/}QfOID-—%q

A Serial Communication Interface for
Data Acquisition Instrumentation in a

Wind Tunnel

M. Spataro and S. Kent

DSTO-TR-0740

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

DEPARTMENT’OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

A Serial Communication Interface for Data
Acquisition Instrumentation in a Wind Tunnel

M. Spataro and S. Kent

Air Operations Division
Aeronautical and Maritime Research Laboratory

DSTO-TR-0740

ABSTRACT

The Low Speed Wind Tunnel (LSWT) at the Aeronautical and Maritime Research
Laboratory (AMRL) has used a proprietary Bidirectional Parallel Interface (BPI) bus for
data collection from instrumentation since 1989. As part of the ongoing development
of the LSWT data acquisition system it was decided that a more reliable and faster
communication scheme was required. This report describes the unique system of
hardware and software developed to enable the VMEbus-based instrumentation
modules to communicate with a Host computer over an ethernet network.

ﬁ9990308163

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
¢

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

|DTIC QUALITY LscpRoTED 1

AQFa7-06- [l1aS

Published by

DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victorin 3001 Australia

Telephone: (03) 9626 7000

Fax: (03) 9626 7999

© Commonwealth of Australia 1998
AR-010-669

November 1998

APPROVED FOR PUBLIC RELEASE

A Serial Communication Interface for Data
Acquisition Instrumentation in a Wind Tunnel

Executive Summary

The Low Speed Wind Tunnel (LSWT) at the Aeronautical and Maritime Research
Laboratory (AMRL) has used a proprietary Bidirectional Parallel Interface (BPI) bus for
data collection from instrumentation since 1989. As part of the ongoing development
of the LSWT data acquisition system it was decided that a more reliable and faster
communication scheme was required.

After cost and development times were considered, an ethernet network, using a Unix-
based server as the Host computer to collect data, was selected as a replacement for the
BPIL A number of the instrumentation modules in the LSWT are based on the VMEbus
and have no ethernet capability. It was originally intended to connect these modules
directly to the ethernet network, but this scheme depended on the availability of a
VMEDbus ethernet adapter that could be driven by low level software, without the need
for a disk-based operating system. The development of such a system was not possible
within the given time restraints, so the concept of a personal computer (PC) acting as a
bridge between the ethernet and the VMEbus modules using an RS-232 serial link to
each module, was developed.

The bridge PC is known as the “Serial Hub”, and allows the VMEbus modules to
appear to be on the network, with their own IP number and the ability to receive and
transmit both narrowcast and broadcast ethernet messages.

This system has proved to be a reliable and versatile communications scheme that is
capable of sustaining data transfer rates considerably higher than the original BPI bus.

Authors

Michael Spataro
Air Operations Division

Michael Spataro completed an Honors degree in Electrical and
Computer Systems Engineering at Monash University in 1988.
He has been employed at the Aeronautical and Maritime Research
Laboratory since 1990. He has worked in the areas of electronic
design, process control, and software development before becoming
involved in the LSWT data acquisition upgrade project in 1996.

Steven Kent
Air Operations Division

Steven Kent is a Senior Technical Officer who has completed both
a Certificate of Technology and an Associate Diploma in
Electronics Engineering. He has worked for Air Operations
Division for over 11 years and has gained extensive experience in
data acquisition applications including hardware and software
development for wind tunnel systems as well as field trial work
involving Royal Australian Navy helicopters and ships. He has
also been involved in the development, construction and
maintenance of systems for flight simulation and operational
research.

Contents

1. INTRODUCTION

2. SYSTEM OUTLINE

2.1 Introduction

2.2 Serial Communications

2.3 Serial Hub

2.4 VMEbus Modules

2.5 VMEbus Module Streaming Modes
2.6 Inclinometer Module

NG R W W

3. SERIAL HUB SOFTWARE

3.1 Introduction

3.2 Serial Communications Interface

3.3 Database Software

3.4 Ethernet Interface Software

3.5 Program Startup
3.6 Inclinometer Module

3.7 Building Serhub.exe

4. VMEBUS MODULE MODIFICATIONS

4.1 Introduction

4.2 Hardware Modifications

421 Modifications to DUART card.......ccecvveeveeenveresreesrereserseenees
4.2.2 Modifications to Module Hardware.......ocoomververeevrvirveennnnes

4.3 Software Modifications

..............................

..............................

4.3.1 INEEITUPLS ...cvurrirrirrtiretccrrni s easse s ssenes
4.3.2 DUART Setup Procedureenneriennrceninisieensneneennes

4.4 Serial Communication Routines

..............................

..............................

441 Transmit ROULIEueeeeeeeeeeeeitieenectessaeeeesetssssenssesssosssossesees
442 ReCeIVE ROULINE....ueeeevcenerceirreenseeeineeesessersesssresesseessssseosssensossas

4.5 Data Streaming

..............................

..............................

4.6 Vector Additions And Modifications

o

SYSTEM PERFORMANCE

6. CONCLUSION

7. ACKNOWLEDGEMENTS

8. REFERENCES

APPENDIX A

APPENDIX B

et e
OO WVW®WIN\

10

11
11
11
11
11
12
12
12
13
13
13
14
15

16

16

16

17

18

DSTO-TR-0740

1. Introduction

The Low Speed Wind Tunnel (LSWT) at the Aeronautical and Maritime Research
Laboratory (AMRL) has used a proprietary Bidirectional Parallel Interface (BPI) bus
[Ref. 1] for data collection from instrumentation since 1989. As part of the ongoing
development of the LSWT data acquisition system it was decided that a more reliable
and faster communication scheme was needed. Several alternatives were considered
[Ref. 2], including “FieldBus”, GPIB (IEEE-488), various network options, and shared
memory. After cost and development times were considered, an ethernet network,
using a Unix-based server as the Host computer (designated Bernoulli [Ref. 3]) to
collect data, was selected as a replacement for the BPL

A number of the instrumentation modules in the LSWT are based on the VMEbus [Ref.
4]. Each module is controlled by a Motorola MC68000 microprocessor running
proprietary assembly language software. It was originally intended to connect these
modules directly to the ethernet network. This scheme depended on the availability of
a VMEbus ethernet adapter that could be driven by low level software, without the
need for a disk-based operating system. Extensive evaluation of an externally sourced
VMEbus-based ethernet adapter proved that this option was not possible within
reasonable time constraints. As an alternative, the concept of a personal computer (PC)
(Section 2.3) acting as a bridge between the ethernet and the VMEbus modules using
an R5-232 serial link to each module, was developed. The bridge PC is known as the
“Serial Hub”, and the unique system it uses to communicate with the VMEbus
modules is described in the following section.

