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Abstract

Many types of common objects, such as tools and vehicles, usually move in simple ways when
they are wielded or driven: The natural axes of the object tend to remain aligned with the
local trihedron defined by the object’s trajectory. Based on this observation we use a model
called Frenet-Serret motion which corresponds to the motion of a moving trihedron along a
space curve. Knowing how the Frenet-Serret frame is changing relative to the observer gives
us essential information for understanding the object’s motion. This is illustrated here for four
examples, involving tools (a wrench and a saw) and vehicles (an accelerating van, a turning
taxi).
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1 Introduction

An object moves because it is self-propelled (e.g., a vehicle) or because it is wielded (or thrown')
by an agent (e.g., a tool). Motion that efficiently performs a locomotional or mechanical function
requires efficient energy transfer from the vehicle’s engine or the agent’s arm to the object, in
order to efficiently overcome the constraints imposed by the environment in which the motion
takes place (air resistance, friction, etc.). Assuming that an object has natural axes (e.g. the
long axis of a stick), efficient force transfer requires simple relationships between the natural
axes of the object and the motion trajectory. These relationships insure that the object can
perform its function efficiently.

The most general model of object motion is unrestricted rigid motion. This type of motion
is not common in everyday life. Usually objects are supported, and motion takes place when an
object is in contact with a surface, another object, or an agent. In these cases (tool acting on a
recipient object; ground vehicle) the motion becomes interestingly constrained.

In our work we consider the relationship between this constrained motion and the object’s
geometry. To analyze this relationship we use two frames: the object frame and the frame of the
motion trajectory. “Efficient” motion calls for a simple relationship between the object frame
and the motion frame, and this relationship remains constant during the motion. Based on
this observation we use a model called Frenet-Serret motion which corresponds to the motion
of a moving trihedron along a space curve [8]. The parameters of the motion are given by the
curvature and torsion of the space curve along which the object moves.

In practice the simple nature of the environment in which the object moves provides further
constraints. A ground vehicle is moving on relatively flat terrain, and a tool is often acting on
a planar surface. The motion is mostly planar (though the plane might rotate slightly through
the motion). Over a long time period the motion is Frenet-Serret and over a short time period
the motion is approximately planar and often approximately translational. '

We use the relationship between the object frame and the motion frame to analyze image
sequences. Given a sequence of images of the moving object, our analysis enables us to output
the motion and trajectory parameters of the object. Knowing how the Frenet-Serret frame is
changing relative to the observer gives us essential information for understanding the object’s
motion. Our analysis can also handle constraints on the motion. For example, the parameters
of the object’s trajectory depend on its speed, mass, size, and on the medium through which it
moves. These factors impose bounds on the curvature and torsion of the trajectory.

In this paper we approach object motion understanding through analysis of long image
sequences. A key question in this context is how to relate short-sequence motion estimation
to long-sequence motion estimation. Using the Frenet-Serret frame provides us with an ability
to understand motion over a long time period. We can derive the motion parameters from the
parameters of the trajectory and obtain motion descriptions suitable for long sequence analysis.
Using these tools we can show, for example, that rotation becomes significant only in long

1We assume in this paper that the propulsive force is applied to the object continuously, unlike the case of a
projectile where it is applied only initially. We will not discuss projectiles further here.
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sequences, and that in a short sequence translation is usually dominant. We show that using
simplified scene and imaging models we can get adequate local estimates (short sequence, 2-4
frames) by analyzing the images, and by observing these estimates over a long sequence we
can accumulate them to describe the object’s trajectory. Analysis of the trajectory parameters
provides us with tools for understanding long-term object motion.

2 Related Work

Understanding object motion is based on extracting the object’s motion parameters from an
image sequence. Broida and Chellappa [1] proposed a framework for motion estimation of a
vehicle using Kalman filtering. Weng et al. [16] assumed an object that possesses an axis of
symmetry, and a constant angular momentum model which constrained the motion over a local
frame subsequence to be a superposition of precession and translation. The trajectory of the
center of rotation can be approximated by a vector polynomial. Changing the parameters of the
model with time allows adaptation to long-term changes in the motion characteristics. Their
work was based on correspondence; at least eight pairs of corresponding points were needed.

