A STUDY OF THE INSULIN-INACTIVATING SUBSTANCES OF THE LIVER

By P'ei Yuan-ching
Nan Kuo-chu
Liu Li-ch'un

COMMUNIST CHINA

RETURN TO MAIN FILE

DISTRIBUTION STATEMENT A
Approved for public release.
Distribution Unlimited

19990210 061

Distributed by:
OFFICE OF TECHNICAL SERVICES
U. S. DEPARTMENT OF COMMERCE
WASHINGTON 25, D. C.

Reproduced From
Best Available Copy
FOREWORD

This publication was prepared under contract by the UNITED STATES JOINT PUBLICATIONS RESEARCH SERVICE, a federal government organization established to service the translation and research needs of the various government departments.
A STUDY OF THE INSULIN-INACTIVATING SUBSTANCES OF THE LIVER

[Following is a translation of an article by P'ei Yuan-ching (裴元静), Nan Kuo-chu (聞國柱), Liu Li-ch'un (刘立春), Peking Hospital, Peking, in Sheng-li Haueh-pao (Journal of Physiology), June 1960, Vol 24, No.2, pp 136-140.]

Not a few reports have been published on studies of the substances in the liver that inactivate insulin. In general normal animals were used in those studies. The livers of the animals were ground up and extracts from the ground tissues were transferred to test tubes for observation of any change in the characteristics of the insulin. 1,2/ In some cases the extracts were subjected to insulin-iodine analyses for determination of the effect of the inactivating substances on the insulin. 2,4/ This paper reports our studies on the action of insulin-inactivating substances in animals under anesthesia by perfusing the liver in situ, and on our inquiry into what changes inactivating substances underwent when tolbutamide rendered the animals hypoglycemic.

Materials and Procedure

Kinds of Animals Used

Large white rats—all were mature and healthy, both male and female, each weighing 120-150 grams. Feeding was dispensed with the night before the experiment. These animals were used for liver perfusion experiments.

Rabbits—all were mature and healthy, both male and female, each weighing 1.5 kilograms or more. These animals were used for experiments to determine the activity of insulin.
Feeding was dispensed with the night before the experiment. In the morning of the day when the experiment was to take place, each rabbit was given a blood sugar content test five times at half-hour intervals when its stomach was without food. Those with comparatively stable sugar content of blood were picked for experimentation.

Chemicals Used

Insulin—Insulin Roxane (made in the Netherlands). Label declared 40 international units per ml; released May 11, 1957, good until May 11, 1959. Locke's Solution—NaCl 0.9%, KCl 0.04%, NaHCO₃ 0.05%, CaCl₂ 0.018%.

Procedure

1. Liver Perfusion in Large White Rats. As anesthesia, 1 cm of a 25% solution of ethyl carbamate (urethane) was injected into the abdominal cavity of the animal. When the animal was anesthetized and its body temperature registered about 37°C a horizontal incision was made on its abdomen. The liver was carefully raised and a catheter was inserted into the portal vein, so that the Locke's solution could enter the liver thru the catheter. Similarly another catheter was inserted into the vena cava inferior through which the perfusate was to come out and be collected. Then the bile duct, the hepatic artery and the upper portion of the portal vein above the septum were tied, so that the circulatory system of the liver was completely isolated from the rest of the body. During the operation extraordinary care was exercised so that the liver would not be injured and perfusion would not fail. The fluid pressure of the Locke's solution used for the perfusion was 25-30 mm. A regulating clip with a screw for adjustment was employed to maintain the flow of perfusion at 0.2-0.4 ml per minute. The original position of the liver was strictly maintained. Difficulties will develop in the perfusate outflow when the position of liver is changed during the operation.

2. Handling of the Various Kinds of Fluids for the Experiment.

(a) Preparation of blood fluid prior to perfusion—Prior to the process of perfusion, some blood was collected from the vena cava inferior with which approximately 10 ml Locke's solution was made. To 20 international units of Insulin Roxane we added Locke's solution until the mixture measured 10 ml (each ml of the mixture thus contains
2.0 international units of Insulin Roxane). Observation
was made of the action of this blood fluid on the insulin
kept at a constant temperature of 37°C for one hour.

