
AFRL-IF-RS-TR-1999-6
Final Technical Report
January 1999

DISTRIBUTED EVENTS IN SENTINEL: DESIGN
AND IMPLEMENTATION OF A GLOBAL EVENT
DETECTOR

University of Florida

S. Chakravarthy, H. Liao, and H. Kim

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

CO
co
CO
o
00
o
CO

AIR FORCE RESEARCH LABORATORY #<j
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

mm QRaiajy

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-6 has been reviewed and is approved for publication.

APPROVED: ^^?W0if>i€vn-<Xuisffi^
RAYMOND A. LIUZZI
Project Engineer

H^iA &<-> FOR THE DIRECTOR: ' ¥ VW V^T '" ~* ~~ ^
NORTHRUP FOWLER III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimata or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, am) to the Office of Management and Budget, Peperwork Reduction Project (0704-0188), Weshington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

January 1999
3. REPORT TYPE AND DATES COVERED

Final Aug 96 - Oct 98
4. TITLE AND SUBTITLE

DISTRIBUTED EVENTS IN SENTINEL: DESIGN AND IMPLEMENTATION OF
A GLOBAL EVENT DETECTOR
6. AUTHOR(S)

S. Chakravarthy, H. Liao, and H. Kim

5. FUNDING NUMBERS

C - F30602-96-1-0275
PE - 62232N & 62702F
PR - R427
TA - 00
WU - P9

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida
Department of Computer and Information Science
P.O. Box 116120
Gainesville FL 32611-6120

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTB
525 Brooks Road
Rome NY 13441-4505

NAVY/NCCOSC RDTED44208
53245 Patterson Road
San Diego CA 92152-7151

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-6

11. SUPPLEMENTARY NOTES

This effort was jointly funded by AFRL/IFTB (formerly Rome Laboratory) and NAVY/NCCOSC (Ms. Leah Wong).
Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In conventional database management systems, data are created, updated, retrieved and deleted in a passive way; that is, only
in response to operations performed by users or application programs. Active database management systems (ADBMSs)
enhance the functionality of conventional database systems by issuing operations on their own in response to event
occurrences or satisfied conditions. EC A (event-condition-action) rules are used to capture this activity capability: when an
event is detected, a condition is checked and an action is executed if the condition is satisfied. Many computing applications
are distributed in nature and hence require support for distributed computing. Many of the active OODBMS developed
recently do not address event specification outside of their address space. Rules cannot be specified on events that occur in
one or more applications. That is, none of them addresses processing ECA rules in a distributed environment. This report
extends the earlier work on Sentinel and APBMS, by supporting global event specification and detection. Global events
definitions are extended to Snoop, and a global event detector (GED) is implemented to detect events that span multiple
applications.

14. SUBJECT TERMS

Database, Knowledge Base, Artificial Intelligence, Software, Computers

15. NUMBER OF PAGES

56
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) {EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

LIST OF FIGURES iii

Abstract iv

1 Introduction 1

1.1 Previous Research On Active OODBMS 1

1.1.1 HiPAC 1

1.1.2 Ode 2

1.1.3 ADAM 2

1.1.4 SAMOS 3

1.1.5 Sentinel 3

1.2 Motivation 4

2 Related Work 5

3 Summary of Snoop and Snoop Preprocessor 7

3.1 Event Classification 7

3.2 Event Operators 8

3.3 Parameter Context 9

3.4 SPP - Snoop Preprocessor 10

3.4.1 Snoop BNF 10

3.4.2 Event and Rule Specification 11

4 Architecture 13

4.1 Introduction 13

4.2 Architecture Alternatives 13

4.3 Asynchronous Communication Between Client and Server 14

5 Extensions to Snoop for Specifying Global Events 20

5.1 Global Event Type 20

5.2 Global Event Specification 20

5.2.1 Global Primitive Event 20

5.2.2 Global Composite Event 21

5.3 Alternatives For Global Event Detection 22

5.4 Implementation Detail 24

5.4.1 REMOTE Object 25

5.4.2 Global Event Specification File 25

5.4.3 Flags In SPP 27

5.4.4 Integrating SPP With ppCC 28

6 Implementation of Global Event Detector 29

6.1 Local Event Detector 29

6.2 Global Event Detection Requirements 29

6.2.1 Distribution Of Event Detection 29

6.2.2 Provide Event Detection Functionality To The User Application 31

6.2.3 Global Event Detection Site 31

6.3 Extensions To Local Event Detector 32

6.3.1 Extension Of Event Class Hierarchy 32

6.3.2 Extended Local Event Detector (ELED) 32

6.3.3 GED Interface 34

6.3.4 Event Tree Propagation By Client 34

6.4 Implementation of GED 34

6.4.1 Client/Server Model 34

6.4.2 Architecture of Global Event Detector 35

6.4.3 Data Structures Of Global Event Detector 35

6.4.4 Class Hierarchy In The Global Event Detector (GED) 36

6.4.5 Event Graph • 37

6.4.6 Global Event Detector 38

6.4.7 Communication Between A Client And The Server 39

6.4.8 Implementation 4Ü

7 Conclusions and Future Work 42

42 7.1 Conclusions

7.2 Future Work 42

REFERENCES 44

List of Figures

1 Architecture of a Distributed Event Detector System 14

2 A Client-Server Architecture of Global Event Detector 15

3 A Heavyweight Process Design Model of GED 15

4 An Asynchronous I/O Design Model of GED 17

5 A two way RPC Design Model of GED 18

6 A combination of RPC and socket Design Model of GED 19

7 A Global event tree (1) 22

8 A Global event tree (2) 23

9 Architecture of Local Event Detector (LED) 30

10 Event Class Hierarchy of LED 33

11 Architecture of Extended Local Event Detector (ELED) 33

12 A Client-Server Architecture of GED 35

13 Global Event Detector Model • 36

14 Data Structure of Global Event Detector 37

15 GED Class Hierarchy 38

16 An Event Graph Example 38

in

Abstract

In conventional database management systems, data are created, updated, retrieved and
deleted in a passive way; that is, only in response to operations performed by users or application
programs. This demand-based mechanism cannot meet the requirement of many nontraditional
applications that need either to monitor changes to the database state or recognize certain
happenings or events of interest (some may occur outside the purview of the DBMSs), and
initiate appropriate actions without user or application intervention. Active database manage-
ment systems (ADBMSs) enhance the functionality of conventional database systems by issuing
operations on their own in response to event occurrences or satisfied conditions. ECA(event-
condition-action) rules are used to capture this active capability: when an event is detected, a
condition is checked and an action is executed if the condition is satisfied. Rule definition, event
detection and action execution are some of the new features provided by an ADBMS.

Many computing applications are distributed in nature and hence require support for dis-
tributed computing. Many of the active OODBMS developed recently do not address event
specification outside of their address space. Rules cannot be specified on events that occur in
one or more applications. That is, none of them addresses processing ECA rules in a distributed
environment.

This report extends the earlier work on Sentinel by supporting global event specification and
detection in a distributed database system. Global events definitions are extended to Snoop, and
a global event detector (GED) is implemented to detect events that span multiple applications.

'This work was supported by the Office of Naval Research and the SPAWAR System Center - San Diego and by
the Rome Laboratories under contract No. F30602-96-1-0275

IV

1 Introduction

In conventional database management system, data are created, updated, retrieved and deleted in

a passive way; that is, only in response to operations performed by users or application programs.

This demand-based mechanism cannot meet the requirements of many nontraditional applications

that need either to monitor changes to the database state or recognize certain happenings or events

of interest that occur outside the purview of the DBMSs, and initiate appropriate actions without

user or application intervention. Active database management systems (ADBMSs) enhance the

functionality of conventional database systems by issuing operations (defined by the application

designers) on its own in response to event occurrences or satisfied conditions. ECA (event-condition-

action) rules are used to capture this active capability: when an event is detected, a condition is

checked and an action is executed if the condition is satisfied. Rule definition, event detection and

action execution are some of the new features provided by an ADBMS.

Much of the earlier research on active databases focus on the support of active capability in the

context of centralized DBMS: both relational and object-oriente. In the following section, several

active OODBMS implementations are introduced and compared.

1.1 Previous Research On Active OODBMS

1.1.1 HiPAC

HiPAC [1] is an object-oriented active database system which provides active database capabilities

by means of ECA rules. HiPAC proposed three types of primitive events:

1. Data manipulation events, which are related to a method execution on objects. Two event

modifiers begin of and end-of are used to transform an arbitrary interval into two logical

events.

2. Clock events, which can be absolute, relative or periodic. An absolute event refers to a specific

time point (e.g., 2:30:30.00,Nov 24 1996). A relative event specifies a temporal offset to some

reference events (e.g., 45 seconds after event El occurs). A periodic event is specified by a

reference event and a time period which is to be signaled periodically.

3. External events, which are specified and raised explicitly by users or application programs.

Composite events supported by HiPAC are composed using three operators: disjunction, se-

quence and closure.

1. A disjunction of two events El and E2 is raised when either El or E2 is signaled.

2. A sequence of two events El and E2 is raised if event El happened before event E2 is signaled.

3. A closure of an event El, which is denoted as [El*; E2] is raised when El has been signaled

an arbitrary number of times before event E2 is signaled.

