. The odds of winning an offensive 
"increased 30 to 1 by belonging to a high as opposed to a low training-ratio 
population" (Hart & Sulzen 1988). The Army officially states that "the 
training of soldiers, leaders, and units to win in combat will remain the 
Army's single most important task" (US Army FY93 Posture Statement). Estimates 
vary from $5 to $20 billion a year in Department of Defense spending on 
training. 

Demands for intensity and amount of training are increasing because of 
changing mission requirements. For example, there may be much more 
"peacekeeping", e.g., trying to mediate civil wars or warlord conflicts'. There 
may be significant border control. Migration management could be needed to 
avoid serious regional destabilization. Restoration of civil order may be 
required. We may be called on to perform "paramilitary" actions, e.g., drug 
production control. Future missions may force us to confront shifting and 
chameleon-like enemies, guerilla warfare, city fighting, blurred lines between 
combatants and noncombatants; even blurred lines between military and civil 
actions, e.g., as in the Rwanda relief effort. Some influential analysts, such 
as Dr. Andrew Marshall of the DoD Office of Net Assessment, predict even more 
far-reaching and radical changes in mission (Wall Street Journal, 15 July 
1994) . 

But budgets are shrinking and personnel being reduced. To reconcile this 
discrepancy, we need to link training objectives more precisely and 
efficiently to available training resources. The goal of this research has 
been to develop a method for designing efficient training that satisfies 
training objectives. 

1.2 Opportunity 
While more will be demanded of training, it is also true that techniques and 
tools are emerging that greatly expand the potential power available to 
designers of training. There is a growing understanding of subtler levels of 
human performance, and there are emerging technologies that make possible 
previously unaffordable or impossible training approaches. 

Improved methods of task analysis allow improved training design. Cognitive 
task analyses can lead to better understanding of the roots of performance, 
performance breakdown and stress points, and better design of appropriate 
training materials (Lesgold et al  1986). Metacognitive analyses and explicit 



training of domain-specific metacognitive techniques may lead to significant 
improvements in task performance [Geiwitz 1994]. Over the next decade, group 
cognitive task analyses will emerge to provide tools and techniques for better 
understanding of, and therefore training of, group behaviors and performance. 
There is increasing interest in and study of the factors that determine 
success in field exercises [Mirabella 1993]. We have barely begun to scratch 
the surface in applying this emerging knowledge to improve battlefield 
competence. 

Complementing the advances in cognitive science and the study of decision- 
making are advances in computing technology. Developments in both hardware 
(e.g., easily available processing and visualization capabilities, available 
for $2- to $3-thousand dollars, far beyond those of a mid-80's VAX 780) and 
software (e.g., object oriented programming, cross-platform object 

interoperability, powerful software tools) make creation of interactive 
training-focused simulations and their use in the field both more affordable 
and more powerful. 

SAF is a visible and important product of this convergence. The Defense 
Modeling and Simulation Office (DMSO) credits the term "semi-automated force" 
to ARPA's Advanced Simulation Technology Program's effort to provide large 
software-driven forces to interact with manned simulators on the SIMNET 
battlefield [Brooks et al,   1989]. SAF is also called SAFOR, as in the title of 
this report. (Because SAF seems to be replacing SAFOR in conventional usage, 
SAF rather than SAFOR has been used in the body of the report.) CGF (computer- 
generated forces), IFOR (intelligent forces), and AFOR (automated forces) are 
other synonyms. DMSO characterizes SAF as having four basic attributes (DMSO 
1993) : 
• Real-time interface 
• Entity-level representation of combat elements 
• Distributed Interactive Simulation (DIS) compliance (DIS is a set of 

technical protocols for real and simulation entity interactions) 
• Credible surrogate for manned forces 

Examples of SAF include the BBN SAF 4.3.3, ModSAF, BDS-D CGF, 1ST SAF, 
IFOR/WISSARD, CCT SAFOR, SWEG/SUPPRESSOR, and Janus A. There are many SAF- 
related programs in development: IBM Blackboard Research Study, 
UCCATS/JCM/AMOEBA, BBS/DIS, Eagle, RESA, and MARS. CASES, JSIMS, and WARSIM 
2000 are also related. 

Further, projects currently in infancy may become important SAF elements. 
In particular, the Joint Warfare Simulation Object Library (JWSOL), a DMSO- 
and ARPA-sponsored effort to develop general-purpose simulation objects for 
use in a wide variety of contexts, has the potential to dramatically improve 
the flexibility and speed with with training simulations can be constructed 
and fielded. The current Principal Investigator is also knowledge engineer for 
JWSOL (Kornell et al  1994). 

1.3   General problem 
The context is increasingly complex missions and shrinking budgets on the one 
hand, and new analytic techniques and the capability to implement their 
results on the other. The core problems of training remain: how to determine 
what to train, how to efficiently and effectively train it, and how to 
validate the training. 



The Army emphasizes  battle-focused  training.   Obviously,   training  should 
result  in maximal  positive  change  in behavior with minimum negative  transfer. 
To  achieve  this,   the Army provides  a  comprehensive  set  of  training programs 
and guidelines   for  training  strategy. 

Three positive  training results are desired:     improvement  in competence, 
with minimal negative transfer;   efficiency and generality of  transfer;   and 
extended duration of normal  retention.   At  the same  time,   three resource  issues 
should be optimized:   minimizing training time;   reducing needed training 
facilities  or  substituting more easily available  for  less  easily available 
facilities;   and minimizing the need for  training personnel  or  the  time 
required of   training personnel   (FM 25-100). 

For  all   the  reasons  discussed  in  the previous   two  sections,   training 
approaches need continual  revision.   Determining the best way to  train is 
difficult.   While performance data  is  central  to designing training,   the data 
themselves  are complicated,   ambiguous,   incomplete,   and may unintentionally 
incorporate observer bias.   Data interpretation is  also problematic.   Mental  and 
methodological   tools   for  testing and validating hypotheses  about  causal 
relationships  are unreliable.   Validating  the  effectiveness  of   training  is  also 
difficult. 

Collection of performance data requires  integration of partial  evidence 
from a  large number of  sources,   with varying degrees  of  similarity to  the 
actual   conditions   for which performance  is   to be  trained.   Warfare  is  not 
static nor mechanistic,   so  fundamentals  like   "concentration of  force" may not 
only mean different  things  in different circumstances,   but may have widely 
differing military values  in different circumstances.    (Contrast operations  in 
the Gulf War with those  in Somalia.)   Since a wide variety of missions may be 
required,   the  significance  of  performance  shortfalls   in one  area  or  another 
may not be at all  clear.   For  example,   a propensity toward independent action 
may be extremely good in a guerilla situation and extremely bad in a massed 
attack situation.   Since most military actions  require a wide variety of 
skills,   knowledge,   and competences   to be  brought  together,   accurately 
discriminating  the  source  of  breakdowns   is  not  easy.   Dr.   James  Banks   of 
ARI/Monterey summarizes  some of  the  issues: 

The battlefield is a tightly coupled,   interactive,  nonlinear world..   Usually there is not 
a simple single reason why a task is performed well or badly.  There may be a constellation 
of contributory factors.  Even if a task is performed badly,   frequently it is possible to 
later compensate for it.  Or the enemy action can cause you difficulties,   regardless of how 
well or badly you did your previous tasks... 

I think the ability to diagnose causes  for performance also varies by the size and 
complexity of the team.  For a complex team with lots of resources,   there are lots of ways 
to perform a task.  For example,   if I postulate "attrit the enemy at long range" as a 
defense mission,   a Battalion task force can do this with its maneuver elements,   tactical 
air support,  attack helicopters,   artillery,   and so on.  And,   if I don't succeed with one 
method,   if I am aware enough and flexible enough I may be able to succeed with another 
method.  The causes of success or failure may,   therefore,  not at all be obvious and quite 
distal from a given event...    There is a large chance element on the battlefield that 
enormously complicates interpretation of performance and results. 

Even if  the data were better behaved,   the problem of  interpretation would 



remain. In any engagement scenario, real or simulated, multiple interacting 
events produce multiple outcomes. Even assuming accurate and complete 
measurement of events (which of course has just been ruled out), connecting 
events and outcomes is very difficult using traditional approaches. Dr. Angelo 
Mirabella of ARI/Alexandria points out that "... The whole is not necessarily 
the sum of its parts... Even if it was, we would still face the problem of how 

to recombine the pieces for analysis, validation, improvement ... of training 
strategies" [Mirabella op cit.]. 

Training validatation is problematic for three reasons. First, and most 
important, the only true test of combat performance is actual combat. The 
second is self-reference, and is a result of the constraints imposed by the 
first. Self-referential training can occur because the training validation 
measures are based on the content of the training rather than the real-world 
performance to be trained, or because the training is shaped to fit 

preexisting measures of effectiveness. For example, if the goal of training is 
allowed to become too specific to good performance at the NTC, the the 

Commander responsible for that training is training the test, not the subject. 
When training is self-referential, good training results become detached from 
good combat results. Third, for complex skills and for those involving group 
behavior, performance is very difficult to measure. Observation and data- 
gathering are difficult because of the number of variables involved and the 
conditions in which observation must take place. Inference about underlying 
causes of performance are similarly difficult, because multiple competing 
hypotheses may all to a greater or lesser extent be true, and because 
observers' biases may predispose the same evidence to be seen, remembered, and 

interpreted very differently by different evaluators (Loftus 1975). 

1.4   Phase I research objective 
In this section, we have briefly put forward the unexceptional arguments 

that: 

• Missions are increasing in complexity, with the promise of at least near- 
term and possibly long-term acceleration in this increase 

• Resources are limited 

• Characterizing competence and identifying its sources is very difficult in 
a broad mission context, especially for group tasks 

• Determining how to train effectively is therefore fundamentally difficult. 

In response to these circumstances, this research is aimed at development 
of a method  to   translate  training objectives  into  training requirements,   in 
the specific context  of SAF.   "Training requirements" are conceived as the 
intermediate between training objectives and training implementation 
requirements. A training objective is, for example, to develop command, 
communication, coordination, and execution skills for Brigade-level emergency 
humanitarian relief delivery (as in Rwanda and Zaire). Corresponding training 
requirements would include a detailed scenario of events, players, and roles, 
and an inventory of available resources. Training requirement implementation 

would then identify and schedule specific Brigade elements, computer-based 
simulations, and support elements to perform the exercise. 

Since SAF is clearly at the implementation level, why should it be 
explicitly made part of a method aimed at requirements? The reason is simple. 
SAF enables scenarios that would otherwise be unrealistic. Explicit awareness 



of current and projected SAF capabilities changes what can be included as 
potential requirements. Therefore, it is intrinsic to the research. 

The Phase I objective has been to lay a stable intellectual foundation for 
the objectives-to-requirements translation method. In Phase I, we have 
attempted to establish epistemological and ontological foundations for the 
method, and to taxonomically decompose training requirements to make them 
methodologically tractable. In the next section, this objective is described 
in detail. 



PHASE I SCOPE 

The goal of this research has been to develop a method to support the 
translation of training objectives into training requirements. The Phase I 

approach has been to model the foundations of the problem. 

2.1  The nature of the problem 
The problem is to generate training requirements from training objectives. 
There are two subproblems: 
1. Characterize the structures of the subject task germane to the training 

objective. 
2. Determine how best to train the objective. 
The context is as specified in the previous section. 

2.1.1 Characterize the structure of the task 

"Task structure" comprises the various characteristics of the task, the degree 
to which different parts of the task hold these characteristics, and the 
relations between the characteristics along with how those relations are 
resolved in expert task performance. Determining task structure is a 
diagnostic problem. It is also the place for framing the domain problems to 
which the method (described in Section 6) will be applied, i.e., selection of 
some characteristics and values as salient, rejection of others. Framing a 
problem is often the single most important element in its solution. 

For example, in interpreting topographic maps, the two principle components 
are (1) correctly reading the physical features from the topographic 

representation, and (2) interpreting these features with respect to military 
advantage and vulnerability. There are a number of visual/spatial patterns 
germane to (1); good performance in (2) is contingent on accuracy in (1). True 
experts appear to "see through" the visual features of the maps and the 
spatial features they represent, directly to military significance. Framing 
the topographic map reading problem as "find the minimum fuel expenditure 

route from A to B" leads to very different training than framing it as "find 
the minimum fuel route from A to B, taking cover and concealment and potential 
enemy positions and intentions into account." 

2.2.2 Determine how best to train the objective. 
This is a prescriptive problem on two levels, the requirements and the 

implementation. Training requirements  and training implementation  requirements 
are different. A training objective for which improvement follows the Power 
Law—learning to calculate force ratios, for example—may have a training 
requirement for basic instruction in technique followed by repetitive 
practice. That requirement may be implemented  via classroom instruction and 
written materials, or by manipulation of physical tokens, or by a computer- 
aided instruction course, or by a computer game in which progress depends on 
correct answers, or in some other way entirely. The factors that influence 
choice of implementation  are situational, but the factors affecting the 
requirement are intrinsic to the nature of the task and the human competences 
for which it calls. 



2.2 Users 
Target users for the Phase II knowledge based system product are training 
designers and commanders charged with training their subordinates and units. 
Program managers considering allocation of training simulation 

development/modification funds might also use it. These groups have different 

needs. Commanders are indicated because that is where the need is most acute; 
Army doctrine assigns direction of training to commanders. Each commander must 
assess training needs, select training objectives, develop training strategy 
and plans, execute training, and perform post-training review. However, 
commanders are not trained in training: "We don't train them to train" (Lt. 
Col. Ken Bell, former CGSC instructor). Program managers have a strong stake 
in achieving maximal return from their simulation investment dollars. There 
are currently no generally accepted criteria by which program managers can 
judge whether a potential simulation is likely to result in actual improvement 
in battlefield performance. Nor are there criteria to judge which elements of 
a proposed simulation are essential and which are incidental (or even 

potential vectors of negative transfer). 

2.3 What Phase I isn't 

In the following subsection, we go into some detail regarding what is not 
included in this research. For most research activities, such detail would be 
superfluous. In this case, the bounds demarking what should and should not be 
included are somewhat fuzzy. How much needs to be known, in how many subject 
areas, to generate a high-quality set of requirements? Because this report is 
intended to serve as the foundation for Phase II knowledge-based system 
development, explicit justification for choices about inclusion and exclusion 
is appropriate. 

The diagnostic step of selecting what task(s) to train is not included. 

This is a very difficult diagnosis, as indicated in the previous section: 
causes of breakdown or impasse can be proximate or distal, of intention or 
execution, even completely outside the competence of the unit which 
experiences the breakdown. The diagnostic process is rich with potential for 
investigation. How does a commander discriminate among and select the best 
training objectives? By what criteria are they judged? How are the various 
elements of collective performance assessed to make the diagnosis? There are 
(can be) no statistics, but it is plausible that, unit by unit, a very high 
proportion of the training performed in the Army is not directed at the skills 
most in need of work. Considering that for what is in many respects a simpler 
task, highly trained medical doctors using expensive diagnostic equipment are 
wrong roughly 50% of the time in diagnosing what prove to be fatal diseases in 

hospital settings (Eddy 1982), it would be unexceptional if faulty diagnosis 
by commanders of training needs is the norm rather than the exception. This is 
not a condemnation of commanders' performance so much as a statement that 
there is inadequate support for an extremely difficult job. This is 
potentially a rich area for follow-up, but it is outside the scope of the 
present work. 

We wish to emphasize this decision. Saying we will develop requirements but 
not support training need objective diagnosis and generation is analogous to 
suggesting construction of a medical expert system to support prescription but 
not diagnosis. That would be an unusual system. In the present case, we 



believe exclusion of diagnosis is justified by its complexity and scope. 

It is possible that the method, described in Section 6, might be used as an 
aid to validation of training objectives. That is, mismatches between observed 

behavior and the internal structures of the task(s) selected for training 
could highlight errors in task identification. For example, if there are 
observed behaviors for which there are no associated structural or procedural 

elements, then the identified training task does not account for the observed 
behavior, and is unlikely to improve performance. Alternately, if it is seen 
that a breakdown in only a small part of the fundamental task structure can 
account for observed behavior, then a great reduction in the total training 

needed might be possible. 
Characterization of the learners is also omitted. Understanding the target 

learners is critical to designing training. However, the scope of the current 
effort is already adequately broad. We assume that any enabling objectives 
that result from student assessment can simply be considered as subobjectives 
to which the method can be applied. 

There are levels of ambition associated with or applied to training 
objectives. For some training, the goal is to replicate expert-level 
performance. Command and medical education are examples. For some training, it 
is to achieve a functional but non-expert level of performance; military 
driving is an example. For some training, it is simply to install a floor 

under which competence will not fall; e.g., "park the Jeep right away if the 
oil light comes on". We assume the target level is known to the user of the 
method, and that the training objectives (both enabling and terminal) are 

appropriate to the target level. 
The method is not a replacement or substitute for task analysis and 

cognitive task analysis. In reading through the method, it may seem at times 
like task analysis/cognitive task analysis approach. It is not. Task analysis 
should articulate the operational  content of a task. We have tried to develop 
a descriptive  characterization of the task—one level up in abstraction—that 
will allow task classification and selection of appropriate training 
techniques. 

Nor is this a replacement or substitute for instructional systems design 
methods. Rather, it is intended for use with them. ISD methods are reviewed in 
the next section. 

The method is is not intended as a process re-engineering tool. "Process 
re-engineering" occurs when information systems analysis of group tasks 
reveals correctable inefficiencies, and shows new ways of organizing work 
processes to achieve desired ends. Process re-engineering is an issue emerging 

with increasing frequency as computers are embedded ever more deeply into 
military and civilian tasks. The factors and processes described in the next 
sections could support process re-engineering efforts, but the work is not 
intended as a process re-engineering tool per se.   In other words, the intent 
is not to change the task. 



CONTEXT 

Understanding the current state of the art in instructional systems design 

(ISD) is necessary context for the current work, and will help in 

establishing the requirements for the method. In this section, ISD—the 

systematic analysis of instructional needs and development and testing of 

instructional methods—is described and critiqued, and the relation of the 

current work to the ISD process is specified. 

