
Computer Science

Arithmetic Circuit Verification Based on
Word-Level Decision Diagrams

Yirng-An Chen

May, 1998
CMU-CS-98-131

vs$g!P!>J'

*«!$tf

feH^*:

&,KS'-'-'

v<*,,y :

»flit-

\&!*&f

32^:

,..»-^r"

te«!3r«'

W*"'

'BfeMwmoft gTXnateatf X "1
Approved JOJ puhK:. »«iloca«;

Dtombutioa Unlimited

.~r«se£"-

C-n

gff*'

xmo QUALITY INSPECTED I

Arithmetic Circuit Verification Based on
Word-Level Decision Diagrams

Yirng-An Chen

May, 1998
CMU-CS-98-131

Approved lor public rsloas©;
ation ürJiinited

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Randal E. Bryant, Chair

Edmund M. Clarke
Rob. A. Rutenbar

Xudong Zhao, Intel Corporation

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 1998, Yirng-An Chen

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA) under
contract number DABT63-96-C-0071.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the National Science
Foundation, the Semiconductor Research Corporation, or the U.S. Government.

jfflQ QUALITY INSPECTED L

Keywords: Binary Moment Diagram, *BMD, Hybrid Decision Diagram, HDD, K*BMD, Mul-
tiplicative Power Hybrid Decision Diagram, *PHDD, Arithmetic Circuit, Floating-Point Adder,
IEEE Standard, Formal Verification, theorem proving, Binary Decision Diagram, MTBDD,
EVBDD, FDD, KFDD, K*BMD, Model Checking, SMV

School of Computer Science

DOCTORAL THESIS
in the field of

COMPUTER SCIENCE

Arithmetic Circuit Verification Based on
Word-Level Decision Diagrams

YIRNG-AN CHEN

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

21 Apr.] Mf
DATE

DEPARTMENT HEAD DATE

APPROVED:

l O DEAN ^J 'DATE

Abstract
The division bug in Intel's Pentium processor has demonstrated the importance and the difficulty
of verifying arithmetic circuits and the high cost of an arithmetic bug. In this thesis, we develop
verification methodologies and symbolic representations for functions mapping Boolean vectors
to integer or floating-point values, and build verification systems for arithmetic circuits.

Our first approach is based on a hierarchical methodology and uses multiplicative binary
moment diagrams (*BMDs) to represent functions symbolically for verification of integer
circuits. *BMDs are particularly effective for representing and manipulating functions mapping
Boolean vectors to integer values. Our hierarchical methodology exploits the modular structure
of arithmetic circuits to speed up the verification task. Based on this approach, we have verified
a wide range of integer circuits such as multipliers and dividers.

Our *BMD-based approach cannot be directly applied to verify floating-point (FP) circuits. The
first challenge is that the existing word-level decision diagrams cannot represent floating-point
functions efficiently. For this problem, we introduce Multiplicative Power Hybrid Decision
Diagrams (*PHDDs) to represent floating-point functions efficiently. *PHDDs explode during
the composition of specifications in the rounding module in the hierarchical approach. To
overcome this problem, we choose to verify flattened floating-point circuits by using word-
level SMV with these improvements: *PHDDs, conditional symbolic simulation and a short-
circuiting technique.

Using extended word-level SMV, FP circuits are treated as black boxes and verified against
reusable specifications. The FP adder in the Aurora III Chip at the University of Michigan was
verified. Our system found several errors in the design and generated a counterexample for
each error. A variant of the corrected FP adder was created and verified to illustrate the ability
of our system to handle different designs. For each FP adder, verification took 2 CPU hours.
We believe that our system and specifications can be applied to directly verify other FP adder
designs and to help find design errors. We believe that our system can be used to verify the
correctness of conversion circuits which translate data from one format to another.

Acknowledgements
This thesis would have not been possible without my advisor, Randy Bryant. Six years ago,
when I came to CMU, I had no knowledge of Decision Diagrams and Formal Verification. The
transition was difficult, but Randy made it easy for me. He patiently initiated me into Binary
Decision Diagrams and Formal Verification; he wisely guided me through the maze of graduate
studies and research; he ceaselessly gave me confidence when I doubted myself. How many
times have I gone into his office frustrated and discouraged about my research and come out
smiling!