1.1.2 Ode

Ode [2] is an OODBMS which incorporates rules in the form of constraints and triggers to support

active capabilities. Constraints are used to maintain database integrity and triggers are used for

monitoring database conditions which are applicable only to the instances specified by the user

at run time. Instead of ECA rules, Ode supports EA (event and action) rules which incorporate

condition with the event part.
Four kinds of basic events are supported by Ode: 1. object state events, which are raised after

the state of an object is changed through a public member function, e.g., after an object is created,

before or after it is updated; 2. method execution events, which are signaled before or after a

method is executed on an object; 3. time events, which are similar to clock events proposed in

HiPAC; 4. transaction events, that are signaled at the beginning or at the end of a transaction,

begin or end of a commit, or begin or end of an abort.

Since Ode merges condition with event part, these basic events become primitive events only

when they meet a condition requirement, that is, they are qualified with a mask.

An event history is used to represent the semantics of composite events. Four event operators

are used to support composite event definition:

1. A conjunction (*) of two events El and e2 is signaled when both events happen at the same

time in the event history.

2. A not (!) operator of an event El (!E1) is used to denote event occurrences in the event

history at which El is not signaled.

3. A relative of two events El and E2 is raised when event El happens before event E2 occurs.

4. A relatives operator of event E is used to present the closure of relative (E,E), which is

signaled whenever E or an arbitrary number of successive E occurs.

The event detection in Ode is implemented using a finite state automata. Each event expression

maps an event history to another event history that contains only those events at which the event

expression is satisfied when the event is triggered.

1.1.3 ADAM

ADAM [3] is an active OODBMS implemented in PROLOG. It supports ECA rules in which both

events and rules are treated as first class objects.
Events are defined with an event class hierarchy. Three subclasses are derived from a base

event-class: viz, db-event, clock-event and application-event. An event is presented as an instance

of one of these subclasses. An event is generated before or after a method is executed on an object.

In each class definition, the class-rules attribute is extended to indicate which rules to check

when the object raises an event. Each rule is an instance of a Rule class and rule operations are

implemented as class methods. The Rule class consists of six attributes: event, active-class, is-it-

enabled, disabled-for, condition and action. Event attribute indicate the event from which this rule

is triggered. Active-class is the name of the class on which the rule is applicable. Whether the rule

is triggered or not is specified by is-it-enabled attribute. Disable-for indicate the set of instances

for which the rule is disabled. Condition and action present the rule's condition and action part.

When an event is raised, all the method's arguments are passed by the system to the condition

and action part of the rule.

1.1.4 SAMOS

SAMOS [4] is an active OODBMS. It support five kinds of primitive events which are method events,

value events, transaction events, time events and abstract events. Six operators are provided to

compose composite event specifications, which are, conjunction, sequence, disjunction, last, TIMES,

and NOT. A Colored Petri Nets which is called SAMOS Petri Nets is used to detect composite

events. A Petri Net consists of places, transitions, arcs. Arcs connect places with transitions and

transitions with places. The places correspond to the states of the Net, and such states may be

changed by the transitions that correspond to the events which may occur. In Petri Nets, tokens

represent event occurrences and capture the event type and the event parameters. A place in a

Petri Net contains tokens of one specific token type. When an event occurs, a corresponding token

is inserted into all places representing its event type. A transition can fire if all its input places

contain at least one token. Then one token will be removed from each input place and inserted into

each output place. Inserting a token into an end place corresponds to the detection of a composite

event. The event parameters are part of the token.

1.1.5 Sentinel

Sentinel is an active object-oriented database management system which support ECA rules in both

centralized and now in a distributed environment. An event specification language Snoop has been

developed to specify events which include local events (local primitive events and local composite

events) as well as global events (global primitive events and global composite events). Two event

detection mechanisms, namely, a local event detector and a global event detector, are implemented

to monitor the behavior of local events as well as global events across applications.

Three types of primitive events are supported by Sentinel:

1. Database events, which correspond to database operations used to manipulate data. Every

method of an object is a potential primitive event, and they are transformed into events using

two event modifiers: begin-of and end-of.

2. Temporal events, which include absolute and relative temporal events. An absolute temporal

event is specified as an absolute value of time. A relative temporal event is specified by a

reference event and a time offset.

3. External events, which denote events defined by users or application programs and are regis-

tered with the system. They are also called global events which support ECA rules processing

in a distributed system. External events are assumed to be detected outside the system but

are signaled to the system along with their parameters.

Composite events are composed by applying a set of operators to primitive events and previously

defined composite events. In order to support global event detection, a composite event definition

allows combination of events from different applications.

Events and rules can be defined at the class level (inside a class definition) as well as at the

instance level (outside of a class definition). A class level event and rule is applicable to every

object of this class, whereas an instance level event and rule is applicable only to the specific

object instance. Four parameter contexts, Recent, Chronicle, Continuous, and Cumulative are

supported in Sentinel. The parameters of a primitive event are the parameters of the method that

this primitive is declared on and the time of the event occurrence. The parameter of a composite

event is the combination of parameters of its constituent events.

In Sentinel, multiple rule executions, nested rule executions and prioritized rule executions are

supported. Two coupling modes, immediate and deferred are implemented.

1.2 Motivation

Four research prototypes discussed earlier (HiPAC, Ode, ADAM, SAMOS) support active database

functionality in a centralized database system. Many of the active OODBMS developed recently

do not address event specification outside of their address space. Rule cannot be specified on

events that involve multiple applications. That is, none of them address processing ECA rules in a

distributed environment.

Many computing applications are distributed in nature and hence require support for distributed

computing. For example, Telecommunication applications are inherently distributed. A number

of telephone companies are connected to the telephone network. Telephone subscribers rent their

telephones from one specific company, but may have accounts with other companies as well. Three

major telephone companies, AT&T, GTE, and BELL, offer a special service to customers having an

account with each of them and paying their bills promptly. This promptly action needs to monitor

events from these three distributed companies. Active OODBMS in a centralized system cannot

meet this requirement. A mechanism is needed to support processing ECA rules in a distributed

environment.
This report extends the earlier work on Sentinel by supporting global events specification and

detection in a distributed environment. Global event definitions are added to SNOOP (an event

specification language of Sentinel), and a global event detector (GED) is implemented to detect

events that span multiple applications.

2 Related Work

In addition to Sentinel, several research efforts attempt to monitor the behavior of distributed

systems.

• Microsoft's COM (component Object Model) [5] provides a basic event service that support

only primitive event detection. Any action that changes control, e.g., Changes to data,

changes to the views on data, renaming of objects, clicking the mouse can be treated as an

event. There is no notion of composite event.

• CORBA [6] supports an event service called suppliers to notify event occurrences to consumer

via an event channel. Suppliers and consumers communicate with each other through a single

well-known event channel object. The push model and pull model are supported as event

modification models. In the push model, the supplier initiates the transfer of event data to

consumers. In the pull model, the consumer requests event data from suppliers. As in COM,

no services are supported for composite events.

• In Schwiderski's thesis [7] , she presents a general solution to monitoring the behavior of

distributed systems and proposes an approach to event-driven monitoring of distributed sys-

tems which provides the full functionality of event specification, event semantics, and event

detection. The work is concerned with the syntax, the semantics, the detection, and the

implementation of events in terms of physical time.

The syntax of primitive and composite events is derived from the work of both active database

systems and distributed debugging systems. Primitive events can relate to physical time, to oc-

currences inside database systems or application programs, and to arbitrary external signals. In a

distributed system, primitive event types are site related. A primitive event expression is a char-

acter string denoting either a time event, a data manipulation event, a transaction event, or an

abstract event. A specified primitive event expression determines a primitive event type. A time

event denotes the readings of a particular local clock and can be absolute, relative, or periodic. A

data manipulation event relates to the insertion, deletion, and modification of tuples in relational

database systems, and method executions in OODBMS. The specification of a data manipulation

event must include a site specification, if a corresponding data manipulation operation exists at

different sites. A transaction event denotes the begin, the commit and the abort of a distributed

transaction signaled by the distributed transaction manager. In addition, each subtransaction issues

a locaLbegin and a local-commit or a locaLabort. An abstract event denote an event which is trig-

gered from outside a database system either by users or by application programs. Composite events

are complex patterns of primitive events which are defined using an event algebra with well-defined

semantics. Composite events are composed of primitive events and/or other composite events with

event operators. Five event operators, conjunction, disjunction, sequence, iteration, and negation,

can be applied to events at local as well as remote sites. A specific event operator concurrency

is applied to events only at remote sites. A time-stamp is applied to each event to indicate the

time of the event occurrence. Event parameters capture the circumstances under which the event

occurred, and are used to evaluate the condition and to execute the action of an ECA rule.

The semantics of primitive and composite events establishes when and where an event occurs

and depends on the notion of physical time in distributed systems. A primitive event occurs and

its timestamp is allocated when the event is detected. The semantics of a composite event depends

on the timestamps of constituent primitive and composite events and event operators. Timestamps

contain information on their original sites, and local and global representatives. The notions of

time order relate to physical time and temporal order.

