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1.0 Introduction

The principal objective of this investigation was to provide a reliable and efficient prototype software
for the engineering design and analysis of multilayered composite shells, capable of modeling linear
and nonlinear behavior in three dimensions. In addition, it should be capable of assessing the quality
of the solution and providing feedback on the basis of which the solution quality can be improved. Its
hierarchic structure should allow the selection of models of increasing complexity in an adaptive way,
such that the goals of computation are satisfied within the required accuracy and with minimal effort.

The project addressed the investigation of a hierarchic sequence of models for multilayered composite
shells and their implementation within the framework of the p-version of the finite element method.
In the Phase I project, we investigated the use of the hierarchic models for the analysis of bending of
laminated (flat) plates. Phase IT utilized the results of Phase I to fully assess the problems associated
with bending/membrane coupling and curvature, and extend those results to the nonlinear (small-
strain, large-deformation) solution methods for laminated shells, where the most significant techno-
logical contributions are to be realized. The specific objectives addressed in this investigation were:

* Investigation of the problems associated with the implementation of a hierarchic sequence of models
for laminated shells within the framework of the p-version of the finite element method as an exten-
sion of the work done during the Phase I project for laminated plates.

* Investigation of the added complexity for incorporating coupling between membrane and bending
terms, caused by non-symmetric stacking sequences, curvature, etc., and the numerical generation
and orthogonalization of the transverse shape functions for shells as an integral part of the solution
process.
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The first shell model

* Investigation of the use of the error estimators proposed during the Phase I research, and the alrer-
nating projection method as possible adaptive strategies for the automatic selection of models from
the hierarchy for a particular application.

* Based on the experience acquired with the design of the prototype software during Phase I research,
enhance the prototype software for shells to assess the effectiveness of the hierarchic models to solve
computationally intensive problems.

The following objectives were achieved during the Phase II research project:

Task 1: Investigation of the implementation issues of the first model for shells into a prototype soft-
ware. The significance of this activity was that it allowed addressing the finite element implementa-
tion issues early in the project and make the necessary adjustments in a simpler setting. Additionally,
we were in a position to address the problems of locking of shells and evaluate mesh designs which
were also very important sub-topic of the investigation.

Task 2: The model selection, model construction, and generation of transverse shape functions for
higher order models were investigated. This included the basic work leading to adopt the proper strat-
egy for model selection, for the automatic generation of transverse shape functions and for the adap-
tivity criteria.

Task 3: Incorporation into the prototype software of the additional models and logic for model selec-
tion. The additional models can be manually or automatically selected from the available set.

Task 4: Debugging and testing of the prototype software, and solution of benchmark problems, to
demonstrate the unique capabilities of the hierarchic models.

2.0 The first shell model

In the first task of the project we addressed the following issues:

« The implementation of the first hierarchic model.
« The surface description of the shell and the corresponding mapping techniques.

« The formulation to account for nonlinearities.
These points are discussed in detail in the following.

2.1 The first hierarchic model

As discussed in our Phase II proposal, the first hierarchic shell model is a five-field semi-discretiza-
tion which approximates the solution corresponding to the three-dimensional problem with the mini-
mum number of fields.
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The first shell model

We consider a curved shell element with arbitrary geometry located in the xyz Cartesian coordinate
space. Let , s, w denote curvilinear coordinates such that w = 0 represents the middle surface of the
shell (Figure 1). The shell under consideration is composed of a finite number of orthotropic layers of
constant thickness. The thickness of each layer is denoted by 4;, and the total thickness of the shell is
h = 2 -1 h;, where N is the total number of layers. We consider a displacement field which approx-
imates the curvilinear components of the displacement vector. Specifically, the first member of the
hierarchic sequence of models is:

,
w (1, s, w) = ulg(r, s)+uly(r, s)w
S N
u(r,s,w) = uly(r, s) +ul(r,s)w ™)
u,(r,s,w) = u|6v(r, s)
where (7, s) are the curvilinear coordinates of the middle surface of the shell, and w is the direction of

the normal to the middle surface. Figure 1 shows a typical quadrilateral shell element in three-dimen-
sional space (€2;) and the corresponding standard quadrilateral element (€2;,).

st

mapping

FIGURE 1. Curvilinear coordinates associated with the middle surface of the shell.

The main advantage in approximating the displacement components in the curvilinear system is that
each field can be augmented independently for the higher-order models. Also, given the variation in
the material properties through the thickness in the case of laminated composites, this makes it possi-
ble to utilize a unique set of transverse shape functions per field as discussed in Section 4A of the
Phase II proposal. The other advantage is related to the specification of the boundary conditions
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(loads and constraints). Working with the natural coordinates of the shell surface simplifies the imple-
mentation of traditional constraints, such as simple support, clamped, symmetry, antisymmetry, etc.,
and the specification of distributed surface or edge tractions, as well as concentrated forces.

One added complexity in working with the curvilinear coordinates is the incorporation of the rotation
matrix into the formulation. The rotation matrix [R] is needed to express the relation between the glo-
bal (xyz) and curvilinear (rsw) displacement components,

{u}(xyz) [R]{u}(rsw) (2)

and its terms are the components of the normalized covariant basis vectors (e, , €, €,, in Figure 1)
which are computed from the derivatives of the mapping functions. Introducing the following simpli-
fied notation to indicate the difference between global and curvilinear components of the displace-
MENts: Uiy = Uy U,y = U Eq (2) can be rewritten as:

{u} = [R{u} @)

The shell middle surface can be written in parametric form as:
x = xp(rs), y = yo(r.s), z = z4(r.s) @

where xg, Yo, Zo are smooth mapping function. Therefore considering the position vector b shown in
Figure 1, the normalized covariant basis vectors are defined as:

=GRy @

or

/|9b
ds

/|ob

3 ) €, = €X¢ ®)

with

ob 9% dyos 02 ob  O%p. 9o, azol—g

EE F U A T TR TR T @

In Eq. (6), 1, j, k denote the unit vector components in the global coordinate system. The rotation
matrix in Eq. (3) is obtained from the Cartesian components of the unit vectors in Eq. (5) as:

Rl R4 R7 €rx €sx Cwx
[R]= |R, Rs Rg|= |e,, e, e, )

R3R6R9 e_e._¢e

rz 87 TwZ
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Note that the rotation matrix is a function of the curvilinear components (7 s) only. The relevance of
the presence of the rotation matrix in the formulation becomes apparent when considering the bilinear
form in the expression of the principle of virtual work. Considering the case of no body forces, no

spring boundary conditions and homogeneous constraints, the principle of virtual work can be stated

as follows (Ref. [1]):
“Find {1} € S° such that B(u,v) = F(v), for all {v} € 8%

where S° is the space of admissible functions satisfying the homogeneous boundary conditions, {v}
are the test functions, F(v) is the virtual work of the applied loads, and B(u,v) is the virtual work of the
internal stresses:

B(u,v) = [(ID}{v})1QIDNu}av
Vv

®)
FO) = [{v} {T}aa
A

In Eq. (8), {T} is the vector of the applied tractions in the global coordinate system, [D] is a differen-
tial operator in terms of the global coordinates and [Q] is the material stiffness matrix. [D] and [Q] are
defined as:

2 - 011 Q12 Q13 Q14 Q15 Qe
Kx- 000 a_Z é; Q22 Q23 Q24 Q25 Q26
DF =102 02 o2 (0] = 033 O34 O35 P36
dy ~ dz = Ox s Qaa Qas Qug ©
39 2 ym)
00299 Qss Qs¢
i dz dy ox |
i Cse

Introducing Eq. (3) into Eq. (8):

B(u,v) = [([DIRI{y}) [QIID([RI{u})dV
| .
(10)

F(v) = [(IRI{v})'{T}dA

A
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In Eq. (10) the differential operator [D] acts on the rotation matrix which means that the second deriv-
atives of the mapping functions are also needed. The curvilinear components of the displacement vec-
tor are approximated by polynomial functions of the form:

{u} = [®Na}, {vi = [®]{b} (1)

in which [®] are known functions of (7,5,w) and {a}, {b} are the amplitudes of the basis functions.
The basis functions are given as the product of a function of (7; s) times a function of w (see Eq. (1)) as
follows:

10w0O0
[®] = {010 wo0[9;(s) (12)
00001

where ¢,(7s) are the hierarchic basic shape functions characterized by the polynomial degree p and
the mapping functions, and are given in Ref. [1]. Substituting Eq. (11) into Eq. (10), the expression of
the principle of virtual work can be witten in matrix form:

{b}T[j([D][R][q)])T[Q][D][R][cb]dV]{a}= {6y [((RI[@)) {T}dA 13)
4 A

which has to be satisfied for any {b}. Therefore, Eq. (13) can be written in compact form as:

(Kl{a} = {q} (14)

where [K] is the system stiffness matrix and {g} is the load vector. For any element (e) in the mesh,
the stiffness matrix and load vector terms are given by:

K = [(IDIRI{®Y,) [QIDI[RI{®} dV
v (15)

9= [([R1{@},) {T}dA
A

where {®}; is a column of the matrix in Eq. (12). The solution of the linear system of equations repre-
sented by Eq. (14), are the curvilinear components of the displacement vector.

