Ay -010-6b1

A Model for Joint Software Reviews

Gina Kingston

DSTO-TR-0735

] [APPROVED FOR PUBLIC RELEASE

@ Commonwealth of Australia

DEPARTMENT’OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

A Model for Joint Software Reviews

Gina Kingston

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0735

'ABSTRACT

Joint software reviews, involving the developer and the acquirer, play an important
role in Defence's acquisition of software-intensive systems. However, academic and
commerical work on software reviews has focused on intra-organisational peer
reviews and software inspections. This report argues that the principles which have
been derived for inspections cannot be blindly applied to joint software reviews.

This paper proposes a model of joint reviews, which draws on software engineering,
decision and negotiation theory, and models of inspection. The model suggests that
the structure and goals of the review group may significantly affect the outcome of the
review. The model has also been used to suggest changes to Defence's software review
process and to plan a series of studies on joint software reviews. These studies will
provide additional and updated recommendations on how Defence should structure
their software reviews for maximum efficiency and effectiveness.

19990308158

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
¢

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DTIC QUALITY INGPECTED 1

AQF 2906~ (a2

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555

Fax: (08) 8259 6567

© Commonwealth of Australia 1998
AR-010-661

October 1998

APPROVED FOR PUBLIC RELEASE

DSTO-TR-0735

A Model for Joint Software Reviews

Executive Summary

Joint software reviews play an important role in Defence’s acquisition of software
intensive systems. The study of joint software reviews has attracted little attention
compared to that given to the related field of software inspections. In recent years, a
model for software reviews has been developed. The model was déveloped for a
particular type of review, software inspections. This paper examines some of the
differences between software inspections and joint software reviews and the relevance
of the model to joint software reviews.

Several limitations are identified with the current model of software reviews when it is
applied to joint software reviews. The model is extended using information from
organisational behaviour and several hypotheses are developed. These hypotheses are
concerned with the difference between joint software reviews and inspections. They
propose that the performance of reviews is adversely affected when participants have
differing or conflicting goals, or when participants form sub-groups, such as when
participants come from several organisations. These organisational factors: goal
differences and the presence of subgroups, are of high relevance to joint software
reviews, such as those conducted by Defence, where both occur frequently.

This paper proposes several possible changes to the way in which Defence conducts its
reviews and organises its contracts. These suggested changes aim to minimise the
impact of the organisational factors and improve the performance of joint software
reviews. They include: adding goal-identification and goal-resolution phases to the
joint software review processes; incorporating incentive schemes into contracts; and
the use of integrated product teams. Some of these suggestions have already been
successfully introduced on a few Defence projects. This paper helps to explain the
potential benefits of these approaches and provides some justification for their use on
other projects.

A series of studies into software reviews is planned under DSTO'’s Joint Reviews of
Software (JORS) task. These studies will explore the hypotheses presented in this
paper. Reports on these studies will provide updated and additional recommendations
on how Defence’s joint software reviews can be tailored for increased efficiency and
effectiveness.

DSTO-TR-0735

Author

Gina Kingston
Information Technology Division

Gina has been employed in the Software Systems Engineering
Group of the Information Technology Division of the Defence
Science and Technology Organisation (DSTO) since graduating
from the University of Tasmania with a BSc with First Class
Honours in Mathematics in 1990. Her research interests include
process improvement and empirical software engineering. She has
conducted research into software costing, the analysis of software,
and software acquisition. She is currently undertaking a PhD in
Software Reviews through the School of Information Systems at
the University of New South Wales and working on the JOint
Reviews of Software (JORS) task at DSTO.

DSTO-TR-0735

Contents
1. INTRODUCTION. ..cuinirisrrereirisssessnssessasssssssessasasssssisesessasassessessssssssssssssssssssssassssssossssssssacs 1
2. BACKGROUND 2
2.1 Software Inspections..... . . 2
2.2 Joint Software Reviews reeesesnasaeaesasnanane 4
2.3 Joint Software Review Proceduresivininisiesisnnsscnnnesesesesesessssssessssssssssasseses 5
2.4 Issues and Defects 6
3. MODELS veeeenasnnsasasanes .11
3.1 Application of the model to software reviews.coucenicrsrcresnsusesenarenes 14
3.2 Group Structure reeriessete st ssnesesnsasene 15
3.3 Goal Conflict within Software Reviews .16
3.4 GOAl CONSIIC..cuiririririrraricnencnnnrsssnissssaensensssnsnssssssssasesesesssssessasasssasasssssans 18
4. IMPLICATIONS AND FUTURE WORK..........cccouvurvuiurerirsurecrensuns .22
4.1 Measuring the performance of reviews. ettt bbb bbb 22
4.2 EMPIrical StUAIes ...vueernrvcineriennentcntnceennsnntnnstssenssssasseeessacsssssssssssesssssossss 24
4.3 TMPLICAtIONS.c.uiureecererenrrenteenisssesssssasnsensssissessssssssssssssssssnsssssasassesessssessssasasssasssassssssssssnses 25
5. CONCLUSIONS......ccconsmirnmsnsmsrsssesssnssssssssmsssssasesssesssssesssessassssencssasasss .26
ACKNOWIEAZMENLES ...ucrriricriririerenicnnssnniesnensssnessisssssiaiassssiesmsssissesssssesssesesssssassasessssasases 27
RELEIEIICES c.ucevirirrerisrircrisnsnnsessssesusnsscsnssssesessssssasssssssssssssessssesessestasssssssassessssssssasasanesssssasnsnsssasonas 27

Abbreviation

ADF
ANSI
DSTO

H1-H7
HT1-HT4
HO1-HO3
IEEE

IR

RM

Term
Complementary
goals
Conflicting
goals

Defect

Goal-dependent
issue
Inspection

Issue

Joint software
review

Review

Partitioned into
sub-groups

Abbreviations

Description

Australian Defence Force

American National Standards Institute
Defence Science and Technology Organisation
Hypothesis

e General

e Transitive

e Opverarching

Institute of Electrical and Electronics Engineers
Implicit Requirement

Risk Management

Glossary

Description
Goals which can be satisfied simultaneously.

Sets of goals which cannot be satisfied
simultaneously, and which therefore require trade-
offs to be made. :
“An instance in which a requirement is not satisfied. Here
it must be recognized that a requirement is any agreed
upon commitment. It is not only the recognizable external
product requirement, but can include internal development
requirements...” [Fagan, 1986].

An issue which is subjective and arises from the goals
of the reviewer. IR and RM issues are goal-dependent
issues.

A review who's aim is “...to detect and identify software
element defects. This is a rigorous, formal peer
examination...” [ANSI/IEEE-1028, 1989]

“An instance where a requirement, either explicit or
implicit, might not be satisfied”. Issues include defects,
IR and RM issues.

“A process or meeting involving representatives of both the
acquirer and the developer, during which project status,
software products, and/or project issues are examined and
discussed.” [MIL-STD-498, 1996]

“An evaluation of software element(s) or project status to
ascertain discrepancies from planned results and to
recommend improvement. This evaluation follows a formal
process...” [ANSI/IEEE-1028, 1989].

A group is said to be partitioned into subgroups if
and only if there exist two or more clearly
distinguishable sub-groups such that each member of
the group belongs to one and only one sub-group

DSTO-TR-0735

Page
Introduced

15 and
19-21

NN

Page
Introduced
17

17

15

DSTO-TR-0735

1. Introduction

Joint software reviews form an important part of the Defence Acquisition Process
[MIL-STD-1521B, 1985; MIL-STD-498, 1994; CEPMAN 1, 1996; Gabb, 1997], and with
the growing popularity of outsourcing, they are becoming more important in the
commercial sector [ISO/IEC 12207, 1995].

Like other forms of review, joint software reviews offer a means to evaluate the
product being developed early in the acquisition process. Joint software reviews also
enable early evaluation of the development process and evaluation of progress against
milestones. Furthermore, joint software reviews offer an opportunity for project plans
and expectations to be revised. Despite the use, and the potential benefits of joint
software reviews, software-intensive systems are often delivered late, over-budget,
and with sub-optimal functionality [Earnshaw, 1994; ADO, 1996; Mosemann II, 1995;
Keil, 1995; Heemstra, 1992; Lederer and Prasad, 1995; Canale and Wills, 1995; Walsh,
1994].

Furthermore, anecdotal evidence obtained during interviews with DSTO and ADF
personnel suggests that these reviews are considered to be inefficient by many of their
participants. The author has conducted both formal and informal interviews with
review participants, including those with considerable experience with joint software
reviews.

Joint software reviews have been poorly studied. There are no well-defined guidelines
on how to conduct joint software reviews. Documentation of joint software reviews,
including the military standard on reviews offers only limited guidance [MIL-STD-
1521B, 1985]. Some “lessons learned” reports have highlighted perceived problems
with joint software reviews, but there are no empirical studies to support their conduct
in one manner over another. |

Work on other types of software reviews and on software inspections suggests
mechanisms which may be appropriate for conducting joint software reviews (e.g. see
[Wheeler et al., 1996]). However, there are several differences between the work that
has been done in these areas and joint software reviews. Therefore, it cannot be
assumed that the results from inspections will explain the performance of all software
reviews.

This report provides a discussion of joint software reviews drawing on the software
inspection literature and relating it to other forms of software reviews - including joint
software reviews. A model of software reviews is then proposed by combining
inspection models with information about other software engineering processes, and
decision and negotiation theories. Finally, the implications of the theory are discussed
along with a series of empirical studies designed to explore the theory.

DSTO-TR-0735
2. Background

There are many forms of software review - from informal peer reviews to formal
inspections and joint software reviews. This section provides an introduction to
software reviews by comparing inspections and joint software reviews. Joint software
reviews were chosen for study in this report because of their relevance to Defence, and
inspections were chosen for comparison because they are perhaps the most widely
studied form of review.

Throughout this paper, the term review will be used to encompass inspections,
walkthroughs and other forms of review as per the IEEE definition of a review: “An
evaluation of software element(s) or project status to ascertain discrepancies from planned
results and to recommend improvement. This evaluation follows a formal process...”
[ANSI/IEEE-1028, 1989].