3.1   Instructional systems design 

Gagne , Briggs, and Wager [1992] propose a nine-step instructional design 
1 sequence.   Each step is reviewed. Then, the relationship of the current 

investigation to the ISD framework is described. 

1. Define  the instructional  goals. 

This is normally achieved by considering and specifying the gaps between the 

desirable state of affairs and the current or observed state of affairs. 

Presence of new ideas or introduction of new technology can also trigger 

creation of instructional goals. 

2. Conduct  instructional  analysis 

Describe the task(s) to be trained. Instructional analyses can include task 

analysis, cognitive task analysis, and learning analysis (e.g., discrimination 

between terminal and enabling objectives, sequencing of enabling objectives). 

Additional analyses might include knowledge-level and metacognitive analysis. 

3. Identify entry behaviors and learner characteristics 

Determine which required enabling skills the learners already have, and note 

any other characteristics of the learners germane to developing instruction. 

4. Identify performance objectives 

Translate needs  and goals  into specific,   detailed objectives.   Detail  is 

necessary both to development of  training materials  and to creation of 

measurement  tools  to assess  student progress  and determine  the degree of 

success   in achieving the objective(s).   A properly prepared learning objective 

has: 

Meister  [1991]   suggests thirteen steps:  analyze job,   select tasks for 
training,   construct performance measures,   select instructional settings, 
develop objectives,   develop tests,   develop entry behavior,  determine sequence 
and structure,   specify learning events and activities,   specify instruction 
methods,   develop instruction,  validate instruction,  and implement 
instruction.  The arrangement of steps is different,  but the overall structure 
and content is similar. 



• A statement of behavior (action) the trainee must exhibit, i.e., the 

training outcome. This may be either positive or negative, e.g., for 

situation Y,   the goal may be to perform X,   or it may be to avoid or refrain 

from performing X. 

• Specification of the conditions under which the behavior must take place. 

• A statement of the standards for satisfactory performance. 

Some kinds of training goals are more conducive to characterization via the 

behavior/ conditions/standards approach than others. For example, "teamwork" 

is harder to specify and measure than "operate a radio". Getting the statement 

of a training objective right is critical. Also, conditions and standards are 

frequently inadequately specified in training system development. 

Gagne  et al  identify five classes of outcome. 

• Intellectual  skills.   Learning how to do something of an intellectual sort. 

The ability to interact with the environment (broadly construed) in terms 

of symbols and concepts, and/or the learning of procedural knowledge. 

• Cognitive strategies.   Skills for governing thinking. This includes both 

operational and predictive knowledge. For example, having appropriate 

expectations, and knowing how much certainty to invest in them, is a 

critical skill of competent commanders. 

• Verbal  information.   Declarative knowledge, and the ability to integrate it 

with other knowledge and to recall it appropriately. 

• Motor skills.   Physical skills, and (to the extent not covered by other 

categories) knowledge of how and when to apply them. 

• Attitudes.   A persisting state within the affective domain that consistently 

influences or modifies an individual's choice of actions. Attitudes are 

immensely important in the military. 

Within intellectual skills, there are five subcategories: problem-solving, 

rules, defined concepts, concrete concepts, and discrimination. In reverse 

order: 

• Discrimination involves distinguishing features of objects or situations as 

similar or different, e.g., steeper or shallower slopes on a topographic 

map. 

• Concrete concepts involve identifying a class of object characteristics, 

objects, or events, e.g., a hilltop, a ridge, or a saddle. 

• Definitional concepts involve classification of an object or event in 

accordance with a definition, e.g., a potential enemy AoA, a kill sack. 

• Rules require knowing rule content, conditions, and in most cases 

exceptions, along with the competence to apply the rule correctly, e.g., 

"T-72s have a shorter firing range than MlAls, so covering this ridge will 

allow us to prevent enemy forward progress." 

• Problem-solving involves generating a solution to a novel problem, e.g., 

selecting the most rapid route for tank platoon advancement with adequate 

cover and concealment. 



Figure 3 - 1. Gagne's knowledge outcomes. 
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5. Develop criterion-referenced  test  items 
Criterion-referenced test items determine whether the students have acquired 

the desired skill, rather than merely showing they remember the instruction. 

These are necessary for training evaluation. They can also be used to place 

students within a training program, by determining which of the enabling and 

terminal objectives they have already mastered. 

6. Develop instructional  strategy plan 

Instructional strategy is a plan for assisting learners with their study 

efforts for each performance objective. It is a mapping of instructional 

activities to accomplishment of objectives, as well as diagnosis and 

prescription of the most apt instructional approach for the objective. 

7.   Develop  instructional materials 
The selection and development of instructional materials. 



8. Conduct  formative evaluation 
This is the instructional version of alpha and beta testing of software- 

formative means that the course is being revised and tuned through this 

evaluation. A three-step approach is advocated by Dick and Carey (1990). 

First, try the materials one-on-one. Then, try the materials on a small group 

of students. Then, perform a field trial in which the instruction is revised 

based on the whole class. (This is of course subject to the kind of objectives 

and material involved.) 

9. Conduct  summative evaluation 

Evaluate the course or training program after it has been implemented and put 

in place. 

There is more than these nine steps to instructional design. In actually 

developing a training course, resources, other constraints, teacher 

preparation, installation, and diffusion have to be considered. 

3.2   Epistemology of knowledge outcomes 

Knowledge  is the core element of instruction and training. Why not simply 

categorize task material with respect to the knowledge outcomes listed above 

and base decisions on training approach on the results? 

Gagne 's knowledge outcomes are problematic. It is not consistently clear 

what they refer to: the task, the cognitive process, or the result of the 

cognitive process. The name suggests the result, but the specific category 

names sometimes suggest the operation of the cognitive process 

(discrimination), sometimes what the process operates on (concrete concepts), 

sometimes the nature of the thing to be learned or applied (definitional 

concepts), sometimes the formal representational structure of the knowledge 

(rules), sometimes the characteristic things people seem to do in managing 

certain classes of task (cognitive strategies). Both Anderson, op cit.,     and 

Newell, op cit.,   along with many others, would claim that all  of Gagne 's 

categories (excluding the actual execution of motor skills) could be 

implemented as declarative memory plus procedural rules. Gagne 's knowledge 

outcomes are epistemologically. 

But suppose we take them as fuzzy concepts of "things people do" when they 

perform tasks, e.g., apply discrimination, execute rules, understand 

definitional concepts, etc., are they then adequate as guidelines for 

selecting approaches to training? 

No. They suffer from what Anderson (1990) calls the identification problem. 

Statements regarding the nature or structure of knowledge require induction of 

the mechanisms of thought from observable behavior in specifiable 

circumstances. The circumstances are the input, the observable behavior the 

output. Formal systems theory shows that there are an infinite number of 

functions (in this case, cognitive mechanisms) that map a particular input to 



a particular output. Even if only two functions produce the same behavior from 

the same input, there is no way to identify which one is psychologically real 

and which one is not. This fundamental uncertainty makes strong statements 

about mechanism impossible. 

Anderson makes this point with respect to the entire enterprise of 

cognitive science, but it is true in the more restricted case of Gagne 's 

knowledge categories. Membership in a given category can arise from multiple 

sources and have multiple implications, which category membership in itself 

does not specify. This is the critical failure. 

These alternate sources and alternate implications can be significant for 

training. Many people we fooled by Joseph Weizenbaum's ELIZA program (1969), 

which used a simple keyword pattern matcher to mimic a Rogerian 

psychotherapist. ELIZA used rules and appeared to perform problem solving. But 

clearly, the training Weizenbaum gave ELIZA is radically different than that 

one would provide a real therapist trainee. Taking another example, 

"attitudes" are so defined that anything persistent involving affect is an 

attitude, no matter what its origin, i.e., biological, learned, chemically- 

induced, or socially or circumstantially determined. Yet understanding the 

source of an attitude is potentially critical to developing training. Not to 

beat this into the ground, but logic is another example. The research of 

Johnson-Laird and Wason on syllogisms is persuasive that they are normally 

solved with a mental model, which can be represented as being at the rule 

level of knowledge outcome. The mental model approach to solving syllogisms 

isn't very good (our cognitive capabilities didn't evolve to solve 

syllogisms), so people who want to become experts learn the Venn diagram 

approach, which works very well, and which can also be expressed as rules. But 

teaching the mental model approach and teaching the Venn diagram approach are 

different: the first implies repeated exposure, simple to complex, with 

feedback, and substantial memorization. The second suggests teaching 

operationalization of a concept. 

In general, the identifiability problem means that substantial experimental 

evidence is needed to support an ontology or epistemology of teaching 

learning. Even for the best studied areas, such results are controversial 

(e.g., diSessa 1993) and often ambivalent (e.g., Patel et al   1993). 

Gagne 's categories seriously underspecify the requirements that an 

effective training method must satisfy. In the next section, such requirements 

will be proposed. 



STRUCTURE & THEORY OF THE PROBLEM SPACE 

The problem is to characterize a training objective or cluster of related 

training objectives and from that, to formulate requirements for training. It 

is not to select or validate a training objective, or to perform other ISD 

functions. 

By requirements, we mean specifying sequences of events or circumstances 

for an individual or a group so that a desired performance capability arises 

and persists. This definition focuses on learning as goal-driven adaption  to 

the environment. The training method is the design of an optimal environment 

for learning. The definition constrains the concerns of this theory to 

behaviorally-evidenced capacities and facilities for learning. 

The persistence of learning contrasts with transient changes in performance 

due to drugs (e.g., coffee), fatigue, and other short-term influences. These 

factors are implicitly included in task-specific definitions of performance 

capability, as task conditions that must be managed to achieve the desired 

level of performance. 

In this section, a theory of the problem space is developed. The minimal 

requirement for a theory is descriptive adequacy. That means that the 

phenomena of interest are encompassed by the theory, and that the regularities 

in their structures, relations, and operations are accounted for. 

In addition to descriptive adequacy, predictive validity is needed. The 

capability to predict the most productive training requrements for a training 

objective is the goal. The precise predictive accuracy of physics or chemistry 

is not the goal; hard sciences like these have definitional concepts direct 

observation of the material of interest (Gould 1981). ("So far as the laws of 

mathematics refer to reality, they are not certain. So far as they are 

certain, they do not refer to reality"-A. Einstein.) Natural sciences don't 

"linearize" as much, have fuzzy concepts (in the fuzzy logic sense), and the 

material of interest must be induced from the observable evidence, not 

defined. To state that a student understands a topic is to make an inductive 

statement. John Haugeland (1978) calls hard science theories nomological; 

Micki Chi (1992) calls natural science theories mental model based. A good 

natural science theory provides persuasive explanatory power and guidance in 

predicting productive avenues of research. The psychology of learning and the 

practice of teaching/training are natural science, not hard science. Our goal 

is a natural science theory. 

4.1 Bounding the problem: Content & abstraction 

The first question for a theory is, what is it about? The question of what 

should be explicitly in the theory, what implicitly in, and what to leave out 

is determined by (1) the goals of the theory and (2) its level of abstraction. 

The first hurdle for prospective content, relation to the goals, is pragmatic: 
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if a construct ("construct" is meant include associated operations) proximally 

affects method, content, or presentation of instruction or training, it 

passes. Within that very large category, formal descriptive qualities of 

constructs are explicit, while specific content is implicit. For example, that 

a task requires a repertoire of plans and subplans is a formally descriptive 

aspect. The specific content of the plans is implicit (with respect to the 

theory, not to an particular training plan.) The explicit content may be at 

the level of decision making and social judgment, or at the more basic 

cognitive function level, like discrimination, recall, and physical response. 

The problem of what "proximally" means in the phrase "proximally affects 

training" is answered by the theory's level of abstraction. What choices of 

level are there? What do the choices mean? What are the selection criteria, 

and how do they relate to the overall goal of the theory? We start with 

Newell's levels (1990): biology, functional architecture, algorithm, and 

knowledge. 

Biology is used in the sense of what it is and how it works as biology (as 

contrasted with how it works in the world, e.g., as biomechanics, for 

example). It can be eliminated from consideration. It might be necessary, as a 

source of constraints, were this a theory of selection of training goals. The 

theory assumes that the training objectives are achievable by the subject 

learners, and leaves concern with biological constraints to the selection 

process. 

Pylyshyn (1986) defines the next level, functional architecture, as the set 

of functions provided by the biology that are used to get things done: 

"storing and retrieving symbols, comparing them, treating them differently as 

a function of how they are stored, (hence, as a function of whether they 

represent beliefs or goals), and so on, as well as such basic resources and 

constraints of the system, as a limited memory." The question immediately 

arises, since these are clearly basic-level cognitive functions, how far do 

they extend upward in complexity, e.g., into mental algorithms and procedures? 

Pylyshyn's answer is, not far. He proposes the principle of cognitive 

impenetrability:   the operations at the functional architecture level are not 

affected by the organism's goals and beliefs. If this is accepted, clearly 

this level can be eliminated from consideration for our theory. It can't be 

trained, and it is subject to the same argument as biology, i.e., it's 

implicitly present in the training objectives. 

Pylyshyn's principle, as stated, is problematic. Recently, the principal 

author talked with a mountain-bike racer. He described some of the amazing 

feats of top-flight riders, who tear down steep, rocky, technically 

challenging trails at speeds exceeding fifty miles per hour. Consider the 

vision problem such riders solve. They must identify the best prospective 

micro- and macro-routes in real time while their eyes are mounted in 

exceptionally bouncy heads, working through dust-covered, slightly-distorting 
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sunglass lenses (which themselves bounce slightly). The basics of vision would 

seem to be subject to cognitive impenetrability. Yet, the training that such 

riders put themselves through almost certainly affects their visual 

processing. Therefore, though it is neither direct nor immediate, there is an 

effect on functional architecture due to goals and beliefs. In the same way 

that physical capacity can within limits be altered by goals and beliefs (when 

translated into action), mental capacity can also be so altered. 

If Pylyshyn's principle is refined to specify direct  alteration, this 

problem almost disappears. But not quite. 

What about automaticity, which is frequently a goal of learning and 

practice, often even considered a sign of expertise? When automaticity is 

achieved, which is often unconsciously, does that mean that the cognitive 

skills and knowledge it encodes migrate from the higher to the functional 

architecture level? They are no longer directly affected by goals and beliefs, 

e.g., the ability to compose grammatically correct sentences in English is 

automatic for native speakers, and while the content of those sentences, and 

even the grammar, can change to clothe a particular idea, the fundamental 

ability doesn't. 

The notion of cognitive impenetrability is suject to the classic problem of 

trying to make a continuous phenomena discrete: the boundaries are 

problematic. Probably the best answer to this dilemma is to recall the earlier 

acceptance of fuzziness. There is a center to the notion of functional 

architecture, and that center is outside the space of our theory. 

This does not mean that goal and behavior-influenced changes to functional 

architecture, and optimal approaches to such changes, are not important or are 

ignored. It does mean that functional architecture is not the level of 

discourse at which the theory is set. Training motor skills for example is 

encompassed, but at the level of articulate goals and the intentional 

structuring of environment and behavior, not at the level of specification of 

changes to functional architecture. 

Both Pylyshyn and Anderson call the next level the algorithm level. (Newell 

calls it program symbol.) This is the basic level at which modeling of the 

world is performed. It is also the level at which steps of cognition can be 

correlated with observable behaviors. While such correlation will always be 

conjectural, it can be developed to a degree that has reasonably strong 

explanatory and predictive power. This level is clearly in the theory. 

The highest level is the knowledge level. (Pylyshyn: semantic level 

[distinct from Tulving's semantic memory, though]; Anderson: rational level.) 

Newell's knowledge level hypothesis (1982) posits a level above the algorithm 

Note that steps in cognition are not isomorphic with task steps as they might 
be elicited during a task analysis. 

4-3 



level for which knowledge is the medium and the "principle of rationality" is 

the law of behavior. The principle of rationality is, "if an agent has 

knowledge that one of its actions will lead to one of its goals, then the 

agent will select that action." Goals, selection, and implication (i.e., that 

knowledge content can be of a necessary or likely future state) are defined 

conventionally. Knowledge is defined as "Whatever can be ascribed to an agent, 

such that its behavior can be computed according to the principle of 

rationality." 

This definition avoids epistemological swamps, but it doesn't restrict 

travel very much. Suppose I bump into a hot stove and jump away. It wasn't 

knowledge, but reaction, that caused me to jump; that is, sub-symbolic, not 

symbolic, processing. However, a perfectly good explanation in terms of 

knowledge and goals resulting in behavior can be constructed. Further, the 

definition obscures distinctions of knowledge that may be significant for 

training. For example, one claim to know the melody to Gershwin's Rhapsody in 

Blue-by  which is meant that, when heard, the melody is correctly identified. 

It is possible to know the melody in this sense, but not be reliably able to 

recall it unaided. In designing training, these two different kinds of 

knowledge, comprehension and production, are likely to be treated differently. 

The principle of rationality is also slightly unfortunate, in that by 

assuming implication it ignores what Fodor (1986) calls epistemic boundedness. 

In simple terms, that we know A  and that we know that A implies B  does not 

necessarily mean that we know B.   It takes time and cognitive resources to work 

out the implications of our knowledge. Recognizing too late the opportunity 

you gave your opponent in chess is a familiar example. A second misfortune is 

that the principle of rationality seems to assume a uniform level of valence 

for all goals. It does accommodate goal hierarchies, subgoals, and sequencing. 

But different goals are pursued with differing degrees of intensity, and that 

valence can alter subgoals or even terminal goals. The relative importance of 

the goal and the motivation with which it is sought are important aspects in 

developing training, but this is obscured in the principle of rationality. 

Despite these problems, from a fuzzy point of view, the center of the 

knowledge level aligns directly with the level at which training is normally 

specified. Therefore, it is within the scope of the theory. 

Having considered these four levels (biology, functional architecture, 

algorithm, and knowledge), it is an interesting aside to note that while the 

conventional interpretation is that the lower levels constrain the higher—if 

only we were smarter, faster, our senses more acute, weren't losing our damn 

memories, etc.—in fact it is the higher levels that constrain the lower. We 

are subject to evolutionary selection. It is the high-level goals and 

capabilities that the lower-level parts evolved to serve. For example, stereo 

color vision conveys survival advantage for predators like ourselves. 