As mentioned earlier, the coefficients of the rotation matrix [R] are the Cartesian components of the
normalized covariant basis vectors {e, e e,,)T which are computed from the derivatives of the map-
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ping functions of the shell middle surface. In general, the components of the normalized covariant
basis vectors (e,, e,) are non-orthogonal. In our first implementation of this model the non-orthogonal
basis was used. After a few model problems were solved using the prototype software, it became
apparent that the computation of the material matrix with respect to a non-orthogonal basis would
impose additional complications, and a change was required. An orthogonal basis was developed to
overcome this difficulty. The orthogonalization was performed by recomputing the unit vector in one
direction on the shell surface as the cross product of the vector normal to the surface (e,,) and the
other unit vector on the surface (e,): e = ¢, X e, (see Figure 1). With this change, the computation of
the material stiffness matrix was simplified for both homogeneous and laminated shells.

The material stiffness matrix [Q] needed to compute the element stiffness matrix in Eq. (15) is deter-
mined as follows: Let w (the shell thickness direction) be the direction of the layup of the laminae.
The material properties of each layer are defined in the principal material directions of the lamina (x y
7). Let the relation between the global and lamina coordinate systems at a point within the ith lamina
be:

ll lz l3 X
my my My y (16)

NI <1 =i

() M2 M

The stress-strain relation for the ith-lamina in the principal material directions is given by:

- - [ .
o, Cyy C,3 0 0 0 g
) 82 - C33 0 0 0 J £_':z 9
T Cy 0 O v
’E)’Z (sym) 44 c 0 '_Y}’Z
TZX 55 YZX
| L Cotl )| Ty
/l'\ /i\
or, in short notation,
{c}w = [Clpiedn (17)
while the same relation in the global coordinate system is:
{G}(i) = [Q](i){g}(i) (18)
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For an orthotropic material, the [C] matrix contains 9 independent stiffness coefficients. The relation
between the strains in the lamina system and the strains in the global system is given by (Ref. [2]):

e 3
_ 2 2 2 . N
£, I [ I 1213 l3l1 1112 e,

- 2 2 2
€y mi m, s mym, mym, mym, g,
€ 2 2 2 e

- z = ni ny n; nyn, nan, nn, l "z
Tyz 2m1n1 2m2n2 2m3n3 Many + MyNy Many + MmNy M Ny + Myny Tz
_ Y.,
sz 2l1;n1 212n2 2l3n3 Iyn,y + o0y Iyng + 1 n, liny +1yny »

N Xy J({

i Yxy )y _2l1m1 20m, 2lzmy lym, +lhmy Lymy + 1 ;ms llm2+lzm1_(i) @)

or, in short notation,
{é}(i) = [H](,'){g}(l‘) (19)

The strain energy density for the ith-lamina, Uy;), is an invariant, and therefore it is the same regard-
less of the coordinate system: :

1 T 1 =T -
U(,’) = 5{0}(,'7){3}(,') = E{G}(i){e}(i) (20)
Substituting Eqgs. (17), (18) and (19) into Eq. (20) we get:

Up = %{8}5)[@(:’){8}(:‘) = %{8}<Ti)[H](Ti>[c](i)[H](i){8}(i)

and therefore, from the above equation, the material stiffness matrix corresponding to the ith-lamina
in the global coordinate system is given by:

(01 = [H1(,[Cl [ H] @)

For each lamina the material matrix is transformed from the material coordinate system to the global
coordinate system using Eq. (21). In computing the element stiffness matrix in Eq. (15), the numerical
integration is performed layer-by-layer in order to include its material properties.
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2.2 Shell mapping

The quality of the mapping procedure has a substantial impact on the quality of the finite element
approximation. In the p-version of the finite element method large elements are generally used, and
therefore accurate representation of surfaces is essential so that the errors of discretization can be con-
trolled by the mesh and the polynomial order rather than by the mapping of the elements. We have
investigated a mapping technique for shells in which the surfaces are approximated by piecewise
interpolation polynomials using special collocation points. This method, developed at the University
of Maryland , College Park [3], and investigated at Washington University in St. Louis [4], is called
Quasi-Regional Mapping, and has been implemented in the prototype software for shells.

To demonstrate the quality of mapping obtained by this method, consider the problem shown in
Figure 2, which represents the canopy of a jet fighter. The canopy was created by connecting a set of
elliptical arcs by a NURBS (Non Uniform Rational B-Spline) surface. Two meshes, one consisting of
four quadrilateral shell elements, the other of six elements, were attached to the surface as shown in
the figure. Visually, the mapping is able to capture all essential features of the underlying surface.
Numerical investigation of the quality of the mapping approximation and its influence in the data
extraction from the finite element solution can be found in Ref. [4].

In the case of shells, additional requirements on the quality of the mapping procedures are imposed by
the need to approximate the second derivatives well. The second derivatives of the mapping functions
are required in the computation of the derivatives of the rotation matrix in Eq. (7) to be used in the
computation of the stiffness matrix of the elements. To illustrate this point, consider the product
[D][R] in Eq. (15). Given the definitions of [R] and [D] in Eqs. (7) and (9) respectively, the derivative
of R; with respect to x, for example, will be given as:

oR; _ aRla_r+8Rlas
9x  Or ox ds ox

but the derivative of R with respect to the curvilinear coordinates should be further expanded in
terms of the mapping functions in Eq. (4) as follows:

2 2 2 2
dxy Oxpfdxy0 X, 09y,0 Y, 0250 2
or 52 1A 52 [ ar 57

3/2
E

LN R P
E= (5;) *(57) *(37)

a2 or
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Elliptical AT -
arcs T

P

NURBS surface

-element mesh

AN

FIGURE 2. Example of Quasi-Regionalmapping for shells.

and similarly for other terms. The second derivative of the mapping function appears explicitly in the
derivative of the rotation matrix components. This clearly indicates that unless smooth mapping func-
tions are used, errors will be introduced in the formulation which are not related to the those intro-
duced by the dimensionally reduced model. These mapping procedures have been implemented and
tested in the prototype software.

2.3 Nonlinear formulation

Three types of nonlinearities were considered for the five-field semi-discretization as indicated in the

following:

o Geometric nonlinearities: Small-strain, large-displacement problems in which the action produced
by the loading changes as the body deforms.

« Eigenvalue buckling: Determination of the bifurcation buckling loads for shells subjected to arbi-
trary loading.
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e Pre-stress modal analysis: Effects of pre-stresses due to arbitrary loading on the natural frequency
of vibration of shells.

The eigenvalue buckling and the pre-stress modal analysis are linearized nonlinear problems that can
be solved in a two-step operation. The geometric nonlinear problem on the other hand is a fully non-
linear problem in which the number of required iterations is problem-dependent.

2.3.1 Geometric nonlinearities

Traditional finite element formulations of geometrically nonlinear problems are based on the
Lagrangian description of the equilibrium equations. Several algorithms of this formulation are avail-
able in the literature. These include the total Lagrangian, the updated Lagrangian and the ‘co-rota-
tional algorithm’ for beams and shells (see, for example, Refs. [6]-[7]-[8]).

The discretization procedures for geometrically nonlinear problems has been associated almost exclu-
sively with the h-version of the finite element method. Although the p-version of the finite element
method has been addressed in several papers (Refs. [9]-[10]), the formulation is based on the
Lagrangian description.

In our work, the geometrically nonlinear problem is formulated using a weak form of the spacial/
Eulerian representation of the equilibrium equations. This approach has the following advantages
over the Lagrangian description:

» The equilibrium equations are satisfied in the deformed configuration.

o The displacement components approximated by high-order polynomials and the quasi-regional
mapping provide an accurate description of the deformed configuration and makes control of dis-
cretization errors possible in practice.

 The simulation of non-conservative loads, such as follower loads, does not require any additional
extensions in the formulation, nor does it affect the symmetry of the resulting stiffness matrix.

« The extraction of stresses from the finite element solution is straightforward, since in this approach
the equilibrium equations are expressed in terms of the Cauchy stresses.

The spatial/Eulerian formulation of the geometrically nonlinear problem can be summarized as fol-
lows (Ref. [5]): The effect of large displacements is accounted for by considering the equilibrium
equations in the deformed configuration. The mapping functions are updated using the displacement
vector, and the strains and stresses are computed with respect to the deformed configuration (using the
Almansi strains and the Cauchy stresses). The resulting nonlinear system is solved by iterative meth-
ods. For the particular case of shells, the formulation is described in the following.

Considering the case of no body forces, no spring boundary conditions and homogeneous constraints,
the principle of virtual work can be stated as follows:

“Find {u} € S° such that B(u,v) = F(v), for all {v} € §°”
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where S° is the space of admissible functions satisfying the homogeneous boundary conditions, {u}
are the trial functions, {v} are the test functions, F(v) is the virtual work of the applied loads, and
B(u,v) is the virtual work of the internal stresses:

Bu,v) = [{e™} 101{e™ v
v (22)

F(v) = [{v}{T}dA

A

which differs from Eq. (8) in that {8(”)} is the Almansi strain tensor defined in the global coordinate
system due to the trial functions and {€™)} is the linear strain tensor due to the test functions. That is:

("1 = {el1 - {Ae™

(23)
1} = {eg”}
where {g} are the linear components of strain and {Ae} are the nonlinear components as shown
below:
w _ 1 ) 1
€ogij) = E(ui,]‘"‘ “j,,‘): [D{u}, €ogij) = i(vi,j'*'vj, )= [D{v}
(29)
@ _1 -

where the repeated index indicates summation, and u; j represents the derivative of u; with respect to
x;. Note that only the linear definition of strains is considered for the trial function. Substituting Eq.
(23) into the bilinear form of Eq. (22), we have:

B(u,v) = [1e*Y 101{ el yav - [{”} [Q1{Ae"}av )
\% Vv

and considering the relationship between the curvilinear and global components of the displacement
vector in Eq. (3) and the strain definition in Eq. (24), we have:

B(u,v) = [(IDIRI{y} [QIDIRI{u})dV - [(IDIRI{v} [Q1{ A }aV
Y ~ . v - (26)
F(v) = [((R{v}) {T}dA

A
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Substituting Eq. (11) into Eq. (26) and rearranging, the principle of virtual work can be written as:
{b}T(j ([D][R][<I>])T[Q][D][R][d>]de{a}= {b}T(j ([RI[®@]){T}dA +
14 A

| ([D][R][‘P])T[Q]{AS(")}dVJ
|4

@7

which has to be satisfied for any {b}. Note that the contribution of the nonlinear strains have been
moved to the right-hand-side of the equation, as a ‘load vector’ term. Therefore, Eq. (27) can be writ-
ten in compact form:

[KHa} = {q}+{Aq} (28)
where:

K; = [(IDIRI{®}) [QI[DIRH @Y dV

Vv
g;= [(RI{®}) {T}dA
A

Ag; = [(IDIRH{ @}, [Q1{ A" }av
\4

Note that Ag; depends on the solution, and therefore the system can only be solved by an iterative pro-
cedure. Denoting the kth-iteration by a superscript (k), Eq. (28) can be witten as:

(k-1)

(K P11a®y = (g U1+ 1ad ) (29)

In the computation of the stiffness matrix, load vector and contribution of nonlinear strains in Eq.
(29), the mapping updated by the solution corresponding to the (k-1) iteration is used. In other words,
during the kth-iteration, the mapping functions are given by:

0 = xo(r,s) + uik_ 1)(r,s,O)
k k-1

y( ) = yo(r,S) + M; )(r,S,O) (30)
k k-1

Z( ) = Zo(ras) + ng )(r,s,O)
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where the displacements in the global coordinates are computed from the curvilinear displacement at
the shell middle surface (w = 0) using the rotation matrix corresponding to the (k-1) iteration:

{u(k—-l)} — [R(k—l)]{u(k—l)}

This formulation has been implemented in the prototype software for planar and three-dimensional
elasticity problems. The results of the preliminary investigation clearly demonstrated the potential of
the proposed method for solving geometrically nonlinear problems for shell structures. An example of
the implementation is included in the next section.

2.3.2 Eigenvalue buckling

Another class of problems in the analysis of shell structures is eigenvalue buckling which is a linear-
ized form of a geometrically nonlinear formulation, useful for estimating the limits of elastic stability.
A capability to perform eigenvalue buckling for homogeneous and laminated shells was developed
and implemented. The main points of the formulation are outlined in the following.

The undeformed configuration of the shell is denoted by Q and its boundary by dQ. The infinitesimal
strain is defined in terms of the Cartesian components of the displacements (u;, i=1, 2, 3):

1

which is a simplification of the Green-Lagrange strains defined by

—

=, = € +l(u )
=i T TS ai Yo, j

The simplification is justified by the assumption that lu; ;1 <<'1 and hence the product terms u, ; i ;
are negligible in relation to u; ;. The stress-strain relationship is:

0
G;; = O+ Ciiny

Oisa pre-existing stress state, independent of u;, and C;;; is the tensor of the elastic moduli

where ;;
Y i
of the material. An important property of G,-jo is that it is in equilibrium with the corresponding trac-

tions TiO = GijO n;in the sense:

%J.og»(vi,j+vj’ pav = [Tjvda  for all v,e E (Q) (31)
Q oQ
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where dV and dA represent the differential volume and differential area, respectively, and E (Q) is
the space of kinematically admissible perturbations.

When the reference configuration is stress-free (i.e., cij0= 0) then the potential energy is defined by:

1
M) = 5[ CpeyeudV — [ Tuid
Q 0Q

The exact solution minimizes IT on the set of all kinematically admissible functions denoted by
E(Q). When the reference configuration is not stress-free then the work done by GUO due to the non-
linear strain terms may not be negligible. Therefore the potential energy expression is written in the
following form:

H(u) 2JCljklsljekldV+ J‘Gl‘] (X i a]dV JTM dA (32)
Q Q Q2

The second integral in Eq. (32) represents the work done by the initial stresses due to the nonlinear
strain terms. The work done by ¢ jO due to the linear strain terms is cancelled by the work done by T
in the sense of Eq. (31). The discretized form of the potential energy in Eq. (32) is:

I = 3{a} (Kl{a} + 5{a} [G}{a} - {aY La]

where {a} represents the coefficients of the basis functions; [K] is the stiffness matrix; [G] is called
the geometric stiffness matrix, and {q} is the load vector. In typical structural stability problems, 7;=0,
G,jo is predominantly compressive, and the objective is to find the lowest scalar multiplier of cijo,
denoted by A, and the corresponding nontrivial displacement vector function u;, such that

I(u,) = ZJCz]klszJSkldV+2IG,, o i, 4V (33)
Q Q

is minimum. The stress field o;; i 0 is called the fre-buckling stress state, and the critical load, also
called the bifurcation buckling load, is A, 7;".

The discretized form of the eigenvalue problem represented by the minimization of Eq. (33) is:
([K1+A[G]){a}=0 (34)

where the stiffness matrix is computed in the usual way (see Eq. (15)) and the geometric matrix is
determined from the second integral in Eq. (32) as follows:
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{a}"161{a}=[ ({D}u) Tool{ D}u, + ({D}u,) [6)1{D}u, + ({D}u) [6ol{D}u)dvV @9
Q

where uy, u,, u, are the Cartesian components of the displacements which are related to the curvilin-
ear components through the rotation matrix [R], { D} is a differential operator vector and [Gp] is the
stress tensor written in matrix form as indicated below.

{D} =

Sl o gl

\

The implementation of this algorithm in the prototype software requires two steps for the computation
of the buckling load factor:

» A linear elastostatic problem is solved first for the specified loadings ( T.%) and constraints. The lin-
ear solution is used to compute the initial stress tensor c,-jo. The stress tensor c,-jo at each integra-
tion point is used to compute the geometric matrix.

 After the geometric matrix is available, the eigenvalue problem represented by Eq. (34) is solved to
find the minimum buckling load factor. The critical load is then: T, = kminTiO.

Several model problems of homogeneous and laminated shells have been solved using the algorithm
described above. The results indicate that the implementation provides very accurate results when
compared with data published in the literature and with the results of fully three-dimensional analysis.
An unique feature of the formulation is that it is not tied to a particular type of dimensional reduction
but rather it can be used in conjunction with the hierarchic family of models and even for fully tree-
dimensional models.

2.3.3 Pre-stress modal analysis

The formulation for elastic vibration is analogous to Eq. (32) for eigenvalue buckling. Specifically,
we seek to find w and u; € E (Q), u;#0 such that

H (u ) = 2_[Cz]klel;£kldv+ chl] Uy, iU%q, ]dV ® qu u; AV ) (36)
Q Q Q

is minimum. The symbols ® and p in Eq. (36) represent the natural frequency and the mass density,
respectively. The importance of the stress field o;; Ois clearly visible from Eq. (36): If 5 0is predomi-
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nantly tensile then the stiffness is increased, whereas if Gijo is predominantly compressive then the
stiffness is decreased. If (Sl—jO is a buckling stress then the lowest natural frequency is zero.

The discretized form of the potential energy in Eq. (36) is:

*

1.7 5 T
In = i{a} ([K]1+[GD{a} - {a} [M]{a} @7)

where, as before, {a} represents the coefficients of the basis functions; [K] is the stiffness matrix; [G]
is the geometric stiffness matrix, and [M] is the mass matrix. The discretized form of the eigenvalue
problem represented by the minimization of Eq. (37) is:

([K1+[G]-A[M]){a} =0 (38)

where 7»=0)2, the stiffness matrix [K] is computed from Eq. (15), the geometric matrix [G] is deter-
mined from Eq. (35) and the mass matrix [M] is computed from:

{aY MI{a} = [p@u? +u5 +ul)dV )
Q

The implementation of the pre-stress modal analysis in the prototype software requires two steps:

« A linear elastostatic problem is solved first for the specified loadings (T,-O) and constraints. The lin-
ear solution is used to compute the initial stress tensor Gijo. The stress tensor Gl-jo at each integra-
tion point is used to compute the geometric matrix.

« The stiffness matrix is modified by the geometric matrix and the mass matrix is also computed to
solve the eigenvalue problem of Eq. (38).

Examples problems are presented in the next section.

2.4 Example problems

2.4.1 Problem 1: Linear elastostatic analysis of a cylindrical shell

A cylindrical shell clamped at one end and loaded by a uniform distributed normal traction was ana-
lyzed using the 5-field shell model implemented in the prototype software and the results were com-
pared with a 3D-solid finite element solution of the same configuration.

Figure 3 shows the shell model consisting of one quadrilateral shell element and the contour plot of
the Uy displacement component. The shell has a radius R=2.0, a length a=2.0, a width =0.5 and a
thickness #=0.10. The normal load has a magnitude of g=100 and the material is homogenous and iso-
tropic with E=10x10° and v=0.0. The corresponding 3D-solid model, consisting of one hexahedral
solid element, and the contour plot of the Uy displacement component are shown in Figure 4.
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FIGURE 3. Problem 1 - Mesh and contour plot for the shell model.
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FIGURE 4. Problem 1 - Mesh and contour plot for the 3D-solid model.