On event detection issue, the architecture and the algorithms for the detection of composite

events at system runtime are developed. Event detectors are distributed to arbitrary sites and

composite events are evaluated concurrently. Each site contains a local event detector (LED) and a

global event detector (GED). Local event detectors detect local events and use centralized detection

mechanisms. Detected local events are notified at local or global event detectors. Each global

event detector must have registered their interest in a specified event type, and evaluates events

received from multiple sites. Detected events are either signaled to the site's rule manager and/or

are sent to registered global event detectors for further evaluation. In global event detection, global

event trees represent global composite events. Nodes are labeled with event operators and leaves

are labeled with event expressions. The root node is related to the outermost event operator

of a global event expression. Occurrences of local events are signaled from corresponding local

event detectors and occurrences of global events are signaled from corresponding global event

detectors. Newly arrived events are injected into their corresponding leaves and flow upwards in

the global event tree. Asynchronous and synchronous evaluations are considered when evaluate the

nodes of global event trees. In synchronous evaluation, nodes are evaluated with respect to site

failures and network delays, and events are forced to be evaluated in the system-wide order of their

occurrence. Each node is evaluated regarding the 2gg-restricted temporal order of all events which

may participate in an occurrence. The evaluation of a node blocks until all corresponding sites have

been checked for relevant occurrences. This evaluation policy is suitable for applications requiring

a high degree of consistency and reliability. Asynchronous evaluation is characterized by the ad

hoc consumption of signaled event occurrences. Nodes are evaluated immediately on the arrival of

suitable event occurrences when evaluate a global event tree. Delayed events are not considered.

So, events are not evaluated in the order of their occurrence and an event detection is not blocked

by delayed events. This evaluation policy is suitable for real-time applications, or any application

that require fast response times. The prototype implementation realizes the algorithms for the

detection of composite events with both asynchronous and synchronous evaluation. Primitive event

occurrences are simulated by distributed event simulators. Several tests are performed illustrating

the differences between asynchronous and synchronous evaluation.

3 Summary of Snoop and Snoop Preprocessor

ECA (event-condition-action) rules in active databases need to be complemented with an expressive

event specification language. Event specification will significantly improve modeling of complex

applications where temporal and external events are needed in addition to database events.

SNOOP [8, 9] is an event specification language used in Sentinel for specifying ECA rules. It

defines event and rule specification, supports event operators and parameter context, spp is the

preprocessor for SNOOP.

In a centralized active database system events (local event) occur at a single site, whereas in

a distributed active database system event (global event) occurrences are related to many sites.

The event specification language should reflect both local and global event characteristics. In this

section, an overview of Snoop and its preprocessor are presented. Extensions to support global

events in Snoop and spp is sketched.

3.1 Event Classification

An event is an atomic (happens completely or not at all) occurrence. A logical event specifies an

event at the conceptual level, while a physical event is the point of detection of a logical event.

Logical events are mapped to physical events uniquely, whereas a physical event may correspond

to one or more logical events. Two event modifiers [10] , begin-of and end-of, are defined to map

the occurrence of a logical event onto the physical level in a centralized database system.

Events in a distributed database system involve local events from different sites and are con-

structed based on these local events.

A hierarchy of event classes can be organized according to the structure and behavior. Four

types of events can be identified in a distributed database system:

• Local Primitive Event

Local Primitive Events are events that are predefined in that application using primitive

event expressions and can be detected by a mechanism embedded in the system [11]. Local

Primitive Events are classified into database events and temporal events. Database events

refer to database operations to manipulate data, such as insert, update, delete and retrieve.

Database events can be transformed into events using event modifiers (begin-of and end-of).

Temporal events refer to specific points on the time line. An absolute temporal event is the

event specified with an absolute value of time. It is defined in (hh:mm:ss)/mm/dd/yy format.

A relative event is an event corresponding to a time point and is specified with a reference

point and the offset. It has the format like event + [time-string], while event refers to any

event allowed in SNOOP, and [time-string] refer to the time offset. External events are the

events managed by un-local processes and signaled by applications. When an external event

is signaled to the DBMS, the parameters are explicitly specified and supplied.

•

Local Composite Event

Local composite events are composed of local primitive events and other local composite events

by applying event operators [12] . Since all the constituent events of a local composite event is

defined locally, a centralized detection mechanism is used for local composite event detection.

Global Primitive Event

Global primitive events are events that are defined and detected outside of the current appli-

cation and are referenced by the current application in a distributed database system. Any

event (either local primitive or local composite) defined in any application can be a potential

global primitive event. Since a global primitive event is defined outside of the application, the

information needed by a local application which use this global primitive event should include

the global primitive event name and the application name. Other information, like parameters

of the global primitive event, are supplied to the local application when this global primitive

event is signaled. The parameter computation is handled by the system and is transparent

to the user application. According to the above deduction, two attributes are introduced in

the global event specification: App.name and Event-name. They indicate that the event with

the name Event-name is defined by application App-name.

Global Composite Event

Global composite events are related to event occurrences from many sites (including the local

site). They are constructed with local primitive events, local composite events, global primitive

events and other global composite events by applying subset of event operators defined in

Snoop. At least one of the constituent event is a global event (primitive or composite) in a

global composite event expression.

3.2 Event Operators

Event operators in Snoop are used to construct composite events. Ten event operators are supported

in Snoop and are explained briefly in the following section.

• Conjunction: E_AND = el " e2

The conjunction operator is applied if both events el and e2 occur. The order of two event

occurrences is irrelevant.

• Disjunction: E_OR = el || e2

The disjunction operator is used to denote the event occurrence when either el or e2 occurs.

• Sequence: E_SEQ = el » e2

The sequence operator denotes that event el happens before event e2. The time of occurrence

of el has to be less than the time of occurrence of event e2.

• Negation: EJSfOT = - (el, e2, e3)

The negation operator is applied when there is no event occurrence of e2 between the closed

interval formed by el and e3.

• A: E_A = A (El, E2, E3)

The non-cumulative aperiodic operator is used to express the occurrence of an aperiodic event

bounded by two arbitrary events. The event is signaled each time E2 occurs during the closed

interval defined by the occurrences of El and E3. This event can occur zero or more times.

• A*: E_A* = A* (El, E2, E3)

The cumulative aperiodic operator denotes that event occurs only once when E3 occurs and

accumulates the parameters for each occurrences of E2 in an interval formed by El and E3.

It's useful to describe an event that occurs more than once in an time interval.

• P: E_P = P (El, E2, E3)

P is used to denote a periodic event that repeats itself within a constant finite amount of

time. The event is signaled for each amount of time E2 in the interval (El, E3].

. P*: EJP* = P (El, E2, E3)

P* is a cumulative variant of P and occurs only once when E3 occurs. The time of occurrences

of the periodic event is accumulated whenever E2 occurs.

. PLUS: E_PLUS = El + [T]

PLUS operator is used to denote events that occur when T time units are elapsed after El

occurs.

3.3 Parameter Context

Four parameter context are currently supported in Sentinel.

• Recent

In Recent context, only the most recent occurrence of the initiator for any event that has

started the detection of that event is used, and all the events that can not be the initiators of

the event are flushed. An initiator of an event will continue to initiate new event occurrences

until a new initiator occurs.

• Chronicle

In Chronicle context, the oldest initiator is paired with the oldest terminator for each event.

Once occurrences of the constituent events are used, they cannot participate in any other

occurrences of the composite event.

9

• Continuous

In continuous context, each initiator of an event starts the detection of that event. A termi-

nator event occurrence may detect one or more occurrences of the same event.

• Cumulative

In cumulative context, for each constituent event, all occurrences of the event are accumulated

until the composite event is detected.

3.4 SPP - Snoop Preprocessor

spp is the preprocessor for SNOOP language. First it preprocesses event and rule specifications

defined by the user in Snoop, and inserts translated c++ code into the application program. Then

it wraps all the methods of the reactive class defined in the user application. At the same time, it

creates several files used by the rule editor and the global event detector.

In Sentinel, spp is integrated with OpenOODB preprocessor ppCC for wrapping methods of the

reactive class and creating method signature files.

3.4.1 Snoop BNF

event-exp ::= El

El ::= El OR E2 | E2

E2 ::= E2 AND E3 | E3

E3 ::= E3 SEQ E4 | E4

E4 ::= Not (El, El, El)

| A (El, El, El)

| A* (El, El, El)

| P (El, [time string], El)

| P (El, [time stririg]:paramater, El)

| P* (El, [time string], El)

| P* (El, [time string]:paramater, El)

| [time string]

| El PLUS [time string]

I (El)
| event-name

event-name ::= name

| Eventname: Objectname

| Eventname::Appld

Appld ::— Sitename—Appname

name ::= Identifier

10

Eventname ::= Identifier

Objectname ::= Identifier

Appld ::= Identifier

3.4.2 Event and Rule Specification

SNOOP is an event specification language that supports several types of primitive events and

event operators for constructing complex events in a distributed environment. In addition to the

traditional database events, it supports external, temporal, global, and composite events.

Event specification refers to primitive event, global primitive event and composite event. The

syntax of the event specification in SNOOP is as follows:

eventspec ::= event event-modifier method-signature

| event event_name = event-exp

| begin (event_name)

| end (event _name)

| begin (event_name) kk end (event_name)

| end (event_name) kk begin (event_name)

evenLmodifier ::= event_name

rulespec ::= rule rule_name (event .name,

condition_function, action-function

[, [parameter-context], [coupling-mode]

, [priority], [rule-trigger-mode]])

parameter-context ::= RECENT | CHRONICLE | CONTINUOUS

| CUMULATIVE

coupling-mode::= IMMEDIATE| DEFERRED| DETACHED

priority::= positive integer

ruleJrigger-mode::= NOW | PREVIOUS

In SNOOP, primitive events are specified using event_modifiers begin and end. The default

event modifier of a primitive event is end. A global primitive event is defined with the format

event-name::application-name which means that event event-name is defined and detected by ap-

plication application-name. A composite event is defined using the event operators : AND, OR,

SEQ, A, A*, P, P*, PLUS. SENTINEL supports both class-level and instance-level events. Class-

level events are the events defined inside the class declaration. Each instance of this class can

11

trigger the events defined inside the class when corresponding methods are invoked. Instance-level

events are the events related to a specific instance of the class and are defined outside of the class

declaration. The class name is specified in the event expression.