Accumulating the information obtained from the motion analysis of the sequence to achieve
an estimate of the moving object’s trajectory is another step toward understanding object mo-
tion. (A good survey of motion-based recognition was compiled by Cedras and Shah [5].)
Bruckstein et al. [2, 3] assumed a known object model (a rigid rod or disk) and tried to recover
the object’s trajectory and rotation. They showed that five images are enough to recover the
motion of a rod or a disk in accordance with physical laws. Techniques from algebraic geometry
were used to establish the existence of solutions to the resulting polynomial equations.

Engel and Rubin [9] (and similarly Gould and Shah [11]) used motion characteristics obtained
by tracking representative points on an object to identify important events corresponding to
changes in direction, speed and acceleration in the object’s motion.

Work has also been done on higher-level descriptions of object trajectories in terms of such
concepts as stopping/starting, object interactions, and motion verbs[4, 12, 13]. This level of
object motion description will not be treated in this paper.

In [6] Duric et al. tried to determine the function of an object from its motion. Given a
sequence of images of a known object performing some function, they attempted to determine
what that function was. They showed that the motion of an object, when combined with
information about the object and its uses, provides strong constraints on the possible function
being performed. Their flow-based analysis treated relatively short sequences.

In this paper a model for object trajectory analysis is used, and a constant relationship
between the object frame and the motion frame is established. The use of the Frenet-Serret
frame provides a vocabulary appropriate for describing longer motion sequences.




3 Motion Models

3.1 Rigid Body Motion

To facilitate the derivation of the motion equations of a rigid body B we use two rectangular
coordinate frames, one (Ozyz) fixed in space, the other (Cz1y121) fixed in the body and moving
with it. The coordinates X1, Y1, Z; of any point P of the body with respect to the moving frame
are constant with respect to time ¢, while the coordinates X, Y, Z of the same point P with
respect to the fixed frame are functions of ¢. It is assumed that these functions are differentiable
with respect to t. The position of the moving frame at any instant is given by the position
d, = (X. Y. Z.)T of the origin C, and by the nine direction cosines of the axes of the moving
frame with respect to the fixed frame. Let 7, 7, and k be the unit vectors in the directions of the
Oz, Oy, and Oz axes, respectively; and let 73, 7;, and k1 be the unit vectors in the directions of
the Czq, Cyy, and Cz, axes, respectively. For a given position p of P in Cz1y121 we have the
position 7, of P in Ozyz:

X e TR Tk (X X. )
R=|Y |=| 18 I'h Ik i |+| Y. | =R5+d. (1)
VA k-t k-7 koky A Ze

where R is the matrix of the direction cosines (the frames are taken as right-handed so that
det R = 1). If we differentiate (1) with respect to time and use the fact that p = RT(% — d.),
we obtain

#=Ri+d.=RRT(7—d.)+d. = QF — d,) + d.. (2)

The skew matrix Q = RRT = —RRT is the Eotational velocity matrix and J; is the translational
velocity vector. Multiplying a vector (7, — d.) by the skew matrix Q can be replaced by taking
the cross product & x (%, — d.) where & = (w, wy w,)T is the rotational velocity vector.

3.2 Motion along a Smooth Curve

Consider a moving frame Czy;121 (fixed in a rigid body B), which moves with C' along
a space curve I' while rotating so that the Cz; and Cy; axes concide with, respectively, the
tangent and principal normal of I. This means that as C' moves along I' the Cz1y12, frame
concides with the Frenet-Serret trihedron at C: Ctnb. This trihedron consists of the tangent t,
the principal normal fi, and the binormal b, which are mutually orthogonal (see Figure 1). The
geometry of this motion is completely defined by T'.

Let cz,(s) denote the position of C, in the fixed coordinate frame Ozyz, when it has moved
along I' through a total arc length of s. For any position 7 of a point P on B in Ctnb, the
position 7, in O:cyz is given by (1) with the matrix of direction cosines R suitably defined (see

Figure 1). If t = (t; t; t3)7, i = (m1 na n3)T and b = (b by bs)T are the unit vectors along
Ct, Cn and Cb, differential geometry gives us

I=d, i=«1d", b=1xh, (3)
3




Figure 1: The Frenet-Serret coordinate frame moves along the path T.