2. System Outline

2.1 Introduction

The instrumentation system in the LSWT communicates with the Host computer via
an ethernet network. The VMEbus-based instrumentation modules, which have no
ethernet capability, use a serial communications link to pass data to the Serial Hub.
The Serial Hub allows the VMEbus modules to appear to be on the network, with their
own IP number and the ability to receive and transmit both narrowcast and broadcast
ethernet messages (Figure 1).

The communications scheme implemented allows data flow to be driven by either the
VMEbus modules or the Host. Data from the modules is stored by the Serial Hub,
which then transmits an ethernet packet to the Host computer when a complete
“frame” has been received. Two modes are defined, one allowing the Host computer to
set up module parameters and the other allowing modules to generate a stream of data
which the Serial Hub sends to the Host computer.

DSTO-TR-0740

PC module 1 PC module 2 etc...
(] []

Host Computer

__

—

| LSWT etgemet network

iI0—

Serial Communication Network =

VMEbus Modules ¥

AC Strain Gauge 1 (=—=F—

AC Strain Gauge 2 [E_‘_‘

DC Strain Gauge 1 E“j

Serial Hub PC

¥ VMEbus Modules

—E Model Attitude

—'—E] Model Actuator

:]?— Inclinometer

DC Strain Gauge 2 [E}

Figure 1: LSWT Ethernet and Serial networks.

l-_"r_—__l Calibration Rig

Ethernet packets passed between the Serial Hub and the Host computer are in the
User Datagram Protocol (UDP) format [Ref. 5]. The VMEbus modules each have an IP
number assigned to them (declared in a series of .INI files). The Serial Hub accepts
packets directed at these IP numbers, and converts the messages into a format that can

be transmitted to the modules.

DSTO-TR-0740

2.2 Serial Communications

The requirements of the serial interface between the Serial Hub and the VMEbus
modules are as follows:

e the Host computer may send commands and setup parameters to the modules; and
¢ the module may send data via ethernet packets to the Host computer.

The serial interface scheme is based on packets 5 bytes in length, which are passed at
38400 baud over an RS-232 link in the following format:

byte: 1 2 3 4 5
char: $ # vector dHi dlo

The first two characters form the header. The third character, known as the ‘vector’, .
identifies the data item that follows in the next two bytes. Both the Serial Hub and the
VMEbus modules send packets in this format over the serial link.

Data in the VMEbus modules are organised as 16 bit words referenced by an 8 bit
vector. The valid vectors range from 0x60 (hexadecimal) to 0xFF, where the odd
vectors are used for “write” operations, and the even vectors for “read” operations.
Each module also reserves one vector (0x62) to allow access to an identification string,
which contains the module’s name and software version. This method of arranging the
data, which will be referred to later as a “database”, was retained from the original BPI
data bus system.

2.3 Serial Hub

The Serial Hub is a PC using an Intel Pentium processor running at 133 MHz, and is
fitted with a 3Com Etherlink III network card and a Hostess550 eight port RS-232 serial
adapter card. The software is written in Borland C++ V4.5 and runs under DOS using
On Time RTKernel V4.5 [Ref. 6]. The ethernet and database software is based on code
described in Ref. 5. This code was augmented with class oriented modules to drive the
serial communication ports, and compiled to produce the executable code
SERHUB.EXE.

On power up, the PC will load the “packet driver” (driver for the ethernet card), before
using FTP to copy up to eight setup (.INI) files from the Host computer. Following this,
it will change directory to C:\LSWT\SOFTWARE\SERHUB and run SERHUB.EXE.
This program will search the directory for the files copied from the Host computer,
namely VMECHANX.INI, where x is a number from 1 to 8. These files contain the
setup information for the channel to be established, including network information
(eg. module IP number, Host IP number) and serial communication setup. The port on
the Hostess550 adapter that is assigned to a VMEbus module will correspond to the
number of the .INI file. A “virtual channel” will then exist for each VMEbus module,
which consists of:

¢ an ethernet interface with its own IP number;

DSTO-TR-0740

e a database similar in form to that of the VMEbus modules (which will mirror
certain parts of the module’s database); and
e aserial link to the module.

Information from ethernet packets and serial packets may be displayed on the Serial
Hub screen. User commands to control screen output are single keystroke entry, and
are listed on the top of the screen. This screen output is used mainly for diagnostic
purposes, and is not needed during normal operation where there will be no screen or
keyboard connected to the PC.

The operating system chosen to run on the Serial Hub PC is MS-DOS V6.2, and
SERHUB.EXE is based on a multi-tasking software system called RTKernel (RTK). RTK
was used for the following reasons:

it is a proven real time multi-tasking software;

the authors have previous experience with RTK;

RTK provides support specifically for the Hostess multi-port serial I/O card; and
to be consistent with other PC’s on the LSWT ethernet network.

2.4 VMEDbus Modules

The VMEbus instrumentation modules required extensive changes to both hardware
and software to allow them to communicate with the Serial Hub via a serial
communications link.

The BPI card was replaced with a serial communications card, which was built from a
modified version of an existing AMRL design, and incorporates a Motorola MC68681
dual asynchronous receiver/transmitter (DUART) chip [Ref. 7]. The card uses
interrupts on both data transmit and data receive for service requests to the CPU, and
does not have any memory chips fitted. Removing the BPI card from the VMEbus
modules had the following consequences for the communication scheme:

o the Host computer can no longer assert a hardware reset to the VMEbus modules,
and the modules must be reset manually;

e the modules may no longer flag an error condition to the Host computer using a
hardware signal, and this is replaced by an error word stored in vector 0x60; and

e the interrupt structure on the VMEbus modules is completely rearranged. The
hardware interrupt vectors (data base selection vectors 0x60 to OxFF), which were
previously supplied to the VMEbus by the BPI bus, are now implemented as
software vectors, with the vector being supplied in the serial packet.

Routines were added to the VMEbus module code to facilitate the transmission and
reception of serial packets, allowing data write and read operations to and from the
vectors. The main program loop was modified to incorporate the ability to
continuously self-trigger data acquisition cycles and data streaming cycles
(Section 2.5).

DSTO-TR-0740

New vectors were added to various VMEbus modules, the common ones being:

e 0x60: error code; and
o 0x6f: streaming ON/OFF command.

Details on the hardware and software modifications to the VMEbus modules are given
in Section 4, and a full listing of vector assignments is given in Appendix A.