The finite element solution was obtained for a fixed finite element mesh and for increasing polyno-
mial order ranging from p=1 to 6 for both models. The estimated error in energy norm for each case is
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shown in Figure 5 in tabular form and in a log-log scale plot, where the horizontal axis is the log of

(@) Shell model

i ]
[PERPR . e e L
S Pakaiaren: e e W

Error Estimate {All Elements), ID= SOL, run #1 to #6

P i B é Rate of Estinated
] A R ¢ DOF Total Potential Enerqgy Convergence % Error
1 10 -2.389949952653914e-02 0.00 99.72
2 25 -4.120727750166704e-01 0.05 95.05
3 40 -3.285389747569158e+00 1.45 48.02
4 60 -4.259780965826461e+00 5.63 4.90
5 85 -4.269957708088871e+00 7.40 0.37
6 115 -4.27001592802719%e+00 7.40 0.04
Estimated Limit -4.270016597868776e+00

(b) 3D-solid model

Error Estimate {All Elements), ID= SOL, xrum #1 to #6
Rate of Estimated

Run # DOF Total Potential Energy Convergence % Error

1 12 ~2.115019881502798e-02 0.00 99.75

2 36 ~1.379345240360249e-01 0.01 98.37

3 60 -2.589890171918026e+00 0.88 62.76

4 99 ~4,212006486270239e+00 3.32 11.93

5 153 -4,270967693800999%+00 4.03 2.07

6 225 -4,272710128732996e+00 4.03 0.44

Estimated Limit -4,272791785275626e+00

FIGURE 5. Problem 1 - Estimated relative error in energy norm.

the number of degrees of freedom (DOF) and the vertical axis is the log of the percent estimated rela-
tive error in energy norm. Note that the DOF for the shell model is smaller than for the 3D-solid
model for the same run number (p-level), and the rate of convergence increases substantially for p-
level greater than or equal to 4. The shell model is converging to the same potential energy as the ref-
erence three-dimensional solution given by the 3D-solid model.

The displacement of point A (Figure 3) at the free end of the shell mid-surface is shown in Figure 6
for the shell model (Figure 6a) and for the reference 3D-solid solution (Figure 6b) as a function of the
run number. The results for both models are almost identical. The difference between the shell model
and the 3D-solid model is only 0.04% for the Ux displacement component and 0.05% for Uy compo-
nent. Figure 7 shows the convergence characteristics of the displacement component Uy as a function
of the number of degrees of freedom (DOF) for the shell model.
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Point Function, ID= SOL, run #1 to 6

(a) Shell model

n= 4,

~
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n
hﬁk:hthnh

~

x=
x=
x=
x=
x=
x=

1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,

z=
z=
z=
zZ=
z=
=

0.00000e+00, Ux=-5.46170e-04 , Uy=-9.18733e-04
0.00000e+00, Ux=-1.49293e-02 , Uy=-1.93801e-02
0.00000e+00, Ux=-1.06430e-D1 , Uy=-1.46425e-01
0.00000e+00, Ux=-1.24992e-01 , Uy=-1.81503e-01
0.00000e+00, Ux=-1.24740e-01 , Uy=-1.81582e-01
0.00000e+00, Ux=-1.24741e-01 , Uy=-1.81584e-01

Point Function, ID= SOL, run #1 to6

(b) 3D-Solid model

-]

-8 -1 =
Sty

~

5
[ T TR T T}
MMS\"MMN

=

x=
x=
x=
X=
*i=
x=

1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,
1.68294e+00, y= 1.08060e+00,

z=
=
=
z=
z=
z=

8.75886e-15, Ux=-4.90053e-04 , Uy=-7.21372e-04
8.75886e-15, Ux=-4.28834e-03 , Uy=-5,92515e-03
8.75886e-15, Ux=-9.11811e-02 , Uy=-1.2009%-01
8.75886e-15, Ux=-1.25888e-01 , Uy=-1.80942e-01
8.75886e-15, Ux=-1.24780e-01 , Uy=-1.81632e-01
8.75886e-15, Ux=-1.24793e-01 , Uy=-1.81682e-01

FIGURE 6. Problem 1 - End displacement components Ux and Uy.
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FIGURE 7. Problem 1 - Convergence plot of Uy for the shell model.

This example demonstrates some of the key features of the implementation of the first shell model
into the prototype software: Quality of approximation of the three-dimensional problem; global error
assessment capability; and local error assessment thorough convergence checks.

2.4.2 Problem 2: Geometric nonlinear analysis of a slab

Consider the case of a rectangular slab clamped along one edge and loaded by a uniformly distributed
normal traction, as shown in Figure 8a. The load remains normal to the plate surface during the defor-
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(a) Plate configuration

(b) Linear solution

’{Gj

(c) Nonlinear solution

FIGURE 8. Problem 2 - Geometric nonlinear analysis.

mation (‘follower’ load). Figure 8b shows the deformed configuration of the plate (full scale) for the
linear solution. It is clear form the results that the deformation obtained from the linear solution is out-
side of the range of validity of the linear theory of elasticity. Figure 8c shows the deformation (full
scale) obtained with the geometrically nonlinear formulation implemented in the prototype software.

2.4.3 Problem 3: Buckling and modal analysis of a roof structure

Consider the cylindrical roof structure shown in Figure 9. The shell is of sandwich construction, with
the outer layers of high modulus graphite/epoxy composite material and an isotropic material core. A
vertical dead load is applied to the roof, and the objective of the analysis is to determine the maximum
vertical deflection, the largest normal stress, the first natural frequency of vibration and the buckling
load factor. Also of interest is to determine the change in natural frequency as a function of the load
magnitude.
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Graphite/Epoxy

Isotropic Core

L =600
Ro = 300
h=3

Py = 0.625
o =40°

FIGURE 9. Problem 3 - Cylindrical roof structure. Notation.

The following material properties were used for the external layers and core:
Graphite/Epoxy: E;=25x10%; E;=1x10%; G; 7 =5x10%; Gy =2x10°; vy 7= Vg7 =0.3, p=1x10"*
Isotropic: E=3x106; v=0.0; p=1x10'4

where L indicates the direction parallel to the fibers and T is the transverse direction. In this problem,
the L-direction is aligned with the global Z-axis. Because of symmetry, only one fourth of the roof
was included in the analysis. The problem was solved using the first hierarchic shell model and also
using a 3D-solid model in order to have a reference solution. Figure 10 shows the 2-element mesh for
the shell model and the 6-element mesh for the 3D-solid model. In the solid model, each layer was
discretized using hexahedral elements.

Symmetry boundary conditions (u,=0, where u,, is the displacement normal to the edge) were speci-
fied along two orthogonal directions, and antisymmetry boundary conditions (u,,=u,=0, where u, is
the displacement tangent to the edge) were used to represent the effects of the end support. The other
edge is free. Note that a thin element was defined along the free edge of the shell and 3D-solid models
to properly account for boundary layer effects. The results, obtained from shell model 1 and from the
3D-sohd model, are summarized in Table 1. They include the maximum vertical displacement,

(x AYaza) where (x4, y4, z4) are the coordinates of the shell mld surface at point A (see Figure 9);
the normal stresses at point A on the lower surface of the roof, GZ ; the first natural frequency without
pre-stress, fi, and the buckling load factor, BLF. The last row in the table are the value of the critical
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Shell mesh 3D-solid mesh

FIGURE 10. Problem 3 - Finite element meshes.

load on the roof, which were computed as the product of the applied load (Py=0.625) and the buck-
ling load factor (BLF).

TABLE 1. Results for problem 3

Function Shell model 1  3D-solid model Difference (%)

uy™ 273 -2.82 3.2
c,A 10614 10843 2.1
fi [Hz] 4.71 4.64 1.5
BLF 11.29 10.39 8.7
(Py)cr 7.06 6.49 8.7

The results of shell model 1 are very close to those obtained using the 3D-solid model specially for
the linear and modal analysis results. Figure 11 shows the buckling mode shape for both models. The
effect of the pre-stress induced by the applied load (Py) on the first natural frequency of the roof
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Shell model 3D-solid model

FIGURE 11. Problem 3 - Buckling mode shape

structure was obtained for the shell model, and the results are included in Table 2. The pre-stress

TABLE 2. Effect of pre-stresses on the first natural frequency

Py 0.0 1.0 2.0 3.0 4.0 5.0 6.0 6.5 7.0 | 7.06
fiHz] | 471 539 582 601 589 531 407 302 095 | 0.00

increases the natural frequency until the load is about half the critical load, and then decreases rapidly
as the critical buckling load is approached.

3.0 Higher order models

Hierarchic sequence of models satisfy the equilibrium equations of three-dimensional elasticity to the
desired degree of accuracy. In the limit it converges to the fully three-dimensional solution. Depend-
ing on the goals of computation, the analyst can select the model that best fits the goals. Choosing
progressively higher models, the computational effort increases, but of course the accuracy in the
results is improved also. If only structural response is required, a low-order model is generally suffi-
cient, specially for thin shells. Hierarchic sequences of models make adaptive selection of the model
which is best suited for the purposes of a particular analysis possible.

3.1 Concept and terminology

The first rigorous proof of the relation between the three-dimensional solution and a plate model was
given by Morgenstern, Ref. [11], in 1959. The construction of hierarchic models for homogeneous
isotropic plates and shells was discussed by Szabo and Sahrmann in 1988, Ref. [12]. The optimality
conditions for the construction of the hierarchic models for homogeneous plates was first discussed
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by Schwab in 1989, Ref. [13]. The extensions of these concepts for laminated composites was first
addressed in Ref. [14] for plates in cylindrical bending, in Ref. [16] for general plates with mid-plane
symmetry, and in Ref. [17] for laminated shells.