Further information on software reviews can be found in the military and ANSI
standards [MIL-STD-1521B, 1985; ANSI/IEEE-1028, 1989]. A comprehensive collection
of papers on inspections is [Wheeler et al., 1996], and a detailed comparison of three
review techniques - Inspections, Walkthroughs and Milestone Reviews - can be found
in [Kim et al., 1995]. Kim describes how these forms of review have different purposes,
different numbers of participants and different constraints on the product being
reviewed - for example the size of the review product may vary with the type of
review.

2.1 Software Inspections

Software inspections were first described by Fagan and are one of the most formal'
review mechanisms commonly used to evaluate software [Fagan, 1976; Wheeler et al.,
1996]. The objectives of an inspection are - “...to detect and identify software element
defects. This is a rigorous, formal peer examination...” [ANSI/IEEE-1028, 1989]. These
objectives will be sufficient to distinguish inspections from other forms of review for
the purposes of this paper.

Software inspections have been widely studied and there is significant empirical and
anecdotal evidence to support their use2. (See [Wheeler et al., 1996] for a collection of
papers and bibliography on inspections and Table 1 for references to empirical and
anecdotal studies). Several variations of Fagan’s inspection process have been
proposed (e.g. [Bisant, 1989; Fowler, 1986; Knight and Myers, 1993; Martin and Tsai,
1990; Barnard and Price, 1994]) and, despite the plethora of empirical work, there is no
clear-cut “best” method for a given situation. Perhaps one reason for this situation is
the lack of theoretical foundations for inspections: although this is starting to change -
e.g. [Sauer et al., 1996].

! Note that in this context the term formal does not mean mathematically rigorous as in formal
methods, but rather that the process is well-defined, includes entry and exit checks, and
encourages the collection of consistent, historical data.

2 For example, the cost of detecting and fixing defects using inspections with testing is believed
to be several orders of magnitude better than the costs of using testing alone.

DSTO-TR-0735

Table 1: Empirical and Anecdotal Evidence to Support the use of Inspections

Empirical Evidence : Anecdotal Evidence

[Bisant, 1989] [Ackerman et al., 1984]
[Brothers, 1992] [Fagan, 1986]

[Buck, 1981] [Grady and Van Slack, 1994]
[Knight and Myers, 1993] [Rifkin and Deimel, 1994]
[Letovsky, 1987] [Weinberg and Freedman, 1984]
[Myers and Knight, 1992]

[Porter et al., 1995a]

[Schneider et al., 1992]

Guidelines for inspections [Brykczynski, 1994; Gilb, 1996; Grady and Van Slack, 1994;
Shirey, 1992] suggest that inspections may fail because of:

1. High start-up costs including cultural change.

2. Poor planning, including introducing inspections on a project which is already in
trouble, lack of resources, conducting inspections too late, or rushing inspections.

3. Lack of commitment to the (intent of the) process.

4. Lack of, or poorly defined, inspection goals.

5. Lack of, or differing, standards or quality goals.

6. Inappropriate or untrained reviewers.

7. Lack of entry and exit criteria.

8. Poor product stability.

9. Lack of historical information on defect distribution (insertion and removal by
phase and defect type), the cost of inspections and testing, the cost of rework and
the cost of defects remaining in the system.

Entry

Planning

Overview

Individual Preparation (Familiarisation or Error Detection
Meeting (Error Detection or Error Collation)

Repair (Fixing mistakes)

Follow-up

Exit

Figure 1: Phases of the Inspection Process

Most of the software inspection methods follow the same basic procedure (see Figure
1), with about 2 hours allocated for each of the individual preparation and the meeting
phases [Wheeler et al., 1996]. The most significant differences between inspection
processes derive from how the individual preparation phase is spent. In simple terms,
if the individual preparation phase is spent on familiarisation with the product, the
goals of the review, and the error detection method used, then the meeting phase is
spent on error detection [Ackerman et al., 1984; Shirey, 1992]. Conversely, if the
individual preparation phase is spent on error detection, then the meeting phase is

DSTO-TR-0735

spent on error collation [Shirey, 1992; Fagan, 1976; Lanubile and Visaggio, 1995; Tripp
et al., 1991; McCarthy et al., 1996]. There is some debate over whether meetings are
necessary in these circumstances [Votta, 1993; Sauer et al., 1996; Macdonald et al.,
1995].

Other differences in the inspection process occur due to the method used to detect
defects. Early methods were ad-hoc or based on checklists [Baldwin, 1992; Fagan, 1986;
Fowler, 1986; Shirey, 1992]. More recent techniques are based on decomposition of
either the product [Cheng and Jeffery, 1996b], or of the types of defects being detected
[Knight and Myers, 1993; Parnas and Weiss, 1985; Porter et al., 1995a].

Different inspection methods also vary: the number of participants [Bisant, 1989;
Humphrey, 1995; Porter et al., 1995b; Wheeler et al., 1996]; the participants roles and;
whether the process is conducted once, or repeated [Martin and Tsai, 1990; Schneider
etal., 1992; VanHee, 1996].

2.2 Joint Software Reviews

Joint Software Reviews differ from software inspections in a number of additional
ways and, as they have different purposes, it may be beneficial for both joint software
reviews and software inspections to be conducted for the same project. For example,
inspections may be conducted before joint software reviews and may provide input to
joint software reviews.

According to [MIL-STD-498, 1996] a joint software review is “A process or meeting
involving representatives of both the acquirer and the developer, during which project status,
software products, andfor project issues are examined and discussed.”

Some of the main differences between inspections and joint software reviews are
apparent from this definition. Firstly, the joint review process is, as its name suggests,
a joint process. It involves representatives from at least two organisations or groups,
namely the acquirer and the developer.

These two groups may have very different functions and may be made up of people
with very different backgrounds, experiences, aims and objectives [Gabb et al., 1991;
Fisher et al., 1997, Warne and Hart, 1995]. For example, the acquirer’s group may
include users of the system with little or no background or experience in software
engineering.

This is in stark contrast with software inspections, where participants are limited to the
product author’s peers. These reviewers are usually from the same development team
as the product author [Wheeler et al., 1996].

The other main difference is that this definition addresses “project status, software
products and/or project issues” being “examined and discussed” rather than defects
being identified.

The current procedures for, and work on, joint software reviews are discussed in
Section 2.3 before examining the impact of these differences in Section 2.4.

DSTO-TR-0735

2.3 Joint Software Review Procedures

There are two types of Joint Software Review: technical and management reviews
[MIL-STD-498, 1996; ISO/IEC 12207, 1995]. Management reviews occur after technical
reviews, and are focused on the cost and schedule, as issues which could not be
resolved at the technical review [MIL-STD-498, 1994]. Technical reviews are the focus
of this paper, because technical reviews are where most issues are raised, and because
technical reviews are more like software inspections. Unless otherwise stated, the term
joint software review will be used to refer solely to technical reviews for the remainder
of this paper.

The purpose of joint technical software reviews varies considerably from that of
Software Inspections. According to [MIL-STD-498, 1994], the objectives of Joint
Technical Reviews (software) are to: _

"a.Review evolving software products... review and demonstrate proposed technical
solutions; provide insight and obtain feedback on technical effort; (bring to the) surface
and resolve technical issues.

Review project status; (bring to the) surface near- and long- term risks. ..
Arrive at agreed-upon risk-mitigation strategies. ..

Identify risks and issues to be raised at joint management reviews.
Ensure on-going communication...”

LRSI

' Thus, the purpose of joint software reviews is for both the acquirer and the developer
to raise and resolve issues: technical, managerial and risk. Issues which cannot, and
usually should not, be resolved at this level are referred to other authorities.

Very little has been documented on joint software reviews. There are few guidelines
on how they should be conducted, little discussion on the roles of participants and no
debate on how issues should be identified, raised or resolved. Most of the
documentation which does exist comes from the military domain [MIL-STD-1521B,
1985; DOD-STD-2167A, 1988; MIL-STD-498, 1994] and these standards may conflict
when used without tailoring [Gabb et al., 1992]. Guidelines within these standards are
general in nature (e.g. recommending that minutes be taken and that the meeting be
co-chaired) or guidelines on what documents and activities should be assessed at the
same review. There is little evidence - either theoretical or empirical - to support any of
the existing guidelines.

Consequently, the joint software review process is often ad-hoc. The author conducted

interviews with several Defence and DSTO personnel during January 1997, which

indicated that: '

¢ the material under review may or may not be received prior to the meeting, it may
or may not be complete, and the time available to review the documents may vary
from a few days to a few weeks;

¢ prior preparation - either familiarisation or issue identification - may or may not be
conducted;

e people who review material prior to the meeting may either forward their
comments or attend the meeting;

DSTO-TR-0735

* people who review material prior to the meeting may or may not be given guidance
as to the types of issues they are to try and identify;

* reviewers are not given guidance or training on how to review material but may
use criteria which they have devised;

e there are more participants at joint software reviews than at typical inspections (for
example at one review there were 7 participants from each of Defence and the
contractor, as well as approximately 13 observers);

e some participants are not happy with review meetings as the meetings are
perceived to drift from their main purpose;

* participants may include outside experts in technical areas, quality management
and ordnance;

» usually the reviews are held at the contractor’s premises and the contractor writes
the agenda which starts with actions outstanding;

o the reviews may include presentations and demonstrations as well as a discussion
of any documentation;

e participants may not have an active role in the meeting other than identifying
issues.

2.4 Issues and Defects

Software inspections tend to look at defects whereas joint software reviews tend to
look at issues. This report explores the differences between these terms. The terms are
first defined and examples of issues and defects are given. This section then identifies
the similarities and differences between defects and issues and looks at the types of
checklists used to uncover them.

Defects

Fagan defines a defect as “an instance in which a requirement is not satisfied. Here it must
be recognized that a requirement is any agreed upon commitment. It is not only the
recognizable external product requirement, but can include internal development
requirements...” [Fagan, 1986].

Although several alternative definitions of the term “defect” have been proposed
Fagan’s definition is used because: 1) it comes from the field of software inspections
and is consistent with the term’s normal usage within that field, and 2) it provides a
workable definition within the context of this document.