My committee members, Edmund Clarke, Rob Rutenbar, and Xudong Zhao have given me
much help in my research and in writing my thesis. The work I have done on word-level
SMV benefits greatly from conversations with and course taught by Edmund Clarke. My three
summer jobs at Intel Strategic CAD Labs with Xudong Zhao have, without any doubt, widened
my view of formal verification, especially for industrial circuits. Rob Rutenbar led me to obtain
the floating-point circuit from the University of Michigan. Prof. Brown and Mr. Riepe at
the University of Michigan and Dr. Huff at Intel provided the floating-point adder circuit and
valuable discussion about the design. Chapter 6 would not exist without Rutenbar's suggestion
and Huff's circuit.

I have enjoyed the School of Computer Science at Carnegie Mellon University since the first
day I was here. My wonderful officemates, Bwolen Yang, Henry Rowley and James Thomas
made my office a pleasant place to be in and made my time at work more delightful. They have
helped in almost every aspect of my daily needs in the department, from Unix commands to
paper proofreading. I have also learned much from my former officemate Rujith S. DeSilva.
Other friends in CS and ECE departments also made my graduate studies pleasant: Hao-Chi
Wong, Karen Z. Haigh, Arup Mukherjee, Claudson F. Bornstein, Manish Pandey, Alok Jain,
Shipra Panda, Vishnu A. Patankar, Miroslav N. Velev, Yuan Lu, and many more. Special thanks
go to Sharon Burks and Joan Maddamma, who have always greeted me with a pleasant smile
when I walked into their office. They have taken care of every administrative detail concerning
me and much more.

Pittsburgh is the city where I have lived the longest except for my home town Chia-Yi in Taiwan.
Throughout the years, I have grown to love this city, to love many people I have had the pleasure
to share my time with. I thank my host family, Ms. Maxine Matz and her family, for sharing
their Thanksgiving and Easter holidays with me in my study period. I also thank Mr. and Mrs.
Aston and their family, for sharing their Christmas holidays with me. I enjoyed the friendship
offered by International Bible study group, especially Jody Jackson, David Palmer, and George
Mazariegos.

I also want to thank my parents, who taught me the value of hard work by their own example.
I have always felt their love and support despite the fact that they are thousands of miles away.

Finally, I thank my lovely wife, Mei-Ling Liao, who accompanied me for the first four years
and gave me her full support in my studies. I could not go through this PhD program without
her.