Hierarchic modeling terminology has been used by other authors (see for example Ref. [19]) butin a
context which is different from ours. As we understand it, a hierarchic sequence of models is properly
formulated if satisfies the condition that the corresponding exact solutions ugy’ (HMLi) , converge to the
exact solution of the fully 3D-problem u EX(3D), for a fixed laminate thickness,

(3D) (HM]i)

lim HuEX —Upy
{— o0

EQ) = 0

where E(Q) is the energy norm. In addition, they should posses two highly desirable features:

1. The exact solution of each model converges to the same limit as the exact solution of the corre-
sponding 3D-problem with respect to the laminate thickness (k) approaching zero:

| (3D) u(HMlz)”

. |“Ex EX | EQ) .

1 =0 =1,2, ...

B0 ‘ (3D) ’ : o
Uepx | EQ)

This requirement is important because, typically, u EX(3D ) in the interior regions of the domain behaves
as if 4 were close to zero, assuming that the loading is smooth.

(3D)

2. Optimality of convergence: When the exact solution ugy'~"" is sufficiently smooth:

HM
27 )

—u
X EX E(Q) Cl’l

“”g))”E(m

where C is a constant, independent of i; v, the rate of convergence, is a constant which depends on i,
and ;.1 > ;-

The hierarchic sequence utilized for the Phase I project for laminated plates and the one developed
during Phase II for laminated shells, satisfy these requirements explicitly.

3.2 Transverse shape functions for hierarchic shell models

Two high-order (hierarchic) shell models for homogeneous and laminated composites were developed
and implemented within the framework of the finite element software product Stress Check. The
transverse shape functions developed for laminated plates (see Ref. [17]) were reevaluated and modi-
fied to be used for laminated shells. Six new shape functions and their derivatives are available.
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As described in Section 2.0, the first hierarchic shell model is a five-field semi-discretization which
approximates the curvilinear components of the displacement vector as indicated in Eq. (1). The
expansion of the three displacement components to include two additional models can be written in
general form as:

u,(r,s,w) = u|(r)(r, 5)® (w)+ u|:(r, $)D5(w) + u|;(r,s)(I>6(w) + u|;(r,s)(I>9(w)

u,(r,s,w) u]f)(r, §)D,(w) + ul”;(r, $)D,(w) + u|;(r,s)d)7(w) + u|;(r,s)q)10(w) (40)

u|(v)v(r, 5)Ps(w) + u];v(r, $)@g(w)+ u|§)(r,s)CI)M(w)

uw(r: s, W)

where the ®;(w) are the transverse shape functions (director functions) which depend on the variable
normal to the shell middle surface and on the type of shell (homogenous or laminated). Note that there
is a change in notation with respect to that shown in Eq. (1). The unknown functions of (7, s) are iden-
tified with a subscript that indicated a sequential order, and by a superscript which refers to the corre-
sponding displacement component, while the known functions of w are numbered to reflect the
sequence of model construction.

The transverse shape functions are obtained according the following procedure:

Let u,(r, s, w), u,(r, s, w), u,(r,s,w) denote the displacement field for the shell composed of an
arbitrary number of orthotropic layers bonded together subjected to normal surface loading 7i(r, s)
and satisfying the equilibrium equations of 3D-elasticity. Let the stresses be related to the strains by
the generalized Hooke’s law, and the strains related to the displacements by the small strain theory.
The problem is to find the displacement field that minimizes the potential energy functional I(x) over
the subspace E"(Q2), defined as:

E"(Q) = {u|u,(rsw)=3 ullr)0;(w),  ursw)=3 ul;(rnw;(w),
j=0 j=0

uw(r,s,w)=2 u|;-v(r,S)pj(W)
j=0

The functions (pj(w), \uj(w), p j( w) are derived on the basis of the degree to which the equilibrium
equations of 3D-elasticity are satisfied. The procedure to obtain these functions is similar to the one
outlined in Refs. [14] - [18] for laminated plates in bending. The main step in the derivation for lami-
nated shells are as follows:
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o Perform a partial Fourier transform, with parameters B over the domain € of the three-dimensional
problem described above. This transformation eliminates two field variables (r, s) in the displace-
ment components, so that derivatives with respect to r and s become multiplications by if3 in the
Fourier transformed variables.

o(B.w) = Iur(r,s,w)e—"ﬁ(’“)dA
A

y(B.w) = Jus(r,s,w)e—iﬁ(r+s)dA
A

p(B,W) = J.uw(r,s’w)e—iﬁ(r+ S)dA
A
« Write down the strain-displacement relations in the transformed variables, substitute them into the

stress-strain relations and express the equilibrium equations in their Fourier form. A system of
ordinary differential equations is obtained in the variable w.

o Expand the functions @(B,w), w(B,w), p(B,w) in powers of B around B=0.

O(B.w) = @o(w) + B (W) + B2, (w) + B35 (w) + ...

w(B.w) = yo(w) + By (w) + P2y, (w) + By (w) + ...

p(B.w) = po(w) + B, (w) + szz(W) + ﬁ3p3(W) + ...

« Replace the expanded functions into the Fourier form of the equilibrium equations, which must be
satisfied for any power of B. The transverse shape functions are obtained by solving these equa-
tions. For example, the equilibrium equations corresponding to BO are:

(Q45W6 +0550)" = 0
(Q44‘I/(’) +Q45(PE))' =0
(Q33P'o), =0

« After the functions are obtained by integration of the equilibrium equations, they are normalized in
such a way that all functions are zero at w=0 and also a thickness factor is included. For consis-
tency of notation, the normalized transverse functions are defined as ®;(w), i=1,2, 3, ...
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The transverse shape functions for laminated shells depend on the stacking sequence layup and on Q;,
which are the coefficients of the 3D-lamina material matrix in the shell principal directions.

For shell model 1, the transverse shape functions are the same for laminated or homogeneous mate-
rial. Referring to Eq. (1), they are given by:

D (w) = D,(w) = Ps(w) = 1, Dy(w) = Dy(w) = w(h/2)

where 4 is the shell thickness, and -1 < w < 1. For the higher order models, the transverse shape func-
tions are defined as follows:

For homogeneous shells

D) = Do(w) = w(h/2)°,  Dg(w) = w(h/2)
Dy(w) = D y(w) = W' (h/2)°, @ (w) = w'(h/2)°
For laminated shells
2
D) = 210,00) 0,0} @400 = (&) 930

2
,0) = 200,00 - W,(0)} @400 = (5) w3

2

() = 51p;(w) = p1(0)} @,00) = 5] pa(w)

NYIRSy

where

C0u-0
(Pz(W)=J. 44— a5

71 QuiQss = Qus”

" 0.0
\Ifz(W) - J‘ 55 45

5
-1 Q44Q55 - Q45
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It is clear from the above expressions that if Q;; are constant within each lamina but different from
lamina to lamina, the transverse variation of @,(w), Y,(w), p,(w) is piecewise linear, and the
slope ate each interface depends on the material properties of each layer.

The other three functions are:

w

93(w) = I[pl(wn
-1

0 ) .
Qua¥, (W) - Q457 (W) zjdw B J(P](W) N QY (W) - Q 5V (W) Zjdw
QuQs5— Qss Qualss— Qs » 044955~ Qus  CusQss— Dus

w

Y (w) = J(pl(wn

-1

0
Q557 (W) - QusY, (W) Zjdw_ J‘[pl(w) . Os5Yp(w) - QusY,(w) ZJdW
Q44Qs5—Q4s  Qualss—Qss 1 044Qs5— Qus Q4aQs5— Uss

w

0
_ 2_w @3+ O6) 05 (W) N (O + QO36) Vo (W) _Z__VK (Q3+ Q36)(P2(W) B (Qy3 + Q36) W5 (W)
S o) | > e

-1 -1

w 0 w 0
Q13 + Q36 Q13 + Q36 Q23 + Q36 Q23 + Q36
= dw — d s = — = — —_— =
Y. (w) _J. 0n w j 0n w Y, (W) .[ On dw j Ons dw

-1 -1 -1

In this case, the transverse variation is piecewise quadratic.

Several procedures have been evaluated for selecting the optimal distribution of fields for a given
problem. Starting with the minimal number of fields (5-field model), the question is how to construct
the next model? Our research indicated that from an implementation and performance point of view,
the next model should be constructed by adding one more field to each displacement component (u,,
u,, u,,), and that the transverse function for the r and s components should have the same power of w.
In other words, model 2 should be an 8-field semi-discretization with the selection of the three new
fields from the available set in Eq. (40).

3.3 Automatic selection of models

The optimal selection of a particular model form the hierarchic family of models is problem-depen-
dent. Starting with a 5-field model, the next model is constructed by adding one more field to each
displacement component, in such a way that model 2 has eight fields and model 3 has eleven. Several
methods were evaluated to select the best shape functions from the available set to construct the next
higher order model: The alternating projection method; the residuals method and the potential energy
methods. These methods are described in detail in the following.
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3.3.1 The alternating projection method

The alternating projection consists of three parts: First, the solution corresponding to the lowest mem-
ber of the hierarchy is computed (the 5-field semi-discretization). Second, the part of the solution
which depends on the transverse variable (w in Eq. (1)) is expanded in terms of the known transverse
shape functions over each element. A one-dimensional problem is solved to find which of these terms
in the expansion may contribute to a significant change in the potential energy of the solution. Third,
the model order within each element of the mesh is adjusted based on the results of Part 2, and the
problem is solved again for the new model distribution. These three steps are now described in detail:

Step 1: Start with the 5-field model for all the elements in the mesh. Obtain the finite element solution
corresponding to this model as described in Section 2.0. Note that in this step we solve a two-dimen-
sional problem, because the transverse variation of displacements is know a-priori. The results of this
step are the coefficients a; in Eq. (14). Therefore, for every element in the mesh we know:

ul(rs),  uf(ne),  ufi(ns)n  ufl(ns),  ul(rs)

Step 2: Expand the displacement field given in Eq. (1) in terms of the transverse shape functions
shown in Eq. (40) over each element of the mesh:

r r k k
u,(r,s,w) = u|0(r, s)+ u|1(r, $)(P5(w) + oc(l )CI)6(w) + ch )CI)9(W) +...)

u/r,s,w) = u]g(r, 5)+ u]i(r, SHD,(w) + B(llf)CI>7(w) + ﬁgk)(blo(w) +...) (1)

u(ry 5, w) = uft(r, $)(@s(w) + 7 Dg(w) + 75 @y (W) +...)