Understanding what color stereo vision must accomplish highly constrains the 
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investigation of how human vision works. David Marr suggested the analogy of 

trying to understanding bird's flight by studying only feathers. Without 

understanding what feathers are supposed to do,   what they are  makes little 

sense. Similarly, without understand what knowledge and algorithms do, 

understanding functional architecture and biology is impossible. 

4.2 The theory: Assumptions and axioms 

To recap: the goal of the theory is to characterize training objectives and 

training requirements in such a way that the requirements can be strongly 

associated with the objectives. I am concerned with the algorithm and 

especially with the knowledge levels. We are also, of course, concerned with 

the meta-goals of the theory: utility, generality, parsimony. 

The stance taken throughout is that learning is an active constructive 

process, in which the learner is the principal actor. The learner actively 

builds, tests, repairs, and refines mental models and physical skills for 

problem solving competence. The notion of learner as a passive receptacle of 

delivered knowledge-the "factory" model, in which knowledge is some sort of 

complicated "assembly" for teachers to "install" in students' heads-is wrong. 

This should be an unremarkable position. 

We make two further assumptions. First, we assume that normative models 

underlie any tasks or objectives to which the method might be applied. That 

is, for a given task there is as a minimum a reasonable prior consensus on 

what the task is and is not, and what constitutes a good or satisfactory 

solution. In most cases, it will also mean that there is an accepted and 

practiced standard approach to generating solutions. (Note that "approach" is 

not the same as "procedure". An approach may specify only what kinds of 

information should be gathered or present, or what kinds of possibilities 

should be considered, without providing the more detailed structure a 

procedure encodes.) 

Second, we assume is meaningful connection between task characteristics and 

the effectiveness of various approaches to training. The evolutionarily 

determined fit between our minds and the world has discernible and describable 

consequences for the way we best learn particular concepts and competencies. 

Human learning is not infinitely plastic. What the connection is for a 

particular task may be controversial; that there is a connection should not 

be. 

A theory has five essential components: axioms, constructs, attributes of 

constructs, relationships among constructs, and operations. 

For example, in mission planning, the axioms  are Own Unit and Friendly versus 
Enemy, and pursuit of mission success. The basic constructs  include the 
mission, theoperational order, mobility corridors, avenues of approach, 
courses of action, battle positions, and (usually) the forward edge of battle 
area. "Cover and concealment" is an attribute of avenue of approach. Courses 

4-5 



The theory has two axioms: 

1. People learn. 

2. Different ways of learning are more or less effective with respect to 

different things to learn. 

"People" and "learn" are both fuzzy concepts. That is, there is a center 

and a periphery, and things are a lot more clear at the center than at the 

boundary. Given that, we can agree that people learn. 

Regarding (2), physical mimicry of physicists will not cause you to learn 

classical physics. Dropping apples while looking at the moon won't work, 

either. (Unless you're as brilliant as Newton.) Academic study of physics 

followed by supervised practice probably will work (in most cases). 

There are two important notes about (2). First, it doesn't matter whether 

the connection is "causal" or "correlational". We're concerned with productive 

inferences about training approaches. 

Second, it—the relation between how we learn and what there is to learn—is 

not the only factor. There may be myriad reasons for learning to go well or 

poorly, unconnected to specific ways we learn and the nature of the material. 

Illness, life circumstances, workload, self-concept, even lighting conditions 

or time of day; many more could be named. It is possible, for almost any 

example, to construct a rationalization for why it should be considered part 

of "the way we learn". ("Illness saps energy and attention, which are enabling 

conditions of the way we learn.") However, this leads to "all and everything- 

ness": anything that might influence  learning gets included in the definition 

of learning. 

A note about both axioms taken together: without the second of the 

assumptions above, namely that there is a correlation between how a subject is 

taught and how well it is learned, the axioms would have little implicative 

force. 

The axioms are satisfactory, in the sense that if either one is 

invalidated, the theory collapses. We infer from them that with the right 

characterization of how we learn and what there is to learn, how we should 

teach or train should be able to be "read off" (using assumption 1) from their 

relationship. It looks like: 

How learning works     =>   Requirements for instruction     <= What there is to learn 

From this view, the requirements decompose and organize what there is to learn 

into the most facile form and sequence for learners. 

of action relate battle position, mobility corridors, and avenues of approach 
to missions and operational orders. Maneuver to change battle position is a 
typical operation. 
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4.3 The theory: Constructs and features 

What are the constructs for training? We propose seven constructs, organized 

roughly as how we learn, what there is to learn, and how to train. We present 

them in this section, and provide a detailed justification—a taxonomy 

specifying the links we claim-in the next. 

Before enumerating them, it is appropriate to ask, isn't there a simple 

version of this theory that works, from which the more complex version could 

be built? The general law of complex systems is, working complex systems arise 

from working simple systems.   But unfortunately, no simple system is adequate. 

The constructs are: 

How we  learn: 

1. Ways of learning 

What  there is  to learn: 

2. Kinds of tasks, domains, methods, and solutions 

3. Classes of content and meta-content 

4. Sources of error 

5. Notable qualities of expert performance 

6. Conditions of performance 

How  to   train: 
7. Approach to instruction 

How we learn,   as  it  is germane  to  instruction and  training 
What do we mean by "how we learn"? We've said before that biology and 

functional architecture are not within our scope. (By implication, the subject 

is adult learning, not developmental.) Still, at the algorithm and knowledge 

levels, we need to specify, at least operationally, possibly fuzzily, what we 

mean. Style? High-level mechanisms? Methods? Processes? 

By "how we learn", we mean how we construct content and operators  to 
achieve our goals within  the performance environment,   within the level of 
abstraction bounds set for the theory. So, for example, indexing and retrieval 

are critical cognitive operations which must be learned in conjunction with 

new content and operators, but they are generally below the algorithm level of 

abstraction (except of course where indexing and retrieval are explicit goals 

of instruction, as in the teaching of mnemonics.) What is indexed and 

retrieved is (presumably) on the algorithm or knowledge levels. 

At the knowledge level, we distinguish similarity-based learning and 

explanation-based learning, two concepts which had their genesis in machine 

learning research (Mitchell 1982). At the algorithm level, we name rehearsal, 

organization, and elaboration. 

How much is encompassed by these mechanisms? Gardner (1983) claims that 

there are six "intelligences": linguistic, logico-mathematic, spatial, bodily- 

kinesthetic, self-knowledge, and knowledge of others. We assert that all are 

learned using one or more of the above mechanisms. Learning is parsimonious 
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with respect to mechanism. However, we condition this claim by emphasizing 

that there are internal structure and learning variations for all of them; 

this is as true of spatial and bodily-kinesthetic as it is of the more obvious 

linguistic and logico-mathematic kinds of knowledge. (Not to mention self- and 

social knowledge.) Further, overly facile identifications are probably not 

justified, e.g., visual with spatial (Nissen 1985). It should also be noted 

that there may be different levels or aspects of the same task, which may 

require different teaching approaches. The difference between qualitative and 

quantitative understanding in physics is an example (Smith et al  1992) . 

Before examining how we learn, we should consider the role of psychological 

conditions for learning. Mayer (1987) suggests three fundamental conditions 

for learning: reception (attention, basic communication), availability (common 

domain vocabulary, prerequisite knowledge), and activation 

(information/knowledge assimilation, integration). These certainly seem 

plausible; it's hard to imagine successful learning without all three. On the 

other hand, these are assumed about training at our level of discourse. Our 

theory is primarily interested in instructional strategy; it is not a complete 

ISD method. All training methods require all three, so this isn't a 

distinction that makes a difference for us. 

Motivation is the key learning condition variable from the point of view of 

training. The level of motivation present can have a major effect not only on 

how training goes but even what is trained. It's the "hill climbing" issue: 

there are multiple routes to the target hilltop, and motivational "fitness" 

can play a big part in choosing which one to take. For example, developing 

proficiency at some tasks requires arduous practice. High-motivation students 

can be set fairly quickly to work on such tasks, and thereby achieve 

proficiency in a relatively shorter time than lower-motivation students, who 

may need more intellectual "rest-stops" (e.g., attractive subgoals off the 

direct route) on the way. If the motivation is great enough, it may even be 

that a higher hilltop is chosen as the goal. 

However motivation is decomposed (e.g., into goals, values, self-efficacy, 

control processes), it more properly belongs in the characterization of the 

learner than in method selection per se.   Specifying the "hilltop" is part of 

developing a training objective, as is selecting the "viewpoints" (enabling 

objectives) along the way. It is symptomatic of the dense interconnection of 

training influences that to some extent this makes the theory more fragile. 

While the best method may be determined by the structure of the material 

independent of learner characteristics, the best presentation may be highly 

sensitive to motivation level. Since we claim that presentation and method are 

really poles on a continuum, this is a legitimate issue. 

Pylyshyn's cognitive impenetrability principle provides relief. While 

motivation can certainly change, and can be taught by creating an appropriate 

environment, it is not at the knowledge-level or the algorithm-level of 
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abstraction. One cannot directly change one's motivation without constructing 

a training program much more analogous to a physical training program than to 

a case of intellectual choice. Therefore, while motivation is important both 

in selecting training objectives and characterizing the learner, it is outside 

the scope of the present theory. 

1. Ways of learning 

First the knowledge level is discussed, then the algorithm level. 

Similarity-based learning (SBL) induces theory or an abstract general rule 

from particular examples. This can be with respect to categories, operators, 

or both. Explanation-based learning (EBL) maps a theory or abstract rule to an 

example, then remembers the mapping ; again, this applies to categories, 

operators, or both. 

Examples of SBL include induction of decision trees from multiple examples, 

development of general categories from multiple instances, classification of 

new information with respect to existing categories, and learning of new 

patterns of physical movement. 

Examples of EBL include induction of (elements of) decision trees from 

single examples, classification of novel examples, and induction of use (of an 

artifact, concept, or situation) from knowledge of function. 

These examples are not meant to be comprehensive. For instance in some 

problem-solving situations, it may be profitable to remember both abstract 

categorizations and operators, and specific individual cases. At the knowledge 

level, the latter would be SBL, even though the fit is imprecise, and the 

reason for indexing an individual case may be explanation-based. 

SBL and EBL are not identical with their reasoning cousins. Explanation- 

based reasoning is a common way of resolving impasses during problem solving, 

e.g., by constructing an explanation of how the current situation could have 

arisen or could be sustained, such that the most appropriate action is 

embedded in the explanation. In effect, explanation-based problem-solving 

applies weak knowledge when there is no strong knowledge available. (One 

doesn't need to construct an explanation based on first principles if the 

engine is on fire.) 

Explanation-based reasoning should also be distinguished from explicative 

tasks. There are critical Army tasks that are explicative; preparing mission 

statements and orders is a prime example. Describing and explaining things is 

an important skill, and may depend on explanation-based reasoning, but it may 

also depend on similarity-based reasoning. And, it is not uncommon for a 

practitioner in a particular discipline to be very competent at explanation- 

4     • . Specifically, it remembers a declarative justification of the newly-learned 
material in terms of its existing knowledge. 
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based reasoning, for diagnosis, for example, but not especially competent at 

communicating his or her reasoning. 

What are the instructional implications of the distinction? EBL requires 

significant prior knowledge about the domain to guide search; therefore, a 

strong domain theory is preferable. In addition, because the core of the 

method is mapping, domains where surface features and underlying structures 

are distal are likely candidates, as are event-poor domains. SBL requires 

inductive bias for learning, i.e., some bias toward relevant features and away 

from spurious or irrelevant features (Mitchell op  cit.). However, this is 

often not a problem, since for most problems there are abundant cues to 

distinguish useful features. SBL is appropriate for many classification tasks, 

case-based reasoning, for event-rich domains, and for motor skill and pattern 

recognition tasks. 

There are many hybrid SBL/EBL learning tasks. Construction of an 

explanation can rely upon having a similarity-based goal concept (e.g., 

answer) toward which to map. And, SBL may be embedded in a larger EBL task. 

Rehearsal, organization, and elaboration are the three mechanisms at the 

algorithm level. Rehearsal is mental practice; in traditional psychology, it 

is called "strengthening". Organization and elaboration correspond roughly to 

SBL and EBL. 

We say "roughly" since, like nearly everything concerned with learning, 

even these basic concepts are controversial. For example, traditional views on 

teaching physics hold that naive views must be replaced by formal models and 

methods. From this view, rehearsal applies to learning the basic 

(definitional) concepts, organization to creating the model, and elaboration 

to applying it to actual problems. But diSessa, op cit.,   argues strongly 

against the replacement theory, claiming that theoretical physics, to the 

extent that it is grounded in physical intuition, elaborates on rather than 

replaces naive physics. In this view rehearsal and elaboration are the key 

learning mechanisms, with organization being much less important. 

What   there  is   to learn 

This cluster of constructs is organized roughly as, what there is to learn 

(kinds of tasks, content and meta-content), what goes wrong (sources of 

error), what goes right (characteristics of expertise), and where it's done 

(conditions of performance). 

2.    Kinds of tasks, domains, methods, and solutions 

One common approach to task classification is to use a fundamental aspect of 

the problem space, namely whether it is convergent, divergent, or 

transformational. Search through a convergent problem space leads to a single 

best or correct answer. Mathematics is an example; diagnosis is another. A 
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divergent problem space does not have one best answer, either because the 

constraints on the solution are weaker or because of the goals of the process 

don't lead to single solutions (as for example having interpretive goals or 

multiple inconsistent goals requiring trade-offs). Planning and design are 

typical examples. Transformational problems are those where the complexity of 

the input and the complexity of the output are roughly equal and problem- 

solving is finding a suitable mapping between the two. Computer-based modeling 

is a representative example. 

In the knowledge acquisition and expert systems communities, it is more 

common to refer to convergence as classification or structured selection, 

divergence as construction, and to view transformational as a hybrid involving 

both. 

Manipulation, monitoring, identification, interpretation, diagnosis, and 

debugging are typically viewed as convergent. Prescription, design (arranging 

objects under constraints), planning (arranging actions under constraints), 

and rationalizing (explaining, describing, motivating, etc.) are seen as 

divergent. Generally, other common tasks, e.g., control, repair, 

configuration, scheduling, prediction, instruction, and evaluation, can be 

composed from these primitives. 

The power of task characterization is in constraining generic content. For 

example, all diagnostic tasks will include plans, hypotheses, some 

device/system/situation model, error recognition and avoidance strategies, 

specific methods and skills, and in most cases systematicity, e.g., how to 

pursue maximal payoff paths, how to return to the last valid branch point from 

a dead end, etc. In addition, diagnostic tasks will have a pre-enumerable (at 

least in principle) list of goal states. Once such generic content is 

identified, methods for instruction can be more appropriately selected. 

There is another aspect of the problem space of significance, relative 

wealth and poverty of information and possibilities. There are three 

manifestations of this: data-rich and data-poor problem spaces (e.g., 

predicting Soviet Armor tactics contrasted with predicting Somali insurgent 

tactics), event-rich and event-poor (firing a rifle, firing an ICBM), and 

hypothesis-rich and hypothesis-poor (situation assessment involving guerrilla 

war, situation assessment involving frontal assault). 

Malleability of the problem space is another attribute. By "malleability", 

we distinguish domains where experimentation is possible, or even normal, from 

domains where actions, once taken, are irrevocable. Different content and 

different attitudes are appropriate when experimentation is possible. 

"Standard deviation"—the degree to which task episodes vary from a central 

core—can also be consequential. If there is a strong central prototype the 

training investment should be in the teaching and practice of basic skills. If 

there is a great deal of variation (and there isn't a strong theory to account 

for it), elaboration of basics and techniques for probing the periphery need 
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to be taught. 

How good must solutions be? Optimal or satisfycing? Fallesen (1993) found 

that a common error in tactical decision making was to search for optimal 

solutions, rather than to accept a satisfycing solution and devote the saved 

time to higher-payoff planning and execution. 

Is the desired performance comprehension or production? Evidence from 

developmental and rehabilitation studies both show marked differences in 

comprehension and productive performance. Recognizing a good plan is a 

different matter from developing one. Facility with comprehension may be a 

necessary condition for the desired performance, but it is far from 

sufficient. This may seem so obvious as to not require mention, but failure to 

make this distinction is commonplace. 

Some tasks are fairly homogeneous with respect to the knowledge and skills 

required. Electronic circuit design is an example. Others are more 

heterogeneous; battlefield command, for example. If expertise in a domain 

requires knowledge from a variety of fields, or at multiple levels of 

abstraction, or both, it is heterogeneous. When this is the case, the 

difficulty of learning the task increases and often explicit training in 

integration of material from multiple relevant areas is required (Patel et al, 

op cit.). 

The last task/domain issue is the role of distributed representation (Zhang 

& Norman 1994). Since this is a fairly new subject in psychology (or at least 

a new formulation), we will first define what we mean, then discuss its 

consequences for training. 

The bases for studying distributed representation are the insight that 

complex behavior can be accounted for by positing relatively simple mechanisms 

in a complex environment (Simon 1981; Brooks 1992), and the empirical fact 

that different representations of the same problem can have dramatic effects 

on problem-solving performance (Hayes & Simon 1977). 

"Distributed representation" refers to problem solving in which part of the 

way the problem is represented is internal to the problem-solver, and part is 

eternal in the environment. From this view, an external representation is not 

just a peripheral aid to cognition, but a necessary component of a distributed 

cognitive task. Zhang and Norman found five properties of external 

representation: 

1. External representations provide memory aids 

2. External representations can provide information that can be directly 

perceived and used without being interpreted and formulated explicitly. 

This is consistent with Gibsonian affordances (Gibson 1979). 

3. External representations can anchor and structure cognitive behavior, 

5 
A frequent example contrassts arithmetic with Arabic and Roman numerals. 
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especially to the extent that the external representation is instantiated 

in physical structures and artifacts. 

4. External representations can change the nature of the task as seen from the 

perspective of the problem solver, i.e., externalization of representation 

often makes tasks easier (Zhang & Norman, op cit.) 

5. External representations are an indispensable part of the representational 

system of any distributed cognitive task. 