2.5 VMEbus Module Streaming Modes

The VMEbus modules may be in one of two modes: streaming ON or streaming OFF
(default). Streaming ON implies that the module generates a constant stream of serial
packets, which are arranged in “frames”. Each module has its own frame, which is a
defined sequence of about 6 to 10 packets. Each module repeatedly sends its frame to
the Serial Hub. The data in these packets is stored in the Serial Hub's database and
automatically transmitted on the LSWT ethernet network when the frame is
completed. The Host computer receives these messages and also stores them in a
database. The data streamed by the module is that which is most important to the Host
computer (i.e. a subset of the full amount of data available), and will include error and
status information.

The update rate of the packets streamed from the module to the Serial Hub may be a
maximum of 300 packets per second, which results in a frame rate of about 30 frames
per second (i.e. 300 packets per second with a frame size of 10 packets). This will vary
between modules due to differing frame sizes. The rate of ethernet packet transmission
may be modified by the Host computer to be a fraction of the frame rate [Ref. 5]. The
Host may send information (i.e. “direct write”) to any module one word at a time,
while streaming is ON or OFF. The Serial Hub decodes the ethernet packet, and a
serial packet is sent to the target module. This is used for command purposes, for
example to switch streaming ON or OFF, and to send initialization data to the
modules.

With streaming OFF, no packets are sent by the modules unless requested, thus the
hub sends no ethernet packets. Direct writes may be done, and also “direct reads” may
be executed. A direct read is a four-part operation that takes data from the module to
the host without being stored in the Serial Hub database. It commences with the Serial
Hub decoding an ethernet message and generating a serial packet to send to the
VMEbus module. The module responds with a packet and the hub sends an ethernet
message containing the single piece of response data back to the Host. A variation of
the direct read is the “direct string read”, where the module ID string is read by a
series of single reads initiated by the Serial Hub on request from the Host. When all the
packets have been received from the module, an ethernet packet containing the ID
string is returned to the Host. If the module does not respond to the string read
request, the string returned will be similar to “Module ID string not yet read”. Details
of these command sequences are given in Figure 2.

DSTO-TR-0740

Host Command Serial Hub VME Module

Ethernet Serial
Interface Database Interface

& » -
L » »

Direct Write

A 4

[.
» L

\ 4
‘

A\ 4

N

Y

Read
(streaming ON) <

A
F 3
y

Read
(streaming OFF)
= Direct Read *

A 4

A 4
\ 4
4
h 4
Y

Y
A
F 5
F §
3
3

String Read
(streaming ON) _

v
) 4
4

I S
a8

- >
String Read) T S >
(streaming OFF) @ T
= Direct String Read » : . s
e S >~

A A!
A
A A
A A

3

Streaming ON:
Ethernet packet sent
when "Frame Complete” ™

(2 X
[XX]
3

F 3
@

'y

f 3

¥ 3

. 3

\

vector received l
@ = Data stored "Frame Complete" Packets streamed
vector received from Module

Figure 2: Data and command flow in the Serial Hub

The streaming OFF mode is best used for the setup phase where many single read and
write operations are needed to initialize the VMEbus modules. The streaming ON
mode is best used for the data acquisition phase. The modules are not necessarily all in
the same mode, and may have streaming switched ON and OFF by sending a direct
write command to the appropriate IP address.

After a reset, the default mode is streaming OFF for all the VMEbus modules. The
Serial Hub keeps track of the streaming state of each module, and if the Serial Hub or
any module is reset, only one stream ON or OFF command from the Host is necessary
per module to re-align the two to the same mode. Programming streaming OFF as the

DSTO-TR-0740

default streaming mode allows each module to power up in a known state to ensure
the smooth operation of the Serial Hub.

2.6 Inclinometer Module

The inclinometer module is a VMEbus-based module that is a special case for two
reasons:

e it requires the Serial Hub to perform calculations on the data from the module
before transmitting it to the Host; and

o ethernet packets from this module are not directed at the Host, but are broadcast on
the LSWT dedicated ethernet network, so that the data may be used by other PC
modules.

The inclinometer module takes signals from a 3-axis accelerometer pack, which may be
mounted in a wind tunnel model, from which the Pitch and Roll angles of the model
are calculated. The task of executing the floating point calculations to arrive at Pitch
and Roll values was shifted from the VMEbus module (running an MC68000) to the
Serial Hub (running a Pentium 133 MHz with math co-processor), for increased speed
and easier modification of the conversion constants in the future.

The inclinometer module streams raw accelerometer values to the Serial Hub, which
performs the conversion each time a frame of packets is received. An ethernet packet
that contains both the raw accelerometer values and the calculated values is then
broadcast, allowing both the Host and other PC modules on the network to use the
Pitch and Roll angle values.

The streaming modes for the inclinometer operate in the same way as other VMEbus
modules.

3. Serial Hub Software

3.1 Introduction

The Serial Hub software is written in C++, and consists of three main classes:

e ethernet driver class;
e database class; and
¢ serial communication class.

Figure 2 shows the data flow between these classes.
For each of these classes, an array of nine objects is declared. Eight of these correspond

to a “virtual channel” (Section 2.3), and the ninth is reserved for a “dummy” channel
which allows the Serial Hub to have its own IP number and database. A virtual

DSTO-TR-0740

channel, leading from the ethernet interface, through the database, and to the serial
port, is established by a system of semaphores [Ref. 6] and function calls. Data may be
passed through the virtual channel in either direction.

Files called VMECHANX.INL where x =1 to 8, contain the setup information for the
channel to be established, both network information (eg. module IP number, Host IP
number) and serial communication setup.

3.2 Serial Communications Interface 1

The Serial Hub PC is fitted with a Hostess550 eight port R5232 serial card. Each port
has its own RTKernel task that receives packets, and another task that transmits
packets.

Class CSerial is defined in the file SERIAL.H and implemented in the file SERIAL.CPP.
The main data items declared are:

¢ Port (integer) - the number of the serial port which is linked to this object;

e Baudrate (long int) - pre-defined as 38,400 baud. May be changed using #define
DEFAULTBAUD;

e Trigger (integer) - when streaming mode is ON, a packet received on this serial port
whose vector is equal to the Trigger (also called the “Frame Complete” vector
[Figure 2]) will instigate an ethernet packet being sent to the Host;

e SerialTransmitBox (Mailbox [Ref. 5]) - signals the Serial Transmit task that a packet
is to be constructed and sent; and

e SerialReplyToNetBox (Mailbox) - used by the Serial Receive task to signal the
ethernet interface that a reply packet has been received from the VMEbus module. -
An ethernet packet will be sent as a result.

The main functions defined are:

InitSerialChan() - Declare mailboxes, start tasks, and initialise serial port;
CloseSerialChan() - Terminate tasks;

SerialTransmit() - (not part of CSerial) Each channel starts this function as a task; and
SerialReceiver() - (not part of CSerial) Each channel starts this function as a task.