Issues

For the purposes of this work, an issue is defined as “an instance where a requirement,
either explicit or implicit, might not be satisfied”. This definition, together with Fagan’s
definition of a defect, highlights the difference between issues and defects. Defects are
a sub-class of issues - a defect is an issue where it is known that a requirement is not
met. This paper also identifies two other types of issues: those related to risk
mitigation (RM issues), and those related to implicit requirements (IR issues). RM and
IR issues are both termed goal-dependent issues as their evaluation depends on the
goals of the reviewer. Figure 2 shows the relationship between issues, defects, RM
issues and IR issues.

DSTO-TR-0735

LDefectsI [Goal-Dependent Issues B

/\

Risk Implicit
Mitigation Requirements

Figure 2: Classification of Issues

Gabb argues that IR issues are to be expected as part of joint software reviews: “In
many projects the refinement of requirements and detailed design can lead to implementations
that the customer regards as unsatisfactory. This is particularly likely in areas such as the
definition of the user interface and in the specification of detailed performance (such as response
times). More importantly, although the implementation may be unacceptable, it is often either
compliant with the higher level requirements or the judgment of compliance is a subjective
issue. While it might be claimed that this is the result of poorly specified requirements, this will
frequently not be the case. Customers are encouraged to avoid detail in the requirements which
might inhibit the design... The penalty for lack of detail is a development resulting in an
unacceptable design.” [Gabb et al., 1992]

Example 1 provides an extreme example of how risk mitigation issues may also arise.
In practice, hardware controls and additional quality assurance measures would be in
place to reduce the risk. However, the risk would still exist at the system level.

Example 1: Power Plant

A software system is being developed to control a nuclear power plant. One of the requirements
for this system is that the system must be able to implement measures to prevent a nuclear
meltdown within a (given) short time of a problem being detected.

When the design for this system is under review, it may not be possible to determine absolutely
if the timing requirements for this system will be met. Different designs will have different
strengths and weaknesses in this area and some may make it easier to show that this
requirement is likely to be met. This becomes an issue if someone believes (based on his or her
experience or otherwise) that the risk of the requirement not being met is unacceptable.

Although this paper is the first to distinguish the three types of issues - defects, IR and
RM issues - questions or criteria aimed at identifying each type of issue can be found
in existing checklists for reviews and evaluations (as in Figure 3 to Figure 6).

DSTO-TR-0735

Logic

Missing A

1. Are all constants defined?

2. Are all unique values explicitly tested on input parameters?

3. Are values stored after they are calculated?

4. Are all defaults checked explicitly tested on input parameters?

5. If character strings are created are they complete, are all delimiters shown?

Figure 3: A Sample Design Inspection Checklist [Fagan, 1976]

Inspections have focused on the detection of defects, so not surprisingly the questions
in inspections checklists are aimed at detecting defects. Parts of two such checklists are
shown in Figure 3 and Figure 4. The questions on these checklists are often worded so
that they have yes/no answers. (Although even with inspections, issues may be
identified which are false positives? rather than defects e.g. [Votta, 1993; Sauer et al.,
1996].)

Completeness

1. Are all sources of input identified?

2. What is the total input space?

3. Are there any “don’t care” sets in the input space?

4. Is there a need for robustness across the entire input space?
5. Are all types of output identified?

Ambiguity...
Consistency...

Figure 4: A Sample Requirements Checklist [Ackerman et al., 1989]

There has been very little formal study of other types of review, in particular there has
been little study of reviews that identify issues such as the RM and IR issues identified
in this paper. Nevertheless, criteria aimed at identifying RM issues can be found in
checklists for joint software reviews and checklists for other forms of product
evaluation. Examples include Feasibility (Figure 6, point h), Testability (Figure 6, point
i), Maintainability, system cost and completion dates.

Guidelines on criteria for identifying RM issues can be formulated by considering the
examples in Figure 5 and Figure 6 together with the nature of risk. The identification of
risk is often subjective [Tversky and Kahneman, 1989; Haimes, 1993]. It is therefore
unlikely that specific questions with yes/no answers can be used to identify risks. In
the previous examples, all the criteria aimed at identifying RM issues are stated in
terms of the area of interest rather than as pointed questions. These criteria will usually
address the future state of the system’s products and properties. In software
engineering, risk is most commonly defined as a combination of the consequences of
an undesirable event, and the likelihood (0<likelihood<1) of its occurrence [Charette,
1994; Rescher, 1983]. So once the event has occurred (or it is certain that an event will
occur) it is no longer considered a risk (its likelihood is 1) and the event becomes a

3 False positives are issues which the review believed were defects, which are actually correct.

DSTO-TR-0735

problem or defect. Thus, RM issues must relate to the future state of the system’s
products and properties.

Functionality

5.1.1 Suitability: The capability of the software to provide an appropriate set of
functions for the specified tasks and user objectives

5.1.2 Accuracy: The capability of the software to provide the right or agreed results or
effects.

5.1.3 Interoperability: The capability of the software to interact with one or more
specified systems.

Figure 5: Quality Characteristics [ISO/IEC 9126-1, 1996]

Despite the lack of prior study and classification of IR issues, criteria aimed at
identifying IR issues can also be found in checklists for joint software reviews and in
checklists for other forms of product evaluation. For example: Suitability (Figure 4,
point 5.1.1), Covering the Operational Concept (Figure 6, point g) and Useability are
often poorly or only partially defined and so lead to the detection of IR issues. Because
IR issues relate to implicit requirements, they may also be subjective. Therefore, they
are generally stated in a similar manner to those of RM issues, which may also be
subjective. Issues related to implicit requirements are concerned with the system from
the perspective of its entire user population (including support personnel) or with the
system from an operational perspective.

Note that defects may also be detected by broad questions such as those used to detect
RM and IR issues. For example, Porter’s ad-hoc technique uses a list of criteria similar
to those in Figure 5 [Porter et al., 1995a]. Also, the criteria which compare the current
and previous system products and properties (as in Figure 3 and Figure 5-point a),
often result in the detection of defects and criteria which address the completeness and
internal and external consistency of a product may result in the detection of defects.
For example, criteria a) and e) in Figure 6 are similar to the criteria given in Figure 4
(although specific questions are given in Figure 4 and not in Figure 6). Clearly defects
can be identified using both checklists.

Requirements

a) Contains all applicable information from the Software System Specification, the
Interface Requirements Specification (IRS) and the relevant Data Item Descriptions
(DIDs).

b) Meets the Statement of Work (SOW), if applicable

c) Meets the Contract Data Requirements List (CDRL), if applicable

d) Understandable

e) Internally consistent

f) Follow Software Development Plan

g) Covers the Operational Concept

h) Feasible

i) Testable

Figure 6: Evaluation Criteria [MIL-STD-498, 1994]

DSTO-TR-0735

10

Figure 7 highlights the differences between defects, IR issues and RM issues. Defects
can normally be objectively identified [Remus, 1984] while, as stated previously, the
identification and resolution of RM issues and IR issues may be subjective [Gabb et al.,
1991; Gabb et al., 1992; Fisher et al., 1997]. IR issues and defects are also assessed based
on the current state of the system, while RM issues refer to future states of the system?.

Objective Subjective
Now Defect Implicit Requirement
Future Risk Mitigation

Figure 7: Characteristics of Different Classes of Issue

The identification and resolution of RM issues are subjective. One reason is differences

between the reviewers' perceptions of risk. Their perceptions are influenced by a
number of factors including framing [Tversky and Kahneman, 1989], background,
experience and the goals of the reviewer.

IR issues can depend on the goals of the reviewer with respect to the relative
importance of the system’s operational requirements, user interface requirements, and
desirable, but conflicting quality and performance requirements [Gabb et al., 1991;
Ulkucu, 1989]. For example, “There appears to be an almost universal difference of opinion
between developers and customers regarding the suitability of delivered documentation” [Gabb
etal., 1991].

Because of the dependence of RM and IR issues on the reviewers’ goals, they are
collectively referred to as goal-dependent issues in this paper.

In practice the resolution of goal-dependent issues tends to involve a process of
negotiation. The acquirers and developers first identify issues either independently or
jointly. For each issue identified they then discuss how the issue should be addressed:
what action is required, whether it has already been addressed, or whether no further
action is required. The subjective nature of these issues means that considerable time
may be spent on these negotiations [Gabb et al., 1992].

4 Since the future state of the system cannot be objectively determined, RM issues are subjective
and the only type of issues which refers to the future state of the system.

DSTO-TR-0735

3. Models

A model of factors affecting the performance of software inspections has recently been
proposed [Sauer et al, 1996]. Using this performance model and results from
behavioural theory, Sauer et al argue for the model of software inspections shown in
Figure 8. Defects are identified by individuals, collated and if necessary, assessed by a
pair of experts (an expert-pair). This assessment is aimed at discriminating between
true defects and false positives - things which a reviewer claimed were defects, but
which should not have been identified as defects [Porter et al., 1995b; Sauer et al., 1996;
Votta, 1993]. This assessment is not performed for (claimed) defects that were
identified by more than one reviewer - such defects are assumed to be true defects and
not false positives.

Individual E :
Preparation *Per
Individual :
Collatio
Preparation —-Oha ’n —
Expert
A 4
Individual Defects
Preparation List

Figure 8: An Alternative Inspection Process [Sauer et al., 1996]

This paper argues that Sauer’s model of inspections cannot be used for joint software
reviews because these reviews have participants from multiple organisations and
consider goal-dependent issues. Sauer’s model of inspections uses identification by
multiple reviewers or an expert pair to discriminate between true defects and false
positives. Example 2 shows how a goal-dependent issue identified in a joint software
review may not require any action even when the issue is identified by multiple
reviewers. As previously discussed, the subjective nature of issues [Gabb et al., 1991]
means that they are typically resolved by negotiation during the review.

Example 2: Language Choice

Consider the joint review of a software development plan where the developers wish to use the
C programming language and the acquirers believe that the Ada programming language should
be used. (Based on the author’s experiences, similar situations are not uncommon.)