The last property is definitional, but brings out the critical insight that 

problem solving involves representational systems, the components of which can 

be spatially, temporally, and qualitatively distributed. 

While the long-term impact of distributed representation analysis may be 

greater for task analysis and process re-engineering than for training, it 

certainly is a dimension that must be considered. In some cases, learning to 

properly use the external representation and to integrate internal and 

external representational elements are in themselves training tasks. This is 

true for the topographic map reading example given in Section 7. 

3. Classes of generic content and meta-content 

We subdivide this category into what there is, what it means, how it works, 

how it's managed (meta-knowledge), and how it's integrated (meta-cognition). 

What  there is:  Categories and category structures (concrete, prototypical, 

and definitional), attributes and attribute values, operators (includes both 

actions and preference-functions), action repertoires, patterns and meta- 

patterns, pattern-category associations, attitudes, proprioceptive knowledge, 

and motor skills. 

Concrete categories map abstract ideas to concrete implementations, as for 

example the concept of "4" to four tanks, four battalions, etc. Prototypical 

categories are defined by best or prototypical members, relative contrasts 

between categories, and polymorphy (neither necessary nor sufficient 

membership rules) (Lakoff 1987). Ducks and blackberry pie are examples. 

Definitional categories are those, like force, mass, acceleration, logic, and 

algebra, whose existence is by definition rather than observation. 

Pattern recognition is defined as classification of stimuli that are 

"perception or somewhere near perception". This definition is obviously 

imprecise, but it is meant to convey the notion that pattern recognition is 

convergent problem solving, but that not all convergent (classificatory) 

problem solving is pattern recognition. For example, one would not consider 

either formal logic or elimination-by-aspects as pattern recognition, although 

both are used for classification. 

What  it means:  Goals and goal structures, data structures, implicative 

associations, and uses (of objects). 

How it works: Indexing and retrieval, procedures and meta-procedures, plans 

and subplans, hypotheses and hypothesis structures, goal satisfaction markers, 
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data gathering methods, data identification/validation methods, and errors, 

error structures, and error detection markers. 

How it's managed (metaknowledge): Metaknowledge skills include: 

Problem discernment and identification 

Problem representation 

Validation of problem representation 

Planning strategies for problem solving 

Validating the plan 

Applying the selected problem solving method 

Implementing the solution 

Monitoring implementation and the developing solution, and 

Evaluating the solution. 

How it's integrated   (metacognition):  Along with content, there is 

metacognitive content. Metaknowledge, i.e., domain-specific knowledge of how 

to best organize and apply specific problem-solving knowledge, is included 

above. Here, we add: 

• Managing coherence, self-consistency, consistency with related knowledge, 

completeness, embeddedness 

• Assigning, monitoring, and adjusting the salience of task events, goals, 

and consequences, including goal conflict management and urgency management 

• Strategies for managing confidence 

• Uncertainty management, applied to data, knowledge, knowledge application, 

and projected results 

• Truth maintenance 

• Systematicity 

• Allocation of cognitive resources, including managing focus of attention, 

degree of attention, and duration of attention. 

To the extent that any of the above map to internal representations, 

content can be either real or virtual. Virtual content can be used to build 

more constructs. Some examples: 

• Prediction = Category + virtual attribute value + virtual operator 

• Standards = Virtual attribute value(s) + virtual operator(s) 

• Decisions = Goals + (sometimes) plans 

• Constraints = Goals + attributes and values + virtual operators 

• Consequences = Goals + virtual action(s) + prediction 

• Error amplitude = Error detection + error structures + consequences 

Even something as apparently ephemeral (but actually crucial) as "a sense 

of elegance or beauty", of a design, for example, can be represented using 

6 Truth maintenance is managing the status of states and propositions during 
nonmonotonic problem solving. Suppose I observe A  and infer B; from B,   I 
infer C. Observation of D also supports the truth of C.  Now I learn that A  is 
false. Properly revising the status of C  is a truth maintenance problem. 
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these categories. 

4. Sources of error 

By "error", I mean avoidable mistakes. In some domains, mistakes are 

inevitable, either because data are necessarily incomplete and unreliable or 

because there is no reliable (or pragmatically applicable) predictive 

knowledge. Sources of error include: 

Conceptual:  Distance between surface features and underlying structure, 

presence of irrelevant features or operators, local optima, lack of relative 

contrast between categories or operators, confusion of correlation for cause, 

confusion of explanatory for predictive knowledge, unjustified induction. 

Cognition:   Cognitive biases, e.g., framing, regression, base rate, 

anchoring, availability, representativeness, false attribution, and/or numeric 

bias (Kahneman et al  1982); cognitive loading; plus a bias toward a particular 

category or operator ("to a kid with a hammer, everything looks like a nail.") 

While this latter can often be accounted for via combinations of prior 

cognitive biases, it is particularly important in a military context. 

Knowledge:  Lack of knowledge, presence of irrelevant knowledge, erroneous 

beliefs12, volume of knowledge necessary to find a solution, incorrect 

solution identification. 

Pragmatics:  Lack of data, false data, ineffective or confusing external 

representation, inadequate physical resources, inadequate temporal resources, 

ineffective use of physical or temporal resources, inappropriate choice of 

goals, active (i.e., enemy) interference. (Enemy interference may not be 

avoidable, but one way military experts are distinguished from novices is by 

the degree to which they anticipate and plan for such interference.) 

The point of this catalog is not to list all possible classes of error, but 

rather to show the range of error classes that can be identified and that have 

direct consequences for training. (Specific error-class/training consequence 

connections are shown in the next section.) 

5. Characteristics of expertise 

If the training objective is not expert performance, this construct may be 

optional; it may not be necessary to look closely at expert/novice 

differences. On the other hand, "expertise" may be provisionally defined as 

the target competence, and studied in that light. 

Glaser (1989) characterizes the structure of competence as: 

Knowledge organization and structure 

Depth of problem representation 

Theory and schema change 

Proceduralized and goal-oriented knowledge 

Automaticity to reduce attentional demands 

Metacognitive self-regulatory skills 
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Mapping this to observable traits of expert performance, attributes can 

include quickness to detect potential breakdowns, exceptional flexibility, 

automatization of subtask elements, focus on underlying phenomena with 

filtering of irrelevant data, adaptability, immunity to "noise", etc. 

The more detailed the available knowledge-level analysis of expertise, the 

more power is available to characterize and teach expert behavior. For 

example, it is strongly claimed that expert physicians use hypothetico- 

deductive reasoning (from hypothetical causes forward to observable effects) 

during diagnosis, while medical students tend to use abductive reasoning (from 

observables backward to causes). There is evidence that hypothetico-deductive 

reasoning can be explicitly and successfully taught (Patel et al,   op cit.). 

6. Conditions of performance 

These include: time stress, consequence stress, number of concurrent tasks, 

number of concurrent performance demands, number of concurrent obligations, 

circumstantial stress (noise, light conditions, temperature conditions, 

fatigue, etc.), and interruptions. 

Approaches  to instruction and training 
7. Approaches to instruction and training 

Approaches include both strategies and tactics. These are points on a 

continuum, which are easy to distinguish in the extreme cases, e.g., 

structured state-space differentials as a strategy, writing on the blackboard 

as a presentation tactic. (Actually, even this example is unclear—"writing on 

a blackboard" can be a strategy.) 

Teaching strategies can be roughly divided along two orthogonal dimensions: 

telling/doing, and modeless/modal. 

"Telling" strategies involve discourse on the part of the instructor and 

reception on the part of the learner. Telling can include verbal and textual 

material, diagrams, pictures, and audio. (One supposes even odors could be 

included.) Halliday (1975) categorizes seven language functions. Four he 

groups as pragmatic: instrumental, regulatory, interactional, and personal. 

Three he groups as mathetic: heuristic, imaginative, and informative. 

Pragmatic functions orient and act. Mathetic functions create knowledge and 

move beyond the immediately referential. Bruner (1986) points out that another 

function must be added, the metacognitive capacity to reflect on language and 

telling as a subject in itself. Telling can apply any or all of these 

functions. 

"Doing" strategies involve some form of demonstration or direction on the 

part of the instructor and active imitative or goal-seeking behavior on the 

part of the learner. Doing can involve physical mimicry, performing 

experiments, practicing motor skills, using simulations, or constructing 

artifacts. Of course, it can also involve telling; for example, teachback, in 
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which the learner plays the role of instructor, is a form of doing. 

Telling and doing are meant to be reasonably broadly construed. It should 

not be thought that telling is somehow passive, in contrast to doing, which is 

dynamic. Both are active. Socratic dialog is a form of telling. The 

distinction is that in telling, internal constructive action is required of 

the learner, while in doing, both internal and external constructive action is 

required. 

Modeless strategies present material in the "timeless present", i.e., as 

facts, assertions, or operations to be internalized and reliably reproduced. 

Operationalizing F = MA with respect to various physics problems is an 

example. Modal teaching applies "stance marking" (Feldman & Wertsch 1976), 

that is, use of linguistic or other tokens of uncertainty and probability to 

invite negotiation of, and responsibility for, meaning. Bruner op cit.   gives 

the example of his fifth grade teacher, Miss Orcutt, making the statement "It 

is a very puzzling thing not that water turns to ice at 32°  Fahrenheit, but 

that it should change from a liquid  into a solid."   Instead of taking a 

modeless approach and presenting a fact, and backing it by authority, she 

invited her students to share her fascination with the (rather bizarre, if we 

weren't so habituated) phenomena of threshold-based state transition. Modeless 

strategies are concerned with truth, while modal strategies are concerned with 

meaning. Looked at from a different perspective, modeless strategies rely on 

authority, while modal strategies require at least some degree of learner 

initiative. 

(As an aside, the traditional form for scientific reports—including this 

one—uses the modeless style. The implication is that we are concerned with 

truth,   rather than the more modest and realistic goal of simply trying to 

accurately report the view of a particular phenomena from a particular human 

group's perspective.) 

Organizational strategies are slightly simpler. We distinguish structural, 

discovery, and narrative. Meyer (1975) characterizes five common structural 

markers: 

• Covariance, a causal relationship between antecedents and consequences 

• Comparison, a reference to known structure(s), either metaphorical or 

analogical 

• Collection, clustering related concepts or operators, in time, space, or 

function 

• Description, provision or general statement followed by supporting evidence 

• Response, pairing problem and solution, question and answer, or remark and 

reply. 

Discovery techniques can be "pure", guided, or expository. In pure 

discovery, the learner is set in the learning environment to find on his or 

her own those regularities that comprise the training objective. In guided 

discovery, the learner is given cues to focus search. Both pure and guided 
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discovery are inductive approaches. Conventionally, in inductive approaches, 

the target rule, concept, or procedure is provided after the learner has 

discovered (induced) the underlying structure. In expository discovery, a 

deductive approach, the rule is provided at the start, and the discovery 

process lies in deductively finding its correct application. 

The narrative approach provides a skeletal plan or schema which can be 

elaborated and refined. Narrative seems the most flexible of the 

organizational approaches. 

Presentation tactics for instruction include classroom (verbal, written, 

diagrammatic, pictorial/image, auditory), structured environment (guided 

and/or discovery), demonstration, modeling and simulation (real-world, 

computer-based), field exercise (guided and/or discovery), on-the-job training 

(OJT), and hybrid approaches such as field class, SAF, or classroom role- 

playing (e.g., teachback). 

4.4 Critique of the constructs 

These are the constructs of our model, along with their attributes. Before 

considering how they fit together, two things that were left out, either 

partially or wholly, need consideration: knowledge representation and situated 

cognition. Then, three problems with the constructs need discussion. 

Mechanisms of knowledge representation.   The representation of knowledge is 

different from mechanisms of knowledge representation. By the former, we mean 

the general statement that people solve problems by creating representations, 

that knowledge is used both to create and to manipulate these representations, 

and that actions are based on the results of such representational activities. 

We can imagine what will happen if, say, we upend our coffee cup; we represent 

a possible event, rather than trying it out in fact. Representation of 

knowledge is assumed by the theory. 

Mechanisms of knowledge representation, on the other hand, are things like 

rules, frames, Schemas, etc. These mechanisms are suggestive—it seems like 

they must influence, even determine learning—but it's a major research program 

to demonstrate that (a) a satisfactorily precise statement can be made about 

how people actually represent knowledge about a particular subject, and (b) 

that useful predictive statements about learning and teaching can be made 

based on these statements. Is pure behavior the right level of abstraction 

(Brooks 1992)? Sub-symbolic processing (Rumelhart & McClelland 1986)? Symbolic 

(Anderson 1983, Newell 1990)? Fuzzy (Kosko 1994)? Emergent (Minsky 1985)? 

Model-based (Johnson-Laird 1983)? Narrative (Bruner 1984)? None, some, or all 

of the above? Real-world experiments that strongly support one of these in 

contradistinction to the others are extremely hard to construct. Empirical 

data on learning and teaching approaches based on one knowledge representation 

(to the interpretive exclusion of the others) are also hard to find (although 

Anderson has a better record than the others.) Our belief is that knowledge 
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representation must be important, but the field is not mature enough to guide 

training. (For a counter-view, see Shank [1986].) 

Situated cognition.   Also called situated action, this growing body of 

research asserts that understanding a task without understanding the situation 

in which it is performed is impossible (Suchman 1987; Glasser 1991) . This 

stems from two factors, distribution of representation (and knowledge) in the 

world, and the nature of task performance as a group-embedded and group- 

responsible entity. The arguments of the situated actionists are powerful, and 

are to some degree represented in the above, i.e., in the notions of 

distributed representation and conditions of performance. However, as with 

apparently everything in the field, they are controversial and far from 

universally accepted. 

There are three more problems with our constructs. 

1. There are not enough empirical data associating task characteristics with 

adult training approaches; there are too many free variables; existing 

empirical data are ambivalent and subject to multiple competing 

interpretations. 

2. There is so much plasticity in human learning that everything maps to 

everything else. 

3. Bad separation, fuzzy lines, and messy level-of-abstraction problems exist 

between constructs; it's hard to tell what's an independent variable and 

what's dependent. 

Response   to  1.   Many are working on further development of empirical data. Our 

question is whether the theory can account for, or more realistically, just 

encompass, the data that exist. 

Response  to 2.   The plasticity of learning is why there isn't any generally 

accepted theory or taxonomy. If we were worse at learning, we'd have to be 

better at teaching. That is, if one and only one training method worked for a 

particular task, we would by now know it. However, for the great majority of 

tasks, any number of training methods seem to work to a greater or lesser 

extent. People will learn almost no matter what. 

Many attempts at taxonomy construction have been made—Gagne 's, described 

above is one. Within the Army, the NDTC's early efforts to link tasks to 

training device design; training device effectiveness models, such as 

TRAINVICE, and DEFT; and rule-based approaches,such as OSBAT. The Harliss 

Associates Method and Klein's Critical Decision Method can also be considered 
n 

attempts to codify instructional design based on task classification.  The 

7 
We thank to Dr. Angelo Mirabella for portions of this list. 
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Navy also sponsered a major recent taxonomic study [Hogan et al  1987] . The 

fact remains that no taxonomy is yet generally accepted. 

Response  to 3.  We claim there is a discernible and testable heuristic 

structure uniting each of the above constructs. In the next section, we 

attempt to work it out. 
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TAXONOMY 

How do the various constructs developed in the preceding section fit together? 

The position implicit in the axioms—that instruction is the bridge between how 

we learn and what we need to learn—can now be made more specific. In overview, 

this looks like: 

How we learn       => Instruction <= What we learn 

Knowledge level Method Task 

Algorithm level Organization Content 

Presentation Errors 
Expertise 

Conditions 

The taxonomy that follows attempts to make the consequences of the constructs 

explicit. This section: 

• develops heuristics associating the content constructs with the learning 

and training constructs; 

• presents some typical clusters of features and associated heuristics; and 

• critiques the taxonomy in its current form. 

5.1  Structures of constructs 

Figures 5-1 through 5-4 show the structure of the constructs developed in the 

last chapter, with some elaboration. Note that the leaf nodes shown are not 

mutually exclusive. Different knowledge levels can be present in a task; 

different training approaches may be employed; different elements will combine 

in actual tasks. In general, the leaf nodes of all of the charts are mutually 

inclusive. Selection of one does not eliminate others. 
Similarity-based learning 

Knowledge level 

How we learn 

Explanation-based learning 

Rehearsal 

Algorithm level Organization 

Figure 5-1. How we learn. 

Elaboration 
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A few of the leaf nodes in Figure 5-2 may need explanation. 

Model tracing assumes that there is a right way to perform a task, and that 

the learner is to be led through the model, provided opportunities to 

practice, and gradually given autonomy. Learning is seen as reducing the 

"distance" between the expert model (or the standard competence model) and the 

learner's model. 

Issues recognition extends model tracing by identifying problematic 

decision points and the typical errors for each. Explicit instruction on error 

avoidance, recognition, and repair is part of training. In effect, a 

stereotypical learner model is built into the training. 

Critical decision training focuses on those transition nodes in the process 

tree where significant branching occurs. Almost all tasks combine a relatively 

smaller amount of decision making with a relatively larger amount of task 

execution. The critical decision approach concentrates on understanding and 

developing facility in the decision space. A distinguishing assumption of the 

critical decision method, as contrasted with, say, focus gambling, is that a 

robust (or at least, sufficient) representation of all of the relevant path 

possibilities and their consequences can be learned and subsequently used in 

the field. 

Abstract problem spaces include a prediction of student performance and 

compares that with a competence model. The "abstracted problem space" is a 

model of the domain; the student competence model is a goal/subgoal model. 

Wanderings or disjunctions are repaired based on the distance between the two. 