3.3 Database Software

The Serial Hub implements a database for each channel that reflects the contents of the
VMEbus module’s database. Different types of data exchanges exist, and can be
distinguished from each other in the following way:

o "Direct Write" - the Host computer writes one word to a vector in a VMEbus
module. The data is stored in the Serial Hub database, and a packet containing the
data is sent to the VMEbus module;

! An understanding of RTKernel [Ref. 6] is assumed in this section.

DSTO-TR-0740

¢ "Direct Read" - the Host computer reads one word from a module. This is possible
only when streaming is OFF. Data returned from the module is NOT stored in the
Serial Hub database before being passed on to the Host;

e Streaming mode ON - the Serial Hub receives packets from a module that is
streaming, and stores each packet in its database;

e "Read Module ID String" (only with streaming ON) - the string is read from the
Serial Hub database and returned to the Host; and

¢ "Direct Read Module ID String" (only with streaming OFF) - the string is read one
word at a time from the module, stored in the Serial Hub database, and returned to
the Host.

The database code is based on the database code written for the other LSWT PC
modules, and is detailed in Reference 5. Most of the functions and data items from the
original code are included in the class Cdbase, which is defined in DB_HNDLR.H and
DB_HNDLR.CPP. The database is initiated by calling startUpDataBaseHndlr() for each
channel, which unlike the serial interface controller, creates no RTK tasks. Access to
the database is achieved through one of the two following functions:

o netAccessDataBase() - an ethernet message from the Host computer will prompt a
call to this function, which determines the type of operation required - a direct read,
a direct write, or a database read of a string or a word; or

o moduleAccessDataBase() - each packet received by the serial interface results in a call
to this function. If the packet is received while streaming is ON, the data is stored in
the database. If the packet is received as a result of a direct read (i.e. streaming is
OFF), then it is NOT stored.

3.4 Ethernet Interface Software

The ethernet interface for the Serial Hub is based on code written for the other LSWT
PC modules, and is detailed in Reference 5. The code is essentially unchanged, with
the functions narrowcastLSWT_DataBase() and broadcastLSWT_DataBase() being made
part of Cdbase. The class CEnetChannel has no member functions, and only a few data
members, the most important one being the struct “networkInformation”. The class
definitions are located in ENETDRVR.CPP and ENETCHAN.H.

The main modifications to the original ethernet code involve the ability to service
multiple IP numbers. In the function handleIP(), the address of an incoming packet is
compared with the list of IP addresses of the virtual channels, and a match returns a
pointer to the relevant CEnetChannel object. This CEnetChannel pointer is passed to
various functions, allowing them to access channel specific information. Functions
such as handleUDP(), ipReplyWithModifiedPacket(), and the functions which they
subsequently call, have a CEnetChannel object pointer passed to them.

DSTO-TR-0740

10

3.5 Program Startup

The program’s main() function, found in SERHUB.CPP, commences by calling
processniFile() to read the files VMECHANILINI through to VMECHANOY.INI. The
function getsetup(), found in SETUP.CPP, is used to read a number of parameters at a
time from each file.

Several tasks which drive screen output (such as the error monitor and the serial
receiver) are started before the serial ports, database handlers, and ethernet handler
are initialised. Screen output is disabled by default (for the sake of conserving CPU
time), but can be enabled by an operator striking the “O” key.

The program will then wait to process packets from either the ethernet port or the
serial ports, until it is terminated by an Escape or “Q” character input by an operator
from the keyboard. The ethernet, serial and database handlers will then be shut down,
and the screen output tasks terminated.

3.6 Inclinometer Module

As described in Section 2.6, the Inclinometer module is a special case. The Pitch and
Roll angle calculations are executed by the SerialReceiver() task calling the function
evaluatelnclinometer() when the “Frame Complete” vector is received from the
inclinometer. The calculated values of Pitch, Roll, Temperature and Error are placed in
the database before an ethernet packet, containing all the raw and calculated values, is
broadcast to the rest of the networked computers.

3.7 Building Serhub.exe

The Serial Hub software is written with the Borland C++ V4.5 environment running
under Microsoft Windows V3.11, using the Serial Hub PC as the development
platform. It is a DOS program that uses Real Time Kernel (RTK) V4.5 to provide the
multitasking capability. The source code and project files reside in
C\LSWT\SOFTWARE\SERHUB. The RTK files needed are in subdirectories of
C:\RTKC45.

To build the application SERHUB.EXE, run Borland C++ by clicking on the relevant
icon under Windows. Select the “Project” menu and open “serhub.prj”. After editing
the desired source files, select Project::Build to create a new executable file. This
program will not run properly under Windows, so to test the new version, exit back to
the DOS prompt and type “serhub” from the directory
C:\LSWT\SOFTWARE\SERHUB.

DSTO-TR-0740

4. VMEbus Module Modifications

4.1 Introduction

To allow the VMEbus modules in the LSWT to communicate with the Serial Hub, the
BPI interface card was replaced with an RS-232 serial communications card. The board
chosen was an AMRL designed DUART card that required a number of changes
(Section 4.2.1) to suit this application.

Significant software changes (Section 4.3) were made to implement the serial
communications scheme, most of which are common to all the VMEbus modules.

4.2 Hardware Modifications
421 Modifications to DUART card

The original programmable array logic (PAL) chips (20L10) used for address and
control line decoding are discontinued devices, so the current component equivalent of
the 20L10 (the PALCE22V10-15PC) using generic array logic (GAL) technology was
used [Ref. 8]. The GAL technology also has the advantage of being erasable and
re-programmable.

The two inputs to the GAL from the DUART chip (DTACK/DUARTACK and
IRQ/INT) require 4.7k (Y2 watt) pull-up resistors to achieve correct voltage interfacing
between the TTL outputs of the DUART chip and the CMOS inputs of the GAL.

New GAL equations? were required for correct interfacing with the VMEbus for the
following reasons:

¢ to implement interrupts for faster operation (original DUART card implementation
used polled access of data registers);

¢ memory device select functions (RAM/ROM) are not required, as the cards are not
loaded with any memory chips. The existing memory cards in each module are
retained, and preclude the need for extra memory; and

e critical timing requirements of the interrupt acknowledge cycle and correct
operation of IACKIN and IACKOUT [Ref. 4].

4.2.2 Modifications to Module Hardware

The BPI card was removed from each module and replaced with the DUART card. As
there is no longer a hardware module address [Ref. 1], each module has been assigned
an IP address (Sections 2.1 and 3.4) that is decoded by the Serial Hub which then
transmits and receives data through the appropriate RS-232 port. Removal of the BPI
card has also removed the ability of the module to flag the host computer of error

2 See AMRL drawing number 61183-A1 for GAL equation details.

11

DSTO-TR-0740

12

conditions, and the ability of the host computer to remotely reset the VMEbus modules
[Ref. 1], therefore the modules must be reset manually.