Two acquirers identify the choice of development language as an issue. They believe that Ada
should be used because it is a defacto defence standard [DI(N)LOG 10-3, 1995], and they
believe there would be less risk in the development of the system because of the rigorous
development procedures it encourages [Marciniak, 1994].

Without discussion with the developers, it may appear that the development plans should be
amended and Ada used as the development language. However, during the review, the
developers describe how they have considerable expertise in developing similar systems in C
and how they believe that most of the system could be’ developed using reusable components

11

DSTO-TR-0735

12

from previous systems [Anderson et al., 1988]. Based on this additional information, both the
acquirers and the developers agree that the system should be developed using the C
programming language. However, as part of their risk mitigation strategy, the acquirers want

to review this decision when more information is available about the level of reuse that could be
achieved.

[Task
[Training
IMember ! a lIndividual
[Selection IMember Expertise
iGroup Size ,___...)
Group
Expertise
roup
rocess -—_—)
Social
Decision —-—)
[Scheme

Figure 9: A model for the performance of software inspections [Sauer et al., 1996]

Thus, this paper proposes a new model for the performance of software reviews which
combines the model of the performance of software inspections[Sauer et al., 1996] with
a model of negotiation [Davis and Newstrom, 1985].5 Sauer et al's model is shown in
Figure 9, Davis and Newstrom’s model is shown in Figure 10, and the new model is
depicted in Figure 11. The new model is currently being refined into an integrated
model, which more clearly shows the relationship between the factors and the
structure of the review group. The new model will be published in the author’s PhD
thesis. However, the factors in the current model are similar to those being proposed in
the new model, and it is sufficient to explain some of the differences between joint
reviews and inspections.

5 Sauer et al’s alternative inspection process, Figure 8, was derived from their model of the
factors effecting the performance of software inspection, Figure 9.

DSTO-TR-0735

[ndividual | Group | Organisation
Fhilosophy and Goals

Leadershp

[Formal - Policy Informal - Norms
OUrganisation

[Communication ‘ |

Attitude [Situation | Motivation
pystem of Controls -

Figure 10: A model of factors effecting the performance of organisations
[Davis and Newstrom, 1985].

The boxes all three models show factors that can effect the performance of software
reviews. The factors from Davis and Newstrom’'s model appears in the lower left of the
new model. In the new model it is assumed that they influence, and are influenced by
the same factors. The lines in the Sauer et al’s model, and in the new model show
influence. So for example, group experience influences performance and individual
expertise influences group expertise. Furthermore, the way individual expertise
influences group expertise is modified by the group size. This is shown by the arrow
from group size to the line joining individual expertise and group expertise.

The box in the upper left hand corner of the new model does not appear in either of the
other models. The ovals in this box indicate different sources of people from which the
participants can be drawn. The potential pool of participants can influence how
members are selected. For example, if there are few potential participants they may all
be selected, while if there are many potential pariticipants they may be selected on the
basis of availability or expertise. The member selection determines the individuals who
participate in the review and thus influences the individual expertise. The selection of
members also influences the properties of the group such as the leadership and
organisation of the group. The selection of members from different organisations can
effect the philosophy and goals of the organisations present at the review. The
selection of different individuals may also effect the communication of the group:
either through different styles of personal communication, or though access to
different communications media, such as email and groupware.

13

DSTO-TR-0735

14

The proposed model differs from the performance model of Sauer et al by making
explicit the dependence of the performance of software reviews on: 1) the goals of the
participants, leadership, organisation, communication and system of controls; and 2)

ask
(Training

ember i ndividual
Selection Member Expertise

[}
[}
[}
'
:
(] [}
-
i
Potential participants | — -
' Group Size | sumemmmedy-
]
ndividual | Group lOrgamsatlon 1
Philosophy and Goals i Group
[} rt'
ask | Social E Expertise
Leadership | Group
i Process prec—-
ormal - Policy IInforma] - Norms !
Organisation '
i ocial
[Communication | E Decision s—-
' Scheme
Attitude | Situation] Motivation E 4
System of Controls ! erformance
[}
[}
A

Figure 11: Group Performance [Sauer et al., 1996; Davis and Newstront, 1985]

the different expertise and backgrounds of the participants. Section 3.1 discusses the
application of the model to software reviews and identifies two areas that deserve
further attention. These areas: group structure and goal conflict are discussed later in
this section.

3.1 Application of the model to software reviews.

The performance model used by Sauer is based on a behavioural task model [Sauer et
al., 1996]. The representation of the behavioural task model is identical to the
performance model used by Sauer. The behavioural model looks at tasks such as
ranking items according to their potential benefits. The main difference between
software reviews, inspections and the behavioural tasks are the number of items that
must be evaluated, and the purpose of the evaluation. In software inspections, the
number of defects is not known, and each potential defect is either correct or incorrect.
In the behavioural model, the number of items to be ranked is known, and the purpose
is to judge the relative merits of all the items. In joint software reviews, the number of
issues is not known, and potential issues may be evaluated relative to the goals of all
participants. Issues must be consistently evaluated and can be combined during the
group phase. Figure 12 is an extension of Sauer et al's comparison between inspections
(which he calls Software Development Technical Reviews) and the behavioural task
model. It incorporates a column on generic software reviews that allow the
identification of goal-dependent issues. These generic software reviews include joint
software reviews. From Figure 12 it can be seen that generic software reviews may be a

DSTO-TR-0735

better match than software inspections to the characteristics of the behavioural task
model, partly because the group activity is no longer one of validation or binary
discrimination.

Inspections Behavioural Software Reviews
Task stages 2 2 2 (varies)
Task items defects items issues
Multiple items, # unknown known unknown
Individual activity discovery judgment discovery & judgment
Group activity validation - binary judgment judgment
Individuals can be yes no yes
undecided about an item

Figure 12: A comparison between inspections, behavioural task models [Sauer et al., 1996] and
a task model for software reviews which may involve issue identification and resolution.

The remaining components of the model come from a generic model of group
meetings [Davis and Newstrom, 1985]. While this model has not previously been used
for software reviews, its use is supported by results from negotiation and decision
support theory (e.g. [Foroughi et al., 1995; Nielsen, 1979; Nunamaker et al., 1991a]),
organisational behaviour (e.g. [Luthans, 1985]), and the performance of software
programmers (e.g. [Chung and Guinan, 1994; Simmons, 1991]). Furthermore, many of
these areas have been identified as contributing to the performance of software
reviews [Parnas and Weiss, 1987; Gilb, 1996; Brykczynski, 1994; Weller, 1993].

Of these areas, there are two areas for which there are considerable differences
between joint software reviews and inspections. These areas are group structure and
goal conflict. The remainder for this report focuses on these two areas. Section 3.2
discusses group structure. Section 3.4 discusses goal conflict and is preceded by a
discussion of how goal conflict arises in software reviews.

3.2 Group Structure

The new model for software reviews (Figure 11) suggests that the structure of the
review group will affect the performance of software reviews. Three components of
the model support this suggestion: the potential participants pool, the method of
selecting members, and the organisation of the group. The pool of potential
participants and the method of selecting members are particularly important where
participants come from multiple organisations. The impact of having the group
partitioned into sub-groups within the review group (e.g. participants from two
organisations) is the focus of this section.

Work on decision support systems has compared problem-solving sessions
(negotiations) between two parties with problem solving sessions within a single
group. Negotiations follow a different pattern, and are generally longer, than problem
solving sessions within a single group [Luthans, 1985].

Although the impact of sub-groups has not been investigated for software reviews or
inspections, other areas of group organisation have been. Sauer proposes a model to

15

DSTO-TR-0735

16

explain when actual groups perform better at software inspections than nominal
groups® [Sauer et al., 1996]. Sauer’s model is based on the literature from behavioural
theory, which states that social decisions are based on plurality effects. That is, a group
decision is made once a majority agrees or, where there is no majority, a group
decision is made when two or more members agree on a “correct or accurate solution”.
However, with joint software reviews, there is often disagreement on what constitutes

a “correct or accurate solution” and different members often support opposing views
[Gabb et al., 1991].

Groups which decompose the inspection task (so that different reviewers address
different questions or different parts of the document) have been found to perform
better than other groups [Knight and Myers, 1993; Porter et al,, 1995a; Parnas and
Weiss, 1987]. Sauer suggests two reasons for the improved performance of groups
employing these strategies: the first is that the size of the activities has decreased, and
the second is that different types of expertise have been made available [Sauer et al.,
1996].

Based on work from organisational behaviour [Luthans, 1985], for the purposes of this
paper a group is said to be partitioned into sub-groups if and only if there exist two or
more clearly distinguishable sub-groups such that each member of the group belongs
to one and only one sub-group. For example, a group may be partitioned into
subgroups if the participants come from two different organisations.

One approach to determining if a group really is partitioned into subgroups, would be
to check the cohesion of the group and the cohesion of the sub-groups. The cohesion of
the subgroups is expected to be higher than the cohesion of the group under most
circumstances [Luthans, 1985].

Work from organisational behaviour suggests that a group which is partitioned into
sub-groups would not be as efficient as other groups [Luthans, 1985]. This leads to the
following hypothesis for software reviews:

HO1. Software reviews without partitioned subgroups will raise and resolve a greater
number and quality of issues than groups with partitioned subgroups.

Care needs to be taken in evaluating this hypothesis as there are several compounding
factors that could occur. Many methods of partitioning a group into subgroups will
also decrease the activity required by each subgroup or increase the effective expertise
of the group. In these circumstances, the performance of reviews may increase [Sauer
et al., 1996]. These compounding effects on review performance may outweigh any
performance loss due to the presence of partitioned subgroups [Sauer et al., 1996].

3.3 Goal Conflict within Software Reviews

The presence of multiple groups in software reviews is often associated with goal
conflict. Goal conflict in software reviews can stem from two sources. The first source

¢ A nominal group is a collection of individuals that are treated as if they were a group even
though there is no group interaction.

DSTO-TR-0735

is conflict between the goals of the various participants. This source of goal conflict is
particularly common where two organisations are present in the review. For example,
joint software reviews in Defence and where the development of systems is outsourced
[DeMarco and Lister, 1998; Jones, 1998]. The second source of goal conflict arises from
the objectives of the system and the objectives for its development and acquisition. The
conflicting objectives of the system and its development are discussed first. Conflict in
the goals of the participants can be related to conflict in the objectives of the system.

