PARALLEL VERSION OF SPECIAL PERTURBATIONS ORBIT PROPAGATOR

by

Beny Neta

December 9, 1998

Approved for public release; distribution is unlimited.

Prepared for: Naval Postgraduate School
Monterey, CA 93943

19990112 034
NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM Robert C. Chaplin
Superintendent

R. Elster
Provost

This report was prepared for Office of Naval Research and funded by Air Force Research Laboratory AFRL/VSSS.

This report was prepared by:

[Signature]

Beny Neta
Professor of Mathematics

Reviewed by:

[Signature]

Guillermo Owen, Chair
Department of Mathematics

Released by:

[Signature]

D. W. Netzer
Associate Provost and
Dean of Research
Parallelization can be achieved by either control or domain decomposition. The latter was tried for analytic (by Phipps et al.19,20,21) and semianalytic (by Wallace26) propagators. Neal and Coffey14 discuss the domain decomposition for special perturbations. The control decomposition idea is inefficient for analytic propagators (Phipps19), because the computation time is too short. In this report we discuss a control decomposition approach to parallelize a numerical orbit propagator which may be more computationally intensive.
PARALLEL VERSION OF SPECIAL PERTURBATIONS ORBIT PROPAGATOR

Beny Neta
Naval Postgraduate School
Department of Mathematics
Code MA/Nd
Monterey, CA 93943

December 9, 1998
Abstract

Parallelization can be achieved by either control or domain decomposition. The latter was tried for analytic (by Phipps et al[19,20,21]) and semianalytic (by Wallace[26]) propagators. Neal and Coffey[14] discuss the domain decomposition for special perturbations. The control decomposition idea is inefficient for analytic propagators (Phipps[19]), because the computation time is too short. In this report we discuss a control decomposition approach to parallelize a numerical orbit propagator which may be more computationally intensive.

Acknowledgements

This research was supported in part by Air Force Research Laboratory AFRL/VSSS at Kirtland AFB and by the Naval Postgraduate School Direct Funded Research Program.
1 Introduction

The orbit of an earth satellite may be predicted by solving the differential equations of Newtonian mechanics. The various approximate methods for solving the differential equation in this case may be divided into three categories: analytical, semianalytical, and numerical.

Within the next few years the military expects to increase the number of objects cataloged and to require more accurate predictions. With a commensurate improvement in sensor data, the accuracy of the predictions could be improved to the order of tens of meters (depending on time from epoch) with a semi-analytical theory or to meters with a completely numerical solution. However, these improvements would be obtained at the expense of a great increase in computation time using a numerical method on a serial computer.

Fonte et al. have compared the above three categories of propagators as implemented in R&D GTDS in various orbital regimes. It was shown that accuracy of the Draper semianalytic (DSST) propagator when used with “optimal” parameters is close to that of the numerical, but the CPU time required is much less. Testing with real data is required to convince the users to adopt DSST. Also such a move requires training of potential users. Thus the most cost effective way to get more accurate predictions for more orbiting objects in a short amount of time would require the use of a parallel version of a numerical propagator.

In the next section we discuss parallel computing as applied to orbit propagation. In section 3, numerical propagators will be discussed. The experience gained with a control decomposition version of special perturbations orbit propagator is described in section 4.

2 Parallel Computing

Parallel computing is defined as the efficient form of information processing emphasizing the concurrent computations and manipulation of data to solve a single problem (see e.g. Hwang and Briggs). Parallel computers may be classified according to their architecture. Flynn has introduced a scheme to classify computers into four categories based on the multiplicity of instruction and data streams. The serial computers are called SISD (Single Instruction Single Data). Array processors are called SIMD, and most multiprocessors are MIMD. Another way of classification is by topology.

Parallel computing offers one option to decrease the computation time and achieve more real-time results. Use of parallel computers has already proven to be beneficial in reducing computation time in many other applied areas.

Two common measures of effectiveness, accounting for both the hardware and the algorithm are speedup and efficiency. The speedup, S_p, of an algorithm is defined as

$$S_p = \frac{T_s}{T_p} \quad \text{or} \quad \frac{T_1}{T_p}$$ (1)
where T_s is the time on a serial computer and T_i is the time on a parallel computer having i processors. The efficiency, E_p, is defined by

$$E_p = \frac{S_p}{p}$$

(2)

and it accounts for the relative cost of achieving a specific speedup. Many factors could possibly limit the efficiency of a parallel program. These factors include the number of sequential operations that cannot be parallelized, the communication time between processors, and the time each processor is idle due to synchronization requirements, see e.g. Quinn22.