The Strain Gauge modules use IRQ 1 and 3 for opto-isolator and analog-to-digital
conversion (ADC) interrupts respectively. IRQ 5, which was the interrupt line used for
the BPI card, was chosen to be used by the DUART card.

4.3 Software Modifications
4.3.1 Interrupts

The vector system (as used by the BPI) for transmission and reception of data [Ref. 1]
has been retained for ease of code transportability. There are now two vector tables -
one for hardware interrupts (from ADC's, opto-isolators, and DUARTS); and one for
“BPI-style” read and write vectors, which are now subroutines, not interrupt routines
as in the original BPI code. These subroutines are called when a serial packet is
received from the Serial Hub.

The ADC and opto-isolator interrupt vectors in the Strain Gauge modules remain the
same. The DUART interrupt vector has been assigned to vector 64. This number is
programmed into the DUART’s interrupt vector register (IVR) in the SetUpIRQChrPort
subroutine.

The DUART calls an interrupt when either a character has been received and is
waiting in the receiver buffer first-in-first-out (FIFO) register, or when a transmitted
character is transferred from the transmit holding register to the transmit shift register.
When the DUART card asserts IRQ 5, an interrupt acknowledge cycle is initiated
[Ref. 4] which loads interrupt vector 64. This directs the processor to execute the
duartIRQ_Handler interrupt routine, which checks the interrupt status register (ISR) to
determine if a receive or transmit interrupt occurred.

4.3.2 DUART Setup Procedure

Before the software enters the main program loop, all interrupts are disabled and
Port A of the DUART is set up using the setUpChrPort subroutine. The receiver and
transmitter are reset, as well as the Error Status and Channel A Break Change Interrupt
[Ref. 4]. Mode registers 1 and 2 (MR1A and MR2A) are set up for serial
communications using 8 data bits, 1 stop bit, odd parity and no request-to-send (RTS).
The clock select register (CSRA) is programmed for a baud rate of 38,400. The receiver
and transmitter are then enabled through the command register (CRA) and dummy
reads of the status and data registers are performed to clear any false data remaining
after reset.

DSTO-TR-0740

4.4 Serial Communication Routines

Two buffers (PutBuff and GetBuff) are used to store characters to be transmitted and
received (Figure 3). They are both six bytes in length. The variables PutOff and GetOff
are used as offset pointers that store the position within PutBuff and GetBuff of the next
character to be transmitted or received.

PutBuff/GetBuff: | +0 | +1 [+2 | +3 | +4 | +5 |
T
PutOff/ GetOff

Figure 3: Transmit and Receive Buffer
As six bytes (three 16-bit words) are allocated to the buffers, and only five bytes are

required for a data packet, PutBuff+3 and GetBuff+3 are skipped over when

incrementing these pointers.

441 Transmit Routine

To initiate a transmit data sequence, bit 0 of the interrupt mask register (IMR) is set
to 1. If the transmitter is ready, a Channel A transmitter ready (TXRDYA) interrupt will
occur immediately. The interrupt is detected by the duartIRQ_Handler routine, which
subsequently calls the PutChar subroutine.

The PutChar routine tests bit 2 of the Channel A status register (SRA) to confirm that
the transmit holding register is empty, and loads PutOff which is initially cleared to 0,
thus pointing to the first location in PutBuff (PutBuff+0). The character in this location
is then written to the transmit buffer (TB). PutOff is then incremented to point to the
next location in PutBuff. The PutChar routine is run on each transmit interrupt until the
end of the data packet. If the pointer is pointing to the end of PutBuff (i.e. the complete
data packet has been transmitted), TXRDYA is masked (turned off), PutOff is reset to 0
and the packet_complete flag is set to 1. The packet_complete flag is tested during the data
stream routine (Section 2.5).

4.4.2 Receive Routine

A Channel A receiver ready (RxRDYA) interrupt is generated when a character has
been received in Channel A and is waiting in the receiver buffer FIFO to be read by the
CPU. The duartIRQ_Handler routine tests the ISR for this interrupt and branches to the
GetChar subroutine. Assuming that this is the first character received the GetOff will be
equal to 0. The character is read from the Channel A data register and GetOff is
retrieved. As the offset is 0 the received data is compared with 0x24 ($ symbol) for
correct data packet synchronisation (Section 2.2). If the data is 0x24, GetOff is
incremented by 1 and the subroutine is exited, awaiting another receive interrupt.

Assuming a complete and correct data packet is sent to the module, the next character
received is compared with 0x23 (# symbol). The third character (the vector) is checked

13

14

DSTO-TR-0740

Assuming a complete and correct data packet is sent to the module, the next character
received is compared with 0x23 (# symbol). The third character (the vector) is checked
to ensure it is greater than 0x60. A vector less than 0x60 is an invalid vector and will be
ignored. The fourth and fifth characters are the high and low bytes respectively of the
actual data being sent and are stored in GetBuff+4 and GetBuff+5.

When the end of the data packet has been detected, the vector to jump to is retrieved
from GetBuff+2. To point to the correct address location, the vector number is scaled
and an offset is added, and the requisite vector subroutine is performed. An even
vector denotes a read routine (the module must transmit data back to the Serial Hub),
and an odd vector denotes the data accompanying the vector is to be stored by the
module.

When a read vector is executed, the 16 bit data word to be sent to the Serial Hub is
stored in PutBuff+4 and PutBuff+5, the vector number is stored in PutBuff+2, and the
transmit interrupt is enabled to initiate the transmit data sequence. When a write
vector is executed the 16 bit data word in PutBuff+4 and PutBuff+5 is stored in a
memory location and no further action is necessary.

If at any stage while receiving a data packet the data does not match the correct packet
sequence, GetOff is reset to 0 and the GetChar subroutine is exited. The receive routine
will re-synchronise itself when the correct sequence is received. This ensures that only
valid data is received.

4.5 Data Streaming

If streaming mode is ON (Section 2.5), each iteration of the main program loop will
branch to the stream subroutine. This routine will automatically send packets

containing data from a number of read vectors, which vary for each module as shown
in Table 1.