12

4 Architecture

This section discusses two architectural alternatives for the global event detector. Four design

approaches are presented and compared with each other.

4.1 Introduction

In a distributed computing system, event detection should monitor the behavior of events in a

distributed environment. This requires a mechanism to detect events occurring ont only at a local

site, but also at other remote sites. Global event detector is responsible for detecting events of

inter-applications in a distributed database environment. It recognizes the occurrence of events,

collects and records their parameters, and passes it to application rule managers to trigger the

action of EC A rules.

Since global event detection involves multiple applications from different sites, the special fea-

tures of distributed systems increase complexity of event detection as compared to centralized

systems. These special characteristics of distributed systems include concurrent processes running

at multiple autonomous sites, lack of global time, message delays between sites, etc. Since the com-

munication between applications plays a significant role in system performance, the architecture we

choose for global event detector should reduces the communication overhead as much as possible.

4.2 Architecture Alternatives

There are two approaches to detect global events in a distributed environment.

1. Distribute global event detection among applications

In this approach, all events (local or global) are detected in local sites, and applications

communicate with each other directly to exchange messages. Every application has a local

event detector and a global event detector to detect events. Global event detector in this case

plays the role of a message sending/receiving than an event detector. Local event detector

detects all the events defined either in the application it resides on or in other application from

any site. After each event is detected locally, it will send event notification and parameter

list to the global event detector to transfer messages to other applications as necessary.

Since each application has to communicate with every other application directly, message

exchange overhead is significant in this case. The system performance will decrease with

increase in the number of applications involved in global event detection. Yet from a designer's

point of view, this approach makes implementation much easier, since the main task of global

event detector is to transfer messages between applications.

The architecture of this alternative is shown in Figure 1.

In this approach, LED and GED are part of each application. All events are detected locally,

and global events are notified by GED through network communication.

13

app 1

LED

■

GED

Figure 1: Architecture of a Distributed Event Detector System

2. client/server architecture

This approach uses the client/server model to centralize global event detection on a server

site. Global event detector is a separate server process. It receives requests and messages

from clients, builds its global event graph where global events are detected, and sends the

event notification to clients when each event is detected. Each application runs LED to detect

local events, and communicates with other applications through GED.

Client/server architecture centralizes the global event detection on a server site, thereby

decreasing the communication overhead between applications, and is likely to increase system

performance. On the other hand, since global event detector needs to detect global events in

addition to transfer messages between applications, the implementation is more complicated.

In Sentinel, client/server model is chosen to implement the global event detector (GED).

The architecture of client/server approach is shown in Figure 2.

In the above graph, GED is running as a daemon on the server site. Each client has a LED to

detect local events. LED communicates with GED using the remote procedure calls (RPC).

4.3 Asynchronous Communication Between Client and Server

To detect a global event, each client should send global event detection request and event spec-

ifications to the server, and receive the events to be notified from the server. This sending and

receiving action should be carried out in an asynchronous manner. That is, after the client sends

requests to the server, it will not be blocked waiting for reply. The client application should be

able to continue its work and receive the notification from the server meanwhile.

Four approaches are discussed below to meet this requirement.

• Heavyweight Process

This approach is shown in Figure 3.

14

SERVER

GLOBAL EVENT DETECTOR(GED)

event detection
request

event detection
request

event detection
request

event
notification

event

notification event
notification

LED

app 1

LED

app 2

LED

app n

Figure 2: A Client-Server Architecture of Global Event Detector

SERVER

GLOBAL EVENT DETECTOR (GED)

event
notxficatioi

LED

main
process

event
notification

fork()

Child

Process

event
notificatioi

LED

event
notification

main
process fork()

Child

Process

Figure 3: A Heavyweight Process Design Model of GED

15

Each client forks a child process to communicate with the server. The communication includes

sending global event detection requests and receiving notification back from the server. The

parent process detects local events and processes user application. This approach separates

the communication task and event detection task into two processes, and these two tasks

execute independently without affecting each other.

The main problem with this approach is that the memory space used by child and parent

processes are different. Each process uses its own memory space, and thus the variables used

by one process are not visible to the others. This will create data inconsistency if the two

processes try to process and evaluate using the common data structures.

To detect a global events, child and parent processes need to access and update global vari-

ables. For example, an event name table is maintained in the client site. This event name

table records all the local event names that are needed to send the notification to the server

after they are fired. The table is created upon the messages sent from the server in the

child process, and are accessed by LED when each local event is detected in the parent pro-

cess. Since the table is updated dynamically during run time, the updates to this data will

not be visible to the parent process. One way to solve this problem is to use IPC tools to

transfer messages between two processes. Message queue, pipe... are alternatives for inter

process communication. This will increase implementation complexity and decrease system

performance without any gain.

Asynchronous I/O

An interrupt driven socket I/O method is used in this approach. This signal-driven I/O allows

the process to notify the kernel when a specific descriptor (socket) is ready for I/O.

In this implementation, the server gets a client socket address after the client make a RPC

request. It also get its own socket ID from the transport handler. When a global event is

detected by the server, it will send a signal to the corresponding client with this client socket

address obtained earlier. When the client is notified (interrupted) by this signal, it will jump

to a signal handler to continue its communication with server.

This asynchronous I/O approach is very straightforward, and simplifies the implementation.

The main problem is the signal security. The signals sent from server may be lost (will not

be caught by the client) if they are not implemented in a proper way.

The diagram for this approach is shown in Figure 4.

Two way Remote Procedure Call (RPC):

In this approach, the role of client and server is not clearly differentiated. Both the client

and the server site can act as a client and a server. Client makes RPC calls to the server

16

SERVER

GLOBAL EVENT DETECTOR (GED)

M

■u R » R
M 0 0 0

&
a

u & & ■u
nt

•H u M tQ u « •H
"K R 5

S 01 ■H 0 ■H
3 U -H U

*H 0 0 u 0
R R 0 3 R
8 0 Ü 4J u
* R 0 t> R

■o
0 u & 0 « R c a 41 JD u

? <D
0 bl <D bi

1

'

signal-driven

I/O
LED signal-driven

I/O

LED

. i

event

1
notifi cation

"

not It icatlon

signal handler ;nal handler si

Figure 4: An Asynchronous I/O Design Model of GED

to send global event detection request, and receives RPC calls from server to receive event

notifications at a later time.

So, by adding a second request-reply step, server makes RPC call back to the client process

whenever an event is detected. Client provides services in its own procedure to catch response

sent from the server. This method looks clear and simple, yet creates problems when more

than one application is running on the same machine. Since all client applications provides

the same services to the server, they have the same program number, version number and

procedure number. When the server sends a response back to the client, it will go to a spe-

cific client according to the client ID: (host name, service program number, version number,

procedure number). Since several client applications running at the same machine will have

the same client ID, only one of the client process (the first one who has registered the RPC

services) will catch the RPC request from the server. This approach only works in situa-

tions that allow only one application to be running on one machine, and will not meet the

requirement when several applications are running on the same machine.

The diagram is shown in Figure 5.

combination of RPC and socket

17

SERVER

GLOBAL EVENT DETECTOR (GED)

service

event detection
request

Remote Procedure Call (RPC)

event detection
request

RPC ■**■ service

LED

appl

event
notification

Figure 5.5 A Two Way RPC Design Model of GED

Figure 5: A two way RPC Design Model of GED

18

SERVER

LWP GLOBAL EVENT DETECTOR (GED) LWP

SERVICE SOCKET CONNECTION

s
g

•H
■U
Ü
V

■u «

■u
n
E «

•vent
detection

reg^ie*fc got
•vent notification

hand-
shaking

•vent
notification

LED
socket

connection

LWP
appl

LWP

LED -* » socket
connection

LWP
ippn

LWP

Figure 6: A combination of RPC and socket Design Model of GED

This approach is an improvement of approach 3 (two way RPC) discussed above. In order to

make the server communicate with different client processes running on the same machine,

a socket communication interface is added to meet this request. Since each process has its

own socket ID, the server can send response back to a specific client according to this socket

ID no matter where the client process is running. When the client receives a message from

the server through its socket interface, it will make RPC calls to the server to receive event

notifications.

The design is as follows: A client process makes a socket connection with server during

its hand-shake with the server, and the server records the socket ID of this client at the

same time. Whenever an event is detected by the server, according to its event subscribers

(client application ID), the server will send a response to each such subscriber through socket

according to the subscriber socket ID. After the subscriber (a client process) has received this

response, it will make RPC calls to the server to get the event notification (event name and

parameter list). In Sentinel, this approach is used to implement global event detector.

The architecture is shown in Figure 6.

19

5 Extensions to Snoop for Specifying Global Events

To support EC A rules in a distributed environment, Snoop - the event specification language of

Sentinel has been extended to specify global events for event detection. This section introduces the

global event specification in Snoop, and presents the details of preprocessing.