where « is the curvature of I'. Then we have

tl ny bl
R=11% ny b |. (4)
t3 ns b3
We have the Frenet-Serret formulas [14]
U=xb, 8 =—cxt+ b, b = —rit (5)

where 7 is the torsion of I'. Using (4) and (5), equation (2) can be written as
Bpo= g x (- d)) +1 (6)

where the Darboux vector &g = 7t+«b is the rotational velocity vector and the unit tangent t of
I' is the translational velocity vector; the motion parameter is the arc length s. If, instead of using
arc length as a motion parameter, time ¢ is used, the rotational velocity &y and translational

velocity t are scaled by the speed v = ds/dt of the point C. In that case the equation of motion
becomes

= s x (% — d) +of. (7)

In the special case where I' is a plane curve we have 7 = 0 (T is torsionless), and thus
&g = kb. Equation (7) then becomes

% = vkb x (%, — d,) + vt. (8)

3.3 Simple Motions of Objects

Objects move in reaction to forces which are being applied to them. When the forces acting on
an object are added, the resultant force F' determines the direction of motion and the moments
of the forces (or the torques) determine the rotation of the object. If the force F is applied to
the object B at the point P, the moment M is given by M= Ty X F where 7, is the position of
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P relative to a Boint C. M has the same direction as the axis of the rotation of B that results
from applying F'.

The engine of a vehicle needs to apply force to the vehicle in order to move it from one
position to another. If the path is prespecified (as in the case of a ground vehicle on a road),
efficient application of the force requires that the angles between the instantaneous directions
of the force and the directions of the path elements be small. The force differential generates
torques which help turn the vehicle around the axis of rotation normal to the (osculating) plane
of the path. During a turn, the wheels rotate with different speeds; the greater the distance
between the wheels the larger their difference in speed. In order to minimize this difference the
distance between the wheels needs to be small. Also, when forces are applied to the wheels the
resulting torques are larger when the vehicle is moving along a short axis; but these torques
need to be as small as possible to improve the handling of and minimize stresses on the vehicle.
Because of all these factors the principal axis of inertia of the vehicle should be tangent to the
path of the vehicle. It should be pointed out that [7] the translational velocity at any point on
a ground vehicle is typically orders of magnitude larger than its rotational velocity (around the
vehicle’s center of mass). The rotational velocity becomes significant only when the vehicle is
observed over a significant period of time (at least several frames).

In the case of a moving tool the force is used not only to move the tool, but to act on
a recipient object. Therefore, the required force depends on the task. For example, sawing
involves continuously exerting a force perpendicular to the path of the saw; tightening with a
wrench involves continuously exerting torque around the axis of rotation. (Note that the force
may not be applied to the recipient object continuously; for example, when we swing a hammer,
the force is applied only when the head of the hammer hits the object.) Developing a general
theory of tool motion is a subject of our continuing research.

4 Computing Motion from Image Sequences

For the purpose of estimating object motion from images we rewrite equation (2) in the following
way:

-

BR=3x(fF-d)+d=0x7H+T (9)

where T = d,—@x d, = (U V W)T is the translational velocity expressed in the fixed (camera)

coordinate frame Ozyz. We will later show how the translational velocity d, can be recovered
from T'.

4.1 The Imaging Models

Let (X, Y, Z) denote the Cartesian coordinates of a scene point with respect to the fixed camera
frame (see Figure 2), and let (z,y) denote the corresponding coordinates in the image plane.
The equation of the image plane is Z = f, where f is the focal length of the camera. The




perspective projection onto this plane is given by

fX fY
z=g V=g (10)
For weak perspective projection we need a reference point (X, Y, Z;). A scene point (X,Y, Z)
is first projected onto the point (X, Y, Z,.); then, through plane perspective projection, the point
(X,Y, Z.) is projected onto the image point (z,y). The projection equations are then given by

X Y
x:zfa y:_Z_.c_f_ (11)
Y
SR A .

Figure 2: The plane perspective projection image of P is F = f(X/Z,Y/Z,1); the weak per-
spective projection image of P is obtained through the plane perspective projection of the
intermediate point P; = (X, Y, Z.) and is given by G = f(X/Z.,Y/Z.,1).