This, like false model training, is trying to get at "choosing the 
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Method 

How to train 

Instrumental 
Regulatory 
Interactional 
Personal 
Heuristic 
Imaginative 
Informative 
Metalinguistic 

Mimicry, imitation 
Performing experiments 
Practicing motor skills 
Simulations (using, performing) 
Constructing artifacts 

Organization 

Presentation 

Structure 

Discovery^ 

Narrative 

Classroom      

Demonstration 

' Structured 
environment 

Covariance 
Comparison 
Collection 
Description 
Response 

Pure (inductive) 
Guided (inductive) 
Expository (deductive) 

S-R 
Rote/Mnemonic 
Conceptual/Procedural 

Laboratory 
Field 

Autonomous 
Content-informed 
Evaluative 

Real 
Computer-based 

■ Guided/Supervised 
Apprenticeship 
Autonomous 

Formal 
Apprenticeship 
Task immersion 

Model tracing 
False model 
Issues recognition 
Critical decision 
Abstract problem spaces 
Pattern recognition 
Cases 

Figure 5-2 How we train. 
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What there is 

Convergent/Divergent 
Data-rich/-poor 
Event-rich/-poor 
Hypothesis-rich/-poor 
High/Low experimentation 
High/Low std deviation 
Optimal/Satisfycing solution 
Recognition/Production 
Heterogeneity 
Degree of distributed representation 

Concrete categories 
Definitional categories 
Prototypical categories 
Attributes & values 
Operators 
Actions 
Patterns & meta-patterns 
Pattern-category assns. 
Attitudes 
Perceptual knowledge 
Proprioceptive knowledge 
Motor skills 

Goals 
Data structures 
Implications 
Object uses 
Errors 

Indexing & retrieval 
Procedures 
Plans 
Hypotheses 
Goal satisfaction markers 
Data gathering methods 
Data identification/validation methods 
Error detection markers 

Problem discernment & identification 
Problem representation 
Validation of problem representation 
Planning strategies for problem solving 
Validating the plan 
Applying the selected method 
Implementing the solution 
Monitoring impl'n & the developing solr 
Evaluating the solution 

Coherence, consistency, completeness 
Salience, goal conflicts, & urgency 
Confidence 
Data uncertainty 
Knowledge uncertainty 
Knowledge application uncertainty 
Projected results uncertainty 
Truth maintenance 
Systematicity 
Allocation of cognitive resources 

5-4 



1 

Conceptual 

Cognition 

What there is 

Dist. between surface, deep features 
Irrelevant features 
Local optima 
Unclear categories, operators 
Cause/correlation confusion 
Explanatory/predictive confusion 
Unjustified induction 

Cognitive biases 
Favorite categories, operators 
Cognitive loading 

Lack of knowledge 
Irrelevant knowledge 
Erroneous belief 
Volume of knowledge 
Bad solution identification 

Lack of data 
False data 
Bad external representation 
Inadequate physical resources 
Inadequate temporal resources 
Bad resource management 
Inappropriate goals 
Failure to anticipate enemy 

Knowledge organization and structure 
Depth of problem representation 
Theory and schema change 
Proceduralized & goal-oriented knowledge 
Automaticity to reduce attentional demands 
Metacognitive regulatory skills 

Time stress 
Consequence stress 
Concurrent tasks 
Concurrent performance demands 
Concurrent obligations 
Environmental stress 
Degree of fatigue 
Interruptions 

Figure 5-4 Content 
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wrong thing to do", while the previous two are more oriented toward "doing 

what you choose to do correctly". (This is a little strong—model tracing could 

certainly be applied to a planning [i.e., choosing what to do] task.) This 

higher level of abstraction makes abstract problem spaces more general than 

conventional model tracing. On the other hand, in a strongly data-driven task 

(e.g., classifying features on a radar screen), using a goal-distance strategy- 

is probably not very efficient. 

Pattern recognition training is new as a method (Fischer 1994), although of 

course people have been taught to perceive patterns since time immemorial. 

From careful analysis of expert performance, key Schemas and triggering 

patterns are identified. Then, simple-to-complex organization is employed to 

present prototypical and boundary examples of the key patterns, each 

immediately associated with the relevant schema. 

Cases are an adjunct of the other methods (Kolodner 1993) . Their use 

depends on the nature of the task, especially the kinds of episodes normally 

encountered and the degree to which episodes are temporally and/or 

conceptually distinct from one another. Case use also depends on common errors 

and the availability of data or simulation. A number of kinds of cases, each 

with its own strengths and weaknesses, are cited in the literature (Geiwitz & 

Kornell 1992): typical, tough, interesting, prospective, retrospective, 

boundary, partial, simulated, actual, minimal, and aided. 

Omitted from Figure 5-2 and our discussion is the pacing of instruction. 

Deciding whether learning a particular task or topic should self-paced or 

instructor-paced depends on the learners and on the preferences of, and 

possibly the constraints faced by, the instructor. Other than some rehearsal 

learning that may not be susceptible to time compression beyond a certain 

point, the structure of the content does not in principle constrain the pace 

of its instruction. 

One other issue not in the chart is what to say first. By "what to say 

first", we mean whether to organize material as simple-to-complex or complex- 

to-simple, concrete-to-abstract or abstract-to-concrete, or component-to- 

composite or composite-to-component. For example: 

• In a domain where the whole determines the structure of the parts, 

instruction may organize material from complex-to-simple, e.g., the student 

is taught the overall mission before concentrating on his or her individual 

role. A different instructor, though, might take a different perspective, 

seeing the complex (e.g., mission success) as an emergent property of the 

parts (e.g., specified and implied tasks), and may wish to teach the simple 

first. 

• A hierarchical domain can be taught from the top down (abstract-to- 

concrete) or the bottom up (concrete-to-abstract) 

• Some kinds of knowledge are easier to absorb in the whole than in the 

parts, e.g., the concept of a "mobility corridor" is easier to learn than 
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all the possible complexes of features from which it can arise; others are 

easier in discrete "chunks", e.g., route planning in terms of mission, AoA, 

cover and concealment, estimated ToA, etc. 

The point of these examples is to illustrate the position that these 

ordering choices, like the choice of pacing, depend on the learners and the 

instructor(s) more than the intrinsic structure of the task. 

5.2  Content => Instruction/Training Heuristics 

The content constructs—task, generic content and meta-content, error sources, 

characteristics of expertise, and conditions of performance—are now 

considered, and a taxonomy developed. In real applications, the content 

features don't appear in isolation. It's as though one were to analyze the use 

of the color red in a painter's oeuvre.   There might be interesting and 

insightful comments to be made, but one could hardly understand the paintings 

by viewing them through a red-only filter. Similarly, saying that a domain is 

event-poor, taken alone, doesn't yield much. Is it a supernova? Or a forest 

fire? The former has a well-understood theory, is predictable once begun, and 

is neither influenced by nor consequential for humans. Forest fires are the 

opposite on each count. 

In that spirit, this section looks at constructs and blocks of features, 

and the next section takes three representative tasks and considers feature- 

clusters and their consequences. It is organized on the lines of Figures 5-3 

and 5-4. 

5.2.1   Tasks,   domain  characteristics,   methods,   and solutions. 
Convergent/Divergent    Convergent problems have single answers, and the truth 

of the answer is in the world. Examples include the accuracy of a diagnosis, 

the numerical solution to a problem, or the precision of a Shuttle rendezvous. 

Divergent problems have solutions of greater or lesser elegance, rather than 

answers; and as long as the minimum problem constraints are satisfied, the 

quality of solution is in the head as much as the world. Elimination 

(structured pruning of the search space) and analogical case-matching 

(comparing current circumstances to known situation/solution pairs) are 

contrasting convergent methods. Least commitment (exploring multiple paths 

concurrently as data are gathered) and generate-and-test (exploring individual 

paths fully) are contrasting divergent methods. 

Because these are such broadly inclusive categories, and because so many 

tasks partake of both, only weak training heuristics are associated. 

For convergent tasks, precision and efficiency of execution are training 

goals. Classification methods always have declarative categories and 

structures; they must also have rules of evidence acceptability and evidence 

salience. There may also be specific conflict resolution rules. One would 

expect these to fit closely with the goal/subgoal trees, perhaps especially 

with the consequences associated with particular goals. 
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For divergent tasks, rules for combining elements, and for finding "minimum 

energy" paths or constructs within the problem space are required. A sense of 

elegance (since this is what guides selection of otherwise equal branch-points 

during solution construction), styles of approach, some form of 

apprenticeship, and in Army command training, careful graduation of 

responsibility are appropriate. 

Data-rich/Data-poor.     In a data-rich problem space, data selection and 

filtering are going to be significant elements. If the domain is one in which 

the relative distinctions between concepts are not clear, there are likely to 

be data management cognitive bias errors like anchoring and numeric bias. 

Then, counteraction will need to be taught. In some tasks, a goal-driven 

approach is used as a strategy to deal with too much data; the goals focus the 

search and provide criteria for data selection. Alternately, in a data-poor 

environment, there are likely to be long and elaborate chains of reasoning, 

and errors of knowledge selection and application, along with reasoning- 

oriented cognitive biases like base rate errors, will be problematic and 

therefore require special attention. 

Event-rich/event-poor.     In event-rich domains, availability bias is unlikely, 

and similarity-based induction is more likely to be reliable, since candidate 

generalizations can be frequently tested. In event-poor domains, availability 

bias is much more likely and generalizations are more likely to be 

explanation-based. There is a subdivision of problem spaces, though, with 

respect to number of events, based on the nature of the theory of the problem 

space. In problem spaces with strong predictive theories, availability bias is 

much less likely; volcanic eruptions are rare, but the arbitrary or spurious 

feature associations have long since been eliminated from analysis. 

Hypothesis-rich/hypothesis-poor.     In hypothesis-rich domains, data gathering, 

calibration, and integration techniques will be central, since discovering a 

path through hypothesis-space will be an important part of problem-solving. In 

hypothesis-poor domains, greater cognitive resources will be devoted to 

selection among a few alternatives; prediction is likely to be more 

significant. 

High/Low experimentation.     When experimentation is possible, e.g., as in 

diagnosing an electronic circuit card, a key element of instruction will be 

strategies for selecting the best experimental path, operational skills, and 

data analysis methods. On the other hand, when experimentation isn't possible, 

accuracy of situation assessment and predictive modeling are more significant. 
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High/Low standard deviation.     If there is a strong central prototype and 

relatively little deviation, the training investment should be in the teaching 

and practice of basic skills. If there is a great deal of variation, and there 

isn't a strong theory to account for it, elaboration of basics and techniques 

for probing the periphery need to be taught. In domains where there is a great 

deal of variation in surface features but little in underlying causes, a 

productive approach might couple presentation of cases moving from the center 

to the periphery with explanatory exercises in which learners anticipate 

errors and justify mappings. 

Optimal/Satisfycing solution.     When solutions are satisfycing, teaching this 

explicitly and providing "solution calibration metrics" are training 

priorities. On the other hand, if an optimal solution is required, emphasis 

should be on method, plus error detection and repair. The metacognitive issue 

raised above, regarding resource allocation between finding the "perfect" 

tactic and spending time on execution is an issue in Command training. 

Heterogeneity.  The degree of heterogeneity and the depth to which different 

knowledge sources must be compiled both shape the influence of heterogeneity 

on training. Empirical results are equivocal. In some, e.g., studies of 

electronic device troubleshooting, results suggest that teaching theory apart 

from practice is ineffective; experienced practitioners learn theory only and 

exactly in those places where it has direct practical consequences. On the 

other hand, experiments in medical instruction where basic science teaching 

has been joined to clinical practice, and both taught jointly, have not been 

as successful as hoped; students taught science and clinical skills together 

do not appear to apply science as effectively in diagnosis as students taught 

science as a self-contained subject prior to clinical teaching. A reasonable, 

if tentative, inference might be, if multiple knowledge sources are required 

for effective problem solving, teach them separately, but make knowledge 

integration a distinct and substantial part of training. 

There may be an integration issue for domains with mixed formal and 

heuristic methods. "Numeric bias" is a tendency to prefer and overvalue 

numeric data as compared with non-numeric data (Josephs 1994) (possibly in the 

belief that numbers are more objective?) Numeric bias might cause the results 

of the formal methods to be given excess weight simply because of their 

surface precision, however well or badly it might be justified by its 

underlying assumptions. "This (product of a formal method) is true, while this 

(product of an heuristic method) is only a belief."   (Recall the discussion of 

modeless and modal teaching methods, above.) If this is applicable, then 

integration and proper valuing should be an explicit training objective. 
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Comprehension/Production.     The issue here is task specificity. If the task is 

to recognize, evaluate, or critique, comprehension skills are appropriate. If 

the task is to plan, design, or act, production skills must be taught. This 

may seem trivially obvious. But if, say, Army helicopter pilots are taught 

route planning with a focus on route evaluation skills, then comprehension 

skills are being mistaken for production skills. Deciding whether a route is 

good or bad is different than generating the route in the first place. 

What about using production training to enhance long-term recall of 

comprehension knowledge? For example, would two hours of drawing topographic 

maps result in longer term retention of concepts that two hours of looking at 

topographic maps? This is consistent with the "multiple access paths" theory 

of recall, but it is very sensitive to the content/technique balance. If the 

production technique is a separate and substantial body of knowledge, then 

time spent on it is likely to be "off-task". A non-programmer spending two 

hours attempting to reprogram a battlefield command decision aid is not going 

to increase his or her understanding of how to use the aid. On the other hand, 

if the technical skills are already adequate, as with drawing rough 

approximations of topo maps, then recruitment of productive intelligence could 

be effective. 

Degree of distributed representation    If distributed representation is part of 

problem solving, it may need to be trained. In the case of specialized 

representations like topographic maps or complex representations like 

computer-based simulations, fluency with the representation may be a training 

objective in itself. When dealing with distributed representation that will be 

used in the field, at least some training with high fidelity-to-field 

conditions is necessary. 

Content 

Concrete categories.   Concrete categories are similarity-based learned. 

Exposure and rehearsal are appropriate. If the category applies over a broad 

range of surface features, a suitably broad range of examples is called for. 

Definitional  categories.   Definitional categories are normally motivated by or 

descriptive of an operational end. Strongly associating definitions with their 

operationalization is recommended: definition and effective procedure, taught 

as a whole, rather than the more common "memorize this" approach, which often 

leaves students able to reproduce the definition but not able to apply it to 

anything. 

Prototypical  categories.   In training prototypical categories, training should 

begin with central examples and only after these are mastered progress to 

boundary patterns. 
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Operators.   Kotovsky and Simon (1990) found that the difficulty of finding and 

sequencing operators to be a better predictor of overall problem difficulty 

than the size of the search space. Zhang and Norman, op cit.,   had similar 

results. If discovering and sequencing operators (i.e., figuring out what to 

do next) is problematic, teaching problem decomposition, developing 

automaticity with operator subsequences, working from simple to complex, and 

calling on learners to explicitly articulate, debug, and integrate operators 

will be productive. If operator complexity co-occurs with a difficult 

distributed representation and/or large distance between surface features and 

underlying structure, then explicit teaching of components and practice at 

applying theory to resolve impasses (explanation-based learning) is needed. 

Attitudes.   Gagne  et al,   op cit.,   in discussing the teaching of attitudes, 

contrast direct methods like contingent reinforcement with indirect methods 

like providing opportunities to emulate a credible, powerful human model. They 

also provide guidelines: 

1. Provide learners with information about possible alternative choices. 

2. Provide the learner with the pros and cons associated with the desired 

behavior. 

3. Provide relevant models for the desired behavior. 

4. Ensure that the environment supports the desired choice behavior. 

5. Fit the desired behavior into a larger set of values, if possible. 

6. Identify and teach the skills that make the desired choice behavior 

possible. 

7. Recognize and reward choice behavior when it is exhibited. 

8. Don't inadvertently punish the desired behavior. 

9. Allow learners to set their own goals with regard to the desired behavior. 

10. Use alternate instruction strategies such as simulations, role playing ... 

or other involving experiences in which the benefits of the desired 

behavior become obvious. 

11. Don't inadvertently pair the behavior you want to change with one that 

is not related to that behavior. 

Patterns and meta-patterns,  pattern-category associations.   Teach perceptual 
recognition skills with pattern recognition and strong association with 

affective effects. Perceptual training should have an explicit, articulated 

cognitive goal, e.g., "this pattern implies this consequential real-world 

state". The affect association comes from the consideration that all of our 

sensory activity is motivated. Most of what the senses and brain do is filter 

and inhibit. Successful sensory events need a limbic system "sponsor"— 

pleasure, caution, pain, whatever. The difference between "memorize this topo 

map pattern" and "this one is called a kill sack, and if you blunder into one 
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everyone  under your command including you  will  be killed".   The second one is 

vivid and memorable. The perceptual/affective link, besides being obviously- 

true between people, makes sense from the evolutionary point of view that the 

arousal/importance of a sensory experience should be associated with its 

potential to alter one's state, and that potential for state alteration 

causes/is associated with an emotional response. Creating such an association 

in training would strengthen its effect. And the inverse seems almost more 

true, that separating sensory training from affect would greatly weaken the 

training. At a more abstract level, this is saying that we learn and remember 

what is meaningful, and that for perception affect is what determines meaning. 

This isn't saying that there are no cognitive consequences of sensory 

experience, or that affect is not important for cognition; just that there is 

a strong evolutionary and biological connection between affective associations 

and the memorability of sensory experience. When the meaning-words associated 

with a pattern are also value words ("better", "safer", "stronger"), affect is 

tightly bound to pattern. Training should combine pattern, association, and 

consequence or affect. 

Most sensory pattern recognition will be concerned with prototypical 

categories, and should therefore progress from central to boundary examples. 

Proprioceptive knowledge,   motor skills.   Teach proprioception and motor skills 

with demonstration, mimicry, visualization, repetition, and proximal 

reinforcement. Practicing boundary conditions may be productive. For motor 

skills, boundaries can include higher-than-task requirements for speed or 

accuracy of performance, or extreme versions (exaggerations, caricatures) of 

performance. Performance speed for motor skills can sometimes be taught 

"slowed down" with gradual increase to normal speed; not all motor skills are 

amenable to this, though. Part-skills-to-whole-skills training is common for 

motor skills. 

Goals and goal  conflict resolution.   In data-rich domains where goals are a 

principle means of organizing search, goal trees and goal satisfaction 

criteria should be taught explicitly. This is also the case for domains where 

there is a great deal of uncertainty and goals are used to organize and 

calibrate data. Goal conflict resolution can in some cases be taught by 

training valuing some goal hierarchies over others. However, this won't always 

be true, and field conditions will inevitably result in conflicting goals. For 

example, defend in sector until ordered to retreat versus being killed. For 

this class of goal conflict, enculturation to the Army's better virtues—honor, 

courage, loyalty, steadfastness—is the only adequately deep approach. 