5.1 Global Event Type

Two global event types are supported in Sentinel: global primitive event and global composite

event.

Global primitive event is an event that is defined and detected outside of user application. Any

event, including primitive and global events defined by any other application can be defined as a

global primitive event in the current application. Event name, application name, and host name

are used to compose this global event type specification, and are the only information that needs to

be provided by user applications for this global primitive event detection. The event detection and

network communication details are implemented by the global event detector and are transparent

to the user.

Global composite event is an event that is composed by event operators and at least one of its

constituent event should be a global event. Any event, including primitive events, composite events

and global events can be a constituent of a global composite event. A global composite event can

be detected either at the local site or at the GED. The site of the global composite event detection

is determined at the time of preprocessing events and depends on the global composite event

specification. Each global composite event specification corresponds to an event tree constructed

by the event detector. The details of site selection and event detection are discussed in the following

section.

5.2 Global Event Specification

5.2.1 Global Primitive Event

The global primitive event specification is as follows:

local-event-name = remote-evenLname::host-name—application-name

locaLevent-name is the event name defined by user's application. It can be used as the con-

stituent event name of composite events. remote.evenLname is the event name that is defined in

other application where this event is detected, host-name and application-name denote the name

of the machine and application where this remote event is specified. It is assumed that an event

remote-event-name has been defined and will be detected by the application application-name on

the machine host.name. (If a global event name is misspelled, it will be treated as if that event

will never get detected.) This global primitive event can either be specified as a stand-alone event

definition, as shown above, or it can be used as a constituent of a composite event definition.

20

5.2.2 Global Composite Event

The global composite event specification is similar to local composite event specification except

that at least one of the constituent event must be a global event. This constituent event can be

presented as a global event name or a global primitive event specification.

Below, we present some examples of global event definitions in Snoop:

class STOCK: public REACTIVE {

public:

STOCKO;

int get_total_stock();

event end(el) int buy .stock (int qty);

event begin(e2) int sell_stock(int qty);

event gl = STOCK_e2::sugar__appl;

event g2 = eJBM::manatee__app2;

event g3 = (g2 » STOCK_el::eagle_.app3) * gl;

event g4 = !(gl, g2, g3);

rule grl[gl, condl, test-actionl, RECENT]

rule gr2[g3, cond2, test_action2, RECENT]

rule gr3[g4, cond3, test_action3, RECENT]

Event el is a local primitive event which occurs after the method buystock is executed. Event

e2 is a local primitive event that is triggered before the method sellstock is executed. Event gl is a

global primitive event that is triggered when the event STOCK-e2 is detected by application appl

on sugar site. Event g2 is a global primitive event that raises when the event eJBM is signaled by

application app2 on site manatee. Event g3 is a global composite event specified by operator (>>)

and ("). Its constituent events are composed with global composite event gl, global primitive

event name g2, and global primitive event specification: STOCK^el::eagle..app3. Event g4 denotes

a global composite event with "!" operator. Three rules grl, gr2, grS are defined for events gl, g3,

9l
Since the above events are declared at the class level, they are detected for each instance of

class STOCK.

21

(A)

f G_OR)

G5 L4)

\

f L2) (3
(C)

Figure 7: A Global event tree (1)

5.3 Alternatives For Global Event Detection

In Sentinel, global primitive events are detected by the corresponding remote sites, and the event

notifications are sent to the GED if the event is used by other applications. Unlike a global primitive

event, the global composite event detection is more complicated since the constituent events can

be either local or global. A composite event can be detected either at the local site or by the

GED server. The appropriate choice of global event detecting site plays a significant role in system

performance since it involves network communication. Based on the event detection site, two

alternatives are discussed, and the following examples (shown in Figure 7(A)) is used to compare

these two approaches.

In the example, a global event G.AND is composed by a global composite event G-OR and a

local event ee. Event G.OR is defined on a remote site and is composed of four local events: (LI,

L2, L3, L4) with OR operator.

22

(hl) ■ (hm)' (GIJ [GnJ

Figure 8: A Global event tree (2)

1. Global composite event is detected at the GED

In this case, the whole global composite event tree is sent to the GED server. Every leaf node

of the event tree is to be detected by its corresponding site and the notification will be sent

from this site to the GED after this event is detected. For the above example, the number of

communications between node sites and the server is "4", since the event tree has four leaf

nodes (corresponding to primitive events). When a global composite event (the root node

of the event tree) is signaled by the GED, an event notification will be sent from the server

to the corresponding local site where this event tree is sent from. So, the total number of

communication between clients and the server is: 4 + 1 = 5.

To consider the general case, we introduce a global composite event tree which is shown in

figure 8.

G is a constituent event of global event E and is defined by n local events Gl ... Gn on

a remote site. Ll...Lm are other constituent events of event E. Since the whole event tree

is detected by the GED, each leaf node need to send notification to the server when the

corresponding event is detected. The number of messages between clients and the server is:

m + n + 1.

2. Global composite event is detected at the local site

In this case, all the constituent local events of a composite event are detected on its corre-

sponding remote sites. Only when the global composite event is detected, the event notifi-

cation is sent from the remote site to the GED. In the above example, the event subtree for

node G-OR (as shown in Figure 5.1(C)) is detected on the remote site. The event tree sent

to the GED will be like the one shown in Figure 5.1 (B). Since only the node ee and the node

23

G.OR need to send the notification to the GED, the number of communications will be 2 +

1 = 3.

To consider the above general case, the event tree of the constituent event G is detected on

the remote site, the number of messages between clients and the server is: m+l+l=m+

2.

In Sentinel, alternative 2 is used for global composite event detection. It reduces the network

communication overhead and thus improve the system performance.

5.4 Implementation Detail

Global events are related to the event detection from many sites, and involves communication

between client and server. Snoop preprocessor spp generates necessary c++ code for each appli-

cation, and a global event specification file for sharing information between client and the server.

The only thing any application needs to do is to specify the global events according to the SNOOP

syntax. The implementation details are transparent to the user's application. Since composite

events are detected by an event tree (discussed in section 4), snoop preprocessor spp need to create

corresponding messages according to the event definition. In spp, a remote node is generated for a

certain global event and is presented as c++ code which is inserted into user's application source

code. Also, a global event specification file is created for each application. This file will be read

and converted to an event detection graph during run time. This graph will be sent to the GED

server for constructing the global event detection graph on the server site.

Following are C++ codes generated by spp for global event specifications in the above example:

REMOTE *STOCK_gl = new REMOTE("sugar__appl", "STOCK.gl");

REMOTE *STOCK_g2 = new REMOTE("manatee_.app2", "STOCK_g2");

REMOTE *STOCK_g3 = new REMOTE("REMOTE", "G.comp.l");

REMOTE *STOCK.g4 = new REMOTE("REMOTE", "G_comp_2");

The global event specification file is generated by spp as:

0 STOCKLgl 1 * global sugar__appl STOCK_e2 *

0 STOCK_g2 0 * global manatee__app2 eJBM *

0 tmpO 0 * * eagle_.app3 STOCK_el *

2 tmpl 0 * tmp STOCK_g2 tmpO *

1 STOCK_g3 1 * G_comp_l tmpl STOCK_gl *

8 STOCK_g4 1 * G_comp_2 STOCK.gl STOCK.g2 STOCK-g

24

5.4.1 REMOTE Object

For global event detection, a REMOTE class is added to the REACTIVE class hierarchy (the

details are discussed in section 5). Each REMOTE object corresponds to a global event that

will be detected and notified by the GED. In a REMOTE class object, the parameters of the class

constructor are the application ID with the SiteName-ApplicationName format, and an global event

name created by the server. For example, in the REMOTE instance STOCK.gl, the application

ID is sugar..appl, and the event name is STOCK..gl.

Since global event detection involves events from many sites, the server may receive events with

the same name from different sites. To avoid duplicate event names from different sites, a unique

event name should be given to each global event sent to the server. In spp, we rename the global

event name according to its event type. For a global primitive event, the unique event name is

composed by the following format: G-Comp-eventnumber. eventnumber is a sequential number for

each global event sent to the server. It is assigned to global primitive events in the order in which

they are received by the server. Both the client site and the server site keeps this unique event name

for event detection. When a global event is notified to the server, it is sent to the corresponding

client site and notifies the local event using this unique name. Each such object becomes a leaf node

in the global event detection graph. The details of the event graph are discussed in the following

section.

5.4.2 Global Event Specification File

A global event specification file is created for each application. This file contains the information

about global events that are detected by the GED. An event graph is created using this file at run

time, and is sent to the GED for constructing the global event graph on the server site for global

event detection. The event graph sent from local site to the server is composed of event detection

trees. Each tree is related to a global event. A global primitive event is a special tree which has

only one node.

There are two kinds of global primitive events declared in user applications. One is a stand-alone

event definition that will be used by composite events and rule definitions. In the above example,

global primitive event gl is declared and is used by rule definition grl. This stand-alone global

event is related to a REMOTE class object (STOCK.gl in the above example) in local application

and is recorded into the global event specification file with an unique name classname.eventname

(STOCK-gl in the above example). The other kind of global primitive event is the one that is a

component event of a composite event and is defined within the composite event definition. For

example, in the composite event definition: event gS = (g2 » STOCK.el::eagle..app3 ~ el) the

global primitive event STOCK.el::eagle..app3 is a constituent event of the global composite event

g3. Since gS is detected at the server site, this global primitive event notification only needs to be

sent to the server by the application eagle-appS. The local application will not receive this event

25

notification. Thus no REMOTE class instance is created for it. In the event specification file, this

global primitive event is recorded using an unique event name assigned by spp with the format

tmpeventnum (tmpO in the above example), eventnum is the unique sequential number created for

this event. For each global composite event, spp creates a REMOTE instance in the application

and records this event into the event specification file.