4.2 The Image Motion Field and the Optical Flow Field

The instantaneous velocity of the image point (z,y) under perspective projection is obtained by
taking the derivatives of (10) and using (9):

. XZ-XZ Uf-aW  ay 2’

r o= 72 - 7 _w$7+wy (7+f)'—wzyv (12)
. YZ-YZ Vf-—yW y? zy

y = 72 = 7 wx(f + ) +wy 7 +w.z. (13)

The instantaneous velocity of the image point (z,y) under weak perspective projection can
be obtained by taking derivatives of (11) with respect to time and using (9):

XZ.—XZ, Uf—zW
zz  Z

YZ.~YZ. Vf—yW
7z T Z

f

z

I

Z
+fwy7 — WY, (14)

y = f

- fwz—zz— + w,z. (15)




Let 7 and 7 be the unit vectors in the z and y directions, respectively; F= a7+ y7 is the
projected motion field at the point ¥ = z7'+ yJ. If we choose a unit direction vector 7, at the
image point 7 and call it the normal direction, then the normal motion field at 7'is 7, = (77, )7i..
7, can be chosen in various ways; the usual choice (as we shall now see) is the direction of the
image intensity gradient.

Let I(z,y,t) be the image intensity function. The time derivative of I can be written as

dI _8lde 9Idy 0l

= matnata =(Li+ L)) - (@+9)+ L=VI-F+ 1,

where V1 is the image gradient and the subscripts denote partial derivatives.

If we assume dI/dt = 0, i.e. that the image intensity does not vary with time, then we have
VI-@+ I, = 0. The vector field # in this expression is called the optical flow. If we choose the
normal direction 7, to be the image gradient direction, i.e. i, = VI/||VI||, we then have

-I,)VI

= oI (16)

where 1, is called the normal flow.

It was shown in [15] that the magnitude of the difference between #, and the normal motion
field 7, is inversely proportional to the magnitude of the image gradient. Hence 7, ~ u, when
V|| is large. Equation (16) thus provides an approximate relationship between the 3-D motion
and the image derivatives. We will use this approximation later in this paper.

5 Tool Motion

We assume that the tool is (approximately) planar and that its velocity is composed of a trans-
lational velocity in the plane of the tool and a rotational velocity around an axis orthogonal to
the plane of the tool.

5.1 The Image Motion Field of a Wielded Tool

Let the normal to the plane be N = (N, N, N,)T; the equation of the plane orthogonal to N
which passes through the point (0,0, Zo) on the z-axis of the Ozyz coordinate frame is given by

XN, +YN, +(Z = Z)N, =0. (17)

If we assume a nondegenerate view (i.e., N, > 0) for points on the plane we obtain from (17)
and (10)

11 XN, YN,
Ezf—z—o(f-kuNanfZNz) fZ(f+px+qy) (18)




where p = N,N;! and ¢ = N,N;!. From our assumption about rotational velocity it follows
that we have & = (pw, qw, wz) for some w,. Also, since we have assumed that the translation
is in the plane of the tool we have N-T= 0, or equivalently

g -(UV W =Up+Vqg+W =0.

It follows that we have
W =-Up-Vg. (19)

From (12-13), (18), and (19) we obtain the equations of projected motion for points on the
plane:

_ Uf4+zUp+2Vq Ty z?
= 7 (f+pw+qy)—pw27+qwz <7+f) — Wy, (20)
. Vi+yUp+yVq o (¥ .2

Equations (20-21) relate the image (projected) motion field to the scaled components of the
translational velocity Z;'U = Up and Z;'V = V,, the rotational parameter w,, and the normal
to the plane (p ¢ 1)T.

Given the point 7 = 27+ y7 and the normal direction n,7+ n,J, from (20-21) the normal
motion field %, - 7 = n 2 + n,y is given by

.
-

T = Us(f +pz+ qy)[ne + (2ne + yny)pf ]+ Vo(f + pz + qu)[ny + (zne + yny)gf 7]
twzne(—y + af — peyf + ¢z’ F 1) + ny(z — pf + qzyf — py* )]
= Uspr(p, ¢;7, %) + Vopa(p, ¢; 7, ) + w.ips(p, ¢; 7, 1) (22)

where the s are nonlinear functions of p, ¢, 7, and 7 is given by

e1(p, ;7 %) = (f +pz + qy)lns + (zns + yny )pf 1, (23)
o, ;7,%) = (f +pz+ qy)lny + (zn: + yny)gf ', (24)
os(p, ;75 7) = no(—y+qf —pryf™ +qz’f) +ny(z —pf + qzy Tt —py® 7). (25)

In Equation (22) 7 and 7i are observable from images, while the 5-tuple (p, g, Uo, Vo,w:) is
not directly observable. To estimate this 5-tuple we need estimates of 7, - 7 at five or more
image points.