The transverse shape functions @i(w) are those obtained in Section 3.2. Therefore, the only unknowns
in Eq. (41) are the coefficients o;, B; and v; that multiply these functions. The superscript k indicates
the kth finite element.

This new displacement field is then used in Eq. (10) to obtain a new system of equations to solve for
the unknown coefficients in Eq. (41). Note that the new system corresponds to a one-dimensional
problem in the transverse direction since the only unknowns in the expanded displacement field are
the coefficient that multiply the transverse functions. The system size is 3xNxM, where M is the num-
ber of elements in the mesh, and N is the total number of unknown coefficients in Eq. (41). The rela-
tive magnitudes of the coefficients will indicate which additional terms will contribute most
significantly to the potential energy of the solution.

Step 3: Expand the model order over each element or groups of elements according to the relative
values of the coefficients o, B; and ¥; that multiply the transverse functions. Once the number of
fields are known, the solution of the corresponding 2D problem is obtained for the selected higher-
order model.
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The name alternating projection comes from the fact that the three-dimensional problem is solved by
first minimizing the potential energy of a two-dimensional problem (projection from 3D to 2D), then
using that solution to set up a one-dimensional problem in the transverse direction (projection from
3D to 1D), whose solution is finally used to reformulate the 2D minimization problem.

3.3.2 The residuals method
The residuals method consists of the following steps:

Step 1: Start with the 5-field model for all the elements in the mesh. Obtain the finite element solution
corresponding to this model as described in Section 2.0. This step is the same as in the previous
method.

Step 2: Consider a candidate model 2 from the available set in Eq. (40). For example, we may con-

sider the following displacement field:

u(r,s,w) = u|(r)(r, $)P,(w) + u]i(r, $)D5(w) + u|;(r,s)CI>6(w)
u/r,s,w) = u|f)(r, §)Dy(w) + u]i(r, §)P4(w) + u|;(r,s)CI>7(w) (42)

u,(r,s,w) = u|:)v(r, 5)Dg(w) + u|;(r,s)<I)11(w)

from which is possible to compute the stiffness matrix and load vector using the displacement field of
Eq. (42) into Eq. (10). The resulting system of equations can be written as:

[K](za){a}(?_a) = {q}(za) (43)

where the subscript 2a indicates that Eq. (43) refers to the system of equations for candidate model 2
combination a. Note that the size of the solution vector {a} is larger than that of Eq. (14) because the
number of fields is now eight instead of five. Compute the residuals which are defined as:

{R}(za) = {q}(za)“[K](za){a}l (44)

where {a}; is the solution vector corresponding to model 1 augmented by zeros in those positions
where the terms corresponding to model 2 are needed.

Step 3: Repeat the procedure for other candidate model 2, in such a way that the residuals for each
one can be computed: {R} (2b)’ {R} 20y {R}o Ay Compute the norm (vector length) of each
residual. The best candidate is the one with the smallest residual norm.
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Note that the solution of the system of equations in (43) is not needed, only the stiffness matrices and
load vectors of the candidate models are required.

3.3.3 The potential energy method

This criterion for model selection is based on the change in the value of the total potential energy of
the problem. The combination of additional fields that results in the smallest potential energy pro-
vides the best improvement over the solution of model 1.

The procedure for selecting the optimal distribution of fields for a given problem consists of two
steps:

Step 1: The basic model (5-field semi-discretization) is increased by adding one more field to each
displacement component (u,, uj, u,,), in such a way that the transverse function for the r and s compo-
nents have the same order of director function. In other words, model 2 should be an 8-field semi-dis-
cretization.

Step 2: The criterion for selecting which of the available director functions should be added is based
on the change in the value of the total potential energy of the problem. Those directors functions
which result in the smallest potential energy will provide the best improvement over the solution of
the 5-field model. The potential energy accounts for the effects of topology, material properties and
boundary conditions, thus characterizing the problem. The potential energy is computed by solving
the problem several times for each candidate combination of director functions at a low p-level:

= %{a}T [K1{a}-{a} 4]

To illustrate the concept of model selection, consider the situation of selecting an 8-field model. There
are four possible combinations from the expansion given in Eq. (40) for the additional three fields
needed to extend the 5-field model: (a) @g, @7, Pg; (b) Py, D7, Pyy; (¢) Dg, Py, Pg and (d) Py, Oy,
®;,. No other combinations are possible, given the constraint on the order of the director functions
indicated before. For example, the hierarchic model 2, combination (d) would be:

u,(r,s,w) = u[(r)(r, 5)P(w) + u|;(r, §)D5(w) + u|;(r,s)¢)9(w)
u,r,s,w) = u]g(r, $)D,(w) + u|“;(r, $)P,(w) + u|;(r,s)q)10(w)

u,(r,s,w) = u|:)v(r, §)Ds(w) + ulg(r,s)q)s(w)

Of all the methods evaluated, the one based on the minimization of the total potential energy of the
problem was selected for implementation into the prototype software because it was the simplest and
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most effective of the ones analyzed. The computational effort to determine the optimal set of director
functions is minimized when using this method. The automatic procedure implemented in the proto-
type software will solve for each combination at p-level=4, and select that one which minimizes the
potential energy of the problem. Once the optimal model is identified, a p-extension is performed to
ascertain the discretization error.

3.4 Example problems

3.4.1 Problem 4. Thick 4-ply laminate

Consider a 4-ply [0/90], laminated plate loaded by a sinusoidal transverse load g,(x,y) = -cos(nx/a)
cos(my/b). The four layers of the laminate are of the same material and thickness with the following
properties:

EL = 138000 MPa, ET= 9300 MPa, GLT= 4600 MPa, GTT= 3100 MPa, VLT= 03, VTT =0.5

where L indicates the direction parallel to the fibers and T is the transverse direction. When the L-
direction coincides with the x-direction, we refer to it as the 0° orientation (Figure 12). All the dimen-
sions are in millimeters. The plate is hard-simply supported along all four edges. A hard-simple sup-
port is characterized by: u, = u, = 0, where , is the displacement component tangent to the edge, and
U;=Uyy

Y Y

=5

FIGURE 12. Problem 4 - Laminated plate. Notation

The reference solution was obtained from the finite element analysis of a 3D-solid model in which
each layer was discretized as a solid element. Because of symmetry, only one quarter of the plate was
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used for the shell analysis, and one eighth for the solid analysis. Figure 13 shows the one-element

Shell model _ 3D-solid model

Simple-support —

FIGURE 13. Problem 4 - Finite element meshes for the shell and 3D-solid
models.

mesh for the shell analysis and the two-element mesh for the 3D-solid analysis. Antisymmetry con-
straints were specified on the middle surface of the 3D-solid model.

The results for the shell models were obtained for the first and second hierarchic shell models. The
optimal combination of transverse shape functions for model 2 to be used in the 8-field semi-discreti-
zation of Eq. (40) was determined to be ®¢, ®;, @y (as it should be expected for a bending domi-
nated problem).

The results shown in Table 3 include the total potential energy of the solution I1(«); the maximum dis-
placement at the center of the plate u,(0,0,0); the normal stresses Gx(0,0,-h/2) and G(0.,0,-h/2) and the
shear stress Tyy(a/2,b/2,-h/2) at one of the external surfaces of the plate for both hierarchic shell models
(shell 1 and 2) and for the 3D-solid model.

TABLE 3. Results for problem 4

Model  I(u) x 104 1,(0,0,0) Gy (0,0,-h/2) Oy(0.0-h/2)  Tyy(a/2b/2,-h/2)

Shell 1 -2.8746631 -5.2565 x 10™ 6.4389 1.4035 -0.7274

Shell 2 29863590  -5.5671x 10* 7.3924 1.9688 -0.8154
3D-Solid -3.0850379 -5.7263 x 10™ 7.7388 1.9267 -0.8602
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The low aspect ratio of the plate combined with the highly anisotropic nature of the material represent
a severe test for any laminated shell model. The length-to-thickness ratio is only 3.5, and therefore not
suitable for conventional shell analysis. However, the use of higher order models indicates that the
results converge to the fully three-dimensional solution.

The through-thickness stress distribution of the normal stresses at the center of the plate is shown in
Figure 14 for shell models 1 and 2. Differences between the two models is visible at the external sur-
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FIGURE 14. Problem 4 - Through-thickness stress distributions 64(0,0,2) and 6,(0,0,2) for shell
models 1 and 2.

faces and at the interface between layers.