Contents

1 Introduction 1

1.1 Verification of arithmetic circuits 2

1.2 Related work 2

1.2.1 Decision Diagrams 3

1.2.2 Verification Techniques 6

1.3 Scope of the thesis 11

1.4 Thesis overview 11

2 Representations for Integer Functions 13

2.1 The *BMD Data Structure 13

2.1.1 Function Decompositions 13

2.1.2 Edge Weights 15

2.2 Representation of Integer Functions 17

2.2.1 Integer Operations 17

2.2.2 Representation of Boolean Functions 19

2.3 Algorithms for *BMDs 22

2.3.1 Representation of *BMDs 22

2.3.2 Maintaining Canonical Form 23

2.3.3 The Apply Operations 26

2.4 Related Work 30

i

3 Verification of Integer Circuits 33

3.1 Hierarchical Verification 33

3.1.1 Hierarchical Verification 35

3.1.2 Component Verification 36

3.2 Verification System: Arithmetic Circuit Verifier 36

3.3 Additional Techniques 40

3.4 Experimental Results 45

3.5 RelatedWork 47

4 Representation for Floating-Point Functions 49

4.1 Reasons for A New Diagrams 49

4.2 The *PHDD Data Structure 51

4.2.1 Edge Weights 52

4.2.2 Negation Edge 53

4.3 Representation ofWord-Level Functions 53

4.3.1 Representation of Integer Functions 54

4.3.2 Representation of Floating-Point Numbers 54

4.3.3 Floating-Point Multiplication and Addition 57

4.4 Experimental Results 61

4.4.1 Integer Multipliers 61

4.4.2 Floating-Point Multipliers 61

4.4.3 Floating-Point Addition 63

4.5 RelatedWork 64

5 Extensions to Word-Level SMV 67

5.1 Drawbacks of *BMD-Based Hierarchical Verification 67

5.2 Word-Level SMV with *PHDDs 70

5.2.1 Conditional Symbolic Simulation 71

5.2.2 Short-Circuiting Technique 73

5.3 Additional *PHDD algorithms 73

5.3.1 Equalities and Inequalities with Conditions 73

5.3.2 Equalities and Inequalities 74

6 Verification of Floating-Point Adders 79

6.1 Floating-Point Adders 79

6.2 Specifications of FP Adders 84

6.2.1 True Addition 85

6.2.2 True Subtraction 87

6.2.3 Specification Coverage 88

6.3 Verification of FP Adders 88

6.3.1 Latch Removal 89

6.3.2 Design with Bugs 89

6.3.3 Corrected Designs 91

6.4 Conversion Circuits 92

7 Conclusion 95

7.1 Summary 95

7.2 Future Work 96

7.2.1 Floating-Point Multipliers & Dividers 96

7.2.2 Arithmetic Circuits for MMX and DSP 96

8 *PHDD Complexity of Floating-Point Operations 99

A Floating-Point Multiplication 99

B Floating-Point Addition 100

List of Figures

2.1 Example Function Decompositions 14

2.2 Example of BMD vs. *BMD 16

2.3 Representations of Integers 17

2.4 Representations of Word-Level Sum, Product, and Exponentiation 18

2.5 Representations of Boolean Functions 20

2.6 Bit-Level Representation of Addition Functions 21

2.7 Algorithms for Maintaining *BMD 23

2.8 Algorithm for Multiplying Function by Weight 24

2.9 Normalizing Transformations Made by MakeBranch 24

2.10 Apply Algorithm for Adding Two Functions 27

2.11 Recursive Section for Apply Operation for Multiplying Functions 30

3.1 Formulation of Verification Problem 34

3.2 Multiplier Circuit Different Levels of Abstraction 35

3.3 Module hierarchy of 4x4 multiplier 37

3.4 ACV code for Module muliAA of a 4x4 multiplier 38

3.5 Block level representation of SRT divider stage from different perspectives. . 40

3.6 ACV code for Module sri.siagc 42

3.7 Block level representation of a 6 x 6 SRT divider from two different perspectives. 43

3.8 ACV description of Module sri.div.6.6 44

4.1 An integer function with Boolean variables, / = 1 -f y + 3.r + 3xy, is rep-
resented by (a) Truth table, (b) BMDs, (c) *BMDs, (d) HDDs with Shannon
decompositions 50