5.2 Estimating Tool Motion from Normal Flow

If we use the spatial image gradient as the normal direction i, = VI/||VI|| = n;7+ n, j and
T, & i, We can obtain an approximate equation corresponding to (22) by replacing the left hand
side of (22) by the normal flow —1;/||VI||. This equation involves the eight unknown elements
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of c. For each point (z;,%:), ¢ = 1,...,m of the image at which ||VI(z;,y;,?)|| is large we can
write one such equation. If we have m such points, where m > 5, we have an over-determined

system of equations
®(p,q) - (Uo Vo w:)T = b (26)

where the m x 3 matrix function @ is given by

O(p, q) = [¢1(p; ); w2(p, 9); ¥3(P; 9)]

(i.e., its columns are m-vectors that correspond to values of ¢ at points (z;,y;)), and the elements

of the m-vector b are —(9I(z;,y:,t)/0t)/||VI(zi,ys,1)]|-

We seek the solution of the system (26) for which ||b — @ - (Up Vo w;)T| is minimal — i.e.,
we are seeking the solution of (26) in the least squares sense. This is a separable nonlinear least
squares problem; a good stable solution and an algorithm were given by Golub and Pereyra in
[10]. It was shown that the problem is equivalent to minimizing

r(p,q) = |Ib — 2(p, )2 (p, 9)bl, (27)

where &+ is the generalized inverse of ®. r(p,q) is first minimized to obtain optimal values p
and § of p and ¢ respectively; these values are then used to obtain ®(p,§). The linear least
squares method is then used to minimize ||b — ®(5,4) - (Uo Vo w.)”|| and obtain optimal values
of the motion parameters Uy, Vo, and w,. After estimating p, ¢, Us, Vo, and w, we use (19) to

obtain Wp. Finally, we obtain N = (p ¢ 1)T(1 4 p* + )% and ||3] = \ﬂzz + p?w? + ¢2w?.

We have estimated the translational velocity T and the rotational velocity & in the camera
coordinate system Ozyz. We are interested in the translational and rotational velocity expressed
in the Frenet-Serret frame Otnb. By comparing equations (2), (8) and (9) we obtain

& =vkb, b= Nsgow,, vk= |3 (28)

where sgn stands for the ‘sign of’ function. Also, from (2), (8) and (9) we have

and thus . .
vt r . @xd,
7o (Uo Vo Wo)" + Zo

Note that in equation (29) the quantities Zo and J; (the position of the point C, the origin of

the Otnb frame) are not known. However, let d, = (X. Y. Z.)T be the position of C and let
(z¢,y.) be the image of C (either the tip or the center of mass of the tool). From (18) we obtain

fZo
Ze

(29)

= f+ pz. + qy.

so that (29) can be written as

3 x (ze yo )T

Ze o (X Y. Z)"
f+pzc+qy.

FZo " 7o = o Vo Wo)l s

t
E’Z—O = (Uo Vo Wo)T + (30)




From (30) we obtain the unit vector in the tangent direction by normalizing vt/Zo. Finally, \
we obtain the unit vector in the normal direction using

i=bxt. (31)

Equations (28), (30) and (31) define the Frenet-Serret frame Otnb expressed in the camera
coordinate system. Equation (28) gives us the curvature £ up to an unknown factor v (linear
velocity). We conclude that the Frenet-Serret motion can be recovered up to the speed v; note
that the translational velocity vE/ Zo does not help here because of the unknown depth Z,.

Finally, we need to recover the orientation of the tool coordinate frame (its long and short
axes) in the Otnb frame. We find the long and the short axes of the tool as the principal axes
of the set of tool points. The long axis [ of the tool and the origin O of the fixed (camera)
coordinate frame Ozyz define a plane II;. Since the image I’ of [ lies in this plane we can find
Py, using ' in place of [. Because we have assumed a nondegenerate view we have two cases:
(i) if the tangent vector t lies in II; the motion is along ; (ii) if the normal vector fi lies in II;
the motion is orthogonal to [.

We check if the vector lies in the plane II; using the following simple algorithm. Let p; =
(z1 y1 f)T and §, = (z2 y2 f)T be the positions of two endpoints on the image I’ of I. The
normal Ny of the plane II; is given by

Nn = Py X p,-
If the vector t lies in the plane II, we have Ni x T 0. So to find out the relative orientation of

the tool frame and the Otnb frame we only need to find which one of the inner products ]Nn EI

and | Ny - fi| is smaller. (Note that while one of the vectors t and @i lies in the plane II; the other
vector is not always orthogonal to II; .)