Implications.  A great deal of military command decision making is based on 

predicting the future. Some prediction is statistical, and calls for explicit 
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training in use and interpretation of statistics.  (This is a currently 

undertrained area that will grow in importance in the coming decades.) For 

non-statistical prediction, use of computer-based simulations accompanied by 

explicit practice at making, articulating, justifying, and verifying 

predictions should be provided. This is not currently a typical use of 

simulations. If the position is accepted that prediction is a critical command 

decision making skill, explicit practice seems sensible. 

Coherence, consistency,   completeness.   Knowledge coherence influences the 

extent to which inferences can connect different knowledge elements. This 

helps insure knowledge consistency, aids knowledge debugging, and helps 

regenerate partially forgotten knowledge. It can be taught by having students 

articulate their rules and hypotheses, examine their own work and the work of 

others to identify the sources of error, and to work out or describe the 

boundary conditions for the concept, operation, or process in question. 

Urgency.   Learning the urgency of different demands and the attributes and 

values that mark important situations is basic to military training. Misplaced 

urgency is damaging; failure to realize that urgency is needed can be even 

more damaging. While urgency is a response to a situation rather than an 

abiding mental state, much of heuristic guidance for attitudes applies. 

Apprenticeship, task immersion, and learner-directed post-event analysis are 

appropriate. 

Confidence.   Appropriate confidence can at one level can damp cognitive noise, 

and at another can guide knowledge application. Overconfidence can lead to 

incorrect knowledge application and inadequate attention to plan validations- 

lack of confidence can result in failure to apply available knowledge. The 

last stages of training should as closely as possible follow real-life 

performance difficulty, conditions, and consequences so that learners can 

develop appropriate levels of confidence. In young military commanders, 

overconfidence appears to be more problematic than its lack (Fallesen op 

cit.);   this may need to be addressed. 

Uncertainty.   Uncertainty can be associated with data, knowledge, knowledge 

application, and projected results. Empirical results (e.g., Tversky op cit.) 

show that people are, in many surprisingly common cases, terrible. On the 

other hand, Anderson, op cit.,     criticizes some of this research (i.e., base 

rates, representativeness) as being contrived, artificial, and inapplicable to 

real life. Training to avoid anchoring, to employ multiple perspectives (to 

break up framing biases), and explicit practice at assessing the coherence, 

completeness, and consistency of data are appropriate. As an aside. 
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framing/refraining practice can aid performance when indexing and recall are 

issues. 

Truth maintenance.  AI research suggests that both uncertainty management and 

truth maintenance are error-prone and resource-intensive. (This is consistent 

with the K.I.S.S. theory of planning and operations.) Distributed 

representations can aid truth maintenance, but the teaching of conditional 

probabilities for real field use is problematic. 

Metaknowledge and metacognition.   The issue is, is there an issue? If there is, 

then a (possibly implicit) task/objective has been identified, namely, train 

the appropriate competence(s). Repeating the list provided in the previous 

section, the metaknowledge steps are: 

Problem discernment and identification 

Problem representation 

Validation of problem representation 

Planning strategies for problem solving 

Validating the plan 

Applying the selected method 

Implementing the solution 

Monitoring implementation and the developing solution 

Evaluating the solution 

Error sources. 
Distance between surface features and deep structure.  When this is the case, a 

number of heuristics apply (Collins & Stevens 1982): 

• Systematic variation of cases, to explore/traverse the problem space 

• Counterexamples and hypothetical cases, to reveal inconsistencies, 

incompleteness 

• Entrapment cases, to illuminate errors 

• Hypothesis identification strategies, to formulate/articulate predictions 

and rules 

• Hypothesis evaluation strategies, to aid knowledge integration and concept 

refinement 

Cause/correlation confusion.   If there are causal relations, then the goal is 

to learn to recognize causal states, correctly fire appropriate rules, then 

check to see if you're done. With correlations, 

calibration/qualification/combination of evidence comes into play. With causal 

relations, uncertainty focuses on correct identification (of the presence of 

causal factors) and correct knowledge selection (e.g., firing the right rule). 

With correlations, the issues of combination of evidence and knowledge 

uncertainty are added. Confusion of correlation for cause can result in 
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unrealistic certainty factors, misplaced confidence, and misapplication of 

cognitive resources. 

Cognitive biases.   There are many cognitive biases; Silverman (1986) lists 

twenty-six. Three particularly important ones in a military setting are 

anchoring, availability, and framing. "Anchoring" is selecting a conclusion 

early in a decision process, and then filtering incoming data to fit the 

conclusion. This may include exaggerating supporting evidence, and suppressing 

contradictory evidence. Entrapment cases and learner solution critiques are 

useful training approaches. "Availability" is use of the most easily indexed 

or retrieved knowledge or experience to reason about a current situation. This 

can arise from time-proximal cues or, more pernicious in the military, from 

having only a small number of exceptionally vivid experiences to draw on. 

While pragmatically it is problematic, field training is the appropriate 

training approach. "Framing" is how a problem or situation is stated; in 

effect, the position from which the problem is viewed. Frames carry implicit, 

often unconscious, constraints and preferences. For example, people prefer a 

95% chance of survival to a 5% chance of not surviving, although of course 

they are the same thing. A recent $6 million Army effort framed a group 

planning task as "produce a plan", and as a result developed a very nice 

computer-based expert planning aid. However, there is some evidence from the 

previous way of doing the job—planners gathered around a table, with large 

maps, overlays, and grease pencils—that the real task for the commanders is to 

jointly develop, synchronize, and motivate a common mental model  of a plan. 

Framed from this perspective, creating a single-seat, small-scale view of the 

problem is exactly wrong. Fortunately, framing and reframing can be practiced, 

and awareness of frames can be trained by the simple expedient of drawing 

attention to them and having learners practice generating and evaluating 

multiple frames. 

Knowledge errors.   The obvious cure for lack of knowledge, irrelevant 

knowledge, and erroneous belief is of course to "train better", so that these 

aren't problems. An issue in Army training, though is what might be called 

"instructor loyalty to text". For example, increasing interest in naturalistic 

decision making and evidence that real commanders use this approach 

effectively in the field (e.g., Klein 1992) has apparently been met by many 

instructors with a "well, they're doing it wrong"  attitude. While it's not 

surprising that in a discipline with so much uncertainty attachment to 

doctrine and process might arise, special training attention may need to be 

paid to maintaining the distinction between the actual task and its 

description. 

If solutions are ambiguous, difficult to discern, or transitory, solution 

identification needs to be taught explicitly. This may be particularly true in 
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situation assessment and monitoring tasks, particularly with regard to 

correctly assessing changes of state. (In monitoring tasks with few state 

changes, anything that does happen is ipso  facto  important.) 

Bad resource management,   inappropriate goals.   Training both of these can apply 

both to problem solving and to problem solving management (metaknowledge and 

metacognition). For example, a problem solving procedure may be carried out 

correctly, but if too much time is consumed, there has been an error in 

process management. Or, to reverse this, realistic process management may 

compel alterations ("errors") in problem solving. Fallesen op cit.   reports a 

seriocomic example. In a survey of Gulf War commanders, 96% reported 

abbreviating or abridging the Command Estimate process due to time 

constraints. The 4% who didn't explained that they omitted the Command 

Estimate process entirely. 

Failure  to anticipate enemy.  Andriole et al   (1987) found that more experienced 

commanders were more risk-averse than less senior commanders, and spent more 

time looking for ways that things could go wrong. The metaknowledge steps of 

representation validation, problem solving plan validation, and solution 

development monitoring were apparently better developed in the senior as 

compared to the junior commanders. The heuristic, then, is to explicitly teach 

the validation steps. 

Task conditions 
For the Army, performance and training conditions can range from real—actual 

combat—through, in reverse order of realism, NTC, field training, CPX (command 

post exercise), high-fidelity simulation, low-fidelity simulation, and of 

course, classroom. 

High   time-  or consequence-stress.   If expertise is routinely exercised in high 

time stress circumstances, its almost certain that expert practitioners can't 

accurately describe their problem-solving behavior in other than operational 

terms (e.g., "when X  happens, do Y")    (Ericcson & Simon 1984) . Any reports 

experts make of their thinking or decision making will be necessarily 

retrospective, and is likely to be a fabrication based on the individual's 

personal theory of how he or she decides. Conscious deliberation is likely to 

be reserved for (explanation-based) resolution of impasses, with maximum 

automaticity of frequently occurring tasks. Training should mimic this, 

practicing performance with feedback on routine sub-tasks, and reserving 

conscious decision making exercises for impasse-resolution. 

Concurrent   tasks,   concurrent performance demands,   concurrent  obligations.   In 
reviewing these, as well as explicit concurrent tasks or obligations, it 
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should be remembered that in all conditions, from actual warfare to classroom, 

there is always at least one concurrent task; namely, senior officers are 

expected to train junior officers. 

Environmental  stress,   degree of fatigue,   interruptions.   These are all 
performance degradation factors: non-enemy interference with task performance. 

Particular attention should be paid in training to "catastrophic error" 

points, so that the points of highest risk of failure or of failure with the 

greatest consequences can be trained intensely. (In this connection, if 

workload analysis has not been performed, and cognitive loading is an issue, 

it ought to be.) 

5.3  Representative construct clusters & heuristics 

In this section, three common classes of problems are described in terms of 

constructs, implications, and heuristics. Applying definitional concepts to 

organize data, situation assessment via classification, and prospective 

reasoning were chosen to cover a broad range of Army tasks. Each will be 

characterized with respect.to the constructs, then the heuristics will be used 

to formulate guidelines for a training approach. 

5.3.1 Applying definitional   concepts   to organize data 
Applying definitional concepts is a central activity of  field engineering, 

artillery targeting, calculating force ratios, scanning a battlefield for 

nuclear, chemical, or biological contamination, planning logistics functions, 

and many other common tasks involving calculation. Therefore, the pedagogical 

goal is to unite definitions with their "operationalization", including both 

how  to apply the concepts and validity constraints specifying when  they can be 

used legitimately. Following is one way to frame the problem. 

Applying definitional concepts is: 

Convergent •  Data-rich 

Event-rich •  Hypothesis-rich 

High experimentation    •  Optimal solution 

Low standard deviation  •  Homogeneous content 

Both recognition and production 

High degree of distributed representation 

The only attribute assignment that might be controversial here is "low 

standard deviation". There may be significant variation in superficial 

features, and presumably to the extent that surface features are taken as a 

valid part of a distributed representation, these can strongly influence 

outcomes (Wason & Johnson-Laird 1972). On the other hand, normally 

definitional concepts are only robust if the underlying features are stable. 

So, low standard deviation in reference to the deep structure is a fair 

assessment, despite the high variation in surface features. 
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Generic content includes concrete categories, definitional categories, 

attributes and values, and operators. These are organized both by goals and by- 

data structures. Key mental operations include: 

Indexing and retrieval   •  Procedures 

Plans •  Hypotheses 

Goal satisfaction points 

Data identification/classification methods 

Error detection markers 

All of the "management" issues apply: 

Problem discernment and identification 

Problem representation   •  Validation of problem representation 

Planning for problem solving 

Validating the plan     •  Applying the method 

Implementing the solution 

Monitoring implementation and the developing solution 

Evaluating the solution 

Metaknowledge and metacognitive issues include: 

Coherence •  Consistency 

Completeness •  Systematicity 

Knowledge application uncertainty 

Truth maintenance 

Error sources include: 

Distance between surface features and underlying structure 

Problem misrepresentation 

Irrelevant features    •  Lack of knowledge 

Irrelevant knowledge   •  Inappropriate goals 

The four most striking features of expertise are knowledge organization, 

depth of problem representation, automaticity, and metacognitive self- 

regulatory skills, e.g., as in monitoring solution development, detecting 

false trails, and performing truth maintenance. 

Conditions are typically ideal for practice, i.e., there is adequate, 

uninterrupted time, although of course in the college final exams of such warm 

memory, there are time and consequence stresses. 

Stepping back from this overall characterization, what are the emergent 

patterns? In general, the hardest problems for students are (White 1983): 

• Seeing the true nature of the problem beneath its surface features 

• Representing the problem correctly 

• Anticipating and/or detecting errors both of representation and 

implementation 

• Deriving maximal benefit from problem solving success. 

The first two, taken together, are problems of indexing and retrieving the 

correct knowledge and avoiding premature knowledge selection. The third 

involves operator selection and application, and solution plan monitoring and 
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tracking. The last involves integration of specific case knowledge into the 

larger problem-solving repertoire. 

What heuristics can we read from the taxonomy presented in the previous 

section? Management of a data-rich, hypothesis-rich problem solving space 

requires well-understood goals and goal structures, goal/data relevance, and 

with clear goal satisfaction criteria. From the distance between surface and 

underlying features, systematic variation of cases, showing many sets of 

surface features with the same deep features, is indicated. From the likely 

degree of distributed representation, explicit practice to develop fluency 

with the representational tools is appropriate. Development of automaticity 

calls for isolation and practice of component ("between decision point") 

skills. Error management calls for explicit practice at articulating the 

causes, consequences, and markers of errors. Finally, since consistency and 

freedom from contradiction are critical features of the definitional concepts, 

explicit "consistency and coherence" practice in integrating both specific 

case success and general evolving knowledge is called for. 

To organize these, four powerful heuristics for teaching complex 

definitional concepts from Reif & Allen (1992) are appropriate: 

1. Formulate a clear definition of the concept and accompany it by an explicit 

procedure specifying how this concept can be interpreted in any particular 

instance. 

2. Let students practice applying this definitional procedure to interpret the 

concept in a variety of special cases. 

3. Let students use their explicit knowledge about the concept to confront 

situations that are error-prone, either because of intrinsic difficulty or 

because of confusion with prior knowledge. In each case, ask them to detect 

mistakes of concept interpretation, diagnose the likely reasons for them, 

and correct them. 

4. Guide students to summarize and organize their accumulating case-specific 

knowledge so as to acquire a useful repertoire thereof-and then encourage 

students to use their case-specific knowledge in familiar situations. 

5.3.2  Situation assessment  via classification—elimination. 
Situation assessment is one of the most important command responsibilities. 

There are a number of distinct intellectual elements in situation assessment: 

data gathering, filtering, combination, and interpretation, along with ongoing 

assessment revision. Classification-elimination is a data-driven 

classification technique in which potential end-states (answers, diagnoses, 

decisions) are found by successively eliminating candidates until only one 

remains. The strategy is to progressively prune the search space by 

propagating the consequences of constraints or intermediate conclusions; the 

problem becomes increasingly well-specified as problem solving proceeds. 

Elimination is used at a number of stages in situation assessment. Sometimes 
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its use is unconscious, as in selecting what initial categories and 

possibilities are of interest. Sometimes it is used intentionally, as in 

assigning missions to recon resources, in attempting to validate or rule out 

enemy plans or positions. 

As a classificatory technique, it presumes prior existence of case- 

independent categories, attributes, and values, and reasonably strong power of 

evidential reasoning. These qualities are easy to see when elimination is 

contrasted with another common classificatory technique, analogical case- 

matching. There, attribute salience, evidence weight, and notions of 

similarity are more prominent. 

As above, we first characterize elimination, then read off the general 

heuristics, then suggest a generic training plan. 

Elimination is convergent, data-rich, and is oriented toward comprehension. 

In hypothesis-rich domains, there may be important distributed representation 

issues. It is neutral with respect to other task and domain characteristics. 

As a method, elimination is concerned with: 

Concrete categories     •  Definitional categories 

Operators •  Prototypical categories 

Attributes and values    •  Perceptual knowledge 

Actions •  Patterns and meta-patterns 

Pattern-category associations 

Data structures and their implications are the central source of meaning. 

Key mental/procedural functions include 

Plans •  Procedures 

Hypotheses •  Data gathering methods 

Data identification/validation methods 

Error detection markers 

Problem solving management places emphasis on: 

Planning strategies for problem solving 

Validating the plan     •  Applying the selected method 

Implementation 

Monitoring implementation and the developing solution 

Evaluating the solution 

Metaknowledge and metacognitive issues include data uncertainty, results 

uncertainty, truth maintenance, and systematicity. 

Conceptual error sources include presence of  irrelevant features, getting 

stuck at local optima (e.g., pursuit of unavailable data—"if only we knew X"), 

cause/correlation confusion, and unjustified induction. "Anchoring", a 

cognitive bias in which an early attachment to a particular hypothesis leads 

to misinterpretation of evidence, is a typical issue in elimination. 

Irrelevant knowledge—which can lead to a variation on the "availability" bias— 

and erroneous beliefs, especially regarding the implications of data, are more 

problematic with elimination than with other methods. Pragmatic error sources 
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(lack of data, false data, etc.) are normal for Army field operations, but 

their seriousness is circumstance-sensitive. It is easy to see where each of 

these breakdowns can and do occur in battlefield situation assessment. 

Expertise is characterized by knowledge organization, theory and schema 

change, and procedural and goal-oriented knowledge. Conditions, like 

pragmatics, are domain sensitive. 

As a convergent, data-rich process, data management and evidence 

calibration are going to be central issues. In some domains, data management 

can be achieved through familiarity with the structure of the problem space. 

When this is true, systematic variation of cases to explore and traverse the 

problem space is appropriate. If evidence calibration is an issue, as it is 

battlefield operations, then two kinds of counterexamples and hypothetical 

cases are needed: one to reveal inconsistencies and/or incompleteness in the 

learner's knowledge, the other to illustrate data dependencies and 

connections. 

On the theme of navigating through a data-rich, hypothesis-rich problem 

space, hypothesis identification strategies should be taught to aid the 

learner in formulating and articulating predictions and rules. Hypotheses 

should be integrated with data-gathering plans and procedures, and students 

should be taught hypothesis and plan evaluation strategies to help them 

integrate local plans and procedures into a domain-specific system. If there 

are restrictions on plan generalization, these should be brought out. 