Conflicting objectives arise for even relatively simple systems. For example, Ulkucu
describes the objectives for a decision aid - a Multiple Criteria Decision Making
(MCDM) system and discusses the conflict between the objectives [Ulkucu, 1989].

There are several classes of system objectives, and conflict can occur within and

between different classes of system objectives.

o There are financial objectives and conflicts. For example, it may not be possible to
minimise both the cost of developing the system and the cost of maintaining the
system [Ulkucu, 1989].

o There are design style considerations, and conflict between these considerations.
For example, high levels of both modularity and granularity are desirable, but both
cannot be maximised [Ulkucu, 1989].

o There are functional objectives. Conflicts in the functional objectives may arise from
different expectations of different users.

o There are also non-functional requirements and conflicts can occur between these
requirements. For example, a high response time and a high algorithm reliability
might be desirable, but impossible to achieve [Ulkucu, 1989].

o There may also be conflicts between these different classes. For example producing
a system with a high level of interactiveness may increase development costs,
which are trying to be minimised [Ulkucu, 1989].

Trade-offs need to be made between these objectives at various times during the
development. For example, as explained by Gabb below, trade-offs will be made
during the detailed design phase. Gabb uses the term Project Authority (PA) to refer to
the acquirers at the Defence project office, and the terms contractors and designers to
refer to the developers.

“Detailed design will always result in "design choices", where the designers find it
necessary to make choices which affect the functionality and performance of the system.
In many cases these choices will be logical and acceptable to the PA. In others the
designer will make a choice which is unacceptable to the users andfor acquirer. The
need to make these choices will sometimes identify areas which are not specified or are
underspecified. The designer cannot be expected to ask the PA each time he makes such
a choice (there will be literally thousands of them in a medium scale project). The CDR
gives the PA the opportunity to see the result of these choices and take appropriate
action.” [Gabb, 1997]

The trade-offs chosen will depend on experience of the designers, the quality of the

specification and the perceived benefits and limitations of alternative designs or
development strategies.

17

DSTO-TR-0735

18

Different individuals and groups or organisations will perceive different benefits and
limitations to design alternatives. For example, as stated by Gabb, the best design from
the developer’s perspective will not always be the alternative preferred by the acquirer
- and may even be unacceptable to the acquirer [Gabb, 1997].

This difference in perception relates to the second source of conflict - differences in the
goals of the participants. In addition to the relative importance placed on the objectives
of the system and its development, the participants may have other goals for a review.
These goals may be in conflict with the goals of other participants.

For example, the author’s main goal may be to have their product approved, or to
minimise the amount of rework required [Gabb et al., 1992]. It is easy to see how this
could conflict with the goals of other review participants.

3.4 Goal Conflict

This section discusses how goal conflict can affect the performance of software
reviews. Section 3.3 discussed how goal conflict arises in software reviews, and
Figure 11 introduced the idea that the goals of individuals, groups and organisations
also affect the efficiency of reviews. (The individual, group, and organisational goals
appear in the box on the left-hand side of the figure. The properties in this box
influence both the group process and the group decision scheme, which in turn
influence the performance of software reviews.)

Several combinations of goals are possible within a review and occur at two main
levels - the group and the individual levels. The goals at each level may be either
complementary or conflicting. Conflicting goals cannot all be met simultaneously.
They require trade-offs to be made. Complementary goals can all be satisfied
simultaneously. For example, a system may have goals of maximising the accuracy of
a calculation, but minimising the time it takes for the calculation to be performed.
These goals are conflicting and require trade-offs to be made. On the other hand, it
may be possible to achieve both the goal of minimising the time it takes for the
calculation and the goal of providing a user-interface which is easy to use. These goals
are complementary. Conflicting goals may arise because the group and individuals
have sets of conflicting goals, or because different individuals or subgroups have
different goals, which conflict. The combinations of conflicting or complementary
goals with the same or different subgroups are summarised in Table 2.

Table 2: Possible goal combinations

Complementary Conflicting
Group Same Same
Subgroup | Same | Different Same | Different
or
Individual

DSTO-TR-0735

Where sub-groups are present (e.g. when multiple organisations are present) the
possible goal combinations are the same as those given for individuals within a group
in Table 2.

Group Group
Same Goals Same Goals
Complementary » Conflicting

| |
Sub-groups H1) ub-groups [E1T4 | [HO1]
Same Goals _ Same Goals
Complementary " Conflicting

| |EE N |

A\ 4 v
Sub-groups ub-groups v
Different Goals » Different Goals
Complementary Conflicting
HO2

Figure 13: Summary of treatments and hypotheses

Several hypotheses are proposed in this section of the document. They are summarised
in Figure 13. The lines correspond to hypotheses. The direction of the arrow is the
direction of the expected performance decreases. Three types of labels are used on the
lines: those starting HO are general, over-arching hypotheses; those starting with HT
will follow if the other hypotheses are true, and the third set of hypotheses take the
form H followed by a number. The hypotheses are numbered in the order that they are
proposed in this section.

Studies from negotiation theory have shown that performance of group and individual
activities is adversely affected by conflicting goals. For example, the number and
quality of potential solutions raised during negotiations have been inversely linked to
goal conflict [Nunamaker et al.,, 1991a; Foroughi et al, 1995]. (See Section 4.1 a
description of how the efficiency of reviews may be determined using the number and
quality of issues raised and resolved.)

It is hypothesised that the same will be true for software reviews:
H1. Software reviews by partitioned sub-groups with different goals will raise and

resolve a greater number and quality of issues when the goals of the sub-groups
are complementary, than when the goals of the sub-groups conflict.

19

DSTO-TR-0735

20

Based on studies by Schater it has been argued that conflicting goals adversely affect
the performance of all groups [Luthans, 1985]. For software reviews, we propose the
additional hypotheses:

H2. Software reviews without partitioned sub-groups will raise and resolve a greater
number and quality of issues when the goals of the group are complementary,
than when the goals of the group are conflicting.

H3. Software reviews by partitioned sub-groups with the same goals will raise and
resolve a greater number and quality of issues when the goals of the sub-groups
are conplementary, than when the goals of the sub-groups are conflicting.

And the general hypothesis:

HO2. Software reviews will raise and resolve a greater number and quality of issues
when the goals of the group/participants are complementary, than when the
goals of the group/ participants are conflicting.

In the software engineering field, differences in the goals of stake-holders (e.g.
developers, users, management) have been cited as a major cause of failure and
termination of projects [Warne and Hart, 1995]. While Warne and Hart focused on the
development of information systems, Jones describes how the Denver airport baggage
handling system ending in litigation, like 5% of all outsourcing contracts [Jones, 1998].
Jones claims that Implicit Requirements - automating poorly understood manual
process, ambiguous deliverables, and poorly defined quality criteria can cause conflict
in projects which can ultimately end in litigation.

There is evidence of the impact of goals on software reviews. Most of the empirical
studies on software reviews have focused on software inspections where the emphasis
is on defect detection. One cause of inspection failure is the lack of, poorly defined, or
differing inspection goals, standards, and quality goals [Brykczynski, 1994; Gilb, 1996;
Grady and Van Slack, 1994; Shirey, 1992].

It is therefore hypothesised that the performance of reviews will depend on whether
the group has a common set of goals, regardless of whether these goals are
complementary or conflicting. The following two hypotheses are therefore proposed:

H4. Software reviews by partitioned sub-groups will raise and resolve a greater
number and quality of issues when the goals of the sub-groups are the same
and complementary, than when the goals of the sub-groups are different but
complementary.

H5. Software reviews by partitioned sub-groups will raise and resolve a greater
number and quality of issues when the goals of the sub-groups are the same but
conflicting, than when the goals of the sub-groups are different and conflicting.

Well-run inspections take measures - such as restricting participation to peers, and not
allowing reviewers to comment on design alternatives - to reduce the possibility of
conflict e.g. [Freedman and Weinberg, 1982]. The effects of goal conflict on inspections

DSTO-TR-0735

have not been hypothesised and indeed, it would be difficult to control goal conflict
with the usual model of software inspections. It is easier to manipulate goal conflict
within broader forms of software review.

Two additional hypotheses are generated from HO1 of Section 3.2 by considering its
implications where the goals of the group are conforming and conflicting:

H6. Software reviews without partitioned sub-groups and with conforming goals will
raise and resolve a greater number and quality of issues than reviews with
partitioned subgroups and the same, conforming goals.

H7. Software reviews without partitioned sub-groups and with conflicting goals will
raise and resolve a greater number and quality of issues than reviews with
partitioned subgroups and the same, conflicting goals.

While hypotheses such as those above need to be tested to determine the effects of
conflict on the performance of software reviews, several additional hypotheses can be
derived by the transitive closure? of hypotheses H1 to H7. A third general hypothesis
is derived by combining the hypotheses concerning goal differences:

HT1. Software reviews without partitioned sub-groups and with complementary goals
will raise and resolve a greater number and quality of issues than software
review with partitioned sub-groups with different but complementary goals.

HT2. Software reviews without partitioned sub-groups and with complementary goals
will raise and resolve a greater number and quality of issues than software
reviews with partitioned sub-groups with different and conflicting goals

HT3. Software reviews without partitioned sub-groups and with complementary goals
will raise and resolve a greater number and quality of issues than software
reviews with partitioned sub-groups with the same, but conflicting goals.

HT 4. Software reviews without partitioned sub-groups but with conflicting goals will
raise and resolve a greater number and quality of issues than software reviews
with partitioned sub-groups with different and conflicting goals.

HO3. Software reviews with partitioned sub-groups with the same goals will raise and
resolve a greater number and quality of issues than reviews with partitioned sub-
groups with different goals. '

The next section discusses methods by which conflicting goals - both within a group
and between subgroups - can arise.

7 The transitive closure of a directed graph is a new directed graph with the same nodes as the
original graph. The there is an arrow between two nodes in the new graph, if there was a path
between them in the original graph. For example, the arrow HT1 in Figure 12 exists because
there of several paths, including the path via H6, H4 and H3.