6 Vehicle Motion

We assume that the motion of the vehicle is planar and that it has a small rotational velocity
around the axis orthogonal to the plane of motion. The translational velocity is dominant and
at any time ¢ the motion can be approximated by pure translational motion.

6.1 The Image Motion Field of a Moving Vehicle

From (14-15) we obtain the (approximate) equations of projected motion for points on a vehicle
under weak perspective:
. Uf —zW
= —m 32
z Zc ? ( )
Vf-yW

7 (33)
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Equations (32-33) relate the image (projected) motion field to the scaled translational velocity
Z7WT =272 (U Vv W)

Given the point 7 = 27+ y7 and the normal direction ng7+ n,j, from (32-33) the normal
motion field 7, - # = n,& + n,y is given by

77 = np fUZTY + 0y fVZTY = (noz + nyy) W2 (34)
Let
aq na:f C1 I]Z:1
a=| a | = nyf , c=|lel|l=| VZ7* . (35)
as —NzT — NyY Cs wZz1

Using (35) we can write (34) as # -7 = ale. The column vector a is formed of observable
quantities only, while each element of the column vector ¢ contains quantltles which are not
directly observable from the images. To estimate ¢ we need estimates of 7, - @ at three or more
image points.

6.2 Estimating Vehicle Motion from Normal Flow

As in Section 5.2 we use linear least squares to estimate parameter vector ¢ from the normal
flow.

In the case of a moving vehicle the parameters of interest are the vehicle’s trajectory and its

rate of approach. The rate of approach W

V= —

Z.
(measured in sec™?) is equivalent to the inverse of the time to collision and corresponds to the
rate with which an object is approaching the camera (or receding from it). The rate v = 0.1/sec
means that every second the object travels 0.1 of the distance between the observer and its
current position. A negative rate of approach means that the object is going away from the
camera.

The direction of motion ¢ = T/Z, gives us the tangent vector t = ¢/||c|| of the Frenet-Serret
frame. If the direction of motion changes over time we can use the Frenet-Serret formulas (5)
to recover the (scaled) curvature v of the trajectory. Given the tangent direction o at time ¢
and the tangent direction t; at time ¢t + At we have

t, —to
At

The unit vector in the direction Dy at time t is the normal vector of the Otnb frame and the
scaled curvature is given by vk = ||[fo||. Finally, we obtain

(36)

- —
Nng = ven &

—

b =1 xi. (37)

Equations (36) and (37) give us the normal b to the plane of motion and the rotational velocity
of turning (yaw) & = vkb.
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Figure 3: An experiment using a wrench: (a-h) frames 30, 40, ..., 100. Top images: the input
images. Bottom images: results of flow computation.

7 Experiments

In the following section we show two examples for each of the domains we have discussed: tools
and vehicles. As was mentioned before, tools usually operate by planar motion, advancing along
a line (drill) or moving in a plane (sawing). In our examples we show two types of motion:
rotation with negligible translation, and relatively small rotation and dominant translation. In
Section 7.1 we will analyze saw and wrench examples.

A ground vehicle’s motion usually takes place on terrain that has a small slope and on a road
with a limited rate of turn. This results in small values of pitch and yaw, i.e. in locally planar,
translational motion. Long sequences are needed to detect basic maneuvers such as turning or

lane changing. In Section 7.2 we analyze two examples: an accelerating van (essentially linear
motion) and a turning taxi.
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Figure 4: Results of experiments on the wrench sequence: the graph shows rotational velocity
in radians/sec.

7.1 Motions of Tools

We tested our motion analysis algorithm under full perspective on two image sequences of tools
in motion. The first sequence, shown in Figure 3, was a 200-image sequence of the movement
of a wrench tightening a bolt.

The motion of the wrench was a rotation (to turn the bolt) around an axis approximately
orthogonal to the plane of the image. The rotational velocity is shown in Figure 4; it is given in
radians/sec and it corresponds to the scaled curvature vk. Figure 5 shows the orientation of the
principal axis of the wrench and the instantaneous translational velocity vector of its centroid
(obtained using equation (30)), both measured in radians. As we see, the translational velocity
vector remains approximately orthogonal to the principal axis throughout the motion sequence.
The Frenet-Serret frame has its binormal b in the direction of the negative zaxis, its tangent t
in the image plane and orthogonal to the principal axis of the wrench, and its normal 1 in the
image plane and oriented from the centroid of the wrench toward the bolt.

