HYPOTHERMIA AND PLATELET DYSFUNCTION

BY

ALAN D. MICHELSON AND C. ROBERT VALERI

NAVAL BLOOD RESEARCH LABORATORY
BOSTON UNIVERSITY SCHOOL OF MEDICINE
615 ALBANY STREET
BOSTON, MA 02118

6 AUGUST 1993

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited.
Hypothermia and Platelet Dysfunction

Alan D. Michelson, M.D., and C. Robert Valeri, M.D.

Departments of Pediatrics and Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Naval Blood Research Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118

This work was supported by the U.S. Navy (Office of Naval Research Contract N00014-88-C0118).

The opinions or assertions contained herein are those of the authors and should not be construed as official or reflecting the views of the Navy Department or Naval Service at large.

Corresponding author: Alan D. Michelson, M.D., Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (telephone 508-856-4225; facsimile 508-856-4287).
NORMAL PLATELET PHYSIOLOGY

Platelets are essential for normal hemostasis. The main functions of platelets are adhesion to damaged blood vessel walls, aggregation to form a platelet plug, and promotion of fibrin clot formation. Platelet adhesion is primarily mediated by the adhesive molecule von Willebrand factor, which binds both to a specific platelet surface receptor (the glycoprotein [GP] Ib-IX complex) and to exposed subendothelial components. Platelet-to-platelet aggregation is primarily mediated by fibrinogen binding to its platelet surface receptor (the GPIIb-IIIa complex). Circulating platelets are normally in a resting state and, despite the presence of platelet surface GPIb-IX and GPIIb-IIIa complexes, they bind neither plasma von Willebrand factor nor plasma fibrinogen. In vitro, the cationic antibiotic ristocetin induces binding of von Willebrand factor to its receptor on GPIb, but the in vivo analogue of ristocetin remains uncertain. Thrombin and other physiological platelet agonists (e.g. thromboxane A₂, adenosine diphosphate, and epinephrine) induce exposure of the fibrinogen receptor on the platelet surface GPIIb-IIIa complex. Thromboxane A₂ is generated by platelets and is an important marker of platelet activation. Platelet agonists such as thrombin and thromboxane A₂ also stimulate platelets to change shape, secrete the contents of their granules (e.g. β-thromboglobulin, platelet factor 4, thrombospondin), and aggregate. Secreted thrombospondin binds to a receptor on the platelet surface membrane, as well as to fibrinogen, thereby stabilizing platelet-to-platelet aggregates. GMP-140, also referred to as P-selectin, PADGEM protein, and CD62, is a component of the α granule membrane of resting platelets that is only expressed on the platelet plasma membrane after platelet activation and secretion. The platelet surface expression of
GMP-140 is therefore a very precise marker of platelet secretion. GMP-140 mediates adhesion of activated platelets to monocytes and neutrophils. In contrast to its effect on GMP-140 and the GPIIb-IIIa complex, thrombin down-regulates the platelet surface expression of the GPIIb-IX complex.

HYPOTHERMIA AND PLATELET DYSFUNCTION

A hypothermia-induced hemorrhagic diathesis is known to occur in a number of clinical settings, including hypothermic cardiopulmonary bypass during cardiac surgery, other major surgery, multiple trauma, cold exposure, and neonatal cold injury.

The hemorrhagic diathesis associated with hypothermic cardiopulmonary bypass during cardiac surgery is considered to be primarily a platelet function defect. We have demonstrated that hypothermia results in both prolongation of the bleeding time and increased postoperative blood loss in patients undergoing cardiopulmonary bypass during cardiac surgery. Consistent with this data, other investigators have recently reported that normothermic cardiopulmonary bypass during cardiac surgery results in less postoperative blood loss than hypothermic cardiopulmonary bypass. In a clinical study we recently performed in 25 patients undergoing cardiopulmonary bypass with systemic hypothermia, one arm was kept warm with a water jacket throughout the intraoperative and postoperative periods while the temperature of the other arm reflected the systemic changes. In the cold arm as compared to the warm arm, the bleeding time was significantly prolonged and the generation of thromboxane
B\(_2\) (the stable metabolite of thromboxane A\(_2\)) was decreased in the shed blood emerging from the bleeding time wound.\(^{24}\) This study\(^{24}\) provided the first \textit{in vivo} demonstration in humans that hypothermia results in a reversible decrease in platelet function.