(b) Perfusate--When perfusion was under way in-
sulin was added from time to time according to the require-
ment of the liver perfusate for the maintenance of its in-
sulin concentrate of 2.0 international units per ml. Simi-
larly, observation was made of the action of the liver per-
 fusate on the insulin for one hour at a constant temperature
of 37°C.

(c) Insulin perfusion fluid-- In the process of
perfusion 1 ml of insulin with a concentration of 40 inter-
national units per ml was introduced at the rate of 8 in-
ternational units per minute into the rubber tubing at the
entrance of the portal vein. In the meantime, the perfu-
sate was collected at the exit, until 20 ml had been ob-
tained. Each ml of the perfusate collected supposedly con-
tained 2.0 international units of insulin. The perfusate
collected was set aside so that the insulin would settle.
To make sure that all the insulin that went in had been
entirely recovered in the 20 ml perfusate collected, a
separate experiment was performed in which a solution of
indigocarmine with a concentration of 6 mg per ml was in-
troduced into the portal vein in a manner similar to that
stated above. It was obvious that 20 ml of the perfusate
was collected and all the indigocarmine had been drained
from the liver.

(d) Liver extracts--Following the perfusion the
liver was removed. To the liver an equal amount in weight
of Locke's solution was added to make a liver extract
according to Mirsky's procedure.2/ The extract was then
placed in a centrifuge to rotate at a speed of 3,500 revo-
lutions per minute. This done, 10 ml was taken out from
the substances in suspension in the top layer. To this 20
international units of insulin and 10 ml of Locke's solution
were added and kept at 37°C for one hour. Observation was
made of the action of the liver extract on the insulin.

(3) Observation of the activity of insulin. Deter-
mination of the normal sugar content of the blood of the rabbits picked for the experiment was made by testing the
blood of the animals three times in half-hour intervals,
employing the Folin-Wu method. The average of measurements
was used as the normal sugar content of blood. Then the
various fluids, the amount of each of which being determined
by its strength being equivalent to 2.0 international units

2/ Refer to footnote 2, page 1.
were injected intravenously into two rabbits. After the injection a test was given every half an hour three times to determine the sugar content of the blood. The respective sugar content values obtained were compared with the normal sugar content value. The percentage of decrease indicated the degree of the activity of the insulin.

(4) Rendering the White Rats Hypoglycemic with Tolbutamide. After determination has been made of the sugar content of the blood when the stomach is without food, tolbutamide was administered by mouth to the animal, the dosage being 2 grams per kilogram body-weight. A test was given every hour after the administration of the tolbutamide to determine the sugar content of the blood. In general, two hours after the chemical had been introduced the sugar content dropped to the minimum, namely about 30%. This done, perfusion followed.

Results and Discussion

(1) The Effect of Fluid Collected Before and Fluid Collected After Perfusion of Liver on the Activity of the Insulin

At the conclusion of four separate experiments (see Table I) three portions of perfusion fluid were collected consecutively in the process, each portion containing 20 ml. None of these portions of perfusion fluid caused any change in the activity of the insulin. But the extract obtained from the ground-up liver that had been perfused did inactivate insulin in test-tube tests. The blood fluid collected from the vena cava inferior before perfusion had no inactivating effect on the insulin.

In the light of the results of this experiment it may be said that the insulin-inactivating substance cannot be carried away from the liver by the perfusion fluid, and that it is not present in the blood fluid. Even after the liver has been washed by a large quantity of perfusion fluid, the insulin-inactivating property of the substances are still preserved in the liver.