v

4.2 *BMDs and HDDs for function f = 2x~2, where X = x + 2y 51

4.3 Normalizing the edge weights 52

4.4 *PHDD Representations of Integers and Integer operations 55

4.5 *PHDD Representations of 2EX and 2EX~B 56

4.6 Representations of floating-point encodings 58

4.7 Representation of floating-point multiplication 59

4.8 Representation of floating-point addition 60

5.1 Block Diagrams of floating-point circuits 68

5.2 Bit vectors of Tm and Rm 69

5.3 Horizontal division of a combinational circuit, 70

5.4 The compare unit in floating-point adders 72

5.5 algorithm for H = 0 with conditions 75

5.6 Improved algorithm for F > G 76

5.7 *PHDDs for F and G 78

6.1 The Stanford FP adder. 81

6.2 A variant of Stanford FP adder. 83

6.3 Detailed circuit of the compare unit 84

6.4 Cases of true addition for the mantissa part 86

6.5 Latch Removal 90

6.6 Sticky bit generation, when Ex — Ey = 54 91

8.1 Distinct sub-graphs after variable eyfc-i 104

List of Tables

2.1 Termination Cases for Apply Algorithms 26

2.2 Rearrangements for Apply Algorithms 26

2.3 Word-Level Operation Complexity 31

3.1 Verification Results of Multipliers 46

3.2 Verification Results of Dividers and Square Roots 46

4.1 Performance comparison between *BMD and *PHDD for different integer
multipliers 62

4.2 Performance for different floating-point multipliers 62

4.3 Performance for floating-point additions 63

4.4 Differences among four different diagrams 64

6.1 Summary of the FP addition of two numbers of Ar and Y 80

6.2 Performance measurements of a 52-bit comparator with different orderings. . 85

6.3 Performance measurements of verification of FP adders 92

Vll

Chapter 1

Introduction

Microprocessors have been widely used in digital systems such as workstations, personal
computers, aircraft control systems. In AD 2010, microprocessors running at frequencies over
1GHz will contain 90 million logic transistors and several hundred million cache transistors
according to the Roadmap of Semiconductors [5]. Thus, more function units, such as digital
signal processors, 3D graphic and multimedia instructions, will be added into microprocessors.
The intense competition in the microprocessor field is resulting in ever shorter design cycles. To
achieve it, more designers are added into design teams. To amortize the costs of development and
manufacturing, microprocessors go to mass production a very short time after their introduction.
Thus, a design error in a microprocessor can have a severe financial cost (e.g. the $475 million
cost of Pentium DIV bug [36, 92]) and may lead to serious injuries or even loss of life when
used in life-support or control systems.

Proving the correctness of a microprocessor design is an important task. Simulation is the
most popular verification technique in the industry. However, increasing complexity makes
simulation insufficient to verify modern microprocessors. It is impossible to simulate all
possible combinations and sequences of inputs. For example, the Pentium microprocessors
have been tested by over 1 trillion of test vectors before production [29]. Gwennap [48]
summarized the reported design bugs in Intel Pentium and Pentium Pro processors after mass
production. Several bugs in the Pentium Pro processors can cause data corruption or system
hangs and thus are visible to end users. Thus, the industry is interested in formal verification
techniques for circuit designs.

Arithmetic circuits, such as the Arithmetic Logic Unit (ALU) and the Floating-Point Unit
(FPU) are important parts of microprocessors. These circuits performs data operations such
as addition, multiplication, division, etc. The verification of arithmetic circuits is an important
part of verification of microprocessors. The goal of our work is to develop techniques which

1

CHAPTER 1. INTRODUCTION

enable the formal verification of arithmetic circuits.

Section 1.1 discusses verification of arithmetic circuits. Section 1.2 briefly surveys work in
the area of formal verification, especially verification of arithmetic circuits. The goals of the
thesis are summarized in Section 1.3. Finally, section 1.4 discusses the thesis organization, and
a summary of each chapter.

1.1 Verification of arithmetic circuits

Verification of arithmetic circuits has always been an import part of processor verification.
In modern processors, arithmetic circuits contains ALUs, integer multipliers, integer dividers,
floating-point (FP) adder, FP multipliers, FP dividers, FP square roots, and most of multimedia
instructions. These circuits form an important part of microprocessors. Because of area and
performance constraints, these circuits are not synthesized by automatic synthesis tools, rather
they are custom designed. They can occupy as much as 20%-50% of the processor chip area.
In Intel's Pentium II processor [51], these circuits occupied 20% of the chip area, and they
accumulated up to 50% of the chip area in Sun's SuperSparc-2 processor [47].

The importance and difficulty of arithmetic circuit verification has been illustrated by the famous
FDIV bug in Intel's Pentium processor which cost Intel $475 million. This bug was not covered
by the one trillion test vectors used for this processor [29]. Traditional approaches to verifying
arithmetic circuits are based on simulation or emulation. However, these approaches can not
exhaustively cover the input space of the circuits. For example, the whole input space of each
IEEE double precision floating-point circuit with one rounding mode is 2128 test vectors, which
is impossible to simulate in practice. Theorem proving approaches require verification experts
to manually guide the systems to complete the proof. Thus, to automatically verify arithmetic
circuits, we need to employ a formal technique which can handle large circuits. Among all
the formal verification technique, decision diagram approach comes closest to meeting these
requirements. However, there are still many fundamental and pragmatic issues to be resolved.
These issues include the explosion problem of decision diagrams, and specification and efficient
verification of these circuits. We have addressed these issues in this thesis.