The event specification file is used to create an event graph which will be sent to the server by

the user application. Since the GED server builds its event graph according to this file, this file

records all the information that is needed to detect global events.

The format of the global event file is:

operator EventName sendback Jlag AppID CompEventName

constituent_eventnamel constituent_eventname2 constituent_eventname3

operator is an unique number related to an event operator. For example, "1" denotes operator

AND, "2" denotes operator SEQ, "0" denotes a global primitive event, and "8" corresponds to

NOT operator.

EventName is the unique name of a global event assigned by spp. For example, STOCK.gl is

the name for global event gl, and tmpO is the name for global event STOCK.el::eagle—app3.

sendback.flag is the flag which determines whether the notification of this global event will be

sent back to this site from server. The value of the flag is 1 if the global event notification is to be

sent back to this local site after it is fired, otherwise the value is 0. Since some global event, like the

global primitive event tmpO in the above example, is just a constituent part of a composite event

tree, it is not necessary to send it back after it is fired in server. The corresponding sendback.flag

is 0.

AppID is the ID of the current application that generates this event specification file. Since the

application ID is composed with SiteName—AppName, spp cannot get it during the compilation

time. This field will be filled as * temporarily by spp at this time. Later in the run time the value of

this field is assigned by the GED interface of the local application. For example, eagle..Demo will

be assigned for the application Demo running on eagle. AppID is used by the GED to connect to an

application when certain global events are detected and are sent back to this specific application.

CompEventName is the name of a global composite event that is used by the GED. It is created

with the format G_comp_ EvntNum (EvntNum is a sequential number assigned by the server).

Since this field has no meaning for a global primitive event, it will be assigned a * or tmp. In the

above example, G.comp.l is created for global composite event STOCK.gS and tmp is used for

global primitive event tmpl.

constituenLeventnamel,constituent.eventname2 and constituent-eventnameS are used to present

constituent event names for a composite event. Since the maximum number of the constituent

event in a composite event is 3, three fields are used for this purpose. The default value of these

26

fields axe *. For the global primitive event, constituent-eventnamel and constituent.eventname2

are used to denote the application ID and the event name that this global primitive event is

composed of. In the above example, tmpl and STOCK.gl are two constituent events of the global

composite event STOCK.gS. STOCK.gl, STOCK.g2, STOCK.gl are three constituent events of

the global composite event STOCK.gl For event STOCK-gl, corresponding values of these two

fields are sugar—appl and STOCK.e2 which means that the global primitive event STOCK.gl will

be triggered when event STOCK.e2 is detected by application appl running on site sugar.

Since GED builds the global event graph according to the event specification file, each client

needs to send the contents of this file to the server at the beginning of the execution. There are

two ways to transfer the message from a client to the server. One is to send the path and file name

of this global event description file to server. The other way is to read the file in local site, create

the corresponding linked list which contains the global event description, and send this linked list

to the server. The implementation of the first case is simple and easy, yet it will cause problems

for the server to access the file when the client and server are running in different file system. The

second way is much more complicated and difficult to implement, however it is applicable in any

file system. In SENTINEL, we have implemented the second alternative. Then this client/server

model is applicable to an open system environment.

5.4.3 Flags In SPP

Several flags are provided by spp to facililate the use of global event detections and rule executions.

• -s:

Since spp is integrated with OpenOODB preprocessor ppCC, the -s flag indicates to the ppCC

to invoke spp. Any application that uses SNOOP language should use this flag.

-gen, -use:

In spp, an event definition file is created for each application. This file contains all the event

and rule definitions in c++ executable format. This c++ code is inserted into the main

module of an application by spp. Since the main module of an application can exist under a

different path from other modules, it is difficult for the main program to get the event and

rule definition file created from other modules. We use -gen and -use flags to solve this

problem, -gen filename provides ppCC with the file name that contains the event and rule

definition, -use filename provides pp CC with the path and file name that is created by the

-gen flag.

-host, -port, -sg:

These three flags specify the host name, port number and storage group of the application.

They are used by OpenOODB to define an OODB object instance to name the method

27

signature file as HOST.PORT.SG.signature and static event file as HOSTJPORTJIG.static.

Since the host name, port number and storage group number are unique for any application,

the name of the signature and static files are unique.

• -GS, -GD, -GF:

These three flags are for global event specification file. Global event specification file is the

file that contains the global event information for the server to build the global event graph.

Every local application that contains global event definitions will generate this file. Since

several stand-alone modules in one application can contain their own global event definitions,

each module can have its own global event specification file. To integrate these global event

files from different modules into one, we need to use some flags. -GF filename defines the

global event specification file name that is generated by the application. This flag is used

for each module that contains global event definition using SNOOP language. -GS filename

provides the path and name of the event specification file generated by -GF flag. -GD

filename defines the final global event specification file used by the application. This file is

used by the main module to create the linked list of global event information before sending

it to the server to build the event graph.

5.4.4 Integrating SPP With ppCC

ppCC is the preprocessor of OpenOODB. It preprocesses class definitions and extends them with

member functions for use by the OpenOODB system. In SENTINEL, spp is integrated with ppCC

to preprocess SNOOP language. The sequence of executions of integrated ppCC is as follows:

First, ppCC calls the c++ preprocessor (CC with -E flag) for macro expansion. Then it calls

spp if a -s flag is specified. After that, OpenOODB interpreter ccpp is invoked to extend class

definitions, and the output file is sent to the c++ compiler CC to create the final object file.

28

6 Implementation of Global Event Detector

In section 4, we analyzed the architecture alternatives, and chose the client/server model to imple-

ment the global event detector. In this section, an overview of the local event detector is briefly

introduced before describing the GED in detail. This includes global event detection requirements,

extensions to the Local Event Detector (LED) for supporting global event detection, and imple-

mentation details of GED.

6.1 Local Event Detector

LED (Local Event Detector) is linked with an application for detecting local events. The architec-

ture of LED is illustrated in Figure 9

An event graph is used for local event detection. The REACTIVE class is the class that contains

procedures for dealing with the event and rule specification. As we mentioned before, every method

of a REACTIVE class is a potential primitive event. EVNT_LIST is a linked list of EVNT_NODE.

Every EVNTJNTODE corresponds to a unique REACTIVE object. EVNT_NODE has a begin.of

event list and a end-of event list. The begin.of list contains methods defined inside its corresponding

REACTIVE class that will raise a primitive event before this method is executed. The end.of list

records those methods that will raise a primitive event after this method is processed. Each node

of the two event list points to a primitive event, that is, a leaf node of the event graph, from which

composite events are constructed from. Each node of the event graph has an event subscriber and

a rule subscriber which record the related rules and composite events. Whenever a primitive event

is raised, it will notify its subscribers, which are their parent nodes. The parent nodes (composite

events) will maintain the occurrence of its constituent event occurrences as part of their parameter

lists which are stored separately for each context relevant to the node. If the composite event

occurs by the current notification, it is detected and notified to its subscribers. The parameter list

is recomputed to include the new occurrences. For details of the LED, refer to [13].

6.2 Global Event Detection Requirements

6.2.1 Distribution Of Event Detection

Since global event detection involves events from many sites, distributing event detection improves

reliability and reduces message passing overhead. In SENTINEL, a LED (Local Event Detector) is

part of each site, and a GED (Global Event Detector) is installed on the server. According to the

global event specification and detection algorithms, some global events are detected on the client

sites whereas others are detected by the server. Sharing the event detection between client and

server decreases the communication overhead and event detection burden.

29

<

V
\

c
0)

— — — _

A- /

a

bo
a>

-XL

•6-

•rt
W

-H
K a

Figure 9: Architecture of Local Event Detector (LED)
30

6.2.2 Provide Event Detection Functionality To The User Application

Global event detection is the only task performed at the server site. Server accepts messages from

clients, invokes the corresponding service, and sends the message back to clients. This allows the

processes on the server to run as either a foreground or the a background job.

A Local event detector at the client site is integrated into the local application. It is imple-

mented as a static library and provides the function calls for event detection. Since LED needs

to communicate with the GED in the server, it should be running as a local daemon. Moreover,

as an LED needs to communicate with local application to exchange messages, both LED and the

local process should share the same address space. Forking a subprocess for LED does not meet

this requirement. A light weight process (or a thread) is a better alternative to accommodate this

goal. Multiple threads execute as concurrent execution streams sharing the same address space

performing tasks associated with the desired services.

6.2.3 Global Event Detection Site

Since the communication overhead between client and server has a significant effect in system

performance, it is very important to decide the place where global events are detected. Two

approaches are discussed here.

• All global composite events are detected in local site.

In this approach, constituent global primitive event of a global composite event are detected

outside of the local application and are notified by the server. For each such global primitive

event, the server needs to send an event detection request to its corresponding application,

receives the event notification when the event is detected, and finally notifies to this local

process. Since every global primitive event has to go through this process, the communication

overhead is significant in this approach.