3.4.2 Problem 5. Effect of boundary layers

Boundary layer effects occur at the shell boundaries, and are characterized by the fact that the solution
‘near’ the boundary is substantially different from the solution in the interior. All hierarchic shell
models (as well as the fully three-dimensional model) exhibit boundary layers, and an important part
of the energy of the solution is contained in them. For further information on boundary layer effects
refer to Refs. [20] to [23]. Therefore, the mesh design necessary to obtain accurate solutions for any
given member of the hierarchic sequence of models should properly account for the boundary layers.
Extensive numerical experimentation clearly showed that the hierarchic models are very capable of
resolving the boundary layer effects when proper meshing is used.
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Based on the numerical evidence, guidelines for mesh design to be used with the hierarchic models
that will provide optimal or near-optimal meshes with respect to the energy norm were developed.
These guidelines are summarized as follows:

o The first step is to design a finite element mesh that provides optimal rate of convergence for the
exact solution of the shell problem in the interior of the domain without consideration of the
boundaries. For smooth problems and p-convergence this typically involves the use of uniform or
quasi-uniform meshes. This will be referred to as the “coarse mesh”.

« Once the coarse mesh is available, the boundary layers should be accounted for by the use of
graded meshes. For most practical problems one or two layers of graded elements towards the
edges are sufficient to account for boundary layer effects. The characteristic length of a shell prob-
lem is the thickness-to-radius ratio (4/R). For thin shells (#/R<< 1), the recommended size of the
boundary layer elements are 54 and 3 Jh for the first and second layers, respectively. For thick
shells (#/R = 1), boundary layer effects are less significant and, in general, one layer of elements is
sufficient with a size of order A.

To illustrate the effect of the boundary layer in the solution of shell problems, consider a cylinder with
no kinematical constraints at the ends, subjected to a sinusoidal distributed surface traction

T, = T,cos(20). This load is self equilibrated in the angular direction and uniform in the axial
direction. The dimensions are shown in Figure 15.

T Y
T, =Ty cos(26)

> >
X

R=1.0
L=2.0
To=1.0

FIGURE 15. Problem 5 - Cylinder under sinusoidal loading. Notation.

Three thickness-to-radius ratios were analyzed: #/R=0.1, //R=0.01, and #/R =0.001 and two different
materials were considered. An isotropic material with E=10x106, v=1/3 and unit shear factor; and a 4-
ply laminated composite with a [0/90] layup and the following properties for each layer:

E; = 25x10°, Ep= 1x10%, G;p = 5x10°, Gyp = 2x10°, vy = 0.25, vyp=0.49
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where L indicates the direction parallel to the fibers and T is the transverse direction. When the L-
direction coincides with the Z-direction, we refer to it as the 0° orientation: For the two outer layers
the fibers run parallel to the Z-axis, and for the two inner layers the fibers run in the circumferential
direction. All layers are of the same thickness (#/4). This problem is discussed in Ref. [24] for the
case of isotropic material.

The radius (R=1.0) and length (L=2.0) of the cylinder are kept fixed, and the thickness is changed for
each case analyzed. The solutions were obtained for hierarchic models 1 and 2, polynomial orders
ranging from 1 to 8, downward run, and the product space was used. For definition of the product
space, see Ref. [1], page 96.

Because of symmetry, only one sixteenth of the cylinder is considered for the analysis. Figure 16
shows the finite element mesh used for the analysis with the two boundary layer elements near the
free end of the shell with sizes corresponding to #/R=0.01, that is »;=0.05 and b,=0.30.

w\ FIGURE 16. Problem 5 - Finite element mesh and
boundary conditions.

symmetry

The estimated relative error in energy norm as a function of the number of degrees of freedom (DOF)
for each A/R is shown in Figure 17 for the case of isotropic material and in Figure 18 for the case of
the 4-ply laminated composite material. All cases shown correspond to shell model 1, and the solu-
tions converged to less than 1% relative error in energy norm. Note that the rate of convergence is
very low (and consequently the error in energy norm large) for polynomial order less than 4 (run # 5)
for the thick shell (&/R=0.1) and for p-levels less than 5 (run #4) for the thin shells (//R=0.01 and
0.001). When the displacement formulation of the finite element method is used for thin shells, lock-
ing occurs when the p-level is less than 4 or 5, depending on the A/R ratio.
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Error Estimate, ID= SOL, run #1 to #8
Rate of Estimated
Run # DOF Total Potential Energy Convergence % Error
8 18 -2.610236051844083e-07 0.00 99.46
7 66 -9.361667623379584e-06 0.18 78.25
6 144 -2.351975354867688e-05 2.03 16.10
5 252 -2.413901861236749%e-05 4.02 1.70 A/R=0.1
4 390 -2.414594104559629%-05 6.04 0.12 e
3 558 -2.414597645817654e-05 7.37 0.01
2 756 -2.414597661870281e-05 3.55 0.00
1 984 -2.414597663646473e-05 3.55 0.00
Estimated Limit -2.414597663969152e-05
Error Estimate, ITD= SOL, run #1 to #8
Rate of Estimated
Run # DOF Total Potential Enmergy Convergence % Error
8 18 -2.648217698062475e-06 0.00 99.99
7 66 -1.773999616798185e-04 0.00 99.62
6 144 -1.756527137809780e-02 0.88 50.18
5 252 ~-2.330884415397600e-02 3.18 8.46 .
4 390 -2.347594052532695e-02 5.83 0.66 h//q_=09_l
3 558 -2.347696117776164e-02 6.75 0.06
2 756 -2.347696819163082e-02 3.25 0.02
1 984 -2.347696912164808e-02 3.25 0.01
Estimated Linit -2.347696932677969e-02
Error Estimate, ID= S0L, run #1 to #8
Rate of Estimated
Run # DOF Total Potential Energy Convergence % Error
8 18 ~-2.647732649916765e-05 0.00 100.00
7 66 -1.790493863294442e-03 0.00 100.00
6 144 -1.653616254975284e+01 0.79 53.98
5 252 ~2.302678201780533e+01 2.76 11.49 h/R =0.001
4 390 -2.333055470662855e+01 4.85 1.38 -
3 558 -2.333490444510118e+01 5.43 0.20
2 756 -2.333497285630810e+01 2.31 0.10
1 984 -2.333498856154658e+01 2.31 0.05
Estimated Limit -2.333499516250912e+01

FIGURE 17. Problem 5 - Estimated relative error in energy norm. Shell model 1, isotropic case.

The boundary layer effects can be visualized when displaying the first principal stress distribution
over the middle surface of the shell (w = 0.0). Even though this is a bending dominated problem, the
free-edge boundary layer is present at the middle surface of the shell. Figure 19 shows the first princi-
pal stress, Sy, for the case of isotropic material and for all three thickness-to-radius ratios. Note that as
the thickness of the shell decreases, Sy is practically zero everywhere, except along a narrow band
(the boundary layer) near the free edge, and that the size of the boundary layer decreases as //R goes
to zero.
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Error Estimate, ID= SOL, rum #1 to %8
Rate of Estimated
Run # DOF Total Potential Energy Convergence % Error
8 18 -5.314309984125694e-07 0.00 99.61
7 66 -1.899446773714216e-05 0.12 84.97
6 144 ~-6.512955636702421e-05 1.76 21.60 R =0.1
5 252 -6.828094561142016e-05 4.02 2.28 _____:;Ll;_
4 390 ~6.831639830084873e-05 6.31 0.15
3 bh8 -6.831654203341285e-05 9.70 0.00
2 756 -6.831654212361424e-05 1.75 0.00
1 984 -6.831654215233987e-05 1.75 0.00
Estinated Limit -6.831654217133485e-05
Error Estimate, ID= SOL, rum #1 to #8
Rate of Estimated
R # DOF Total Potential Energy Convergence % Error
8 18 -5.36760316334633%e-06 0.00 100.00
7 66 -2.683182682004668e-04 0.00 99.79
6 144 —-4.745771588527027e-02 0.83 52.29
5 252 ~-6.467322563428622e-02 2.97 9.94 Ml
4 350 -6.531366484827916e-02 5.56 0.88
3 558 ~-6.531869074802141e-02 8.83 0.04
2 756 -6.531869475402023e~-02 0.97 0.03
1 984 -6.531869675536421e-02 0.97 0.02
Estimated Limit -6.531869976328750e-02
Error Estimate, ID= SOL, run #1 to #8
Rate of Estimated
R # DOF Total Potential Energy Convergence % Error
8 18 ~5.368169592016818e-05 0.00 100.00
7 66 -2.695259874825106e-03 0.00 100.00
6 144 -4.590992118544692e+01 0.78 54.48
5 252 -6.429500566500084e+01  2.66 12.32 h/R=0.001
4 390 -6.526508159525335e+01 4.44 1.77
3 558 -6.528518129525122e+01 5.37 0.26
2 756 -6.528560184167117e+01 5.28 0.05
1 984 -6.528561843952617e+01 5.28 0.01
Estimated Limit -6.528561953032957e+01

FIGURE 18. Problem 5 - Estimated relative error in energy norm. Shell model 1, laminated composite
case.
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FIGURE 19. Problem 5 - First principal stress distribution at the middle surface of the shell. Shell model 1,

isotropic case.
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The boundary layer effect is also present on the external surface (w = 4/2) of the shell. Considering
the case of isotropic material shown in Figure 20, the S; stress distribution is rather regular every-

By LARNEL
s |
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R =0.01

FRe I H

HH=0.001

FIGURE 20. Problem 5 - First principal stress distribution at w=h/2. Shell model 1, isotropic case.

where except close to the shell free end. where the presence of the boundary layer perturb the stress
distribution.

The situation is quite similar for the case of the laminated composite shell. Figure 21 shows the S,
stress distribution for the middle surface of the shell, that is at w = 0.0, for all three A/R ratios. Com-
paring Figure 19 with Figure 21, the behavior of the boundary layer is almost identical for both mate-

rials.
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FIGURE 21.Problem 5 - First principal stress distribution at the middle surface of the shell. Shell model 1,
Laminated composite case.