[Table I follows.]
Table I

The Effect of (1) Perfusion Fluid Containing No Insulin and (2) Extracts Collected After Perfusion on the Activity of Insulin

<table>
<thead>
<tr>
<th>Fluid Tested</th>
<th>Perfusion Fluid</th>
<th>Extract from Venous Perfusion</th>
<th>Venous Perfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Portion</td>
<td>Second Portion</td>
<td>Third Portion</td>
</tr>
<tr>
<td>Intervals (in min.) between Tests of Sugar Content of Blood of Rabbits after Injection</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Degree of Activity Average Value of Insulin (as in % of 4 Tests ± %)</td>
<td>-42.4 ± 1.7</td>
<td>-52.4 ± 3.3</td>
<td>-42.4 ± 1.7</td>
</tr>
<tr>
<td>Decrease of sugar, content of blood, expressed percentage</td>
<td>1.7 ± 0.6</td>
<td>7.6 ± 0.6</td>
<td>6.7 ± 0.7</td>
</tr>
</tbody>
</table>
(2) The Effect of Liver on the Activity of the Insulin in the Perfusion Fluid

After seven experiments (see Table II) it was found that the insulin in the perfusion fluid that had passed through the liver was inactivated in the process, as shown in the tests made of the perfusion collected which did not bring about a decrease in the sugar content of the blood of the rabbits. But when insulin was added to the perfusion fluid before and after perfusion, the former was not affected. We may infer from these phenomena that when insulin passes through the liver it is inactivated. The results of our experiment confirm the findings of Mirsky who found that when he added some extract from ground-up liver to a test tube containing insulin, the latter was rendered inactive. The fact that the insulin inactivating substances cannot be carried away from the liver by the perfusion fluid, and that they inactivate the insulin only when the latter passes through the liver tissues is a good indication that they possibly are close related to the liver tissues themselves.

Table II
Changes of the Activity of Insulin When it Passes the Liver with Liver Perfusion Fluid

<table>
<thead>
<tr>
<th>Fluid Tested</th>
<th>1st Portion of Fluid Containing Insulin</th>
<th>2nd Portion of Fluid Containing Insulin</th>
<th>Extract of Liver After Perfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals (in min.) between Injections Given to Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Activity of Insulin (as indicated by the decrease of sugar content of blood of rabbit)</td>
<td>Average Deviation (±)</td>
<td>-37</td>
<td>-45</td>
</tr>
</tbody>
</table>
Besides, as the results of our experiments show, after the perfusion fluid containing insulin passed through the liver, the effect of extracts from the liver on insulin was not always the same; consequently the results of the experiment in this particular respect were comparatively inconsistent. Further observations showed that in each perfusion it was not easy for the perfusion fluid to pass through each lobe of the liver—in fact the perfusion fluid could not pass through certain parts of that organ. As a result, those parts kept their original red color in the process of perfusion. In two separate experiments (see Table III) the perfused liver was divided into two portions according to the two colors, red and pale. Observations were made of the effect of their respective extracts on the activity of insulin. The results showed that the extract obtained from the portion of the liver through which the perfusion fluid containing insulin had passed, namely the pale portion, lost its original inactivating property, while the extract from the portion that had not been penetrated by the perfusion fluid, namely the red portion, still retained its insulin-inactivating property.

| Table III |
| The Effect of Extracts Obtained from Liver Through Which Perfusion Fluid Containing Insulin Passed |

<table>
<thead>
<tr>
<th>Fluid Tested</th>
<th>1st Perfusion</th>
<th>2nd Perfusion</th>
<th>Fluid Extracts from Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals (in min)</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>between tests of sugar content of blood of rabbit after injection</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>Degree of Activity of Insulin (as indicated by the decrease of sugar content of blood expressed percentage wise)</td>
<td>14</td>
<td>17.1</td>
<td>13.2</td>
</tr>
</tbody>
</table>
(3) The Effect of Tolbutamide on Insulin When
the Former Was Administered to Produce
Hypoglycemia

The results of four tests (see Table IV) demonstrat-
ed that when tolbutamide was administered to the large
white rats to produce hypoglycemia, the insulin in the per-
fusion fluid lost its inactivating property upon passing
through the liver. The results also showed that the per-
fusion fluid collected before and after insulin perfusion
was made and extracts made of livers after perfusion had
the same effect on insulin as perfusion fluid obtained
from perfusion given normal rabbits. Based on these re-
results, there does not seem to be any relation between the
hypoglycemic action of tolbutamide and the insulin-inacti-
vating substances of the liver.

