Title and Subtitle:
Analysis of Non-Axisymmetric cracking in Ceramic Matrix Composites

Author(s):
Lokeswarappa R. Dharani

Performing Organization Name(s) and Address(es):
University of Missouri-Rolla
Mechanical and Aerospace Engineering
205A Mechanical Engineering Bldg.
Rolla, MO 65401-0249

Sponsoring/Monitoring Agency Name(s) and Address(es):
AFOSR/NA
801 N. Randolph Street Room 732
Arlington, VA 22203-1977

Abstract:
Appropriate governing equations for the case of matrix cracking with debonding with friction along the debond have been derived. The variational approach founded on the principle of minimum potential energy is being applied to obtain the numerical results for the stress and displacement fields. On the basis of the Irwin-Kies compliance calibration formulation and the strain energy release rate criterion, the fracture analysis of the matrix crack is carried out. For the matrix crack configuration with interface debonding with friction, the critical loads have been obtained as a function of crack size and interface debond length to assess the competition between the matrix cracking and interface debonding modes. We have also completed static tests on transverse flex specimens to study the cracking behavior along and transverse to fiber direction in continuous and hybrid ceramic matrix composites. This work has been extended to include fiber pullout in model ceramic matrix composites and multiple cracking in laminated brittle matrix composites.
FINAL REPORT
July 1, 1995 - June 30, 1998

AFOSR GRANT# F49620-95-1-0436

PROJECT TITLE: (AASERT -95) ANALYSIS OF NON-AXISYMMETRIC CRACKING IN CERAMIC MATRIX COMPOSITES

PRINCIPAL INVESTIGATOR: Lokeswarappa R. Dharani

INSTITUTION: The University of Missouri-Rolla

DATE: September 30, 1998

DTIC QUALITY INSPECTED
ANALYSIS OF NON-AXISYMMETRIC CRACKING IN CERAMIC MATRIX COMPOSITES

2. OBJECTIVES

The objectives of the project are to develop a micromechanics analytical model to characterize the behavior of brittle matrix composites containing initial flaws, specifically as they approach a fiber-matrix interface, and to assess the competition between various failure modes as the matrix crack impinges on the fiber-matrix interface or an interphase region.

3. STATUS OF EFFORT

The work proposed in the original proposal has been completed. We are continuing our efforts on the characterization of ceramic matrix composites and in particular interface characterization of such systems using internal funds.

4. ACCOMPLISHMENTS/NEW FINDINGS

Appropriate governing equations for the case of matrix cracking with debonding with friction along the debond have been derived. The variational approach founded on the principle of minimum potential energy is being applied to obtain the numerical results for the stress and displacement fields. On the basis of the Irwin-Kies compliance calibration formulation and the strain energy release rate criterion, the fracture analysis of the matrix crack is carried out. For the matrix crack configuration with interface debonding with friction, the critical loads have been obtained as a function of crack size and interface debond length to assess the competition between the matrix cracking and interface debonding modes. We have also completed static tests on transverse flex specimens to study the cracking behavior along and transverse to fiber direction in continuous and hybrid ceramic matrix composites. This work has been extended to include fiber pullout in model ceramic matrix composites and multiple cracking in laminated brittle matrix composites.

The results indicate that the modified principle of minimum potential energy (MPMPE) provides an efficient numerical approach to some of the problems which are not amenable to closed form solutions, especially for complicated cracking configurations such as those involving matrix cracking and interface debonding with and without friction. The comparison of strain energy release rates for matrix cracking and interface debonding has been used to assess the competition between the two failure modes. The parametric studies showed that the interface friction can largely increase the level of the critical applied strain for interface debonding and the cracking changes from unstable to stable state. For the experimental effort, the acoustic emission technique is being used to determine the onset of interface debonding and progressive fiber pullout. We also showed that the use of a chevron-notched fracture specimen provides a much stable crack configuration than that is attainable using straight through-the-thick configuration.
5. PERSONNEL SUPPORTED

a) Faculty: Lokeswarappa R. Dharani (PI, No salary support);

b) Graduate Students: Steven B. Haug, PhD Candidate, Forrest W. Flocker, PhD 1996, Joseph W. Terwelp MSME Candidate, Natalie M Dixon, MSAE Candidate, Brian T. Call, MSEM Candidate;

c) Undergraduate Student: Jason S. Cargill, BSAE 1997.

All the students above are US Citizens.

In addition to those supported by AASERT Grant, an international student (Fangsheg Ji, PhD 1997) supported by internal funds worked on the project and made a significant contribution towards the success of this project. He was not supported under the AASERT Grant.

6. PUBLICATIONS (July 1, 1995 - June 30, 1998)

6. PUBLICATIONS (Cont.)

7. INTERACTIONS/TRANSITIONS

Visited Wright Laboratory, Wright Patterson AFB and McDonnell Aerospace in St. Louis to discuss research in fracture of composites and the results of this project.

8. NEW DISCOVERIES, INVENTIONS, OR PATENTS

None since August 1, 1995

9. HONORS/AWARDS

a) Steven Haug was selected to participate in the NASA Space Grant Consortium.

b) Steven Haug received the Jefferson Goblet Award for the Best Student Paper at the 39th AIAA SDM Conference, Long Beach, CA.

c) Natalie Dixon received the Amelia Earhardt Fellowship from the Zoneta International Association.

d) The PI (Dr. Dharani) was selected to receive the UMR Faculty Excellence Award during 1995 and 1996. He was also selected to receive the Outstanding Teaching Award during 1996-97.