To the extent that reasoning depends on statistical distributions, explicit 

training in the appropriate formalism is indicated. Realistically, if base 

rates are known, their strong emphasis in training is justified. However, this 

is a double-edged sword. The Soviet "scientific" approach to battle resulted 

in explicit mathematical formulations, and since the Soviet command structure 

reserved authority almost pathologically to the topmost command elements, 

Soviet maneuvers were highly predictable. Their base rates were known in 

detail. This knowledge is apparently so seductive that training continues to 

focus on defeating the Soviet threat, even though there is no more Soviet 

army. (They don't exist, but if they did, we'd be ready.) The Army has been a 

little slow to change here. 

Preventing local optima errors suggests metacognitive self-monitoring skill 

and training the parallel pursuit of multiple paths (so that fixation on a 

single subplan does not impeded problem solving progress). Preventing 

anchoring errors suggests use of entrapment cases, that is, cases where the 

early evidence suggests one solution but further work shows it to be false. 

Some evidence suggests that current Army training is not effective in this 

regard [Thordsen et al  1991]. 

Developing expertise in procedural knowledge application and accuracy of 

data gathering and/or interpretive technique will be important in domains 

characterized by complex mappings between surface features and deep structure. 
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The higher the level of command, the more true this is. When minimization of 

data gathering and interpretation error is within the control of the 

practitioner, it must be fully developed to prevent false solutions resulting 

from correct inference based on incorrect data. If sensory or spatial pattern 

recognition is important to data interpretation, simple-to-complex, 

prototypical-to-peripheral pattern recognition training should be given. 

In domains with high data uncertainty—namely, almost all situation 

assessment—the effective practitioner will need to know when to hold to normal 

constraints and when to relax them. Thus, there should be explicit training in 

recognizing impasses and identifying which constraints can be relaxed with the 

minimum damage to the solution process. In other words, for anticipated 

battlefield situations, the "degrees of safety" of different assumptions 

should be taught. (Of course, given the number of competing theories of how 

battlefield decisions are actually made, broad agreement on which assumptions 

are or are not safe is not very likely.) 

With respect to generic content, as a classification problem elimination 

will have categories and category structures, plans, hypotheses and hypothesis 

structures, device, system, or process models, data gathering and calibration 

methods, and context-specific models of systematicity. Elimination, which 

specializes classification, will also have a constraint space model. 

As a final complicating element, order effects are important in training. 

Depending on the domain, even apparently distinct elements may be learned 

differently depending on when they are introduced relative to the rest of the 

corpus. In the example documented by Patel et al,   op cit.,   teaching medical 

students biology in conjunction with clinical application results in different 

learning than teaching biology and clinical practice serially. By analogy, 

does teaching theory and historical analysis of warfare in conjunction with 

field exercises generate a different result than teaching the theory prior to 

the application would? Patel et al  would answer, "yes." This question is, as 

far as we could determine, not yet researched in the command decision domain. 

5.3.3  Prospective reasoning 

Cohen, Greenberg, and Delisio (1987) characterize prospective reasoning by 

four attributes: 

• Knowledge about the state of the world is incomplete 

• Outcomes of actions are uncertain 

• Decisions as to which action to take affects multiple, conflicting goals 

• Actions can produce new information that can change the state of knowledge 

about the world and the utility of taking other actions. 

Prospective reasoning is of obvious interest to the Army, since most 

battlefield decision making will be prospective. 

Task characterization is not constrained by this definition, other than the 

inference that satisfycing rather than optimal solutions are likely. 
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Similarly, the kinds of categories and operators, goals and data, and 

procedures and hypotheses are unconstrained. 

Because of its "open" nature, how prospective reasoning is managed is key 

to success. From that position, all of the following may apply: 

Problem discernment and identification 

Problem representation  •  Validation of problem representation 

Choosing strategies for problem solving 

Validating the plan     •  Applying the selected method 

Implementing the solution    • Data uncertainty 

Monitoring implementation and the developing solution 

Evaluating the solution 

Metaknowledge and metacognitive issues include: 

Salience, goal conflicts, urgency  •  Confidence 

Allocation of cognitive resources   •  Knowledge application uncertainty 

Error sources are not strongly constrained by the definition. Depending on 

the domain, local optima, false data, lack of data, cognitive loading, and 

cause/correlation confusion might all be significant. Inadequate attention to 

anticipating the enemy has been shown to be a novice mistake in military 

settings (Andriole et  al,   op cit.)   Three common cognitive biases in 

prospective reasoning are anchoring, availability, and choice on more 

important attribute. All are unconscious techniques for simplifying decision 

making. Anchoring and availability have already been described. Choice on more 

or most important attribute manages complexity by blanking most of the factors 

out, then basing the decision on the one or few factors remaining. Preventing 

correlation-for-cause errors requires instruction to make common errors of 

this type explicit; depending on the domain, counterexamples and entrapment 

cases may be used. 

Expertise can be roughly characterized as distinguished by extensive 

procedural and goal-oriented knowledge, automaticity to reduce attentional 

demands, and metacognitive self-regulatory skills. Conditions of performance 

are not constrained by the definition, although in an Army setting, time, 

consequence, and environmental stresses are all likely, as are fatigue and 

concurrent tasks and performance demands. 

Because prospective reasoning is much more about effects and circumstances 

of reasoning than reasoning itself, it is difficult to select heuristics. If 

problem discernment is an issue, for an example, it needs to be taught. 

(Infiltration and sabotage is harder to detect that full frontal assault. Or, 

an alternate example, mortality and morbidity of troops is easier to discern 

than gradual decline in morale.) The same is true for problem representation, 

solution planning, and so on. 

A key issue in the military domain may be training an explicit distinction 

between common-experience and military concepts. To take an obvious example, 

to a Brigade commander a hill is an objective, or an observation point, or a 
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potential enemy location, etc. The point is to make explicit the differences 

and similarities between common terms and concepts and their domain-specific 

uses. 

Classroom training in goal conflict management and dynamic plan revision 

should be followed by either simulated or field practice (preferably, by 

both.) Depending on the cost of creating simulated or field training episodes, 

guided discovery may be effective. Apprenticeship is likely to be appropriate; 

the Army has institutionalized a degree of apprenticeship in response to this 

need. 

Training to prevent choice on more important attribute can be achieved with 

entrapment cases. It is also important that the culture of learning and 

practice not promote a "magic bullet" attitude: the notion that the "Brilliant 

Strategic Insight" is the hallmark of the highest level of Command expertise. 

Battles—like all other complex human endeavors-are won by hard work, careful 

planning, and sound execution far more frequently than by unique Command 

insight. 

Development of automaticity calls for repetitive practice of the target 

processes and procedures, with appropriate variation in input and output. As 

with elimination, above, sequencing of training goals depends on the domain. 

5.4   Critique of the taxonomy 

There is no generally accepted taxonomy such as is attempted above because: 

• Learning theory is neither strong enough nor precise enough in its 

predictions to generate a taxonomy. Even John Anderson, who in ACT* 

(pronounced "act-star"; Anderson 1983) created the first comprehensive 

unified theory of learning and cognition, in his most recent book turned 

strongly to situation-based rather than learning theory-based explanations 

for cognition. 

• Common sense is an unreliable guide, both in the small and in the large. In 

the small, apparently similar things, e.g., visual and spatial 

discrimination, turn out to be significantly different. In the large, every 

learning reform seems to be based on "obvious common sense", even when the 

proposed reform directly contradicts its immediate predecessor. 

• Empirically-driven approaches suffer from lack of precise common 

vocabulary, contradictory data, and extreme difficulty in identifying and 

systematically varying independent factors. (Also, in the open literature, 

about half of the "real topic" data is based on fifth- and sixth-graders 

learning physics, and the other half seems to be on college freshman 

learning physics.) The "ideal" empirical  approach, induction of decision 

trees from actual case data, requires clearly-defined categories, well- 

understood attributes, and significant values. Army battle data are far 

from this. 
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METHOD 

The method is a procedure to characterize a training objective and to generate 
strategies for training. It is not a method for predicting or evaluating 
performance, although evaluative factors are elicited, since a training 
objective is inadequately specified if its standards of performance are hazy. 

The reliability of attribute value assignment is an issue for any 
classificatory method. Would independent users come up with the same 
decompositions and judgements when applying this method to the same task? 
Standard terms and meanings have been used to support consistency. Still, this 
is an empirical question that cannot be answered in Phase I. 

6.1  Ontology 

Before describing the method, its ontology—the way it views and construes 
the world—must be described. There are three reasons: 

• The method characterizes training objectives and requirements. 
Characterization requires a point of view about what is,   and about how it 
should be viewed. That's the essence of an ontology. 

• Ontology is the source of the inevitable and highly useful inductive bias 
necessary to perform characterization. Differentiating the important 
constructs, attributes, and values from the unimportant is based on what 
the domain is perceived to be. Ontology is the foundation from which goals 
can be pursued. 

• Explicit ontology allows clearer distinction between intensional and 
extensional elements. Intensional aspects are concerned with viewpoints, 
functions, and uses. Extensional aspects are concerned with the 
representation of observable "thing-in-itself" qualities. In most domains, 
maintaining clarity between these two is fairly easy. As soon as knowledge 
and learning are introduced, though, the boundary becomes very fuzzy. 
Ontology at least attempts to describe the bounds. 

Articulating and scrutinizing the ontology of a method is better than leaving 
it unstated. An unexamined ontology is an invitation to error. 

Why was the ontology not developed as part of the theory? Because it is the 

vehicle for applying the theory to actual problems, but it is not intrinsic to 
the theory itself. Objects can be used in convergent and divergent tasks; 
events can be data-rich or data-poor; agents can perform physical or mental 
actions. In many domains, ontology is inseparable from theory. For this 
problem space and this approach, the ontology is applicative, not theoretical. 

The basic model underlying the method is as shown in Figure 6-1. The 
impetus for this model came from a number of sources; most strongly from 
Ortony, Clore, and Collins (1988). There are four fundamental categories: 
events, agents, and objects, and the problem spaces with respect to which they 
are meaningful. By this definition, problem spaces are at a higher level of 
abstraction than events, agents, or objects. Put another way, events, agents, 

and objects instantiate problem spaces, but there are characteristics of the 
higher-level abstraction that are not particular to its components. It will be 
referred to below as the SEAO (Space/Event/Agent/Object) ontology. 
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Figure 6-1. Events, agents, and objects as a problem space. 

An event is a transformation of the internal and/or external task state or 
conditions, which may or may not include the generation of a product. States 
may be either objective (e.g., meet at assembly area), subjective (e.g., 
understand a Concept of Operations at a briefing), or both. Events are 
meaningful because of their consequences; these consequences are evaluated 
with respect to the central agent's goals. That is, when an event occurs, the 
agent judges it according to how it affects the achievement of his or her 

goals. Agents initiate events in order that their consequences can bring goal 
achievement closer. 

Agents are generally individuals. According to context, groups or 
organizations can be treated as agents, i.e., as having unified intentions and 
actions. Agents take actions; actions can be evaluated by standards. 

Objects are the physical things used in tasks. In some circumstances, 
agents or organizations may be treated as objects during task performance, 
e.g., a unit might maneuver around another unit. Objects have functions; 
agents interact with objects via object attributes. 

Problem spaces are events, agents, and objects taken as a whole and 
including emergent qualities and features not present in the components 
considered apart. 

Chi and Slotta (1993) propose an alternate ontology; so do Alexander et  al 
(1986) . 

The Chi/Slotta ontology is shown in Figure 6-2. Its basic division of the 
world is into what's physically present, what it does, and what we think about 
it. While there is no doubt this is a psychologically valid decomposition, it 
is insufficiently differentiated to support the goals of the method. For 
instance, a person's body would be classed as matter. In a military context, 
though, people's bodies aren't treated as matter (except by logistics). 
Matter, even living animal matter, has the wrong features and associations. 
Another example: part of the Command Estimate process requires reasoning about 
enemy intentions. In mapping such a concern to the Chi/Slotta ontology, it is 
not clear whether it is about a potential intentional event or about an 
emotional or intentional mental state; it seems to be both. The SEAO ontology 



is much more parsimonious: intentions belong to agents, and the distinction 
between intentions and actual events is kept clear. 

Figure 6-6 The Chi/Slotta ontology. 

The Alexander/Freiling ontology provides a formal language with statements 
(domain equations and domain function declarations) and operators 
(discriminated union, cross product, domain mapping, set collection, ordered 
set collection). It distinguishes static, dynamic, and epistemic levels of 
ontology. The static includes the physical or primitive objects in the problem 
space; the dynamic the state space and transformations in the problem space; 
and the epistemic defines the constraints and methods that control knowledge 
use in the other two levels. If we translate from problem space to vernacular 
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language, it has essentially the same structure as the Chi/Slotta ontology: 
what's out there (static), what happens (dynamic), and what we think about it 
(epistemic). So, for the proposed method, it has the same problems as 
Chi/Slotta. 

Clarity and useful differentiation are enough to recommend the SEAO 
ontology. There are two more reasons to prefer it. First, it is grounded in 
affect. Second, it appears to be immediately productive in an Army context. 

Grounding in affect is crucial. While we aspire to objectivity, truth, and 
so on, it is the affective aspects of these goals that make them important. We 
pursue desirable goals and avoid undesirable consequences. High morale defeats 
low morale. Emotions organize sensation, cognition organizes emotion, 
sensation drives emotion, emotion drives cognition. Separating one from 
another is a necessary and useful artifice, but it's just that—an artifice. It 
doesn't justify a pretense that they are independent. Humans didn't evolve to 
pursue meaningless goals, and the root of meaning is emotion. The SEAO 
ontology evolved from the study of emotion, and like the implicit lines in a 
perspective drawing, all of its elements point to the experiencing and 
responding human at the center. 

Military applicability can be seen by considering a recent ARI report 

(Fallesen op cit.)   Analysis of this report suggests that the Army teaches 
objects reasonably well, events less well, and agents least well of all. 
Specific results supporting these conclusions: 
• Of nine areas called out as sources of breakdown or diminished performance, 

none referred to use of objects 
• Critical events, i.e., carrying out estimate procedures, managing the 

planning process, routinely fell short of training standards. 
• Agent-oriented actions were in some cases extremely poor, e.g., information 

exchange rates as low as 17% for sharing of significant information. 

6.2   Overview 
The basic method is to examine in turn the events, agents, objects, and SEAO 
interactions involved in the training objective, first working them out 
according to the perspectives shown in the Figure 6-1 (events in terms of 
goals and consequences, etc.), then looking at each according to the 
constructs developed in Chapter 4. The second stage is to map the results to 
instructional and training requirements. How this proceeds is shown in detail 
in the next subsection, and in a fully worked-out example in Section 7. 

Repeating an earlier assertion, this is not task analysis nor a substitute 
for task analysis, particularly with respect to functional decomposition. Task 
description should generate a statement of task steps. Task analysis should 
extend that by specifying the knowledge and skills necessary at each task 

step, along with the bounds of the task and the input/output requirements. A 
good task analysis should provide a thorough statement of the task. The method 
presented here is at a different level of abstraction. It is an attempt to 
develop statements about  the task. The implicit ordering—task analysis, then 
this method—is structural, not incidental. 

As suggested by the diagram, the method constructs a matrix, although 
because of the volume the information involved, a virtual matrix might make 
more sense than an actual one. 

Unless explicitly called out, a human-centered perspective is assumed. That 



should be clear from the descriptors used to characterize events and objects, 
but it is worth repeating. 

Stage 1, Characterize objective, has three steps. 
1. Build inventories. List the events, agents, and objects involved in the 

task, and for each, make the appropriate elaboration, e.g., goals and 
consequences for events, etc. This is in effect the descriptive raw 
material of the method. 

2. Connect the lists internally. Flows and dependencies should be articulated. 

Most of this work will already have been done in the task analysis, 
especially if the flows are temporally ordered. However, since task 

analysis doesn't usually take the Event/Agent/Object perspective, and since 
not all tasks are amenable to temporal  decomposition, there may be new 
information generated here. 

3. Analysis. The results of steps 1 and 2, along with aspects of the problem 
space, are analyzed with respect to the constructs from Chapter 4. 
Stage 2, Develop training requirements, has five steps. 

1. Approach to events. 
2. Approach to agents. 
3. Approach to objects. 
4. Approach to the problem space. 
5. Integration. This step is more than sequencing and consistency checking. 

Coherence, that is, the degree to which both task objectives and training 
approaches are mutually supportive, is critical. Therefore, it must be 
explicitly analyzed and developed. 

6.3   Stage 1: Characterize objective 
Step 1.   Build lists 
a. List significant events, agents, and objects involved in the task. 
b. For events, list goals; for each goal, list subgoals, if appropriate; then 

list consequences of reaching or failing to reach the goal(s)/subgoal(s). 
Consequences should include both direct (e.g., mission failure, death) and 
indirect (e.g., alteration in the space of possible next or future 
significant actions) 

c. For agents, list standards for normal performance—these may track the 
goal/subgoal structure, or they may not. For each standard, list the 
actions necessary to achieve that standard. Include constraints, if 
appropriate (e.g., a limit on the time allocated or allowed for a task or 
subtask). 

d. For objects, list salient functions. For each function, list salient 
attributes. These are task-sensitive. For Artillery, range, payload, and 
mobility are key functions; for logistics, object functions may be 
"consumes X volume of Y per unit time" or "takes up Z  space". 

Step 2.   Connect  the lists with respect  to  the  task 
Consider event flows, agent flows, and object flows, then map the flows to one 
another. Event flows are linear or parallel sequences of task-relevant events. 
(It should generally be possible to read event flows almost verbatim from task 
analysis documents.) Agent flows follow each agent over the course of task 
performance. Object flows track the use of each task-relevant object during 
task performance. 



Experience in knowledge acquisition suggests that it may be appropriate to 
start with normal flows, then develop an appropriate number of breakdown or 
pathological flows. What constitutes "an appropriate number" will vary with 
the task and the objective. 

The result should be a set of statements or diagrams encoding information 
of the form "this agent uses this object at this point in the process to 
initiate/continue/complete this (desirable) event." The intent is to examine 

the connections between events, agents, and objects as they combine within the 
task. 