21

DSTO-TR-0735

22

4. Implications and future work

The preceding sections of this document: 1) proposed a new model for software
reviews, 2) introduced two new types of issues and 3) considered the impact of group
structure and goal differences on software reviews. This section considers the
implications of these concepts and how they can be further investigated. It looks at the
effect of the two new types of issues on the measurement of review performance
(Section 4.1) . Planned studies of the hypotheses are introduced in Section 4.2 and the
final section discusses the implications for software reviews if these studies support
the hypotheses.

4.1 Measuring the performance of reviews.

A measure of the performance of reviews is required to investigate the hypotheses
proposed in this document. This section builds on the methods used for measuring the
performance of reviews in laboratory experiments on inspections. This task is
complicated by the fact that the number of issues present in a review product depends
on the goals of the participants. This issue will be resolved in the early experiments by
using the same sets of goals for each of the treatments under investigation - the only
differences in the treatments will be due to the ways in which the goals are combined.

The efficiency of inspections is typically measured using a combination of the number
of issues identified and the quality of the issues identified. However, inspections focus
on one type of issues - defects. The issues identified in other software reviews take one
of three forms - defects, risk mitigation (RM) and implicit requirements (IR). The RM
and IR issues have many similarities and together are called goal-dependent issues.
The measure of efficiency may need to consider defects and goal-dependent issues
separately.

Three types of defects are commonly used in the literature on inspections: true defects,
stylistic issues and false positives e.g. [Cheng and Jeffery, 1996a; Porter et al., 1995b].
Similarly, goal-dependent issues can be important, trivial or somewhere in between.
We call this property the quality of the issues. The measure of efficiency for software
reviews should also consider the quality of issues. This paper define 3 levels of quality
for issues:

knowledge issues which can be resolved by increasing the knowledge of the

participants

stylistic issues raised due to differences in formatting preferences etc. (these
should not need to be resolved)

true other types of issues

Note that knowledge issues are very similar to false positives. Knowledge issues are
still considered to be issues rather than false positives because the knowledge transfer
required to fix them is considered an important part of the review process.

DSTO-TR-0735

Table 3: Factors in the Effectiveness of Software Reviews?

ISSUES SCALE FACTORS
Defect # present | # true defects # false positives # stylistic defects
RM Issues | # present | # true issues raised # knowledge issues raised # stylistic issues
true issues resolved | # knowledge issues resolved
IR Issues # present | # true issues raised # knowledge issues raised # stylistic issues
true issues resolved | # knowledge issues resolved

Table 3 summarises the factors that affect the efficiency of software reviews. One
measure of efficiency is a vector of these factors that has been normalised against some
scale such as the number of issues present. In many cases, it will be possible to
combine some of these factors to simplify the measure of efficiency. For example,
depending on the circumstances there may be no need to distinguish between RM and
IR issues, between issues and defects, or between true issues and knowledge issues. If
the number of issues present can be controlled, then the number of issues raised and
resolved need not be scaled.

Each of the hypotheses presented in Section 3 can be refined to consider the efficiency

of software reviews in identifying a particular factor, or combination of factors from
Table 3.

Example 3: Hypothesis Refinement

Consider the refinement of hypothesis H1. Firstly, assume we group the factors into two
classes: issues raised and issues resolved. Then for hypothesis H1 we identify two new
hypotheses:

H1-1: Software reviews with partitioned sub-groups with different goals will raise a greater
number of issues when the goals of the sub-groups are complementary, than when the
goals of the sub-groups conflict.

H1-2: Software reviews with partitioned sub-groups with different goals will resolve a greater
number issues when the goals of the sub-groups are complementary, than when the
goals of the sub-groups conflict.

Alternatively, we could use all of the factors and obtain thirteen new hypotheses including the
following hypotheses on true issues:

Hi1-1: Software reviews with partitioned sub-groups with different goals will identify a
greater number of true defects when the goals of the sub-groups are complementary,
than when the goals of the sub-groups conflict.

H1-2: Software reviews with partitioned sub-groups with different goals will raise a greater
number of true RM issues when the goals of the sub-groups are complementary, than
when the goals of the sub-groups conflict.

8 The symbol ‘#" is used in Table 3 as an abbreviation for ‘number of’.

DSTO-TR-0735

24

HI1-3: Software reviews with partitioned sub-groups with different goals will resolve a greater
number of true RM issues when the goals of the sub-groups are complementary, than
when the goals of the sub-groups conflict.

H1-4: Software reviews with partitioned sub-groups with different goals will raise a greater
number of true IR issues when the goals of the sub-groups are complementary, than
when the goals of the sub-groups conflict.

H1-5: Software reviews with partitioned sub-groups with different goals will resolve a greater
number of true RM issues when the goals of the sub-groups are complementary, than
when the goals of the sub-groups conflict.

The methods described here are suitable for laboratory studies of software reviews.
Additional work is required to develop measures of efficiency used for field studies.
The most important consideration is how to determine a suitable scaling factor for the
measure.

4.2 Empirical Studies

Empirical studies are planned to investigate the hypotheses proposed in this
document. The early studies will be formal experiments conducted under laboratory
conditions. These studies will require careful planning to ensure that the treatments
are successfully applied: that artificially induced subgroups and goal conflict are
created and maintained.

Goal conflict and group structure should be incorporated into the models of software
reviews if these hypotheses presented here are supported (or not refuted) by the early
studies. Additional studies would be required to further probe the effects of group
structure and goal conflict. There are several avenues for additional study. The effects
of alternative group structure could be explored. Methods could be identified for
controlling the amount of goal conflict in reviews. A number of models of conflict
resolution are available, each with some limitations [Lewicki et al., 1992] and it is not
clear which model would be best suited to software reviews.) Interaction effects with
factors that have previously been tested for inspections would also need to be
investigated. For example, the effects of group size and group structure on review
performance may not be independent. Finally, case studies need to be conducted to
determine the effects of the theory outside of the laboratory setting.

These studies may not just benefit software engineering by increasing their knowledge
about software reviews: studies on the effects of goal conflict may also contribute to
our understanding of negotiation and conflict resolution. Empirical studies in these
areas have tended to focus on business applications e.g. [Nunamaker et al., 1991b].
Studies in software reviews would add support for the general acceptance of any
negotiation and conflict resolution principles investigated.

DSTO-TR-0735
4.3 Implications

Three general hypotheses HO1-HO3 were proposed in Section 3. This section discusses
some possible modification to the joint software review processes, which may be
desirable in light of each hypothesis.

Subgroups with different goals

Hypothesis HO3 proposes that differences in the goals of sub-groups adversely affects
the performance of reviews. The author can identify two possible mechanisms for
reducing the differences between the goals of the organisations present at a review.
The first requires a small change - adding a goal identification stage to the review. The
second requires a change to the way in which contracts are implemented.

Adding a goal-identification stage to joint software review processes may improve
their efficiency if hypothesis HO3 holds. This stage could be used to combine the goals
of the developer and the acquirer and identify a common set of goals for the remainder
of the review. This stage could be conducted at the start of the review or when the
review products are distributed for review. It may be possible to identify some review
goals before contract negotiation. The benefits of incorporating this stage into the
review process would need to be weighed against the costs before deciding whether or
not to modify the review process. For example, the effort and time required to
determine common goals for the review may outweigh any savings made during the
remainder of the review process.

A second method for reducing the number of differences in the goals of the developers
and contractors would be to have a combined acquirer/contractor development team.
This has been proposed as a method for improving the acquisition process in general
(e.g- [Henderson and Gabb, 1997]). While there was no previous theoretical basis for
this recommendation, it was proposed as it was felt that a partnership would be more
efficient that the current, often adversarial relationship. The hypotheses presented in
this paper do not address the entire acquisition process, so only the impact on software
reviews is considered here. Creating a cohesive team from members of both the
acquirer and the contractor would address two of the hypotheses considered in this
paper. Firstly, a single set of review goals would be more likely (HO3) and secondly
the review members would come from a single, more cohesive team (HO1). It is not
clear whether it would also reduce the level of conflict within the group’s goals (HO2).

Subgroups

In the author’s opinion, it is not likely that other methods of obtaining a single,
cohesive group (HOL1) for the review would be particularly effective, as they would
require people to act as a single group for the review, but would be required to act
independently at other times.

However, other changes to the review process which mask the distinction of the two
sub-groups (the acquirers and the contractors) may be beneficial. For example the
following may be beneficial: seating arrangements where contractors and developers
are interspersed; the use of groupware for eliciting comments (e.g. [Nunamaker et al.,
1991a]); the introduction of additional group or team-building activities where all the
participants must work together (e.g. [Henderson and Gabb, 1997]), the use of

25

DSTO-TR-0735

26

integrated product teams (e.g. [Sterzinger, 1998]); or the exchange of personnel
between the two groups or organisations.

Conflicting Goals

Hypothesis HO2 proposes that conflict in the group’s goals adversely affects the
performance of reviews. The author can identify two possible mechanisms for
reducing goal conflict. As in Subgroups with Different Goals, the first mechanism
requires a small change to the review process, and the second requires a change to the
way in which contracts are implemented.

The first mechanism is an extension of the goal identification phase described in the
first part of this section. Instead of just deciding on a common set of goals, the goals
are negotiated, and conflicting goals are weighted and prioritised. Agreement on the
priorities and goals would enable conflicts to be discussed in a rational manner.

A second possible method of addressing the level of conflict within the group’s goals
is at the contractual stage. The use of incentive schemes, which reward the contractors
for acting in the interests of the acquirers, can significantly reduce the conflict in the
goals of the two parties. (This approach has been used in other fields.)

One project where this type of reward scheme was used is the ANZAC ship project. By
including a maintenance period in the initial contract, the developers have an incentive
to minimise the whole life-cycle costs for the system, and not just the development
costs. However, care needs to be taken to ensure that this approach does not restrict
the possible system maintainer after the completion of the contract.

A second project that has attempted this in a different manner is the ADFDIS project

“where the contractors agree to follow a particular development process rather than

develop a system according to detailed system requirements. The development process
they agreed to includes identification of user requirements, continual user feedback
and implementation of an improvement cycle where these changes are fed back into
the development.