However, cardiopulmonary bypass is a complex clinical setting in which to study the effects of hypothermia on platelet function, because even during normothermic cardiopulmonary bypass there is a platelet function defect.\(^{17}\) \textit{We}\(^{27}\) and others\(^{17}\) have demonstrated that hypothermia results in prolongation of the bleeding time in normal baboons. We have also reported that hypothermia prolongs the bleeding time in normal human volunteers.\(^{28}\) In a recent study,\(^{29}\) we verified \textit{in vivo} that hypothermia inhibits platelet activation in normal human volunteers, as determined by five independent assays of the shed blood emerging from a standardized bleeding time wound: 1) up-regulation of platelet surface GMP-140 (reflecting \(\alpha\) granule secretion) (Fig. 1A), 2) down-regulation of the platelet surface GPIb-IX complex (the von Willebrand factor receptor) (Fig. 1B), 3) platelet aggregate formation (Fig. 2), 4) generation of thromboxane B\(_2\) (Fig. 3), and 5) the bleeding time (Fig. 4).

In a previous study in baboons,\(^{27}\) we reported that the pathophysiological basis for hypothermia-induced platelet dysfunction was, at least in part, inhibition of the action of thromboxane synthetase, resulting in diminished thromboxane A\(_2\) generation. We have recently confirmed and expanded upon these observations in humans.\(^{29}\) Hypothermia resulted in lack of generation of thromboxane B\(_2\) (the stable metabolite of thromboxane A\(_2\)) in humans both \textit{in vitro} (Fig. 5B) and \textit{in vivo} (Fig. 3).\(^{29}\) Furthermore, in whole blood \textit{in vitro}, hypothermia inhibits human platelet activation by thrombin and U46619 (a stable thromboxane A\(_2\) analogue), as determined up-regulation of platelet surface GMP-140 (Fig. 6A), down-regulation of the platelet
surface GPIb-IX complex (Fig. 6B), and platelet aggregation (Fig. 5A). Thus, in addition to their diminished generation of thromboxane A₂, hypothermic platelets are less reactive to thromboxane A₂ as well as to thrombin.

We have also demonstrated that rewarming hypothermic blood completely reverses the activation defect, as determined by four independent methods: up-regulation of platelet surface GMP-140 (Fig. 6A), down-regulation of the platelet surface GPIb-IX complex (Fig 6B), platelet aggregation (Fig. 5A), and thromboxane B₂ generation (Fig. 5B). The reversibility of the hypothermia-induced inhibition of platelet activation suggests that rewarming a hypothermic bleeding patient may reduce the need for transfusions of platelets and other blood components, with their attendant risks and expense. Furthermore, given that transfusion of platelets is relatively ineffective in the clinical setting of a hypothermia-induced hemorrhagic diathesis, our data suggest that rewarming the patient will result in better function of transfused platelets. Every effort should be made to maintain normothermia in patients predisposed to hypothermia, such as during major surgery, multiple trauma, and the neonatal period.

In summary, hypothermia inhibits human platelet activation in whole blood both in vitro and in vivo. Rewarming hypothermic blood completely reverses the activation defect. These results suggest that maintaining normothermia or rewarming a hypothermic bleeding patient may reduce the need for transfusion of platelets and other blood components.
ACKNOWLEDGMENTS

For the experiments performed in our laboratories, the authors acknowledge Hollace MacGregor and Marc R. Barnard for their essential contributions, and Drs. Barry S. Coller, John W. Fenton II, and Rodger P. McEver for generously providing reagents.
REFERENCES

FIGURE LEGENDS

Fig. 1. Hypothermia inhibits human platelet activation in vivo, as determined by up-regulation of platelet surface GMP-140 and down-regulation of the platelet surface GPIb-IX complex. After the skin temperature of the forearms of healthy volunteers was equilibrated to either 22°C, 32°C, or 37°C, a standardized bleeding time wound was performed. Local skin temperature was monitored by a surface thermometer placed within a few millimeters of the wound. The shed blood emerging from the bleeding time wound was fixed with 1% formaldehyde at 2 minute intervals until the bleeding stopped. The fixed samples were analyzed by whole blood flow cytometry for the platelet surface binding of monoclonal antibodies S12 (GMP-140-specific) (panel A) and 6D1 (GPIb-specific) (panel B). Maximum GMP-140 was defined as the binding of S12 to platelets in peripheral blood at 37°C after stimulation with thrombin 5 U/ml in the presence of 2.5 mM of the peptide glycy1-L-proly1-L-arginyl-L-proline (GPRP) (an inhibitor of fibrin polymerization and platelet aggregation). Maximum GPIb was defined as the binding of 6D1 to platelets in peripheral blood at 37°C. Each panel shows data from the same experiment on the same donor. At each time point for each temperature, the determination of platelet surface GMP-140 and GPIb was obtained from the same sample. The experiment is representative of 5 so performed. Reproduced with permission from Michelson et al. Thrombosis and Haemostasis, in press, 1993.