2.1 Hypercube

The iPSC/2 INTEL hypercube11 is a MIMD multicomputer with a hypercube topology. The computer consists of a system resource manager (host) and 2^n individual processors, called nodes (n is the dimension of the cube). The computing nodes may be augmented by a vector extension module for vector operations. Communication among the nodes and the host are completed through message passing. See Figure 1 for hypercubes with various dimensions n.

![Figure 1: Hypercubes with dimension $n = 0, 1, 2, 3, 4$](image-url)
2.2 Parallel Virtual Machines

Parallel Virtual Machine (PVM) is a small (~1 Mbytes of C source code) software package that allows a heterogeneous network of Unix-based computers to appear as a single large distributed-memory parallel computer. The PVM package is good for large-grain parallelism; that is, as least 100 kbytes/node. The term virtual machine is used to designate a logical distributed-memory computer and host is used to designate one of the member computers.

The PVM software, developed at Oak Ridge National Laboratory (see Dongara et al2 and Sunderam et al24) supplied the functions to automatically start up tasks to communicate and synchronize with each other. A problem can be solved in parallel by sending and receiving messages to accomplish multiple tasks, similar to send and receive on the hypercube.

PVM handles all message conversion that may be required if two computers use different data representations. PVM also ensures that error messages generated on a remote computer are displayed on the user's local screen.

Parallelization could have been accomplished using a specific parallel multicomputer, such as the INTEL hepercubef. These systems tend to be large and expensive. While PVM may not accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube, the process execution times were satisfactory for the application tested.

2.3 Decomposition Strategies

Given a program and its associated data set, there are two primary ways to process it in parallel. The program can be separated into individual sections (called control decomposition) with a processor dedicated to compute its respective part, much like a factory assembly line. The other method domain decomposition is to divide up the data set and send parts to many separate processors all running the same algorithm, but on different data.

Figure 2 graphically presents these relationships between the node distributing data, the node collecting results and the workers.

In 1992, the first result on parallelization of orbit propagators was obtained by our student (W. E. Phipps19,20,21). These results were presented at the 1993 Space Surveillance Workshop at M.I.T. Lincoln Laboratory20. During the past five years a similar idea (domain decomposition) was applied to the analytic propagators SGP and SGP4/SDP4 (see Ostrom18, Brewer1, Neta et al15, and Stone23). Our students developed a model to find the optimal number of processors (in the sense that the algorithm is most efficient). This optimal number depends on the satellite motion model used, the number of objects and the number of calls to the propagator for each object. Ostrom18 and Neta et al15 have shown that one can achieve near 100% efficiency. Wallace26 suggested the same idea for the semianalytical propagator DSST. Neal and Coffey14 demonstrated how to maintain the space catalog using similar parallelism idea for special perturbations.

The control decomposition idea for analytic propagators is inefficient (as demonstrated
by Phipps19 since the analytic propagators are not computationally intensive.
In the next section, we discuss the possible numerical orbit propagators and their parallel version.

3 Numerical Propagators

Neta and Lustman have developed a parallel numerical ODE solvers for both linear12 and nonlinear systems13. The idea here13 is to use extrapolation. One can use Euler's or Gragg's method to solve the system

\[
\frac{dy}{dt} = f(y(t), t), \quad t_0 \leq t \leq b \tag{3}
\]

subject to

\[
y(t_0) = y_0 \tag{4}
\]

For example, Gragg's method

\[
z_{1/2} = y_0 + \frac{h}{2}f(t_0, y_0) \tag{5a}
\]

\[
y_1 = y_0 + hf(t_{1/2}, z_{1/2})
\]

\[
\begin{align*}
z_{n+1/2} &= z_{n-1/2} + hf(t_n, y_n) \\
y_{n+1} &= y_n + hf(t_{n+1/2}, z_{n+1/2})
\end{align*} \tag{5b} \quad n = 1, 2, \cdots
\]
has truncation error

\[y_n - y(nh) = B_2 h^2 + B_4 h^4 + \cdots \] (6)

Each one of the N processors uses an ODE solver with

\[h_r = \frac{N}{r} H, \] (7)

thus the common points are \(t_j = t_0 + (j - 1)NH \).