Care needs to be taken in developing incentive schemes: to ensure that the scheme
does indeed provide incentive for the contractors to act in the government’s best
interest, and to ensure that the schemes do not restrict the options of Defence in the
long term.

5. Conclusions

It has been argued that software inspections are “better” than other forms of software
review e.g. [Ackerman et al., 1989; Britcher, 1988]. However, it is not sufficient to rely
solely on software inspections to identify issues under all circumstances. For example,
inspections and joint software reviews may be required when the developers and the
users come from different organisations, as in most Defence acquisitions. This paper
identifies some important limitations with current models of software reviews due to
their focus on inspections. These limitations highlight the importance of studying the
broader field of software reviews rather than focusing solely on software inspections.

DSTO-TR-0735

This paper proposes a model on software reviews and identifies two new areas for
research into software reviews. Several hypotheses are drawn in the new areas and
they are currently being evaluated using experimental techniques. If these experiments
support the theory then the new areas form an important field of study for all forms of
software review. Through their application to inspections they are important for the
study of systems development and, perhaps more importantly, through their
application to joint reviews, they are important for the study of software acquisition.
The new areas identified may be harder to study than areas that have been previously
studied for inspections. The new areas require more structure and control than many
of the other areas studied. However, this does not mean that group structure and goal
conflict should not be investigated further. For example, if the presence of sub-groups
or the presence of observers severely reduces the performance of reviews then
measures should be taken to limit the impact. The author is currently investigating
some of these areas further and will publish a series of reports on software reviews.

Several possible improvements to the joint software review process, and to the broader
acquisition process, have been identified on the basis of the hypotheses proposed in
this paper. Some of these suggestions require significant changes to the way in which
software-intensive systems are currently acquired. Additional supporting evidence
should be obtained before they are introduced to Defence, and to industry, on a wider
scale. This evidence may include anecdotal evidence, but the prime source of evidence
should be formal experiments and case studies. In capturing additional evidence the
application of these ideas to other domains: such as the review of systems should also
be considered. While this report draws on the software inspection literature and does
not explicitly address the review of systems, significant differences between software
reviews and systems reviews are not expected.

) Acknowledgments

Thanks are due to all the people who reviewed this report, participated in discussions
and reviewed related work. Peter Fisher and Stefan Landherr of the Year 2000 Cell
(formerly in the SSE Group) reviewed early drafts. Stefan Landherr also participated in
several discussions on software reviews, as did Prof Ross Jeffery at the University of
New South Wales where the author is undertaking a PhD. Prof Jeffery also reviewed
material related to this document. Alex Yates and Dr Rudi Vernik of the Software
Systems Engineering Group reviewed later drafts.

References

[Ackerman, A F et al., 1989] "Software Inspections: An Effective Verification Process."
IEEE Software 6(3):pp 31-36.

[Ackerman, A F et al., 1984] Software Inspections and the Industrial Production of
Software. Software Validation. Amsterdam, Elsevier. pp13-40.

[ADO, 1996] Defence Project Management: Pitfalls and Pointers (Proceedings).
Canberra. Australian Defence Studies Centre.

[Anderson, K J et al.,, 1988] "Reuse of Software Modules." AT&T Technical Journal
Jul/ Aug: pp 71-76.

27

DSTO-TR-0735

28

[ANSI/IEEE-1028, 1989] IEEE Standard for Software Reviews and Audits (No. IEEE).

[Baldwin, J T, 1992] An Abbreviated C++ Code Inspection Checklist, University of
Hlinois, Department of Computer Science.

[Barnard,] and Price, A, 1994] "Managing Code Inspection Information." IEEE Software
11(2):pp 59-69.

[Bisant, D B and Lyle, J R, 1989] "A Two-Person Inspection Method to Improve
Programming Productivity." IEEE Transactions on Software Engineering 15(10):pp
1294-1304.

[Britcher, R N, 1988] "Using Inspections to Investigate Program Correctness." IEEE
Computer 21(11):pp 38-44.

[Brothers, L R, 1992] "Multimedia groupware for code inspection". SUPERCOMM/ICC
'92. Discovering a New World of Communications, Chicago, IL, USA. IEEE.
[Brykczynski, B, 1994] Why Isn't Inspection Used, Posting to comp.software-eng, 16

Mar 1994, 12:07:34 GMT, .

[Buck, F O, 1981} Indicators of Quality Inspections, Technical Report (No. TR21.802),
IBM Corporation.

[Canale, R and Wills, S, 1995] "Producing professional interactive multimedia: project
management issues." British Journal of Educational Technology 26(2):pp 84-93.

[CEPMAN 1, 1996] The Capital Equipment Procurement Manual AL12 (No. Revision
AL12 (8/8/96)), Acquisition and Logistics, Australian Department of Defence.

[Charette, R N, 1994] Risk Management. Encyclopedia of Software Engineering. New
York, John Wiley & Sons, Inc. pp1091-1106.

[Cheng, B and Jeffery, R, 1996a] Apparatus for an Experiment of Function Point
Scenarios (FPS) for Software Requirement Specification, Technical Report (No.
96/4), Centre for Advanced Empirical Software Research, University of New
South Wales.

[Cheng, B and Jeffery, R, 1996b] "Function Point Scenarios (FPS) for Software
Requirement Specification." DRAFT.

[Chung, W Y and Guinan, P J, 1994] "Effects of Participative Management on the
Performance of Software Development Teams".

[Davis, K and Newstrom,] W, 1985] Human Behavior at Work: Organisational
Behavior. McGraw-Hill.

[DeMarco, T and Lister, T, 1998] "Both Sides Always Lose: The Litigation of Software-
Intensive Contracts." Cutter IT Journal 11(4):pp 5-9.

[DI(N)LOG 10-3, 1995] Operational Software Engineering Management (OSEM) (No.
Refer DSTO file N8319/3/6. Copy appears on Defence Managers' Toolbox CD-
ROM).

[DOD-STD-2167A, 1988] DOD-STD-2167A Defense System Software Development
(No. DOD-STD-2167A).

[Earnshaw, A A P, 1994] The Acquisition of Major Capital Equipment by the
Australian Department of Defence: A Comparative Analysis, PhD, University
of Canberra.

[Fagan, M E, 1976] "Design and Code Inspections to Reduce Errors in Program
Development." IBM Systems Journal 15(3):pp 182-211.

[Fagan, M E, 1986] "Advances In Software Inspections." IEEE Transactions on Software
Engineering 12(7):pp 744-751.

[Fisher, P D et al., 1997] Lessons Learned from Software Engineering Support to JORN,
Client Report (Limited Release) (No. DSTO-CR-0050), DSTO.

DSTO-TR-0735

[Foroughi, A et al, 1995] "An Empirical Study of an Interactive, Session-Oriented
Computerized Negotiation Support System (NSS)." Group Decision and
Negotiation 4:pp 485-512.

[Fowler, P J, 1986] "In-Process Inspections of Workproducts at AT&T." AT&T Technical
Journal 65(2):pp 102-112.

[Freedman, D P and Weinberg, G M, 1982] Handbook of Walkthroughs, Inspections,
and Technical Reviews: Evaluating Programs, Projects, and Products. Mass.
Boston, Little, Brown & Co.

[Gabb, A, 1997] Critical Design Reviews - A Pragmatic Approach, Informal Document,
23 July 1997, .

[Gabb, A P et al., 1991] Tailoring DOD-STD-2167A - A Survey of Current Usage,
Technical Note (No. WSRL-TN-57/91), DSTO.

[Gabb, A P et al,, 1992] Recommendations for the Use and Tailoring of DOD-STD-
2167A, Research Report (No. ERL-0637-RE), DSTO.

[Gilb, T, 1996] "Inspection Failure Causes." Testing Techniques Newsletter October(On-
line Edition).

[Grady, R B and Van Slack, T, 1994] "Key Lessons in Achieving Widespread Inspection
Use." IEEE Software 11(4):pp 46-57.

[Haimes, Y, Chittister, C., 1993] An acquisition Process for the Management of Risks of
Cost Overrun and Time Delay Associated with Software Development,
Technical Report (No. CMU/SEI-93-TR-28), Software Engineering Institute.

[Heemstra, F J, 1992] "Software Cost Estimation." Information and Software Technology
34(10):pp 627-639.

[Henderson, D and Gabb, A, 1997] Using Evolutionary Acquisition for the
Procurement of Complex Systems, Technical Report (No. DSTO-TR-0481),
DSTO.

[Humphrey, W S, 1995] A Discipline for Software Engineering. Addison-Wesley
Publishing Company.

[ISO/IEC 9126-1, 1996] Information Technology - Software quality characteristics and
metrics - Part 1: Quality characteristics and sub-characteristics, Standard (No.
ISO/IEC 9126-1).

[ISO/IEC 12207, 1995] Information Technology Software Life Cycle Processes,
Standard (No. ISO/IEC 12207), ISO/IEC.

[Jones, C, 1998] "Conflict and Litigation Between Software Clients and Developers."
Cutter IT Journal 11(4):pp 10-20.

[Keil, M, 1995] "Identifying and Preventing Runaway Systems Projects." American
Programmer(March):pp 16-22.

[Kim, L P W et al.,, 1995] A Framework for Software Development Technical Reviews.
Software Qualtiy and Productivity: Theory, practice, education and training.,
Chapman & Hall. pp294-299.

[Knight,] C and Myers, E A, 1993] "An Improved Inspection Technique."
Communications of the ACM 36(11):pp 51-61.

[Lanubile, F and Visaggio, G, 1995] "Assessing Defect Detection Methods for Software
Requirements Inspections Through External Replication." Emperical Software
Engineering.

[Lederer, A L and Prasad, J, 1995] "Causes of inaccurate software development cost
estimates." Journal of Systems and Software 31(2):pp 125-34.

[Letovsky, S, et al, 1987] A Cognitive Analysis of a Code Inspection. Empirical Studies
of Programming. Norwood, N.J., Ablex. pp231-247.