1.2 Related work

In this section, we summarize the research work on decision diagrams, which have been used
in many applications such verification, logic synthesis. Then, we discuss different verification
approaches which can be used to verify arithmetic circuits. Since this discussion is general and

1.2. RELATED WORK 3

quite broad, the specific work which is more closely related to our research will be discussed
at the end of each chapter.

1.2.1 Decision Diagrams

Decision Diagrams are data structures to represent discrete functions and are derived from
decision trees using reduction rules which produce a canonical form. The idea of representing
Boolean functions as decision digrams can be traced back to Akers' paper [2], but the widespread
use as a data structure for symbolic Boolean manipulation only started with the formulation of a
set of algorithms to operate on these data structures by Bryant in 1986 [13]. After that, the basic
ideas of BDDs have been extended to allow efficient representation of other classes of functions.
As mentioned in [94], we encountered more than 43 different decision diagrams in the past
several years. Good surveys of decision diagram related work can be found in [15, 16, 94].

In this section, we summarize a few decision diagrams which have had strong impact, especially
in the area of formal verification. Based on the range of the function values, decision diagrams
can be divided into two classes: Bit-Level diagrams which have Boolean values and Word-Level
diagrams which have integer or floating-point values.

Bit-Level Diagrams
Binary Decision Diagrams (BDDs) [13] represent switching functions / : Bn -> B, where n
is the number of input variables. BDDs are based on a decomposition of Boolean functions
called the "Shannon expansion". A function / can be in terms of a variable x as

/ = OTA/* V xAfx (1.1)

where A, V and overline represent Boolean product, sum and complement. Term fx (respec-
tively, fx) denotes the positive (negative) cofactor of / with respect to variable x, i.e., the
function resulting when constant 1 (0) is substituted for x. This decomposition is the basis for
the BDD representation.

Two alternative function decompositions can be expressed in terms of the XOR (exclusive-or)
operation:

/ = fx ® xAfSx (1.2)

= fx e lA/fe (1.3)

where f$x denotes the Boolean difference of function / with respect to variables x, i.e. fsx =
fx © fx- Equation 1.2 is commonly referred to as the "positive Davio" or "Reed-Muller"

4 CHAPTER 1. INTRODUCTION

expansion, while Equation 1.3 is referred to as the "negative Davio" expansion. Functional
Decision Diagrams (FDDs) [68] use the positive Davio expression as the basis of the graph
representation of Boolean functions. For some classes of functions, FDDs are exponentially
more compact than BDDs, but the reverse can also hold. To obtain the advantage of each,
Drechsler et al have proposed a hybrid form called Kronecker FDDs (KFDDs) [42]. In this
representation, each variable has an associated decomposition, which can be any one of the
three given by Equations 1.1- 1.3.

Minato has developed another variant of BDDs, called "Zero-suppressed" BDDs (ZBDDs) [58],
for combinatorial problems that can be solved by representing and manipulating sparse sets of
bit vectors of length n [58]. The data for a problem are encoded as bit vectors of length ??. Then
any subset of the vectors can be represented by a Boolean function over n variables yielding 1
when the vector corresponding to the variable assignment is in the set. Minato has shown that a
number of combinatorial problems can be solved efficiently using a ZBDD representation [78].
It can be shown that ZBDDs reduce the size of the representation of a set of ??-bit vectors
over BDDs by at most a factor of n [90]. In practice, the reduction is large enough to have a
significant impact.

Bit-level diagrams are not suitable for the verification of complex arithmetic circuits. First, it
is very difficult to write the specification for each output bit as a Boolean function. Second,
bit-level diagrams usually explode in size when representing arithmetic circuits. For example,
BDD representations for integer multiplication have been shown to be exponential in the number
of input bits [14]. Yang et. al reported that the number of BDD nodes to represent integer
multiplication grows exponential at a factor of about 2.87 per bit of word size [97]. For a 16-bit
multiplier, building the BDDs for the output bits requires about 3.8GB memory on a 64-bit
machine (i.e. 1.9GB on a 32-bit machine).