Fig. 2. Hypothermia inhibits human platelet activation in vivo, as determined by platelet aggregate formation. After the skin temperature of the forearms of healthy volunteers was
equilibrated to either 22°C, 28°C, or 32°C, a standardized bleeding time wound was performed. The shed blood emerging from the bleeding time wound was fixed at 2 minute intervals until the bleeding stopped. The number of platelet aggregates in the shed blood was determined by whole blood flow cytometry, as previously described. The experiment is representative of 5 so performed. Reproduced with permission from Michelson et al. *Thrombosis and Haemostasis*, in press, 1993.

Fig. 3. Hypothermia inhibits human platelet activation *in vivo*, as determined by generation of thromboxane B₂ (the stable metabolite of thromboxane A₂). After the skin temperature of the forearms of healthy volunteers was equilibrated to either 22°C, 28°C, or 32°C, a standardized bleeding time wound was performed. Shed blood in 600 μL aliquots was collected continuously from the beginning to the end of the bleeding time. At each temperature, the first and last aliquots were assayed for thromboxane B₂. Data are mean ± S.E.M., n = 6 separate experiments. Reproduced with permission from Michelson et al. *Thrombosis and Haemostasis*, in press, 1993.

Fig. 4. Hypothermia inhibits human platelet activation *in vivo*, as determined by the bleeding time. The skin temperature of the forearms of healthy volunteers were equilibrated to 22°C, 28°C, 32°C, or 37°C. For the calculation of each data point the bleeding time was considered to be the mean of 2 duplicate standardized bleeding times. Data are mean ± S.E.M., n = 6. Asterisks indicate p < 0.05 by paired Student's t test, as compared to skin

Fig. 5. Reversibility of hypothermia-induced inhibition of platelet activation by thrombin, as determined by platelet aggregation (panel A) and thromboxane B$_2$ generation (panel B). Washed platelets (250,000/μL) in modified Tyrode’s buffer, pH 7.4 were initially incubated at 37°C for 10 minutes, then the same platelets were cooled to 22°C over 30 minutes, and finally the same platelets were rewarmed to 37°C over 15 minutes. At each incubation temperature, an aliquot of platelets was activated with thrombin 0.16 U/mL. After 5 minutes, the digitized area under the aggregation curve (panel A) and the supernatant thromboxane B$_2$ concentration (panel B) were determined as previously described. Data are mean ± S.E.M., n = 4 separate experiments. Asterisks indicate p <0.05 by paired Student’s t test, as compared to initial samples at 37°C. Reproduced with permission from Michelson et al. *Thrombosis and Haemostasis*, in press, 1993.

Fig. 6. Reversibility of hypothermia-induced inhibition of platelet activation in whole blood, as determined by thrombin-induced modulation of the platelet surface expression of GMP-140 (panel A) and GPIb (panel B). Blood was initially incubated at 37°C for 5 minutes, then the same blood was cooled to 22°C over 15 minutes, and finally the same blood was rewarmed to 37°C over 5 minutes. At each incubation temperature, an aliquot of whole blood was removed and activated at the 0 time point with thrombin 5 U/mL in the presence of GPRP 2.5 mM (both of which had been equilibrated to the temperature of the blood). Platelet activation
was stopped at various time points by the addition of 1% formaldehyde. The platelet surface binding of monoclonal antibodies S12 (GMP-140-specific) (panel A) and 6D1 (GPIb-specific) (panel B) was analyzed by whole blood flow cytometry. Maximum GMP-140 was defined as the binding of S12 after incubation with thrombin for 10 minutes at the first 37°C incubation. Maximum GPIb was defined as the binding of 6D1 at the first 37°C incubation in the absence of thrombin. Data are mean ± S.E.M., n = 3 separate experiments. Asterisks indicate p <0.05 by paired Student’s t test, as compared to samples at the initial 37°C incubation. Reproduced with permission from Michelson et al. *Thrombosis and Haemostasis*, in press, 1993.
Fig. 1

A

PLATELET SURFACE
GMP-140

(Percent of maximum)

37°C ▽
32°C ●
22°C ○

TIME
(minutes)

0 2 4 6 8 10 12 14 16 18

B

PLATELET SURFACE
GPIb

(Percent of maximum)

0 2 4 6 8 10 12 14 16 18
NUMBER OF PLATELET AGGREGATES
(percent of number of single platelets)

TIME
(minutes)

32°C ●
28°C □
22°C ○

Fig. 2
Figure 3

SHED BLOOD THROMBOXANE B₂
(pg/0.1ml)

TIME (minutes)

32°C
28°C
22°C

○ ◇ ●
SUPERNATANT THROMBOXANE B₂

(pg/0.1 mL)

PLATELET AGGREGATION

(digitized area under aggregation curve)

Platelets Rewarmed to 37°C and Activated

Platelets Cooled to 22°C and Activated at 37°C