Table 1: Vectors Streamed by the VMEbus Modules

Module Vectors streamed (in hex, in order of streaming)3

6 Channel AC Strain Gauge 1 & 2 | 70, 72, 74, 76, 78, 7A, 60
6 Channel DC Strain Gauge 1 & 2

Strain Gauge Calibration Rig 70,72,74,76,78,7A, 7C, 7E, 80, 82, 84, 86, 60
Inclinometer 70,72,74,76, 60

Model Actuator 70,72,74,76,78,7A, 7C, 7E, 80, 82, 84, 86, D0, D2
Model Attitude (Turntable) C0, C2, C4, C6, C8, DO, D2, D4

The data for the first packet is retrieved and the checkTxComplete subroutine is run
which enables the transmit interrupt and resets the packet_complete flag. Enabling the
transmit interrupt automatically initiates duartIRQ_Handler and hence the PutChar

> Refer to Appendix A for definitions of the vectors.

DSTO-TR-0740

In the case of the Model Actuator and Model Attitude modules [Refs. 9 & 10], only the
data relating to those channels that are initialised and operating correctly are
transmitted. In the case of the Model Actuator module, the allowstream variable is
loaded and each bit relating to channel functionality is tested. The data for each
channel is only transmitted if its corresponding bit is set to 1. In the Model Attitude
module the chan_limits variable is tested and only the channels whose bit is set to 1 is
transmitted. This speeds up transmission rate and program execution by only
transmitting data for fully functioning channels.

4.6 Vector Additions And Modifications

A new vector (0x6F) that controls data streaming has been added to all modules. If a
non-zero value is written to this vector then streaming is turned ON, and if zero is
written then streaming is turned OFF.

For modules with ADC's (i.e. the Strain Gauges and Inclinometer), when streaming is
turned ON, the modules convert data on a continuous basis, self-triggering on each
iteration of the main program loop. When streaming is turned OFF, writing to the
respective “convert” vectors (single channel or all channels) will manually trigger the
converters.

The Inclinometer module no longer calculates the inclinometer angles, but sends the
raw accelerometer data directly to the Serial Hub where it is converted to engineering
units. Vectors 0x78, 0x7A, 0x7C, 0x7D, 0x7E, 0x7F, OxAB and 0xAD, which are related
to the angle calculations, but are now not relevant to the Inclinometer module, are
trapped and processed by the Serial Hub (Section 2.6 and 3.6).

As the VMEbus modules can no longer flag the host computer if an error occurs, vector
0x60 (originally a vector for error strings [Ref. 1]) has been modified to contain a single
16-bit error word. This vector is streamed to the Serial Hub from all Strain Gauge
modules, the Calibration Rig module and the Inclinometer module. A conversion time-
out error sets bit 12 of the error word (0x1000), an over-range error sets bit 13 (0x2000)
and an opto-isolator error sets bit 14 (0x4000). Any or all of these errors can occur at
the same time. The error word is cleared automatically after the Host computer
accesses vector 0x60.

The two modules that do not use vector 0x60 are the Model Actuator and Model
Attitude modules. Instead, they store status conditions in the appropriate status
vectors (see Tables A3 and A4 in Appendix A) which are streamed to the Serial Hub
(see Table 1).

15

16

DSTO-TR-0740

5. System Performance

To achieve accurate and reliable data readings during tests, a minimum data packet
transmission rate of 20 ethernet packets per second from each VMEbus module with
streaming ON is required. A data packet-monitoring program on the Host (ETHTEST)
was used to obtain the packet rates for each module, which are shown in the following
table:

Table 2: Data packet rates for the VME modules

Module Packet Rate
(packets/second)

6 Channel AC Strain Gauge 1 & 2 41

6 Channel DC Strain Gauge 1 & 2

Strain Gauge Calibration Rig 25

Inclinometer 52

Model Actuator 96 "

Model Attitude (Turntable) 22-40"

6. Conclusion

This paper describes a unique system for interfacing VMEbus-based instrumentation
modules to an ethernet network. The solution has reasonably high software
development costs, but hardware costs are low, and this results in a system that is
easily re-configurable for future changes. Testing in the LSWT has shown the system
to be extremely reliable and capable of sustaining the data rate required.

7. Acknowledgements

The authors wish to acknowledge the assistance of Owen Holland for his work in two
areas:

o the GAL programming equations to enable the DUART interrupts on the VMEbus
modules; and

e the code used as the basis for the ethernet interface and database software on the
Serial Hub.

* This rate was achieved for two Actuator channels operating, and the rate will obviously decrease as
more channels are added (Section 4.5).
¥ The actual rate is determined by encoder conversion times [Ref. 10].

10

DSTO-TR-0740

8. References

Harvey, J.F. A Data Acquisition Parallel Bus For Wind Tunnels at ARL.

Department of Defence, Defence Science and Technology Organisation,
Aeronautical Research Laboratory, Technical Memorandum, ARL-FLIGHT-MECH-
TM-412, 1989.

Holland, O.F. Options for Replacing the LSWT BPI bus.
Department of Defence, Defence Science and Technology Organisation,
Aeronautical & Maritime Research Laboratory, Draft Internal Memorandum, 1997.

Link, Y.Y. Bernoulli User Manual
Department of Defence, Defence Science and Technology Organisation,
Aeronautical & Maritime Research Laboratory, Draft Report, 1998.

Motorola Inc. The VMEbus Specification Manual, Revision C.1.
Motorola Inc., USA, 1985

Holland, O.F. (1997) The Interface between the Host and the Instrumentation Modules in
the LSWT Upgrade.

Department of Defence, Defence Science and Technology Organisation,
Aeronautical & Maritime Research Laboratory, Draft Internal Memorandum, 1997.

On Time Informatik GMBH RTKernel - Real Time Multitasking Kernel for C. User's
Manual Version 4.5.
On Time Informatik GMBH, 1995.

Motorola Inc. MC68681 Dual Asynchronous Receiver/Transmitter (DUART).
Motorola Inc., USA, 1983.

Lattice Semiconductor Corporation GAL Data Book.
Lattice Semiconductor Corporation, USA, 1991.

Kent, S.A. A Wind Tunnel Model Control Surface Actuator Interface.
Department of Defence, Defence Science and Technology Organisation,
Aeronautical & Maritime Research Laboratory, Technical Note, ARL-TN-13, 1993.

Kent, S.A. A Computer Control Interface to Operate Turntables in the Test Section of a
Wind Tunnel.

Department of Defence, Defence Science and Technology Organisation,
Aeronautical & Maritime Research Laboratory, Technical Report, DSTO-TR-0622,
1998.

