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Objectives

Drag reduction on aerodynamic surfaces through flow control has economic
and environmental benefits. The necessary delay of transition is usually
*achieved by modifying the highly energetic mean flow over these surfaces
by suction to be less susceptible to instabilities. In this case, the net ben-
efits may be reduced by high power requirements, weight, complexity, and
maintenance of the suction system. The open-loop control is difficult to opti-
mize and adapt to varying flight conditions. We aim at controlling transition
in boundary layers by suppression of the initially weak disturbances in the
unstable mean flow using a "smart wall" for active flow control. This ac-
tive surface consists of an array of basic control units (BCU's). Each BCU
combines micro-manufactured sensors and actuators, neural networks, and
circuitry for training algorithms embedded in a single layer of silicon. Our
first goal is the development of a single BCU to demonstrate the capability
of neural networks to "learn" the proper response to disturbances in the flow,
and to send suitable signals to an actuator that suppress the disturbances
and the evolution toward transition under varying flow conditions. In the
second phase, BCU's will be arranged in arrays to control transition over a
large surface area. The development of BCU's and BCU arrays rest heavily
on computer simulations. Successful models are tested in a low-speed wind
tunnel. Feasibility of the hardware implementation of the smart wall is one
of the guiding principles of this work.

Previous Results

Pretrained Neural Networks

Neural network architectures and training algorithms were analyzed to es-
tablish the basis for the controller. Controllers were trained in computer
simulations using combinations of artificial instability waves as input. The
controllers successfully canceled incoming waves leaving a residual of only a
few percent of the original amplitude. When an experimental time series with
wave packets recorded in a wind tunnel was used as input, the wave packets
were reduced to the noise level. This generalization capability is achieved by
proper layout of the neural network.
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For wind-tunnel tests in a flat-plate boundary layer, the neural network
controller was simulated on a special PC board with signal processing capa-
bility. The experimental setup is shown in Figure 1. The microphones are
used in pairs to eliminate common noise. A continuous wave train was pro-
duced by an upstream disturbance generator. The signals from sensors 1 - 3
were first used to train the controller. After the training completed, the con-
troller successfully cancelled incoming TS waves as witnessed by the change
from a turbulent to a laminar signal at the hot wire (at Re = 1.7 x 106).

Artificial wave packets produced by the disturbance generator were can-
celled using the network trained for the previous case. The controller worked
surprising well and laminar flow was recovered at the hot-wire position.

l m 1.02m-- 0.49m-- 0.21 m-0.05m-0.31 m-I ,

213 45 .
1.2rm 0 ooo0 oo0

Disturbance Microphones Hot wire
generator 1mm diameter 1ý Actuator
22mm diameter 12mm apart 25mmx126mm

Figure 1: Experimental setup

Optimization of the BCU

The wind-tunnel tests suggested to account for noise in the design of the
BCU. Changes in the training algorithms (use of back-propagation) increased
the training speed and lowered the residuals. An optimization of the distances
between the microphone sensors and actuator and attention to the noise
cancellation resulted in significantly improved input signals to the neural
network and a lower signal-to-noise ratio. As a result, no filtering of the
signals was required and much better control was achieved. The comparison
of results before and after these improvements is shown in Figure 2.
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Figure 2: Improvement of network control with new arrangement

Inverse Control Model

To implement feedback control, it is necessary to obtain a feedback signal
(from the downstream pair of microphones) and to model the flow response
to actuator motion. An inverse control model appears attractive, because it
consists of two identical neural networks. One of these networks is trained
to model the system inverse, i.e. the input to the network is the system
response from the feedback sensor and the desired network output is the ac-
tuator signal that produced this response. The most significant advantage of
this inverse model controller is that it does not require the explicit specifica-
tion of the desired counter-disturbance wave for the network training. The
training data are simply real-time measurements of action/response pairs.
This enables training the inverse model on-the-fly using the most recent his-
tory of action/response pairs. The updated weights are periodically copied
to the controller which generates the control signal to drive the actuator.
As the inverse model is being trained, a reduced residual level at the con-
troller input would yield a control signal which can actually bring the system
response close to the desired zero residual.

Figure 3 shows the convergence history of a typical run of on-the-fly
training of the inverse model for wave cancellation. After an initial training
period of about 100 TS cycles, almost complete cancellation occurs as a
result of wave superposition. The low residual can be maintained if the flow
conditions change on a time scale larger than the initial training period.

While the inverse model works well in computer simulations, performance
and robustness deteriorate in the wind tunnel. To overcome this problem,
steps were taken to develop an alternative (forward) system model and to
validate the computational design procedures in more detail.
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Figure 3: Convergence history of on-the-fly training of inverse model

Flow Simulation by DNS

DNS studies of the experimental setup were performed to analyze the flow
response to actuator movement and to compare with experimental data. Two
important results from these studies are the upstream influence of the actu-
ator, as shown in Figure 4, and the relatively short distance of about one TS
wavelength over which the actuator excitation has resulted in an almost per-
fect TS wave. The DNS results are in good agreement with the experiments.

0.0040 . . . . . . . . . . .

0.0030

S0.0020

0.0010 - Xrs

Actuator

0.0000 -< ....
-72 -48 -24 0 24 48 72

x-xo (mm)

Figure 4: Distribution of u,ms along the centerline for sinusoidal actuation
at 73 Hz with an amplitude of 0.02 mm. The horizontal line shows the TS
wavelength.
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Recent Results

Computational Design Procedure

To improve the computational design procedure, and to prepare for studies on

BCU arrays, it is necessary to avoid the long computation times that would

be required for tracking the response to real actuator signals by DNS. Since

the control units exploit the (linear) wave superposition for wave attenuation,

we have developed a highly efficient simulation technique by combining the

results of a single DNS run with the Duhamel superposition integral (DSI).

We perform the single run for a small ramp motion of a given actuator and

record the flow response at sensor locations. From this time series, DSI gen-

erates the flow response to arbitrary actuator motion in milliseconds. The

flow response to sample signals agrees perfectly with DNS results for these

signals. Figure 5 shows a time series for an actuator that performs a ramp

motion in the streamwise direction over about 1% of the TS period and re-

mains deflected at the maximum amplitude of 0.02 mm. The flow response is

recorded at a hotwire located one TS wavelength downstream of the actuator

and 1/4th boundary layer thickness from the wall. The duration of the sig-

nal clearly indicates that instantaneous sensor signals contain contributions

from actuator signals over some period of time. Accounting for the actuation

history is key to successful feedback control.
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Figure 5: Flow response to ramped actuator motion
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Feedback Control with Forward System Modeling

As an alternative to the earlier inverse system model, a forward system model
was developed based on broader experience. In this approach, the network
input consists of controller input and output over some time, and the training
goal is to match the flow response directly. Using delayed signals, a single
upstream sensor produces the controller input. The feedback signal is utilized
to derive the model error for the training of the forward system model as
well as the control error as the deviation from the desired flow response. The
control error is back-propagated through the forward system model to train
the controller. The rather complicated training algorithm converges slower
for wave packets than for continuous waves to reach small control errors.
Through on-the-fly training, the controller adapts to changing flow conditions
and disturbances without loss of control. Control is regained within a short
time after abrupt changes in conditions.

The controller developed and tested computationally was straightforward
ported to the wind tunnel. The controller cancelled continuous waves under
changing conditions with great success and quickly adapted to rapid changes.
For wave packets, the capabilities of the PC board imposed some limitations
that resulted in larger control errors. Nevertheless, the controller reduced
the wave packets sufficiently to restore laminar flow at the hotwire position.
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Figure 6: Feedback control of wave packets: before and after training
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