Word-Level Diagrams
Building on the success of BDDs, there have been several efforts to extend the concept to
represent functions over Boolean variables, with non-Boolean ranges, such as integers and
real numbers. For example, it is very useful for verification of arithmetic circuits to represent
vectors of Boolean functions as word-level functions such as integer or floating-point functions.
A vector of m Boolean functions (/0, .A, ...,/„,_]) can be interpreted as a integer function F
whose value at x = (a;0,a-i,...,a-n_i) is F(.f) = XXo' f>(?o- •••■ *n-\) x 2''. Keeping the
variables Boolean allows the use of a branching structure similar to BDDs. The challenge
becomes finding a compact way to encode the numeric function values.

One straightforward way to represent numeric-valued functions is to use a decision diagrams
like a BDD, but to allow arbitrary values on the terminal nodes. This representation is called
Multi-Terminal BDDs (MTBDDs) [34] or Algebraic Decision Diagrams (ADDs) [4]. For
expressing functions having numeric range, the Boole-Shannon expansion can be generalized

1.2. RELATED WORK 5

as:

/ = (l-x)-f, + x-fx (1.4)

where •, +, and - denote multiplication, addition, and subtraction, respectively. Note that this
expansion relies on the assumption that variable x is Boolean, i.e., it will evaluate to either
0 or 1. Both MTBDDs and ADDs are based on such a pointwise decomposition. For some
applications, the number of possible values is small enough that the graph size is not too big.
In such applications, the simplicity of the representation makes MTBDDs viable candidate.
However, these diagrams grow exponentially with the number of Boolean variables for the
common integer encodings such as unsigned binary, ones complement and two's complement.
For the case of unsigned binary numbers of length n, there are 2n possible values and hence
the MTBDD representation must have 2n leaf nodes.

For applications where the number of possible function values is too high for MTBDD, Edge-
Valued BDDs (EVBDDs) are introduced by incorporating numeric weights on the edges in order
to allow greater sharing of subgraphs [72, 73]. The edge weights are combined additively. The
common integer encodings can be represented in linear size of EVBDDs. For two integers X
and Y represented by EVBDDs, the sum and difference also have linear complexity. However,
for the multiplication, the complexity and size of EVBDDs grows exponentially. Multiplicative
edge weights are added into EVBDDs to yield another representation called Factored EVBDDs
(FEVBDDs). However, these diagrams still cannot represent X ■ Y in polynomial size.

To overcome this exponential growth, we proposed Binary Moment Diagrams (BMDs) which
provides a compact representation for these integer encodings and operations. BMDs use a
function decomposition with respect to the input variables in a manner analogous to FDDs.
The function decomposition used by BMDs [20, 21], is obtained by rearranging the terms of
Equation 1.4:

/ = h + x-fSx (1.5)

where f$x — fx — fa is called the linear moment of / with respect to x. This terminology arises
from viewing / as being a linear function with respect to its variables, and thus f$x is the partial
derivative of / with respect to x. The negative cofactor will be termed the constant moment,
i.e., it denotes the portion of function / that remains constant with respect to x.

An extension of BMDs is to incorporate weights on the edges, yielding a representation called
Multiplicative BMDs (*BMDs) [21]. These edge weights combine multiplicatively, rather than
additively as with EVDDs. With *BMDs, word-level functions such as X + Y, X - Y, X • Y
and 2X all have linear-sized representations. The development of *BMDs enables us to verify
arithmetic circuits such as multipliers, dividers, etc.

6 CHAPTER 1. INTRODUCTION

Adapting the idea of KFDDs, Clarke, et al have developed a hybrid between MTBDDs and
BMDs, which is called Hybrid Decision Diagrams (HDDs) [30]. In their representations, each
variable can use one of six different decompositions, including Shannon, positive Davio and
negative Davio decompositions. In their experience, the variables for the control signals should
use Shannon decomposition to achieve smaller graph sizes.

Adding both additive and multiplicative weights into HDDs yields another representation called
Kronecker *BMDs (K*BMDs) [41]. In this representation, the variables can only use one of
Shannon, positive Davio and negative Davio decompositions. Both HDDs and K*BMDs are
superset of MTBDDs and BMDs. However, we do not find the additive edge weight useful for
the verification of arithmetic circuits.