17

DSTO-TR-0740

Appendix A

VECTOR ASSIGNMENTS FOR VMEbus MODULES
(Read and Write vectors are in hexadecimal)

TABLE A1: Strain Gauge Modules (AC1 & 2, DC1 & 2, Calibration Rig):

18

READ WRITE
VECTOR DATA VECTOR DATA
60 error code word 63 trigger ADC conversion (all channels)
62 module identification string 65 clear all status words
69 trigger ADC conversion (all channels)
6F data stream control
70 read ADC 1 data 71 start ADC 1 conversion
72 read ADC 2 data 73 start ADC 2 conversion
74 read ADC 3 data 75 start ADC 3 conversion
76 read ADC 4 data 77 start ADC 4 conversion
78 read ADC 5 data 79 start ADC 5 conversion
7A read ADC 6 data 7B start ADC 6 conversion
7C* read ADC 7 data 7D* start ADC 7 conversion
7E* read ADC 8 data 7E* start ADC 8 conversion
80 * read ADC 9 data 81+ start ADC 9 conversion
82* read ADC 10 data 83 * start ADC 10 conversion
84+ read ADC 11 data 85* start ADC 11 conversion
86* read ADC 12 data 87* start ADC 12 conversion
DO ADC 1 conversion status
D2 ADC 2 conversion status
D4 ADC 3 conversion status
D6 ADC 4 conversion status
D8 ADC 5 conversion status
DA ADC 6 conversion status
DC* ADC 7 conversion status
DE* ADC 8 conversion status
EO* ADC 9 conversion status
E2* ADC 10 conversion status
E4* ADC 11 conversion status
E6* ADC 12 conversion status
FO calibration relay status F1 calibration relay control
F4 conversion buffer status F5 clear conversion buffer

* Calibration Rig module only

DSTO-TR-0740

TABLE A2: Inclinometer Module:

READ WRITE
VECTOR DATA VECTOR DATA

60 error code word 63 trigger ADC conversion (all channels)

62 module identification string 65 clear all status words
69 trigger ADC conversion (all channels)
6F data stream control

70 read ADC 1 data (X axis) 71 start ADC 1 conversion

72 read ADC 2 data (Y axis) 73 start ADC 2 conversion

74 read ADC 3 data (Z axis) 75 start ADC 3 conversion

76 read ADC 4 data (temperature) 77 start ADC 4 conversion

78* read calculated Roll
7A* read calculated Pitch
7C* read required Roll offset 7D* set required Roll offset
7E * read required Pitch offset 7F * set required Pitch offset

AB* set zero alignment
AD* set QFLEX transducer model

DO ADC 1 conversion status
D2 ADC 2 conversion status
D4 ADC 3 conversion status
D6 ADC 4 conversion status
F4 conversion buffer status F5 clear conversion buffer

* Trapped and handled by the Serial Hub

DSTO-TR-0740

20

TABLE A3: Model Actuator Module:

READ WRITE
VECTOR DATA VECTOR DATA
60 error code word 65 clear all status words
62 module identification string 67 clear time-out status word
69 trigger actuator movement
6F data stream control
70 read LVDT reading channel 1 71 set LVDT target channel 1
72 read LVDT reading channel 2 73 set LVDT target channel 2
74 read LVDT reading channel 3 75 set LVDT target channel 3
76 read LVDT reading channel 4 77 set LVDT target channel 4
78 read LVDT reading channel 5 79 set LVDT target channel 5
7A read LVDT reading channel 6 7B set LVDT target channel 6
7C read LVDT reading channe] 7 7D set LVDT target channel 7
7E read LVDT reading channel 8 7F set LVDT target channel 8
80 read LVDT reading channel 9 81 set LVDT target channel 9
82 read LVDT reading channel 10 83 set LVDT target channel 10
84 read LVDT reading channel 11 85 set LVDT target channe] 11
86 read LVDT reading channel 12 87 set LVDT target channel 12
88 read upper limit channel 1 89 set upper limit channel 1
8A read upper limit channel 2 8B set upper limit channel 2
8C read upper limit channel 3 8D set upper limit channel 3
8E read upper limit channel 4 8F set upper limit channel 4
920 read upper limit channel 5 91 set upper limit channel 5
92 read upper limit channel 6 93 set upper limit channel 6
94 read upper limit channel 7 95 set upper limit channel 7
96 read upper limit channel 8 97 set upper limit channel 8
98 read upper limit channel 9 99 set upper limit channel 9
9A read upper limit channel 10 9B set upper limit channel 10
9C read upper limit channel 11 9D set upper limit channel 11
9E read upper limit channel 12 9F set upper limit channel 12
A0 read lower limit channel 1 Al set lower limit channel 1
A2 read lower limit channel 2 A3 set lower limit channel 2
A4 read lower limit channel 3 A5 set lower limit channel 3
A6 read lower limit channel 4 A7 set lower limit channel 4
A8 read lower limit channel 5 A9 set Jower limit channel 5
AA read lower limit channel 6 AB set lower limit channel 6
AC read lower limit channel 7 AD set lower limit channel 7
AE read lower limit channel 8 AF set lower limit channel 8
BO read lower limit channel 9 Bl set lower limit channel 9
B2 read lower limit channe] 10 B3 set lower limit channel 10
B4 read lower limit channel 11 B5 set lower limit channel 11
B6 read lower limit channel 12 B7 set lower limit channel 12
DO actuator motor status D1 enter manual test mode
D2 actuator time-out status D3 motor direction (manual test mode)
D4 upper limit set status D5 exjt manual test mode
Dé6 lower limit set status D7 re-initialise all channels
D8 actuator functioning status D9 power relay control
DB pulse mode on (manual test mode)
DD _pulse mode off (manual test mode)

TABLE A4: Model Attitude Module:

DSTO-TR-0740

READ WRITE
VECTOR DATA VECTOR DATA
60 error code word 65 clear all status words
62 module identification string 69 trigger turntable movement
6B stop all motors immediately
6D read all resolver channels
6F data stream control
70 read port limit test section 1 upper 71 set port limit test section 1 upper
72 read port limit test section 1 lower 73 set port limit test section 1 lower
74 read port limit test section 2 upper 75 set port limit test section 2 upper
76 read port limit test section 2 lower 77 set port limit test section 2 lower
78 read port limit balance 79 set port limit balance
80 read starboard limit test section 1 upper 81 set starboard limit test section 1 upper
82 read starboard limit test section 1 lower 83 set starboard limit test section 1 lower
84 read starboard limit test section 2 upper 85 set starboard limit test section 2 upper
86 read starboard limit test section 2 lower 87 set starboard limit test section 2 lower
88 read starboard limit balance 89 set starboard limit balance
90 read target angle test section 1 upper 91 set target angle test section 1 upper
922 read target angle test section 1 lower 93 set target angle test section 1 lower
94 read target angle test section 2 upper 95 set target angle test section 2 upper
) read target angle test section 2 lower 97 set target angle test section 2 lower
98 read target angle balance ' 99 set target angle balance
Al allow test section 1 upper to turn
A3 allow test section 1 lower to turn
A5 allow test section 2 upper to turn
A7 allow test section 2 lower to turn
A9 allow balance to turn
AB do not allow any turntables to turn
Bl synch. test section 1 upper & lower
B3 synch. test section 2 upper & lower
B5 synch. test section 1 upper, lower & balance
B7 synch. test section 2 upper, lower & balance
B9 synch. test section 1 lower & balance
BB synch. test section 2 Jower & balance
BD no synchronisation
Co read current angle test section 1 upper
C2 read current angle test section 1 lower
C4 read current angle test section 2 upper
Ceé read current angle test section 2 lower
C8 read current angle balance
Do turntable movement status
D2 channel OK & limits status
D4 MCU & power status

21

DSTO-TR-0740

22

APPENDIX B

PROGRAMMING INFORMATION FOR MODIFIED EPROMs AND
DUART GALs

~ EPROMs and GALs are programmed using the PC with the Hi-Lo Systems ALL-03A

Universal Programmer connected to it. The programming software is located in the
C:\UNI-PROG directory.