The effect of the boundary layer is less apparent at the interface between layers, however. As shown
in Figure 22, the stress distribution near the free edge is only mildly perturbed by the boundary layer.
The laminated composite case was also analyzed using shell model 2. No substantial difference can
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FIGURE 22. Problem 5 - First principal stress distribution at w=A/4. Shell model 1, Laminated composite
case.

be realized between the results of model 1 and model 2, however. The through-thickness normal
stress distribution Sy for #/R=0.1, at a point located at 0=0 on the free end of the cylinder (point A in
Figure 15), is shown in Figure 23. The results for shell models 1 and 2 are almost indistinguishable
from each other. The same situation was found for the other two A/R ratios.

The first principal stress distribution, Sy, at the middle surface of the laminated composite shell is
shown in Figure 24 for //R=0.1 and #/R=0.01 as computed from shell model 2. Comparing this plot
with those shown in Figure 21, it is clear that the same type of boundary layer is present in both shell
models, and that the localized stresses induced are of the same order of magnitude.
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FIGURE 23. Problem 5 - Through-thickness normal stress distribution at point A. Shell models 1 and 2,
laminated composite case.

Table 4 shows the normalized displacement of point A for all three /R ratios and for the isotropic and
laminated composite cases. The 4-ply laminate results are shown for shell models 1 and 2. The nor-
malized displacement is defined as:

A
X

ETh3u
T,R"

where E;= 1x10°, Ty=1.0, R=1.0 and uxA is the displacement of point A in the global x-direction
(Figure 15). Note that U converges to a limit value as the thickness-to radius ratio goes to zero, and

TABLE 4. Problem 5 - Normalized displacement of point A.

Normalized displacement U

h/R Isotropic model 1  Laminated model 1 Laminated model 2
0.1 0.127 0.349 0.346
0.01 0.120 0.333 0.331
0.001 0.119 0.333 0.330

that both hierarchic models converge to the same value.
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FIGURE 24. Problem 5 - First principal stress distribution at the middle surface of the shell. Shell mode! 2,
Laminated composite case.

3.4.3 Problem 6. Effect of mesh distortion

The same model problem 5 is used to demonstrate the robustness of the shell models in the presence
of distorted meshes. In particular, we are interested in evaluating the influence of the element edges
not being aligned with the principal directions of the shell surface.

Consider the cylindrical shell shown in Figure 15 with the finite element mesh of Figure 25. The 6-
element mesh was designed in such a way that the center longitudinal line can be rotated through an
arbitrary angle o to change the distortion of the elements. The analysis was performed for the isotro-
pic case and for two thickness-to-radius ratios: #/R=0.01 and #/R=0.001. Downward p extension was
used together with the product space and shell model 1.
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FIGURE 25. Problem 6 - Distorted finite element mesh, 6 elements

The results of the analysis are shown in Figure 26, where the estimated relative error in energy norm
is shown for three values of the distortion angle a.. Note that the potential energy of the solution is
practically independent on the distortion angle, and for all three values of o, the relative error in
energy norm at p-level=8 (run #1) is very small. The results are summarized in Table 5 for both h/R
ratios. Included in the table are the values of the potential energy corresponding to a p-level of 8 (run
#1) and the u, displacement component of point A (see Figure 15).

TABLE5. Problem 6 - Effect of distortion angle, 6-element mesh

h/R o [deg] Potential Energy uxA
0 -2.399350588x1072 0.122194
0.01 5 -2.399351950x1072 0.122194
10 -2.399354319x1072 0.122194
-23.87654257 121.602
0.001 5 -23.87655967 121.602
10 -23.87657944 121.602
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Error Estimate, ID= SOL, rum #1 to #8

Rate of Estimated
Run # DOF Total Potential Energy Convergence % Error
8 36 -1.336241124934671e-05 0.00 99,97
7 132 -2.840615710935025¢-03 0.05 93.89
3 288 -2.343051045818392e-02 2.32 15.32 0
5 504 -2.399169471407069e-02 5.13 0.87 o= O
4 780 -2.399347533110004e-02 4,67 0.11
3 1116 -2.399349983960644e-02 2.25 0.05
2 1512 -2.399350534096622e-02 3.75 0.02
1 1968 -2.399350588291860e-02 3.75 0.01
Estimated Limit -2.399350597013211e-02
Error Estimate, ID= SOL, run #1 to #8
Rate of Estinated
Rum # DOF Total Potential Enerqy Convergence % Exror
8 36 -1.289755202986731e-05 0.00 99,97
7 132 -2.654009335612438e-03 0.04 94.31
6 288 -2,328926272443428e-02 2.19 17.13 o
5 504 -2.399084600980942e-02 4.98 1.06 o=2>5
4 780 -2.399348754963635e-02 5.06 0.12
3 1116 -2.399351370342892e-02 2.36 0.05
2 1512 -2.399351895602165e-02 3.65 0.02
1 1968 -2.359351950582236e-02 3.65 o.01
Estimated Limit -2.399351960005294e-02
Error Estimate, ID= SOL, run #1 to #8
Rate of Estimated
Run # DOF Total Potential Energy Convergence % Error
8 36 -1.16127416226896%e-05 0.00 99.98
7 132 -2.139050734588481e-03 0.04 95.44
[3 288 -2,285085355920161e-02 1.89 21.82 o= 1()0
5 504 -2.398729137464645e-02 4.65 1.61 -
4 780 -2,399350361420738e-02 5.79 0.13
3 1116 -2.399353761288973e-02 2.71 0.05
2 1512 ~2.399354267072279%e-02 3.65 0.02
1 1968 -2,399354319955519e-02 3.65 0.01
Estimated Limit -2.399354329008791e-02
FIGURE 26. Problem 6 - Estimated relative error in energy norm for A/R =0.01.
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A second mesh design was also considered for this problem as shown in Figure 27, where a total of 10

FIGURE 27. Problem 6 - Distorted finite element mesh, 10 elements.

shell elements were used. Both free ends of the cylinder are included in this mesh, and therefore
boundary layer elements are required at each end.

The results for this mesh are summarized in Table 6 for //R=0.005.

TABLE6. Problem 6 - Effect of distortion angle, 10-element mesh

h/R o [deg] Potential Energy uxA
0 -0.38308005823 0.976851
0.005 5 -0.38308003711 0.976851
10 -0.38308000626 0.976852

All the results indicate the very low sensitivity of the solution to element distortion, even in the pres-
ence of boundary layers.

Design and Analysis of Composite Multilayered Shells 48 of 52




Summary and Conclusions

4.0 Summary and Conclusions

All objectives indicated in the Phase IT proposal have been achieved.The results of the research effort
were implemented in the prototype software which utilizes the data structure of Stress Check. The
main accomplishments, described in detail in this report, can be summarized as follows:

« A hierarchic sequence of models for laminated composite shells was developed and implemented
in the prototype software for the solution of linear elastostatics problems. These models are also
capable of solving problems with isotropic or orthotropic homogeneous materials. Only three hier-
archic models were implemented for laminated composites during this research Phase II. The pro-
totype software was set up to accommodate more models once they become available in the final
commercial implementation during the Phase III project.

« An automatic procedure for the selection of higher order models from the hierarchic family of
models was developed and implemented in the prototype software. The automatic procedure,
based on the change in the total potential energy of the problem, can be disabled so that the models
can be manually selected instead.

« A unique mapping technique for shells (quasi-regional mapping) was implemented in the proto-

" type software to handle completely general surface descriptions. The surfaces that can be created
in the prototype software include spheres, cylinders, cones, torus, general surfaces created by using
3D-curves: Tabulated cylinders, extruded surfaces, ruled surfaces and surface of revolution; and
surfaces created by using control points: Non-uniform rational B- and P-splines.

o The research work leading to the geometric nonlinear analysis of shells was completed in the pro-
totype software, and the concept was implemented and tested in the 3D-solids environment. The
implementation for shells will be addressed during the Phase III project. Additionally, the research
and implementation of eigenvalue buckling and prestress modal analyses were completed during
the Phase II project.

» The procedures for the computation of stiffness matrices, mass matrices, geometric matrices and
load vectors were developed and implemented in the prototype software for quadrilateral shell ele-
ments. Similar procedures for triangular shell elements were initiated but not completed during the
Phase II project. These are implementation issues, not research issues, and therefore postponed for
the Phase III project.

 The following boundary conditions were implemented and tested in the prototype software for all
the members of the hierarchic sequence of models:

Loads: Surface tractions can be specified in global or local coordinate system or in the direction
normal to the shell surface. Edge tractions can be specified as normal/tangent membrane, bend-
ing/twisting moments and transverse shear. Body forces can also be assigned in the global coor-
dinate directions. All applied loads can be defined as constant, parametric or formula. Point
loads can be applied to a node, point, or in the interior of the shell element either in the global or
in a local reference frame. The polynomial order of the elements with points loads should be
kept low (typically p=3 or 4).
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Constraints: Edge constraints can be specified as simply support, symmetry, antisymmetry,
sliding support, pinned support or built-in. Node constraints are allowed to prevent rigid body
displacement and rotation only.

o Several representative models problems were solved using the hierarchic models, and their results
compared with those available in the literature or with reference solutions obtained by solving 3D-
solid models. The results clearly show the ability of the shell models to approximate the three-
dimensional problem well. Many more problems than the ones included in this report were ana-
lyzed, but only a representative set was selected to illustrate the main points of the implementation.

The phase II project clearly demonstrated the potential of the use of a hierarchic sequence of models
for the analysis and design of composite multilayered shells. Phase III project will address the com-
mercial implementation of these models so that the engineering community will benefit from this new
technology.
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