Table IV
Effect of Liver on the Activity of Insulin
After Tolbutamide Given Rats

<table>
<thead>
<tr>
<th>Fluid Tested</th>
<th>1st Perfusion Fluid</th>
<th>2nd Perfusion Fluid</th>
<th>Liver Extract</th>
<th>Perfusion Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals (in min)</td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>between tests of sugar content of blood of rabbits after injection</td>
<td>-0.56</td>
<td>-0.39</td>
<td>-0.41</td>
<td>-0.3</td>
</tr>
<tr>
<td>Degree of activity of Insulin (as indicated by the decrease of sugar content of blood expressed percentage wise)</td>
<td>3.8</td>
<td>7.6</td>
<td>6.5</td>
<td>3.7</td>
</tr>
</tbody>
</table>

(±)
In the past few years many researchers have studied again and again the relation between tolbutamide and the insulin-inactivating substances of the liver, hoping to explain the hypoglycemic mechanism of chemicals of this type. But the results were not consistent, and the explanations attempted vary. Basing on the results of our experiment, if the hypoglycemic action of tolbutamide was caused by the insulin-inactivating substances, then when tolbutamide renders an animal hypoglycemic the activity of the insulin-inactivating substances in the liver should be decreased, and after the insulin has passed through the liver its activity should be sustained. But Table IV clearly demonstrated that the insulin in the perfusate was definitely inactivated. These results are consistent with the results that Williams obtained in his observations of the reaction of the liver extract from animals that he had injected tolbutamide into.

Conclusion

In our study of the action of the insulin-inactivating substances of the livers of large white rats by perfusing the liver in situ, when a certain amount of insulin passed through the liver, it might lose its activity. This proves that the liver has an inactivating action on insulin, and that these insulin-inactivating substances are closely related to the liver tissues. Such substances could not be carried away from the liver by the perfusate. After the insulin passed through the liver, the action of the insulin-inactivating substances of the liver was weakened.

When the animals were rendered hypoglycemic by tolbutamide, the action of the insulin-inactivating substances of the liver was the same as that of the liver of normal animals. Therefore we conclude that there is no relation between the hypoglycemic action of tolbutamide and the insulin-inactivating substances of the liver.
BIBLIOGRAPHY

 Nachr., 1930, 9, 1921.
2/ Mirsky, I.A. and Broh-Kahn, R.H.: Inactivation of Insulin
 by Tissue Extracts. I. The Distribution and Properties
 of Insulin Inactivating Extracts (Insulinase).
 Arch. Biochem., 1949, 20, 1.
3/ Mirsky, I.A., Perisutti, G. and Dixon, F.J.: The Destruction
 of I131 Labeled Insulin by Rat Liver. J. Biol.
4/ Narahara, H.T., Tomizawa, H.H., Miller, R. and Williams,
 R.: Intracellular Distribution of An Insulininactivating
5/ Mirsky, I.A., Perisutti, G. and Diengott, D.: The Inhibition
 of Insulinase by Hypoglycemic Sulfonamides.
 Metabolism, 1956, 5, 156-161.
6/ Cox, R.W. and Williams, R.H.: Studies on the Actions of
7/ Berson, S.A., Yalow, R.S., Weisenfield, S., Goldner,
 M.G. and Volk, B.W.: The Effect of Sulfonylureas on
 the Rates of Metabolic Degradation of Insulin-I131 and
 Glucagon I131 in Vivo and in Vitro. Ibid., 1957, 6, 54.
8/ Vanghan, M.: In Vitro Studies on the Action of Sulfonamide
 (Tolbutamide). Diabetes, 1957, 6, 16.
10/ Williams, R.H.: In Group Discussion, Ibid., 1957, 6, 19.