To program the EPROMs or GALs the relevant software must be executed, as shown in
Table Bl. Ensure that the correct EPROM or GAL manufacturer and type are selected
by using the M (manufacturer) and T (type) options in the Main Menu, and load the
relevant compiled code file (see Table Bl) into the programmer buffer by using option
2 (Load) in the Main Menu. If programming EPROMs, select M to load Motorola S
HEX format and accept the default file start address (00000000). Unused bytes can be
selected as “don’t care”.

Select the P option to program the devices. If programming EPROMs, type O to
program the odd (upper) bytes then E to program the even (lower) bytes.

The positions for odd and even EPROMs on the memory card are shown in Figure B1.

Table B1: EPROM and GAL Programming Information

Module GALS/EPROMs Source Code Compiled Code Program with
DUART Card 2 x PALCE22V10-15PC | IC5.TDL IC5.JED GAL2.EXE
(GAL) IC6.TDL IC6.JED

AC Strain Gauge 1 2x2732 SGMAC6_1.5 SGMAC6_1.HEX EPP512.EXE

AC Strain Gauge 2 (EPROM) SGMAC6_2.S SGMAC6_2.HEX

AC Strain Gauge 3* SGMACS6_3.5 SGMAC6_3.HEX

DC Strain Gauge 1 2x 2732 SGMDCé.S SGMDC6.HEX EPP512.EXE

DC Strain Gauge 2 SGMDCé6_2.5 SGMDC6_2.HEX

Inclinometer 2x 2732 INCLINO.S INCLINO.HEX EPP512.EXE

Calibration Rig 2x2732 CAL_RIG.S CAL_RIG.HEX EPP512.EXE

Model Actuator 2x2732 FA18DUAR.AS FA18DUAR HEX EPP512.EXE
ACTUATOR.C

Model Attitude 2x2732 MODELATA.AS | MODELATT.HEX |EPP512.EXE
MODELATC.C

* ex-Transonic Wind Tunnel strain gauge module (used for spare parts)

6116
RAM

<4——— UPPER (ODD) BYTE

6116
RAM

«—|— LOWER (EVEN) BYTE

6116
RAM

6116
RAM

Figure Bl: Memory Card EPROM Configuration

DSTO-TR-0740

23

DSTO-TR-0740

24

DISTRIBUTION LIST

A Serial Communication Interface for Data Acquisition Instrumentation
in a Wind Tunnel

M. Spataro, S. Kent

AUSTRALIA
DEFENCE ORGANISATION
S&T Program
Chief Defence Scientist
FAS Science Policy } shared copy
AS Science Corporate Management

Director General Science Policy Development

Counsellor Defence Science, London (Doc Data Sheet)

Counsellor Defence Science, Washington (Doc Data Sheet)

Scientific Adviser to MRDC Thailand (Doc Data Sheet)

Director General Scientific Advisers and Trials/Scientific Adviser Policy and
Command (shared copy)

Navy Scientific Adviser (Doc Data Sheet and distribution list only)

Scientific Adviser - Army (Doc Data Sheet and distribution list only)

Air Force Scientific Adviser

Aeronautical and Maritime Research Laboratory
Director

Chief of Air Operations Division

N. Pollock

N. Matheson (2 copies)

Y. Link (3 copies)

O. Holland

P. Malone

J. Clayton

D. Carnell

I. Amott

L. Erm

H. Quick

G. Ainger

A. Gonzales

S.Lam

C. Edwards

R. Toffoletto

M. Glaister

Authors: M. Spataro (2 copies)
S. Kent (2 copies)

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library Salisbury
Australian Archives
Library, MOD, Pyrmont (Doc Data sheet only)

Capability Development Division
Director General Maritime Development (Doc Data Sheet only)
Director General Land Development (Doc Data Sheet only)
Director General C3I Development (Doc Data Sheet only)

Corporate Support Program (libraries)

OIC TRS, Defence Regional Library, Canberra

Officer in Charge, Document Exchange Centre (DEC), (Doc Data Sheet and
distribution list only)

*US Defence Technical Information Center, 2 copies

*UK Defence Research Information Centre, 2 copies

*Canada Defence Scientific Information Service, 1 copy

*NZ Defence Information Centre, 1 copy

National Library of Australia, 1 copy

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Deakin University, Serials Section (M list), Deakin University Library, Geelong
Senior Librarian, Hargrave Library, Monash University
Librarian, Melbourne University

OTHER ORGANISATIONS
NASA (Canberra)
AGPS

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Engineering Societies Library, US
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)

Total number of copies: 64

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/ CAVEAT (OF
DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L} NEXT TO DOCUMENT
A Serial Communication Interface for Data Acquisition CLASSIFICATION)
Instrumentation in a Wind Tunnel
Document (5)]
Title 1L9))
Abstract (U)
4. AUTHOR() 5. CORPORATE AUTHOR
M. Spataro and S. Kent Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001 Australia
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-0740 AR-010-669 Technical Report November 1998
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12.NO. OF
M1/9/521 98/179 DSTO 30 REFERENCES
10
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
Not Applicable Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS

low speed wind tunnels, data communicating systems, VMEbus (computer bus), ethernet (local area network system), computer
interfaces

19. ABSTRACT

The Low Speed Wind Tunnel (LSWT) at the Aeronautical and Maritime Research Laboratory (AMRL)
has used a proprietary Bidirectional Parallel Interface (BPI) bus for data collection from instrumentation
since 1989. As part of the ongoing development of the LSWT data acquisition system it was decided that
a more reliable and faster communication scheme was required. This report describes the unique system
of hardware and software developed to enable the VMEbus-based instrumentation modules to
communicate with a Host computer over an ethernet network.

Page classification: UNCLASSIFIED