Given

\[\{h_r, y(t_i, h_r) | r = 0, 1, \ldots, N - 1; \quad i = 1, 2, \ldots, M\}, \]

the solution at those M points in \((t_0, b)\) is computed by the same scheme by all N possible \(h' \)'s). For polynomial extrapolation we construct a table of values \(T_{rs} \) as follows

\[
\begin{align*}
T_{r0} &= y(t_i, h_r) \\
T_{rs} &= T_{r+s-1} + \frac{T_{r+1s-1} - T_{rs-1}}{(\frac{h_r}{h_{r+s}})^2 - 1} \quad s = 0, 1, \ldots, N - 1
\end{align*}
\] (8)

Extrapolation will yield \(O(h^{2N}) \) accuracy for Gragg's scheme.

In the following table we show which processor computes which part of the solution.

<table>
<thead>
<tr>
<th>processor</th>
<th>step</th>
<th>proc 1</th>
<th>proc 2</th>
<th>proc 3</th>
<th>proc 4</th>
<th>proc 5</th>
<th>proc 6</th>
<th>proc 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{00})</td>
<td>1</td>
<td>8H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{10})</td>
<td>2</td>
<td>4H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{20})</td>
<td>3</td>
<td>(\frac{8}{3}H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{30})</td>
<td>4</td>
<td>2H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{40})</td>
<td>5</td>
<td>(\frac{8}{5}H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{50})</td>
<td>6</td>
<td>(\frac{4}{3}H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{60})</td>
<td>7</td>
<td>(\frac{8}{7}H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{70})</td>
<td>8</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Extrapolation assigned to each processor

The efficiency of this algorithm (based on low order integrator and extrapolation) is over 75%. These results were presented in Numerisk Institut in Denmark\(^{16}\) and in the Fourth International Colloquium on Differential Equations in Bulgaria\(^{17}\). These algorithms were combined
with a numerical propagator to get a parallel special perturbations model. Fukushima6 discusses the round-off error reduction in the extrapolation methods as they apply to orbital motion.

Fukushima6 has suggested a numerical method based on Picard iteration and Chebyshev polynomials for approximating orbital motion. The idea is to integrate the differential equation

\[
\frac{dy}{dt} = f(y(t), t), \quad a \leq t \leq b
\]

(9)

subject to

\[
y(t_0) = y_0, \quad a \leq t_0 \leq b.
\]

(10)

Assuming \(y^{(0)}(t)\) is an initial guess for the iteration, then

\[
y^{(n+1)}(t) = y_0 + \int_{t_0}^{t} f(y^{(n)}(s), s)ds, \quad a \leq t \leq b, \quad n = 0, 1, \ldots
\]

(11)

Both \(y(t)\) and \(f\) are expanded in Chebyshev polynomials of the first kind, with coefficients \(Y_j, F_j\), respectively.

Given all the coefficients \(Y_j^{(n)}\), one can compute \(y_k^{(n+1)} \equiv y^{(n)}(t_k^{(n+1)})\). This, in turn, will give the right hand side, \(f_k^{(n+1)} \equiv f(y_k^{(n+1)}, t_k^{(n+1)})\). From this one can compute the coefficients \(E_j^{(n+1)}\) and \(Y_j^{(n+1)}\).

Fukushima6 claims that “Clearly the present method is accelerated by using parallel computers. This is because the evaluation of the integrand can be done in parallel. Since the computational time of the numerical integration is mainly occupied by the integrand evaluation, we can expect a significant gain in real-time speed. In principle, the ratio of speed-up will become as many as the number of processors.” This last sentence means that the efficiency is close to 100%. I believe that there is enough sequential work that will cause degradation of the efficiency, and one should experiment with the method on a parallel machine to get the actual efficiency. Several private communications with Fukushima reveal that in follow up papers7,8, he developed a vectorization of the method on a Fujitsu VX/1R (with vector length of 2048). This vector method shows a gain of more than a 1000 times, which is around 50% efficiency.