29

DSTO-TR-0735

30

[Lewicki, R] et al.,, 1992] "Models of conflict, negotiation and third party intervention:
A review and synthesis." Journal of Organizational Behaviour 13:pp 209-252.

[Luthans, F, 1985] Organizational Behaviour. McGraw-Hill.

[Macdonald, F et al., 1995] "A Review of Tool Support for Software Inspection". 7th
International Workshop Computer-Aided Software Engineering, Los Alamitos, CA.
IEEE CS Press.

[Marciniak, J J , Ed. 1994] Encyclopedia of Software Engineering, John Wiley & Sons,
Inc.

[Martin,] and Tsai, W-T, 1990] "N-fold Inspection: A Requirements Analysis
Technique." Communications of the ACM 33(2):pp 225-232.

[McCarthy, P et al., 1996] An Experiment to Assess Cost-Benefits of Inspection
Meetings and their Alternatives: A Pilot Study.

[MIL-STD-498, 1994] Software Development and Documentation, AMSC (No. N7069),
Department of Defense (USA).

[MIL-STD-498, 1996] MIL-STD-498 Overview and Tailoring Guidebook, Department of
Defense (USA).

[MIL-STD-1521B, 1985] Military Standard for Technical Reviews and Audits for
Systems, Equipments, and Computer Software, Military Standard (No. MIL-
STD-1521B), US Dept. of Defense.

[Mosemann II, L K, 1995] "Software Development: Quo Vadis?" CrossTalk: The Journal of
Defense Software Engineering 8(11):pp 2-3.

[Myers, E A and Knight,] C, 1992] An Improved Software Inspection Techniques and
an Empirical Evaluation of Its Effectiveness, Technical Report (No. CS-92-15),
University of Virginia, Department of Computer Science.

[Nielsen, R P, 1979] "Stages in moving toward cooperative problem solving labor
relations projects and a case study." Human Resource Management Fall:pp 2-8.

[Nunamaker, J F et al., 1991a] "Information Technology for Negotiating Groups:
Generating Options for Mutual Gain." Management Science 37(10):pp 1325-1346.

[Nunamaker, J F et al., 1991b] "Electronic Meeting Systems to Support Group Work."
Communications of the ACM 34(7):pp 42-61.

[Parnas, D L and Weiss, D M, 1985] "Active Design Reviews: Principles and Practices".
8th International Conference on Software Engineering, London, England.

[Parnas, D L and Weiss, D M, 1987] "Active Design Reviews: Principles and Practices."
Journal of Systems and Software 7:pp 259-265.

[Porter, A A et al., 1995a] "Comparing Detection Methods for Software Requirements
Inspections: A Replicated Experiment." IEEE Transactions on Software
Engineering 21(6):pp 563-575.

[Porter, A A et al, 1995b] "An Experiment to Assess the Cost-Benefits of Code
Inspections in Large Scale Software Development." SIGSOFT Software
Engineering Notes 20(4):pp 92-103.

[Rescher, N, 1983] Risk. University Press of America.

[Remus, H, 1984] Integrated Software Validation in the View of Inspections/Reviews.
Software Validation. Amsterdam, Elsevier. pp57-64.

[Rifkin, S and Deimel, L, 1994] "Applying Program Comprehension Techniques to
Improve Software Inspections". 19th Annual NASA Software Engineering
Laboratory Workshop.

[Sauer, C et al.,, 1996] "A Behaviourally Motivated Programme for Empirical Research
into Software Development Technical Reviews." Technical Report (No 96/5)
CAESAR, University of New South Wales.

DSTO-TR-0735

[Schneider, G M et al,, 1992] "An Experimental Study of Fault Detection in User
Requirements Documents." ACM Transactions on Software Engineering and
Methodology 1(2):pp 188-204.

[Shirey, G C, 1992] "How Inspections Fail". 9th International Conf. Testing Computer
Software.

[Simmons, D B, 1991] "Communications: A software group productivity dominator."
Software Engineering Journal 6(6):pp 454-462.

[Sterzinger, R F, 1998] Integrated Product Team (IPT) Guide, The Boeing Company.

[Tripp, L L et al,, 1991] "The Application of Multiple Team Inspections on a Safety-
Critical Software Standard". 4th Software Eng. Standards Application Workshop.
IEEE CS Press.

[Tversky, A and Kahneman, D, 1989] Rational Choice and the Framing of Decisions.
Multiple Criteria Decision Making and Risk Analysis Using Microcomputers,
Springer-Verlag. pp81-126.

[Ulkucu, A, 1989] Conflicting Objectives in Software System Design. Multiple Criteria
Decision Making and Risk Analysis Using Microcomputers, Springer-Verlag.
pp357-394.

[VanHee, L, 1996] Software Quality Assurance, A Risk Management Approach.
http:/ /www.deepharbor.com/sqa/risk.html.

[Votta, L G, Jr., 1993] "Does Every Inspection Need a Meeting?" 1st ACM SIGSOFT
Symposium on the Foundations of Software Engineering 18(5):pp 107-114.

[Walsh, M, 1994] "Why software continues to cost more-and what the IS auditor can
do." EDPACS 21(11):pp 8-15.

[Warne, L and Hart, D, 1995] "Organizational Power and Information Systems
Development: Findings from a Case Study of a Large Public Sector Project". 6th
Australasian Conference on Information Systems.

[Weinberg, G M and Freedman, D P, 1984] "Reviews, Walkthroughs, and Inspections."
IEEE Transactions on Software Engineering SE-10(1):pp 68-72.

[Weller, E F, 1993] "Lessons from Three Years of Inspection Data." IEEE Software
10(5):pp 38-45.

[Wheeler, D A et al, 1996] Software Inspection: An Industry Best Practice. Los
Alamitos, CA, USA. IEEE Computer Society Press.

31

DSTO-TR-0735

A Model for Joint Software Reviews

Gina Kingston
(DSTO-TR-0735)
DISTRIBUTION LIST
Number of Copies
AUSTRALIA
DEFENCE ORGANISATION
S&T Program
Chief Defence Scientist)
FAS Science Policy) 1 shared copy
AS Science Corporate Management)
Director General Science Policy Development 1
Counsellor, Defence Science, London Doc Control Sheet
Counsellor, Defence Science, Washington Doc Control Sheet
Scientific Adviser to MRDC Thailand Doc Control Sheet
Director General Scientific Advisers and Trials) 1 shared copy
Scientific Adviser - Policy and Command)
Navy Scientific Adviser 1 copy of Doc Control Sheet
and 1 distribution list
Scientific Adviser - Army Doc Control Sheet
and 1 distribution list
Air Force Scientific Adviser 1
Director Trials 1
Aeronautical & Maritime Research Laboratory
Director 1
Electronics and Surveillance Research Laboratory
Director 1
Chief Information Technology Division 1
Research Leader Command & Control and Intelligence Systems 1
Research Leader Military Computing Systems 1
Research Leader Command, Control and Communications 1

Executive Officer, Information Technology Division Doc Control Sheet
Head, Information Warfare Studies Group Doc Control Sheet
Head, Software Systems Engineering Group 1

Head, Year 2000 Project Doc Control Sheet
Head, Trusted Computer Systems Group Doc Control Sheet
Head, Advanced Computer Capabilities Group Doc Control Sheet
Head, Systems Simulation and Assessment Group Doc Control Sheet
Head, C3I Operational Analysis Group Doc Control Sheet
Head Information Management and Fusion Group 1

Head, Human Systems Integration Group Doc Control Sheet

DSTO-TR-0735

Head, C2 Australian Theatre

Head, Information Architectures Group
Head, Distributed Systems Group
Head C3I Systems Concepts Group
Head, Organisational Change Group
Author (Gina Kingston)

Publications and Publicity Officer, ITD

DSTO Library and Archives
Library Fishermens Bend
Library Maribyrnong
Library Salisbury

Australian Archives

Library, MOD, Pyrmont

Capability Development Division
Director General Maritime Development
Director General Land Development
Director General C3I Development

Army
ABCA Office, G-1-34, Russell Offices, Canberra

1
1

Doc Control Sheet
1

Doc Control Sheet
1
1

N ==

1
Doc Control Sheet

Doc Control Sheet
Doc Control Sheet
Doc Control Sheet

4

NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre

Intelligence Program
DGSTA Defence Intelligence Organisation

Acquisition Program
DGCOMMS
DGCSS

Corporate Support Program (libraries)
OIC TRS Defence Regional Library, Canberra

Officer in Charge, Document Exchange Centre (DEC),

US Defence Technical Information Center

UK Defence Research Information Centre,
Canada Defence Scientific Information Service,
NZ Defence Information Centre,

National Library of Australia,

Universities and Colleges
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Deakin University, Serials Section (M list), Deakin
University Library,Geelong, 3217

Senior Librarian, Hargrave Library, Monash University

Librarian, Flinders University

(RGN

1
Doc Control Sheet &
Distribution List

- ==k NN

ok

p—t

Other Organisations
NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts
Documents Librarian, The Center for Research Libraries, US

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of
Standards andTechnology, US
SPARES 10

Total number of copies: 66

= e

= = e

DSTO-TR-0735

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
A Model for Joint Software Reviews CLASSIFICATION)
Document)
Title L)
Abstract)
4. AUTHOR(S) 5. CORPORATE AUTHOR
Gina Kingston Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-0735 AR-010-661 Technical Report October 1998
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
N8316/7/34 97/243 DST 44 REFERENCES
83
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
N/A Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS

Computer programs
Reviews
Models

19. ABSTRACT

Joint software reviews, involving the developer and the acquirer, play an important role in Defence's
acquisition of software-intensive systems. However, academic and commerical work on software
reviews has focused on intra-organisational peer reviews and software inspections. This report argues
that the principles which have been derived for inspections cannot be blindly applied to joint software
reviews. :

This paper proposes a model of joint reviews, which draws on software engineering, decision and
negotiation theory, and models of inspection. The model suggests that the structure and goals of the
review group may significantly affect the outcome of the review. The model has also been used to
suggest changes to Defence's software review process and to plan a series of studies on joint software
reviews. These studies will provide additional and updated recommendations on how Defence should
structure their software reviews for maximum efficiency and effectiveness.

Page classification: UNCLASSIFIED