• Client and server share global composite event detection

In this approach, global composite events are detected by either client application or the

server. The place where a global composite event is detected is determined by the event

expression. When a global composite event is to be detected by the GED, an event tree of

this composite event is sent to the server by the client application when a client communicates

with the server for the first time, and is to be used to update the event graph in the server site

for global event detection. Only when a global event is detected by the server will the server

send the notification back to the corresponding client applications. To avoid detecting and

notifying each global primitive event by the server, this approach decreases the communication

overhead substantially.

31

6.3 Extensions To Local Event Detector

Each client has a local event detector (LED) which is composed of an event detection graph. In

addition to detecting local events, LED sends the local event notification to the server whenever this

event is raised, and receives the event notification from the server when a global event is detected

by the server. To accommodate the above requirement, LED is modified to include extensions to

event class hierarchy.

6.3.1 Extension Of Event Class Hierarchy

To accommodate global events, a REMOTE class is added to the class hierarchy in LED. REMOTE

class is a subclass of the EVENT class, and represents global event objects. Each global event

that is detected outside of the application and notified from the server is an object instance of

REMOTE class. There are two attributes of this REMOTE class: AppJD and instance-number.

According to the place where a global event is detected, the value of AppJD attribute is assigned

in a different way. If a global event is detected outside of the application process, App.ID is the ID

of an application where this global event is defined and detected. An application ID is composed

in the form of SiteName—AppName which denotes application AppName running on the machine

SiteName. If a global event is detected inside the application, the value of AppJD is a reserved

word REMOTE, which is to differentiate the global event instance from local event instance. The

App-ID attribute combined with the event-name (an attribute of NOTIFIABLE class) make a

unique ID for each global event, instance number is the occurrence number of this global event

instance.

The extended class hierarchy is illustrated in Figure 10

6.3.2 Extended Local Event Detector (ELED)

The architecture of ELED is illustrated in Figure 11

Extended Local Event Detector (ELED) is an extension to LED to detect global composite

events in the local site. Similar to LED, ELED is an instance of EVNTJLIST class that records

information of all the global event instances. Each node of the EVNT_LIST linked list is related

to a unique application and contains all the global event instances that are detected outside of

this application. An event linked list which is an ELIST class instance is related to each node

and contains all of the global event instances information that belongs to this specific application.

Each node of such ELIST instance corresponds to a REMOTE node and become a leaf node of the

event graph. A composite event can be constructed from REMOTE nodes, Primitive Event nodes,

and other composite event nodes. Whenever a global event is detected outside of the application, a

GED Interface will receive the event notification along with application ID and event parameter list

from the server and further notifies ELED. ELED then determines the specific EVNT_LIST node

according to the application ID and propagates the event notification to its corresponding REMOTE

32

Figure 10: Event Class Hierarchy of LED

Figure 11: Architecture of Extended Local Event Detector (ELED)

33

event instance. According to its event subscribers and rule subscribers, a notified REMOTE event

instance will further notify related composite events, that is, its parent nodes.

6.3.3 GED Interface

To extend LED for supporting global event detection, a network interface is needed to exchange

messages between the client application and the GED. A GED Interface on the client site is im-

plemented to communicate with the server. It generates an event tree list which contains global

composite events that are to be detected by the server, sends this event tree list to the server,

and receives the global event notifications from the server. In order to support different applica-

tions running on the same machine, a socket connection is built between client and server, and the

unique socket address is recorded by the server for later message reply. In addition to the socket

connection, a client application makes remote procedure calls to the server to request global event

detection and receive event notifications from the GED.

6.3.4 Event Tree Propagation By Client

To decrease the communication overhead between a client and the server, we should send the

composite event tree only if the global event nodes inside this tree are other than local event nodes.

Since the composite event detection tree is generated according to the SNOOP operator semantics,

one parent node can have at most three children. As a result, a sub-tree with less than or equal

to two children is sent to the server only when at least one of the child event is to be detected by

the server, a sub-tree with less than or equal to three children is sent to the server only when at

least two of the children are to be detected at the server. According to the event tree sent from a

client, the server builds the global event graph. The sub event trees sent to the server is created

by spp when it parses and analyzes the global event definition in an application. A global event

specification file that contains the global event tree information is created by spp. Global event

trees are created from the global event specification file at run time and are sent to the server

during the first handshake between a client and the server.

6.4 Implementation of GED

6.4.1 Client/Server Model

GED (Global Event Detector) is implemented using client/server module as illustrated in Figure

12
GED is installed on server and provides services to the clients by detecting global events. When

a client sends requests to the server, the server sends the requirements to the local service, processes

it, and sends the necessary information back to the client. In this way, clients communicate with

each other through server in a transparent way.

34

LED

CLIENT

LED

CLIENT

/

LED

CLIENT CLIENT

Figure 12: A Client-Server Architecture of GED

6.4.2 Architecture of Global Event Detector

Figure 13 illustrates the architecture of the Global Event Detector.

On every local site, local events are detected by the Local Event Detector, and a client applica-

tion communicates with the server through a GED interface. In order to receive detections of global

events, each client should register and send the necessary information (global event specification)

to the server at the beginning of the process. In addition to sending an event occurrences to a local

event manager (LED) for composite event detection and rule execution of ECA rules, local events

need to be sent to the GED for global event detection according to the global event specification.

The registration and local event notification to the server are managed by a GED interface which

is an extension to LED.

On the server site, a socket interface is implemented to receive the request and send the reply

message to clients. When the server receives the request from clients, it invokes corresponding

services, and begins global event detection. Whenever a global event is detected by the server using

the event's subscribers, the server will notify the corresponding clients along with event names and

parameter lists through the socket interface.

6.4.3 Data Structures Of Global Event Detector

The data structure of GED is illustrated in Figure 14

At each client site, an Extended Local Event Detector (ELED) combined with LED are used

to detect local and global events. A GED Interface that is implemented by socket mechanism is

established to communicate with the GED server which includes sending event detection requests

and receiving global event notifications. On the server site, Global Event Detector receives requests

from client applications and records the client socket ID and application ID. It also receives event

trees from clients and builds a global event graph. Whenever a global event is detected, it will

propagate event notification to its parent nodes according to its subscribers, compute its param-

35

GED SERVER

Global Event Detection

Receive/Reply

ImglttmritloB local tvmnt
notification

global mwnt
notification

GED Interface

•rant r*li»d

Local Event Detection

Extended LED

Client Application

Figure 13: Global Event Detector Model

eter linked list, and send this notification along with its parameter list back to specific clients as

appropriate. When a parent receives an event notification from its child (constituent) event, it will

record this event instance along with its parameter list for further event detection.

6.4.4 Class Hierarchy In The Global Event Detector (GED)

As shown in Figure 15, the class hierarchy of GED is similar to that of LED.

A PRIMITIVE class in LED specifies primitive event objects that is defined by method signa-

tures inside this application. Since global primitive events denote external events that are detected

outside of the local application, the PRIMITIVE class is not useful anymore. Instead, a GLOBAL

class is defined to represent the global primitive event objects. Three attributes are defined inside

the GLOBAL class: sendsname, send.ename, event.no. sendsname denotes the application ID

that this event instance needs to be notified by the server after it is raised, send-ename is the

name of this event that application sendsname uses. It has the same value of ename attribute of a

REMOTE class instance which is related to this global primitive event in application sendsname.

event.no denotes the instance number of the occurrence of this event. To capture the global event

features, two attributes are added to the NOTIFIABLE class: site and send-back, site attribute

specifies the application ID where this event is defined and detected, send-back is a flag to indi-

cate whether this event notification needs to be sent to any applications by the server after it is

detected. Because of the time delays associate with communication and network failures, "P" and

"P*" operators are not supported by GED.

36

^ fr
I I .I.T.T I «T.TMI l~*"f~El,TST I ELIsd T 1 IKTITSTUUSX

_^ ,^ „ET
i HT.TfiT I l~»^ I »T.TST II"" *| I EETSTZE!

Event Subscriber Link List Rule Subscriber Link List o
Figure 14: Data Structure of Global Event Detector

6.4.5 Event Graph

Global events are detected on the server using a event graph. An event tree is created for each

composite event and these trees are merged to form an event graph for detecting a set of composite

events. This will avoid the detection of common sub-events multiple times thereby reducing storage

requirements. The leaf nodes are made of global primitive events, whereas the non-leaf nodes

represent global composite events. For each node in the event graph, there is an event subscriber

linked list containing all the composite events that use this event as its constituent one. An event

node has a pointer to its subscriber which becomes its parent node. Whenever a global primitive

event is detected, it will propagate the event notification to its subscribers, that is, its parent nodes.

Event occurrences flow upwards as in a data-flow computation. The parent nodes maintain the

occurrence of its constituent events along with their parameter lists which are stored separately for

37

NOTIFIABLE

EVENT

[GLOBAL AND OR SEQ NOT PLUS

Figure 15: GED Class Hierarchy

each context set to the node. If the composite event occurs by the last notification, it is detected and

further propogates to its subscribers. Each time an event is raised, it will check its "send_back" flag.

If the "send_back" flag is true, the server will send this event notification to a specific application

according to this event "site" attribute.

An event graph example is illustrated in Figure 16. Global primitive events Gl, G2, G3,

Gl CGI) (G3J (G4) (G5

Figure 16: An Event Graph Example

G4, G5 are represented to be leaf nodes in the event graph. Four global composite events are

constructed using these leaf nodes with event operators (AND, OR, SEQ, PLUS). Whenever each

global primitive event is signaled, it will propagate event notification to its parent nodes (sub-

scribers) immediately, and continue this notification upwards as appropriate, computation.