For satellite problems, \(y(t)\) and \(f(y(t), t)\) in (9) are arrays.

\[
y(t) = \begin{bmatrix} \vec{r} \\ \vec{v} \end{bmatrix}, \quad f(y(t), t) = \begin{bmatrix} \vec{\sigma} \\ \vec{a} \end{bmatrix}
\]

where \(\vec{r}, \vec{v}, \text{ and } \vec{a}\) are the position, velocity and acceleration vectors, respectively. Vallado25 discusses fourth-order Runge-Kutta method (single step), as well as Runge-Kutta-Fehlberg (variable step size) and Adams-Bashforth-Moulton predictor-corrector (multi-step) methods. To obtain fourth-order or higher, one may use extrapolation with first-order Euler's method or second-order Gragg's method as discussed above. Using \(N\) processors and extrapolating Gragg's method, one can get \(2N\)-order accuracy. This idea is of control decomposition type. It yields higher efficiency than the Picard-Chebyshev method advocated by Fukushima.
4 SPEPH

In this subsection we give the results of our experimentation with SPEPH, the special perturbation code used by AFSPACECOM. We are not comparing the accuracies attained by various numerical propagators. We are only interested in the computation time in order to assess the feasibility of control decomposition. To this end, we have ran one example where the orbit is propagated to 15 minutes ahead. It is clear that the total run time of 3.19 seconds is too short to use control decomposition. If we now increase the length of period of propagation to 3 days and 15 minutes, then the total run time increases to 19.1 seconds, most of it (over 90%) is in the subroutine SPOOX, the SP integration driver. Even this is not computationally intensive enough. Several other orbits were propagated for various length of time and the total run time was always too short to justify control decomposition. I am sure that the reason that SPEPH is not used on all object is the fact that one requires many calls to the propagator to accomplish the differential corrections and update. Therefore one should consider the domain decomposition idea as implemented by Neal et al14. A more radical solution is to reconsider the differential correction process and see if one can save on the number of calls.

5 Conclusions

It has been shown that several methods in the literature yield an efficiency of over 75% for the solution of systems of first order ordinary differential equations such as the orbit prediction problem. We have access to a special perturbations code currently in use and our assessment of the efficiency of its control decomposition was discussed.
References

Distribution List

No. of copies

Director
Defense Technical Information Center
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218
2

Dean of Research
Code 09
Naval Postgraduate School
Monterey, CA 93943
1

Library
Code 013
Naval Postgraduate School
Monterey, CA 93943
2

Department of Mathematics
Code MA
Naval Postgraduate School
Monterey, CA 93943
1

Professor D. A. Danielson
Code MA/Dd
Naval Postgraduate School
Monterey, CA 93943
1

Professor Beny Neta
Code MA/Nd
Naval Postgraduate School
Monterey, CA 93943
2
Professor Mike Ross
Code AA/Ro
Naval Postgraduate School
Monterey, CA 93943

Dr. Paul Cefola
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Dr. Ron Proulx
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Mr. Wayne McClain
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Lt. Chris Sagovac, USN
819 South Charles St.
Baltimore, MD 21230

Dr. Byron Tapley
Center for Space Research
University of Texas at Austin
Austin, TX 78712

Dr. David B. Spencer
AFRL/VSSS
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

Lt Col Dave Vallado
AFRL/DEX
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776
Mr. Leo Early
2579A West 235th St.
Torrance, CA 90505

Dr. Hunt Small
Lockheed-Martin Missiles and Space Co.
Dept E3-10
1111 Lockheed Way
Sunnyvale, CA 94089-3504

Dr. Shannon Coffey
Code 8233
Naval Research Laboratory
Washington, DC 20375-5355

Dr. Joseph J. F. Liu
Schriever AFB, CO 80912-7202

Mr. Andrew E. Turner
3825 Fabian Way
Palo Alto, CA 94303

Dr. Chia-Chun (George) Chao
P. O. Box 92957-M4/946
Los Angeles, CA 90009-2957

Dr. Johnny H. Kwok
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109-8099

Col Sal Alfano
NSP/AN
250 S. Peterson Blvd 116
Peterson AFB, CO 80914-3180
Dr. Paul Schumacher
U.S. Naval Space Command
Code VN63T
Dahlgren, VA 22448-5170

James R. Wright
305 Exton Commons
Exton, PA 19341

George Rosborough
Campus Box 429
University of Colorado
Boulder, CO 80309

Mr. Richard Hujsak
Applied Technology Associates
305 Exton Commons
Exton, PA 19341

Dr. Felix R. Hoots
General Research Corporation
985 Space Center Drive
Suite 310
Colorado Springs, CO 80915