DETERMINATION OF THE RATES OF DESCENT OF A FALLING MAN AND OF A PARACHUTE TEST WEIGHT

(EQUIPMENT BRANCH REPORT)
CERTIFICATE: By direction of the Secretary of War the matter contained herein is published as administrative information and is required for the proper transaction of the public business.
DETERMINATION OF THE RATES OF DESCENT OF A FALLING MAN AND OF A PARACHUTE TEST WEIGHT

OBJECT

1. The object of these experiments was to determine the instantaneous and maximum rates of descent of—
 (a) A dummy man equipped with a dummy parachute pack and harness.
 (b) A 200-pound lead weight with trailing dummy parachute pack.

2. There seemed to be no definite information as to the rate of acceleration and limiting velocity of a man after leaping from an airplane in flight. This knowledge is of vital importance to those designing and testing parachutes and to anyone who may at some time be forced to use a parachute at a low altitude or who may wish to delay the action of his parachute to avoid entanglement in falling wreckage or to evade enemy gunners in time of war.

3. It has been the practice of the Matériel Division to use lead weights and packs equipped with time fuzes to test experimental parachutes for strength, but it was not known definitely just what speed and momentum was obtained by a delay of any given number of seconds. The data obtained in these tests will assist in clarifying previous records and establishing a basis for future work of this nature.

CONCLUSIONS

1. It may be concluded from the results of these tests that a man equipped with a parachute pack, but allowing it to remain closed, will fall at a maximum rate of between 160 feet per second (109 miles per hour) and 175 feet per second (119 miles per hour), and that he will gain this velocity in about 12 seconds' time, having fallen about 1,400 or 1,500 feet.

2. It appears that the lead weight unit used in test No. 5 reaches a velocity of about 302 feet per second (206 miles per hour) in 15 seconds' time, having fallen about 3,000 feet, and is very near its maximum velocity at that time.

3. The photographic charts and plotted curves may be used to obtain velocities, accelerations, and distances.

RECOMMENDATIONS

1. It is recommended that this report be made available to all personnel on flying status so that they may be able to make more intelligent use of the parachute.

EQUIPMENT

1. The airplane used was a Douglas torpedo plane (DT type) equipped with bomb shackles and releases and dummy bays for drop-testing parachutes.
PROCEDURE

1. All tests were conducted at night. When all was in readiness on the ground, the airplane would take off and climb to the prescribed altitude. The pilot signaled with a flash light when he was starting on the course, which was marked by blinking lights on the ground. At this time the timing pendulum was started and allowed to swing until the dummy or weight had reached the ground. The pilot maintained his proper altitude with a sensitive altimeter. It was important that he hold very closely to the proper altitude and that he did not pass too close to the camera, as the image would then not fall on the film. As he approached the first marker light on his course, he switched on the dummy light and a few seconds later released the dummy. At the conclusion of the test an automobile was faced toward the camera at two points some distance away in order to register two points on the film which, when connected by a line, would indicate horizontal at ground level.

DISCUSSION

1. Figures 1, 3, 5, 7, and 9 are reproductions of the original photographs upon which were superimposed a reference scale of distance. Figures 2, 4, 6, 8, and 10 are graphs plotted from data taken from the photographs. The ordinates of the velocity curves were found as follows: The point on the trajectory corresponding to the desired number of seconds (abscissa) is found by counting the dashes from the point where the trajectory starts to bend downward. The velocity at this point is considered to be equal to the sum of the distances covered in the half second preceding the point plus that covered in the half second following. Only the vertical components of distance and velocity were considered. The ordinates of the distance curves are the scaled vertical distances from the point of release to the point in question.

2. The fact that the dummy tumbled in some of the tests caused the light to be blanked out in certain places, but these breaks are readily distinguishable from the regular 1-second breaks. The light from the electric lamp used on the weight was also blanked occasionally by the small posts which support the filament.

3. In applying the reference scale to the photographs, it was not possible in all cases to extend the upper reference line horizontally in the plane of the paper because the course flown, although horizontal, was not truly parallel to the plane of the film. This upper reference line was in each case drawn so as to form an extension of the path of flight appearing on the photograph. The upper reference line was extended until it met the lower horizontal line which represents the horizon. From this point of intersection a straight line was run to each reference point on the trajectory. A vertical line was dropped from some point on the upper reference line to the horizon line and scaled in feet. Although the reference lines were extended to their common point of intersection with the horizon line, they were not traced beyond the vertical scale line.

4. The test which was made with the 115-pound dummy has no direct bearing on the main problem, but was included for the purpose of furnishing some information on the rate of descent of standard dummies used in the service for periodic testing of parachutes.

5. It will be noted that in the case of the dummy tumbling rapidly, its maximum velocity was 160 feet per second, as against 175 feet per second where it fell straight or tumbled only slightly. Two other tests were completed, one very similar to No. 3, where the dummy tumbled rapidly, and another similar to No. 5 with the lead weight. The results obtained in these two tests check very closely with the results of tests Nos. 3 and 5, but the photographic negative was not sufficiently distinct to permit reproduction.

6. As stated above, in plotting distances and velocities, only the vertical components were used. To get the actual velocity or distance traveled along the path, it is only necessary to measure the actual length of the dashes and apply the scale which is printed on the photograph. It will be noted that the horizontal distances are foreshortened slightly, due to the fact that the airplane was in some cases receding slightly from the camera. The effect of this would be to shorten the recorded distances along the path by not more than 2 or 3 per cent for the first 4 or 5 seconds and by practically nothing for the remainder of the descent.

7. The velocity which the airplane imparts to the dummy diminishes as the velocity due to gravity increases, so that the resultant acceleration is not very great. If a man would jump from an airplane which is traveling at 120 miles per hour he would maintain very closely the same speed until he reached the ground or opened his parachute. If he left the airplane while traveling at a speed greater than 120 miles per hour his speed would rapidly diminish to that amount.
FIG 1
TEST NO. 1
100 LB DUMMY MAN
WITH DUMMY PARACHUTE PACK
DROPPED FROM 2,450 FT ALTITUDE
TIME FROM AIRPLANE TO EARTH IS 3/4 SEC
MAX VELOCITY IS 135 FT/SEC - 119 MPH
DUMMY DID NOT TUMBLE
FIG. 3
TEST NO. 2
150 LB DUMMY MAN
WITH DUMMY PARACHUTE PACK
DROPPED FROM 3000 FT. ALTITUDE
TIME FROM AIRPLANE TO EARTH 40 SEC
MAX VELOCITY 115 FT/SEC - 119 MPH
DUMMY TUMBLED SLIGHTLY.
Fig. 5
Test No. 3
100 lb. dummy man
With dummy parachute pack;
dropped from 2500 ft. altitude.
Time from airplane to earth 25 sec.
Max. velocity 160 ft./sec. 109 mph.
Dummy tumbled.
Fig. 1
Test No. 4
118 lb. dummy man.
With dummy parachute pack.
Dropped from 3,000 ft. altitude.
Time from airplane to earth 88.2 sec.
Max. velocity 185 ft./sec. 68 mph.
Dummy tumbled slightly.

Fig. 2
Test No. 4
118 lb. dummy man with dummy parachute pack.
Dummy tumbled slightly.

Distance

Velocity

Time in seconds

Distance covered from take-off
FIG 9
TEST NO. 5
200 LB. LOAD WEIGHT
WITH DUMMY PARACHUTE PACK
DROPPED FROM 3000 FT. ALTITUDE
TIME FROM AIRPLANE TO EARTH 16 SEC.
MAX. VELOCITY 305 FT./SEC. 200 MPH.