Title and Subtitle:
Processes Affecting Nitro Reduction by Iron Metal: Mineralogical Consequences of Precipitation in Aqueous Carbonate Environments

Authors:
Abinash Agrawal, P.G. Tratnyek, P. Stoffyn-Egli, and L. Liang

Abstract:
In aqueous systems, zero-valent iron metal is readily oxidized by many substances to ferrous iron. These reactions may be considered as corrosion processes in which oxidation of Fe⁰ to Fe²⁺ is the anodic half-reaction. In anoxic pure aqueous media the only available cathodic half-reactions involve H⁺ and H₂O as electron acceptors (oxidants). Rapid corrosion requires more favorable cathodic reactions, of which the reduction of dissolved O₂ is certainly the most important. However, other electron acceptors offer additional cathodic reactions that can contribute to iron corrosion. Possible oxidants of primary interest in groundwater remediation include anthropogenic contaminants such as chlorinated solvents, nitro aromatic compounds, and chromate. In addition, most contaminated waters contain substantial amounts of secondary solutes that are also oxidants relative to iron metal, and, therefore, must be considered in any process-level interpretation of field performance. Among these solutes, carbonate is certainly one of the most important.
In aqueous systems, zero-valent iron metal is readily oxidized by many substances to ferrous iron. These reactions may be considered as corrosion processes in which oxidation of Fe⁰ to Fe²⁺ is the anodic half-reaction. In anoxic pure aqueous media the only available cathodic half-reactions involve H⁺ and H₂O as electron acceptors (oxidants). Rapid corrosion requires more favorable cathodic reactions, of which the reduction of dissolved O₂ is certainly the most important. However, other electron acceptors offer additional cathodic reactions that can contribute to iron corrosion. Possible oxidants of primary interest in groundwater remediation include anthropogenic contaminants such as chlorinated solvents, nitro aromatic compounds, and chromate. In addition, most contaminated waters contain substantial amounts of secondary solutes that are also oxidants relative to iron metal and, therefore, must be considered in any process-level interpretation of field performance. Among these solutes, carbonate is certainly one of the most important.

Carbonate may effect metal corrosion in several ways. The acceleration of metal corrosion by dissolved CO₂ is well-established largely due to studies of corrosion in the anaerobic, carbonate-rich condensates that occur during oil and gas production. This phenomenon involves adsorbed H₂CO₃ and HCO₃⁻ species that react as oxidants to drive metal dissolution [1].

$$\text{Fe}^0 + 2\text{H}_2\text{CO}_3(\text{ads}) \rightleftharpoons \text{Fe}^{2+} + 2\text{HCO}_3^-(\text{ads}) + \text{H}_2(g)$$ \hspace{1cm} (1)

$$\text{Fe}^0 + 2\text{HCO}_3^-(\text{ads}) \rightleftharpoons \text{Fe}^{2+} + 2\text{CO}_3^{2-}(\text{ads}) + \text{H}_2(g)$$ \hspace{1cm} (2)

Equilibration with water restores the original carbonate speciation, so the net result of equations 1 and 2 is catalysis of H₂ evolution by corrosion of iron mediated with carbonate. Decreased corrosion rates are expected when carbonate precipitation forms a protective layer on the metal surface, as it frequently does in water distribution systems [2]. Similar behavior may occur where iron is used in an effort to remediate contaminated groundwater. Although formation of FeCO₃ is
thermodynamically favored under conditions of environmental interest (Fig. 1), the kinetics of this reaction are generally slow, so the effect of carbonates on contaminant reduction by iron is likely to vary with temporal as well as chemical conditions.

In our investigations of nitro reduction by Fe\(^0\) [3], we have gained insight into the effects of carbonate by using an aqueous model system buffered with CO\(_2\). Batch experiments were performed in anaerobic bicarbonate buffer medium (Carbonate\(_{\text{Total}}\) = 1.5x10\(^{-2}\) M) using 33.3 g/L Fluka iron turnings (18-20 mesh, specific surface area = 0.02 m\(^2\)/g) and nitrobenzene as an organic oxidant. Preliminary handling of the Fe\(^0\) and mixing rate during the experiments were carefully controlled.