Step 3.  Analyze list and connection content 
This is an iterative step. First, each substep should be performed for the 
events; then the same substeps should be performed for the agents; then for 
the objects. As appropriate, they should be performed for the 

event/agent/object interfaces. Then, they should be performed for the problem 
space. Because in most cases redundancy will be substantial, successive 
iterations should be quicker and easier. 

6.4  Stage 2: Develop training requirements 
In going through this, it is important to continue the three-part (event, 
agent, object) approach. For example, a solution may be dynamic with respect 
to events but static with respect to objects. The event may be temporal (fire 
the weapon) but the object manipulation procedure may be atemporal (calculate 
range, azimuth). The object produced may be linguistic (a report) but the 
reasoning spatial. And so on. 

At this point, there should be four inventories, one each for events, 
agents, and objects, plus one focusing on the problem space as a whole. The 
first four steps of this stage (approaches to events,to agents, to objects, 
and to the problem space) should check the appropriate inventory against the 
taxonomy, and the training heuristics and guidelines should be recorded. 

Step 5.   Integration 
The last step proceeds in two parts. First, internal coherence and consistency 
must be checked. Second, the results-which are really the ultimate results of 
applying the method-need to be integrated with the task analysis results and 
the ISD process. 

In checking internal coherence, judgments will need to be made about the 
degree of autonomy subtasks can or should have from a training requirements 
point of view. Making subtasks independent simplifies the training task (with 
respect to the subtasks), but adds an integration training task, and risks 
removing critical motivation or context information from task learning. And, 
as will be seen in the next Chapter, some tasks, even though they may have 
clearly distinct subtasks, resist decomposition. 

Integrating results with the larger ISD process is straightforward on one 
level, problematic on another. Since the results of the method and the 
analysis described fits quite well into the standard ISD approach, integration 
is simple and direct. On the other hand, the idealistic recommendations and 
guidelines that may come out of this analysis will meet the cold realities of 
limited budgets, limited facilities, and possibly, trainers who are accustomed 
to doing things they way they have always done them. (Another way of saying 



this is to acknowledge that ISD methods and the method presented here are 
idealizations. Good tools are important, but no substitute for good hands 
wielding them.) Not surprisingly, integration is likely to be difficult and to 
require hard work to implement. On the other hand, it might make a positive, 
possibly even significant, impact on training. 



TOPOGRAPHIC MAP READING 

To test the method, it was applied to the Army problem of reading and 
interpreting topographic maps. The larger problem is planning force movement 
and/or laydown to achieve mission success within a Brigade/Battalion sector. 

Diagrammatic illustration of the the Brigade/Battalion commander's 
responsibilities and the place of topographic map reading among them is 
provided in Appendix A. 

This is an individual, as contrasted with a group, task. An an individual 
task was selected for simplicity, despite the long-term focus of this research 

on collective tasks. It was also recommended by the unusual circumstance of 
having access to a subject matter expert, Dr. Susan Fischer, who is also a 
psychologist with strong experience in training design and evaluation (e.g., 
Fischer op cit.)   Applying the method with her improved the method-testing that 
accompanied the method trial. 

7.1   Stage 1: Characterize the task 
Problem-solving for this task is defined as complete and correct understanding 
of the meaning of topographic map features as they represent real-world 
features, for all such features as are recognized as having military 
significance. Further, problem solving requires recognition of those features 
among all that may be present on a particular map that are significant with 
respect to a specified mission. 

A great deal of enabling knowledge is assumed in this definition. To 
constrain this, we assume that the learner is the commander of a mechanized or 
armored battalion, that the mission is to defend in sector, and that the enemy 
is also a mechanized or armored unit. There is still a huge amount of enabling 
knowledge necessary to use the map for situation assessment and force 
planning. However, it is possible to limit the objective to recognition of 
potentially significant features, leaving the actual force planning problem to 
a separate training process. 

Step 1:   Build inventories 
The event  is interpreting the map for its military significance, in the 

context of performing situation assessment and planning. The agent is the map- 
reader: the Brigade/Battalion Commander and/or his staff, for our purposes 
usually the S2 or S3. These are Colonels and Lt. Colonels, possibly Majors; 
not below. The object  is the topographic map. There are two goals: 
1. Understanding the terrain and surface features, as "things-in-themselves" 
2. Understanding the military meaning of the terrain. 

The latter is far more important than the former. The analogy with 
recognizing word shapes and understanding the meaning of prose is apt. There 
are several subgoals in (2). The commander wants to understand: 

The degree of enemy mobility 
The affordances of the terrain vis-a -vis the mission 
Cover and concealment 
Where the enemy attack might or could come 
Whether the enemy could move into or out of his sector from a neighboring 
friendly sector 



• The possibilities of the terrain in front of his sector ("in front" meaning 
toward the enemy) 

• The possibilities  of the terrain behind his sector. 
The consequences of map-interpretation error include mission failure, 

casualties, loss of resources, and cross-sector leakage. (With respect to this 
last, Dr. Fischer wondered if the Army has a real reward structure for taking 

this seriously. It has seemed to her that far greater emphasis is given to 
individual Command responsibility for a sector than command team co- 

responsibility. Confirming evidence comes from a Gulf War post-analysis in 
which commanders ranked sector coordination as their highest candidate for 

increased training attention.) 
The function of the map-the only object—is to represent the terrain and 

surface features within and around the sector. The map's attributes include 
contour lines, numeric and iconic symbols, colors, and a legend guiding 
interpretation of the other content. 

The agents' action—reading and interpreting the map-is not performed at a 
stereotypical location or time. The functional context for map interpretation 
is situation assessment or development of Commander's Guidance. As part of 
task characterization, the redundancy provided by other situation assessment 
activities helps identify and correct errors. Standards are qualitative; the 
Army currently does not have numeric standards for adequate or expert 
performance, e.g., accurate identification of some percentage of the 

significant features within a set time, with a false positive rate no greater 
than some specified percentage. 

Step 2. Flow 
This is as simple as it seems possible to get: the agent uses the object to 
perform the action. 

Step 3.   Analysis 
Analysis of the problem space emphasized the dual-task nature of the problem. 
Reading the terrain features is convergent (a hill is a hill), but Dr. Fischer 
described interpreting the meaning of the features as "divergent within 
constraints". That is, both she and the SMEs with whom she has worked would 
say there are many solutions to a particular terrain/force laydown 
configuration (divergent), but that the terrain places strong constraints on 
what these are (convergent). Dr. Fischer emphasized strongly that the 
perspective of the expert is that the interpretation drives the reading, not 
the other way around. It is a strongly goal-driven, rather than data-driven, 
activity. Said another way, the task is not framed as, "what is there" 
(reading), and "what can we do with it?" (interpretation). Rather, it is 
framed as, "what do we want to do? And, then, how can we achieve it?" 

Both reading and interpretation are data-rich, event-rich, and hypothesis- 

rich. Reading terrain from maps is experiment-rich; one can read many maps and 
view many kinds of terrain. Interpreting the maps is experiment-poor, in terms 
of verifiable experiments. Solutions are satisfycing. Comprehension skills are 
applied both to reading the terrain and to interpreting it. The task is fairly 
homogeneous, but discussion of this construct brought out the lack of a clear 
boundary to the interpretive task. It is hard to draw clear lines between 



"simple" reading (identification of features), initial reading/interpretation 
of military potential, and interpretive exploration of potential mission- 
specific plans. 

Discussion of distributed representation brought out the lack of knowledge 
of how experts achieve their performance. We discussed two possibilities. One, 
experts manipulate the external representation to understand issues like 
mobility, analogous to the way physicists manipulate differential equations. 
The second possibility was that experts translate the external map 
representation into an internal mental model (e.g., Johnson-Laird 1983). Dr. 
Fischer didn't know. Her speculation was that experts probably do some of 

both, using the representation in its simple external form where possible, and 
constructing an internal representation only for places with notable risk, 
potential, or uncertainty. (Recall the discussion of the use of EBL to resolve 
impasses in application of SBL.) 

Metaknowledge steps are not significant, e.g., as long as the task boundary 
excludes planning, there are no issues of problem discernment (the commanders 
know they're reading a map), problem representation, representation 
validation, etc. Coherence with respect to interpretation is the most 
important metacognitive concern. Other metacognitive issues, e.g., of 
uncertainty management or truth maintenance, are not significant. (There is 
significant uncertainty associated with enemy intentions and plans, but that 
is beyond the scope of the task as defined.) 

Definitional (icons and symbols) and prototypical (content and 
interpretation) concepts are involved. In parallel, two classes of operators 
seems to be present, perceptual and inductive. Dr. Fischer originally 
identified two levels of patterns, direct (e.g., hills, swamps) and composite 
(e.g., kill sacks, canalizing terrain, mobility corridors). She has recently 
come to the conclusion that there is yet a third pattern recognition level 
achieved by experts; for example,  "affordances for massing of forces". 

Common novice errors include: 
• Failure to properly use map legends to guide terrain content reading. 

Contour lines the same distance together on different maps can mean very 
different things in the real world, according to how the maps are drawn and 
scaled. 

• Interference of irrelevant features. Experts filter efficiently; novices 
can get stuck on low-salience features. 

• Confusion of correlation for cause. Novices are more likely than experts to 
become convinced that because the enemy could  use a particularly appealing 
AOA, the enemy must use that AOA. 

• Lack of larger-domain interpretive knowledge. 

This leads to the characterization of expertise, which is notable for 
knowledge organization and automaticity. That is, experts see the significance 
of maps quickly, retrieve and apply relevant information, and devote conscious 
attention only to those places of greatest danger or advantage. 

7.2   Stage 2: Develop training approach 
What can be read from the taxonomy based on the characterization above? For 
analysis, we temporarily separate the reading from the interpretive task. 
Interpretation is the event; reading is use of the object. 

Taking that perspective, the object-the map-requires both definitional and 
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prototypical concepts. Consulting the taxonomy on training the definitional 
concepts results in an immediate undercutting of the distinction just 
attempted. Definitional concepts should be taught with their 
operationalization; in the present case, that means teaching the definitions 
with their military interpretations. The prototypical patterns should be 
taught center-to-periphery. Paralleling the definition/operationalization 

link, the patterns should be associated with their meanings (affect) as well. 

This link should be cast in appropriate terms, e.g., "strength and 

vulnerability" or "advantages and disadvantages". We earlier claimed that when 
meaning is conventionally expressed in value terms, affect is strongly 
involved. Therefore, coupling prototypical patterns with their value-laden 
meanings is associating affect. 

Failure to use the map legend can be identified and repaired in the 
classroom. To train efficient filtering of "noise", graded (simple-to-complex) 
whole topos should be trained, with increasing levels of irrelevant features. 
As with the definitional and prototypical concepts above, this calls for 
joined reading/interpretation training, since the nature of the mission (in 
this case, armor brigade defense) constrains what is signal and what is noise. 
To illustrate and reduce confusion of correlation with cause, entrapment cases 
can be used. The problem of lack of larger domain knowledge is crucial, but it 
is also at the bounds of this problem and the entrance to the larger military 
planning and command problem. 

Since the mechanisms of expertise are not well understood, specifically the 
degree to which external representation is translated to internal model, it is 
not clear whether training aids to internalization are appropriate. For 
example, computer graphics to illustrate the translation from contour lines to 
3D features or interactive simulation to simulate movement through terrain 
could aid visualization and spatial imagination; but if, relative to 
expertise, these are the wrong skills, this could have negative transfer. 

7.3  Analysis 

All the recommendations generated by the taxonomy are included in a training 
course currently under evaluation (Fischer op cit.), except the whole-topo 
signal-to-noise training. The course is producing good results. Students using 
the course are both more accurate and faster at recognizing significant 
terrain features and patterns on topographic maps than controls. 

It is not clear whether their ability to interpret the military meaning of 
terrain features has improved. However, as stated above, that is much more 
dependent on larger domain knowledge, and its change will be correlated to 
change in that corpus. In other words, the objective studied by Dr. Fischer 
was the quality of topo map reading. A different approach might have been 
taken if the whole of situation assessment had been taken as the goal. But the 
task decomposition that generated the objective isolated topo reading as an 
independently-trainable component. Judging the research from the perspective 
of situation assessment as a whole is to misunderstand the objectives the 
training is meant to address. 



CONCLUSIONS & RECOMMENDATIONS 

The theory and method as they now stand are critiqued, and further action is 
recommended. 

8.1 Critique of the theory 
We naively hoped that the structures of learning, training, and generic task 

content would mesh into a crisp taxonomy with clearly defined constructs and 
readily testable links. Instead there is a much more fuzzy structure. The 
content of the taxonomy is plausible, but hardly definitive. For almost any 
entry, counterexamples could be found. Plus, the human influence of a great 
teacher can overwhelm technical considerations of method and approach. What 
Napoleon said of military leadership—"I'd rather have an army of sheep led by 

a lion than an army of lions led by a sheep"—holds by analogy for instruction: 
a great teacher with a mediocre method is better than a poor teacher with the 

perfect method. But of course a great teacher with the right method will 
outshine a great teacher with the wrong method. 

There are two issues with the current theory that are unsatisfactory. 

1. SBL,   EBL,   and  training 
The two-level theory of learning—similarity-based and explanation-based 
learning at the knowledge level, rehearsal, organization, and elaboration at 
the algorithm level—doesn't adequately focus or constrain training approaches. 
In the extreme cases, they are clearly applicable: teach motor skills and low- 
level pattern recognition with rehearsal, mathematical theorem proving with 
EBL. But in the great middle ground, they don't prescribe or delimit with 
enough precision. 

We believe that with more work and more careful analysis, the theory of 
learning outlined in Chapter 4 could be used to classify and illuminate 
training approaches, and could be tied to task characteristics as well. 
Therefore, it could be a productive bridge between tasks and training. 

However, its current form is not sufficient. 

2. Lack of methodological  specificity in   the  taxonomy 
There is focused and successful work in intelligent computer-aided instruction 
and elsewhere that links very specific kinds of tasks with equally specific 
approaches to training. For example, Lesgold's work with context-sensitive 
state-space differentials for the training of electronic troubleshooting has 
been shown empirically to be much more effective than the traditional 
approach. This is not in the taxonomy, but should be. The taxonomy should be 
able to say, "for a task with characteristics A,   B,   and C,   use model tracing; 
but if it has characteristics E,   F,   and G, don't use model tracing." The 
taxonomy should be more specific, and should include proscriptive as well as 
prescriptive content. 

8.2 Recommendations 
We make six recommendations. 

Knowledge acquisition with  training experts 



A program of knowledge acquisition with training design experts should be 
designed and executed. Repertory grids (Kelly 1955) could be used to 
characterize how experts understand training design. A second set of knowledge 
acquisition activities, again using repertory grids, should be devoted to how 
commanders generate training objectives from their observations, and what they 
do to validate them. 

Further  theoretical   development 
Those data should then be integrated into the theory and taxonomy. The 

taxonomy should be explicitly expanded to include group training. Despite the 
difficulty of finding adequately precise terminology, factor analysis and 
automated induction of decision trees on the data still seem worth pursuit. 

Quinlan's C4.5  machine learning program (1993) would be appropriate for this. 
It would be reasonable to pursue the relationship between theories of learning 
and specific training approaches. 

Extension  to include  training objective diagnosis and articulation 
As suggested by the second knowledge acquisition task proposed above, and by 
the discussion of the difficulty of the diagnosis and likely frequency of 
misdiagnosis in Section 1, an intelligent diagnostic aid to training objective 
development seems appealing. It is a natural extension of the current work. 

Full  automation  of  the  taxonomy and method 
Once the method and taxonomy have been extended and deepened in the ways just 

described, a knowledge based system incorporating them should be built. There 
are powerful knowledge system development tools available, e.g., Intellicorp's 
Kappa, and there are true multi-platform delivery environments, e.g., the Zinc 
Application Framework from Zinc, zApp from Inmark, and XVT from XVT. (Multi- 

platform delivery means that a single system is designed and built, then 
"cross-compiled". All three of the above toolkits allow a single set of source 
code to be compiled to run on Apple Macintosh, IBM-PC-class machines running 
any of DOS, Windows 3.1, Windows NT, or OS/2, and Unix/Motif, including Sun 
and H-P.) The complexity of the method suggests that a knowledge based system 
would make it more manageable. The quality and simplicity of the human- 
computer interaction component would be of particular importance for the 
system to be a success. The facility with which draft interfaces can be 
constructed with Zinc or zApp means that testing and validating the interface 
is practical. The generative component should draw on expertise in training 
design and requirements specification, especially automated scenario 
generation. 

Empirical   testing 
The taxonomy and method should be tested by applying the automated method to a 
wide range of current Army training programs, selecting one or more current 
training programs with the greatest contrast to the recommendations of the 
taxonomy, constructing a taxonomy-based alternative, and testing it to compare 
the results to the current baseline. 

Commercialization 
Training in the commercial world is big business (estimated at $5 billion per 



year in the United States). There are obviously signal differences between 
military and nonmilitary training, but similarities are great as well. When 
the final Phase II proposal is submitted, a Phase III commercialization plan 
will be included. 

8.3   Finis 

A theory of the relationship between learning, generic task content, and 
training has been developed. A taxonomy has been constructed, based on the 

theory, linking generic content with training approaches. An ontology and a 
method for eliciting task descriptions and generating taxonomic 
recommendations has been presented. Three small examples and a formal 
knowledge acquisition exercise with a subject matter expert all supported the 
plausibility of the theory, taxonomy, and method. 

Six recommendations for further work have been made; in sum, they are for 
more research, then development, testing, and commercialization. 

This report documents Phase I research, which has been conducted intending 
to lay the foundation of Phase II construction of a knowledge-based decision 
aid incorporating the method here described. 
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APPENDIX A: BRIGADE/BATTALION TASK DECOMPOSITION 

These charts show where reading and interpreting topographic maps fit into the 
broad and heterogeneous obligations of Brigade/ Battalion command. These 
charts are a composite of data from The Blueprint of the Battlefield, FM 71-3, 
FM 71-123, and interview materials from Lt. Col. Kenneth Bell, ret., a former 
Command & General Staff College instructor. 
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