6.4.6 Global Event Detector

GED is composed by a EVNTJLIST class instance. Each remote site that is to participate in global

event detection needs to register to the GED on the server, and GED creates a EVNTJMODE object

for each such site. For each EVNT_NODE class object, there is a event list that records global

events being detected and sent from this site. Each node in this event list is related to a leaf node

of the global event graph. A composite event is constructed from these leaf nodes, and using them,

38

additional composite events are constructed, thus creating an event graph.

• Event nodes in event graph

Each global event sent from client corresponds to a node in the event graph. A Global

primitive event corresponds to a leaf node whereas a global composite event corresponds to

an internal node. Each node has an event subscriber list and a site subscriber list.

The event subscriber list records composite events that are related to this global event. Each

node has a pointer to each of its subscribers . Thus each subscriber of a global event becomes

one of its parent node that the event tree is built from.

The site subscriber list of a global event node is a list of sites that are interested in this event.

It records the site name and address. When a global event is fired, it checks its site subscriber

list, and sends notification to each site on their list.

• Global event detection

When a global event is signaled from a remote site and sent to the server, it is related

to the corresponding SITE class link node, traverses this node's event list, identifies the

corresponding leaf node of the event detection graph, and broadcasts the notification to its

event subscribers immediately. It also goes through its site subscribers, sends the notification

and parameter lists back to local site. When the event subscribers of this global event receive

the notification from their child nodes, they either record this event and wait for further

notification, or broadcast the notification to their event subscribers and site subscribers if the

firing condition is met.

6.4.7 Communication Between A Client And The Server

Since global event detection is distributed between clients and their server, the communication

between client and server is important. There are four types of messages passed between client and

server.

• Global event detection request from a client to the server.

This is done during the handshake between a client and the server. The request includes

global events that need to be detected by the server. The global event graph in the server is

constructed based upon these event trees sent by a client.

A event name list from server to client.

This event name list contains all the events that need to be detected in this site and sent to

the server after this event has occurred.

As mentioned earlier, instead of propagating every event from a local site, only those events

that are used by other sites need to be notified to the server. A global event name table in each

39

local site is used to record such event names. Whenever a new client makes a connection to

the server, the global event name table on related local sites is updated dynamically according

to the name list sent from the server.

• Event notification from client to server.

When a local event is signaled, in addition to notifying the LED, it will check the global event

name table and sends the notification message to the server if it needs to.

• Event notification from server to client.

Whenever a global event is detected in the server, it will check its site subscribers, and sends

the notification message back to these sites.

6.4.8 Implementation

To satisfy the client/server model of Global Event Detector, RPC is used as the programming tool

in SENTINEL. GED provides services to client applications for global event detection.

Four services are implemented on the server side to meet this requirement.

• Global_event_registration

During the handshake with the server, a client calls this global_event_ registration service to

register all the global events that need to be detected by and notified from the server. Event

trees are sent to the server using which the global event graph on the server site is constructed

and updated.

• Local_event_notification

Whenever a local event is detected at a client site, it will check the global event name table,

and calls the local_event_notification service if this event need to report its notification to the

server according to this event name table. When the server receives the notification, it will

send it to the GED immediately for further global event detection.

• Global_event_nameJist_update

Whenever a client is up and connect to the server, server will create and update a global

event name list for each local site. Then it calls this

global_event_name_list_updating service to update the global event name table in related

clients.

• Global_event_notification

Whenever a global event is detected on the server, it will check its site subscribers, and call

this global_event_notification service for each subscriber. After a related client receives this

global event notification, it will send the notification to LED for further event detection.

40

Since a client application may come up anytime, the server should send the client appropriate

messages no matter when the client communicate with it. The event name list for this client should

be stored by the server until the client gets it. So does event notifications. Global events required by

this client may occur when the client is not running (the client either exits normally or is terminated

by the interrupt). The server keeps all event notifications for this client application until the client

restores its execution again. Since the client socket JD recorded by the server changes when a client

is terminated abnormally and comes up later, the server should keep the updated socket address

for this client.

In GED, When a client connects to the server, the server calls following procedures:

• Check the client socket address table to update the socket address for this client.

• Check the event name linked list to see if there are events that defined by the client are

required the other applications. If it does, the server will send this event name linked list to

this client and delete this linked list. The client process then updates its local event name

linked list according to the messages it received.

• Check the event notification linked list. If there are global events that occurred when the

client was not running, the server will send these notifications (as a linked list) to the client

process and then delete them from the linked list. This avoids loss of events provided that

the server is always alive.

41

7 Conclusions and Future Work

7.1 Conclusions

This report presents an approach to monitor events in a distributed database environment. In

earlier work, an event specification language Snoop, a Snoop preprocessor spp, and a local event

detector were developed as part of Sentinel to define and detect events in a single address space. To

monitor the event behavior in a distributed database system, a global event detector mechanism for

global event detection, and an extension to Snoop language for global event definition are needed

to meet this requirement.

This report proposes an approach to event-driven monitoring of distributed systems which

includes the extension of Snoop and spp to support global event definition and implementation

of a global event detector to detect events spanning several applications. Section 1 and section 2

describe recent work on active database management systems . Most of the earlier work do not

address event specification outside of their address space.Rule cannot be specified on events that

involve multiple applications. That is, one of them support processing ECA rules in a distributed

environment.

Section 3 provides an overview of Snoop language and its preprocessor spp.

Section 5 presents extensions to Snoop and spp to support global event definition. A stand-alone

global event definition is added to Snoop without modifying the original BNF. Snoop preprocessor

spp is modified to support processing global event specifications and create a global event specifi-

cation file for communication purposes between a client and the server.

In section 4, several alternative architectures of Global Event Detector are presented and com-

pared, and a client/server model is introduced. In this client/server architecture, a GED server

receives requests from client applications and provides services (RPC calls) to detect global event

and sends event notification back to the client whenever an global event is detected. This model

supports several applications running on the same machine as well as those running on the different

machine.

The implementation details of GED is introduced in section 6. In client application, an Extended

Local Event Detector (ELED) combined with LED and a GED Interface is used to detect events

and communicate with the GED. A Global Event Detector is implemented in the server to receive

event detection requests from client applications, detect global events using an event detection

graph, and to send the event notification back to clients.

7.2 Future Work

• Persist events and retrieve them as needed to support client failure. This approach avoids

lose of events and uses small memory spaces for event detection. Client failures can be better

tolerated.

42

• Define rules at the GED through an interface. This can be used for propagating event

notifications from one application to another. Updating data across databases can be realized

in this approach.

• Use of a distributed transparent mechanism such as CORBA for generalizing the concept

proposed in this report .

• Use of operator P* (as well as A and A*) at the server to propagate information from one

client to the other. This can be used for asynchronous transfer of data, update propagation

etc.

43

References

[1] U. Dayal, B. Blaustein, and A.P. Buchmann. The HiPAC project: Combining active

databases and timing constraints. SIGMOD RECORD, 17(1), March 1988.

[2] N. H. Gehani, H. V. Jagadish, and 0. Shmueli. COMPOSE: A System For Composite

Event Specification and Detection. Technical report, AT&T Bell Laboratories, Murray

Hill, NJ, December 1992.

[3] 0. Diaz, N. Paton, and P. Gray. Rule Management in Object-Oriented Databases: A

Unified Approach. In Proceedings 17th International Conference on Very Large Data

Bases, Barcelona (Catalonia), Spain, Sept. 1991.

[4] S. Gatziu, K.R. Dittrich. Samos: An active object-oriented database system.. IEEE

Quarterly Bulletin on Data Engineering, March 1993.

[5] R. Orfali, D. Harkey, and J. Edward. The Essential Distributed Objects Survival Guide.

John Wiley & Sons, Inc., NJ, 1996.

[6] Object Management Group, Framingham, MA. CORBAServices: Common Object

Services Specification vl.O. March 1995.

[7] S. Schwiderski. Monitoring the Behaviour of Distributed Systems. Ph.D thesis, Uni-

versity of Cambridge, London, 1996.

[8] D. Mishra. SNOOP: An Event Specification Language for Active Databases. Master's

thesis, University of Florida, Gainesville, 1991.

[9] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language

for Active Databases. Data and Knowledge Engineering, 14(10):l-26, October 1994.

[10] S. Chakravarthy and D. Mishra. Towards an Expressive Event Specification Language

for Active Databases. In Proceedings of the 5th International Hong Kong Computer

Society Database Workshop on Next Generation Database Systems, Kowloon Shangri-

La, Hong Kong, February 1994. (Invited Paper).

[11] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for

Object-Oriented Databases. In Proceedings, International Conference on Management

of Data, Washington, D.C., pages 99-108, May 1993.

[12] V. Krishnaprasad. Event Detection for Supporting Active Capability in an OODBMS:

Semantics, Architecture, and Implementation. Master's thesis, University of Florida,

Gainesville, 1994.

44

[13] L. Hyesun. Support for Temporal Events in Sentinel: Design, Implementation, and

Preprocessing. Master's thesis, University of Florida, Gainesville, 1996.

«U.S. GOVERNMENT PRINTING OFFICE: 1999-610-130-81087

45

MISSION
OF

ÄFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