First-order rate constants for nitro reduction, \(k_{\text{obs}}\), were obtained routinely and provided our first evidence for interactions between Fe\(^0\) and carbonate (Figs. 2-3). Values of \(k_{\text{obs}}\) declined with increased carbonate concentration (Fig. 2) and with extended exposure of the metal to a particular carbonate buffer (Fig. 3). The appearance of a gray precipitate in these batch studies (long after the nitro reduction experiments were complete) suggested that formation of microcrystalline carbonate mineral phases at the metal surface may be occurring throughout the reaction time of our experiments.

The effect of carbonate precipitation at the metal surface is being further investigated by Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). SEM of clean iron samples (Fig. 4 a-b), and those subsequently exposed to aqueous bicarbonate medium (Figure 4 c-d), has revealed the formation of a non-uniform layer on the metal surface consisting of crystalline aggregates. EDS analysis has confirmed that these aggregates are predominantly iron carbonates (FeCO\(_3\)). The formation of FeCO\(_3\) (s) on the metal surface occurred only in bicarbonate medium, and was not observed on metal surfaces exposed to deoxygenated water for equal duration. One important variable that remains to be investigated is the effect of mixing (and, in particular, abrasion) on the development of the FeCO\(_3\) surface film.

It can be concluded that the observed decrease in nitro reduction rate is due to accumulation of non-reactive iron carbonate aggregates that inhibit mass-transfer of reactants and products to and/or from the reactive sites on the metal surface. Further characterization of metal surface evolution in the presence of natural groundwater solutes will be necessary to reliably predict the field performance of remediation installations involving iron metal.

REFERENCES
Figure 1: Stability diagram for FeCO$_3$(s), Fe(OH)$_2$(s), and Fe(OH)$_3$(s) formation in a Fe-H$_2$O-CO$_2$ system; drawn for Fe$_{\text{Total}} = 10^{-5}$ M and C$_{\text{Total}} = 1.5 \times 10^{-2}$ M. Activity corrections neglected. Below C(IV)$_7$/CH$_4$ line, all Eh-pH lines involving FeCO$_3$ assume constant C$_{\text{Total}} = 1.5 \times 10^{-2}$ M (drawn after Pankow, 1991). Slow kinetics may not allow Fe$_2$O$_3$ and Fe$_3$O$_4$ formation in model system. The data points (measured periodically for 5 days) and arrow indicate trend in Eh-pH evolution and possible FeCO$_3$(s) formation. See Fig. 3 for effect on nitro reduction kinetics during the period.

Figure 2: Effect of [HCO$_3$] on the rate of nitro reduction by Fe0 in batch systems. Decrease in Fe0 reactivity is due to formation of FeCO$_3$ on the metal surface.

Figure 3: Gradual decline in the rate of nitro reduction by Fe0 (following metal incubation in a bicarbonate buffer for 5 days at C$_{\text{Total}} = 1.5 \times 10^{-2}$ M). See Fig. 1 for Eh-pH variation over the experiment duration.
Figure 4: Scanning electron micrographs showing changes on the iron metal surface during exposure to a deoxygenated bicarbonate medium: (A) clean metal sample following washing in dilute HCl (10% v/v) prior to incubation in bicarbonate buffer; magnification: x700. (B) same sample as in 'A' at magnification: 2000x. (C) iron metal sample from 'A' exposed in bicarbonate buffer (C_{total}= 0.1 M) for 18 hours; magnification: x700. (D) same sample as in 'C' at magnification: x3000. EDS analysis confirmed that the crystalline aggregates are predominantly siderite (FeCO$_3$).
Preprints of Papers
Presented
at the
209th ACS National Meeting
Anaheim, California
April 2-7, 1995
Vol. 35 No. 1

SYMPOSIA
& Organizers

General Papers
M.M. Walker

Cloud and Aerosol Atmospheric Chemistry
R.J. Vong

Chemistry of Herbicide Metabolites in Surface and Ground Water
M.T. Meyer, E. M. Thurman

Urban Atmospheric Chemistry
D. Grosjean

Influence of Coupled Chemical-Biological Processes on Transport and Remediation of Contaminant in the Subsurface
M.L. Brusseau, M.H. Conklin, R.M. Miller

Colloidal and Interfacial Phenomena in Aquatic Environments
J.G. Hering, M. Elimelech

Contaminant Remediation with Zero-Valent Metals
M. Reinhard, P. G. Tratnyek