REPORT DOCUMENTATION PAGE

Final 01 Jun 95 to 31 May 98

AFRL-SR-BL-TR-98-0570

AASERT -95 Graduate Student Research on Millimeter Wave Sources

Professor Gilgenbach

University of Michigan
3003 South State Street
Ann Arbor, MI 48109-1224

AFOSR/NE
110 Duncan Aven Room B115
Bolling AFB DC 20332-8050

Approved for Public Release: Distribution Unlimited

During the period of the AASERT the graduate student completed experiments and a Ph. D. dissertation on microwave emission of large and small orbit rectangular cross section (RCS) gyrotron devices. Rectangular interaction cavities with both small orbit and large orbit axis encircling electron beams were used in gyrotron mechanisms to generate high power microwaves.
AUGMENTATION AWARDS FOR SCIENCE & ENGINEERING RESEARCH TRAINING (AASERT) REPORTING FORM

The Department of Defense (DoD) requires certain information to evaluate the effectiveness of the AASERT Program. By accepting this Grant which bestows the AASERT funds, the Grantee agrees to provide 1) a brief (not to exceed one page) narrative technical report of the research training activities of the AASERT-funded student(s) and 2) the information requested below. This information should be provided to the Government's technical point of contact by each annual anniversary of the AASERT award date.

1. Grantee identification data: (R&T and Grant numbers found on Page 1 of Grant)
 a. University of Michigan
 University Name
 b. F49620-95-1-0329
 Grant Number
 c. 3484/TS
 R&T Number
 d. Ronald M. Gilgenbach
 P.I. Name
 e. From: 1 June 95 To: 31 May 98
 AASERT Reporting Period

NOTE: Grant to which AASERT award is attached is referred to hereafter as "Parent Agreement".

2. Total funding of the Parent Agreement and the number of full-time equivalent graduate students (FTEGS) supported by the Parent Agreement during the 12-month period prior to the AASERT award date.
 a. Funding: $221,897
 b. Number FTEGS: 1

3. Total funding of the Parent Agreement and the number of FTEGS supported by the Parent Agreement during the current 12-month reporting period.
 a. Funding: $0 (ended June 14, 1995)
 b. Number FTEGS

4. Total AASERT funding and the number of FTEGS and undergraduate students (UGS) supported by AASERT funds during the current 12-month reporting period.
 a. Funding: $113,510
 b. Number FTEGS: 1
 c. Number UGS: 0

VERIFICATION STATEMENT: I hereby verify that all students supported by the AASERT award are U.S. Citizens.

Ronald M. Gilgenbach
Principal Investigator

Date

[DTIC QUALITY INSPECTED]
During the period of the AASERT the graduate student completed experiments and a Ph. D. dissertation on microwave emission of large and small orbit rectangular cross section (RCS) gyrotroon devices. Rectangular interaction cavities with both small orbit and large orbit axis encircling electron beams were used in gyrotroon mechanisms to generate high power microwaves. The Michigan Electron Long Beam Accelerator (MELBA) produced an annular electron beam with e-beam parameters: \(V = -0.7 \) to \(-1.0 \) MV, \(I_{\text{diss}} = 1-10 \) kA, \(I_{\text{tube}} = 0.1-3 \) kA, and e-beam pulse length = 0.4-1.0 \(\mu \)s. The small orbit e-beam was spun up into an axis encircling e-beam by passing it through a magnetic cusp prior to entering the RCS interaction cavity. The issues under investigation included polarization control of the microwave emission as a function of the interaction cavity magnetic field, microwave power as a function of pulse length, and mode competition. Along with microwave power measurements, cold tests utilizing a network analyzer were conducted, and frequency analysis was conducted with the use of a heterodyne mixer. Measurements of the optical emission of plasma in the RCS interaction cavity beam dump have also been completed.

Experimental results in the small orbit gyrotroon demonstrated powers up to 23 MW in the horizontal polarization with little power measured in the vertical fundamental mode, and hence, polarization control was not obtained. Pulse shortening was observed in the small orbit gyrotroon and power efficiency was typically less than 1%. Radiation darkening on glass showed that adiabatic compression of the e-beam produced a beam \(\alpha (v_L/v_0) \) of approximately 0.3 for the small orbit gyrotroon. EGUN simulations agreed with these results, showing the e-beam’s \(\alpha \) to be between 0.2 and 0.3, increasing with the magnitude of adiabatic compression.

The large orbit gyrotroon, operating at a lower current, produced much more successful results. Powers as high as 14 MW were measured in the fundamental \(\text{TE}_{101} \) mode at a frequency of 2.18 GHz, and 11 MW in the horizontally polarized \(\text{TE}_{011} \) mode at 2.85 GHz. The results showed a high degree of polarization \([P(\text{TE}_{101})/P(\text{TE}_{011}) = 1000 \) or as low as 1/30] as a function of cavity B-fields. The megawatt microwave output shifts from the fundamental \(\text{TE}_{101} \) mode to the \(\text{TE}_{011} \) mode as the B-field is raised from 1.5 to 1.9 kG. Efficiencies in the large orbit gyrotroon were found to be as high as 8%. Experimentally, the average e-beam \(\alpha \) was approximately 1.0 at a magnetic field of 1.5 kG and rose to an average of approximately 1.3 for a B-field of 2 kG.

The highest power microwave pulses were on the order of 100 ns and demonstrated pulse shortening. Optical emission spectroscopy demonstrated the formation of hydrogen plasma in the cavity or output waveguide, these results imply that microwave pulse shortening could be related to this plasma produced by the e-beam dumping against the output waveguide walls.

To reduce mode competition, tapered cavities were introduced to replace the uniform RCS cavity. These experiments met with limited success. Cavity B, which was tapered in the vertical dimension to attempt suppression of the higher order, horizontally polarized \(\text{TE}_{01} \) mode, lowered the peak power in that mode to a peak value of 3 MW; furthermore, the mode frequency was shifted up from 2.85 GHz to above 3 GHz. This did not cause the power in the fundamental mode to increase, and tapering did not enhance the polarization ratio. Cavity C was tapered in the horizontal dimension to suppress the \(\text{TE}_{10} \) fundamental mode, and in this case the \(\text{TE}_{101} \) mode did not appear at 2.18 GHz. Either the \(\text{TE}_{01} \) mode dominated due to this taper, or the fundamental \(\text{TE}_{101} \) mode frequency shifted up to the frequency of the \(\text{TE}_{102} \) mode.

MAGIC code simulations (both 2D and 3D) predicted the ability to shift the linearly polarized output from the fundamental \(\text{TE}_{10} \) mode to the orthogonally polarized \(\text{TE}_{01} \) mode.