We also tested our motion analysis algorithm on a 200-image sequence of a saw doing a
periodic motion. Figure 6 presents part of the sequence. Flow results are given below each
image. The motion of the saw was pure translation (||&|| = 0). As can be seen from Figure 7
the motion is mostly fronto-parallel (the z component of the translational velocity is small).
The motion is periodic in the direction of the principal axis of inertia. It is a simple case of a
(periodic) straight-line motion with the Frenet-Serret frame corresponding to the principal axes
of the saw; t corresponds to the longest axis, and b to the shortest axis.

These graphs show that the motion components have a simple behavior; before they reach
their extremal values they can be approximated by straight lines, indicating constant relative
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Figure 5: Results of experiments on the wrench sequence. The solid line corresponds to the
orientation (in radians) of the instantaneous direction of translation of the centroid of the wrench,
and the dashed line corresponds to the orientation (in radians) of the principal axis of the wrench.

accelerations.

7.2 Motions of Vehicles

For vehicle motion we also used two image sequences, and we used the algorithms for weak
perspective. In the first experiment we used an image sequence of a van taken from another
vehicle following the van. The sequence consisted of 56 frames (slightly less than two seconds).
Figure 9 shows frames 5, 15, 25, and 35 as well as the corresponding normal flow on the van.
Figure 10 shows estimated values of UZ ', VZ!, and WZ !. These values correspond to
the relative translation of the van and the vehicle carrying the camera (observer coordinate
system). Because of our choice of the coordinate system the rate of approach v corresponds to
the negative of WZ;!, i.e. v = —WZ. The graph shows that there is an impending collision
(rate of approach greater than 1 sec™!). Around the 20th frame the rate of approach becomes
zero (as do all the velocity components) and after that it becomes negative because the van
starts pulling away from the vehicle carrying the camera.

In the second experiment we used an image sequence of a turning taxi taken by a stationary
camera. The sequence consisted of 21 frames. Figure 11 shows frames 1,9,15 and 21 as well
as the corresponding normal flow on the vehicles. Figure 12 shows estimated values of UZ !,
VZ:', and WZ;. These values correspond to the relative translation of the taxi. The graph
shows that there is a large W component in the turn (the taxi is receding), and that the turn is
to the right (negative U, positive V).
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Figure 6: An experiment using a saw: (a-h) frames 30, 40, ..., 100. Top images: the input
images. Bottom images: results of flow computation.

8 Conclusions

Many types of common objects, such as tools and vehicles, usually move in simple ways when
they are wielded or driven: The natural axes of the object tend to remain aligned with the local
trihedron defined by the object’s trajectory. In this paper we have considered the relationship
between this constrained motion and the object’s geometry. To analyze this relationship we
have used two frames: the object frame and the frame of the motion trajectory. Assuming a
constant relationship between the object frame and the motion frame during the motion, we
have used Frenei-Serret motion as a motion model. Using the Frenet-Serret frame has provided
us with an ability to understand motion over a long time period.

We have derived equations for understanding the motions of tools and vehicles under full
and weak perspective. We have recovered descriptions of an object’s motion and the space
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Figure 7: Results of experiments on the saw sequence. U, V, W are the scaled (by an unknown
distance Z;') components of the relative translational velocity.

curve along which the object moves, using relatively long image sequences. The motion and
trajectory parameters provide a low-level description for understanding the motions of vehicles.
For understanding tools in motion one needs additional knowledge about the tool and the
context. This is a direction for further research.

It is the need for efficient force transfer that imposes a simple and constant relationship
between the natural axes of the object and the motion trajectory. We have used this functional
constraint in analyzing the motions of tools and ground vehicles. Expanding this analysis to
other classes of objects (e.g. air vehicles), as well as expanding the vocabulary that describes
the behavior of tools and vehicles (sharp turn, skid, etc.) [13] are other directions for future
research.
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Figure 11: A taxi sequence: (a-d) frames 1, 9, 15, 21. Top images: the input images. Bottom
images: results of flow computation.
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