For the word-level diagrams mentioned above, functions mapping Boolean variables into
floating-point values can not be represented efficiently without introducing rational weights
on the edges or the leaf nodes. The overhead of storing and manipulating the rational edge
weights make them less attraction for representing floating-point functions.

We introduced Multiplicative Power HDDs (*PHDDs) [28] to provide a compact representation
for integer and floating-point functions by extracting powers of 2 for the edge weights rather
than greatest common divisors in *BMDs. The edge weights only record the powers. In other
word, the edge weight k represents 2h and the edge weights are combined multiplicatively in
the same way as *BMDs. With this feature, *PHDDs can represent and manipulate integer and
floating-point functions efficiently and can be used in the verification of floating-point circuits
such as adders.

1.2.2 Verification Techniques

Theorem Proving
In a theorem proving approach, the circuit is described as a hierarchy of components, and there
is a behavioral description of each component in the hierarchy. The proof of the correctness
of a design is based on the proofs of the correctness of its components, which is obtained
by composing and inferring the proofs of the components at lower levels. Theorem provers,
HOL [46], Boyer-Moore [8], PVS [80] and ACL2 [67], have been successfully used to verify
several hardware systems.

HOL, developed at Cambridge University, is one of the best know theorem provers applied to
hardware verification [46]. Joyce [64] and Melham [77] also used HOL to perform verification
of circuits. A significant application of the Boyer-Moore theorem prover is the verification of
the FM8501 microprocessor by Hunt [57]. PVS provides a specification language integrated
with a theorem prover, and support procedures to ease the burden of developing proofs. Srivas

1.2. RELATED WORK

and his colleagues have used PVS to verify several hardware designs such as a commercial
processor [93].

Theorem provers have been used to verify arithmetic circuits and algorithms. Most of the
IEEE floating point standard has been formalized by Carreno and Miner [26] in the HOL and
PVS theorem provers. Verkest et al verified a nonrestoring division algorithm and hardware
implementation using the Boyer-Moore theorem prover. Leeser et al verified a radix-2 square
root algorithm and hardware implementation [74].

In response to Intel's famous DIV bug in Pentium processor based on SRT algorithm [76,87,96],
the correctness of the SRT algorithm and implementation has been verified by Clarke et
al [31] using a theorem prover, Analytica [35], and by Rueß et al [89] using PVS. Miner and
Leathrum [79] generalized Rueß's verification work to encompasses many division algorithms
and to includes a formal path relating the algorithms to the IEEE standard. AMD hired the
CLI company to prove the correctness of the AMD 5K86's floating-point division algorithm
using ACL2 [11]. They reported that over 1600 definitions and lemmas were involved in this
proof. Kapur et al [66] used a theorem prover to prove the correctness of a family of integer
multipliers based on Wallace trees.

However, the basic weakness of the theorem proving approach is that it requires a large amount
of user intervention to create specifications and to perform proofs, which makes them unsuitable
for automation. Attempts at automation of proofs have not been particularly successful, and
proofs still require substantial interaction and guidance from skilled users.

Model Checking
Model checking is an automatic verification methodology to verify circuits. In this approach, a
circuit is described as a state machine with transitions to describe the circuit behavior. The spec-
ifications to be checked are described as properties that the machine should or should not satisfy.
Based on the data structure for representing state transitions, the model checkers can be catego-
rized into: 1) pure BDD-based model checkers such as SMV [75], VIS [10] and COSPAN [53],
and 2) other model checkers such as SPIN [55], Murphi [40] and COSPAN [53]. Note that
COSPAN can use either BDD-based or explicit-state enumeration algorithms. COSPAN is the
core engine of commercial verification tool FormalCheck™ from Lucent Technology Inc.

Traditionally, model checkers used explicit representations of the state transition graph, which
made their use impractical for all but the smallest state machines. To overcome this capacity
hmitation, BDDs are used to represent the state transition graphs and thus allows model checkers
(SMV, VIS and COSPAN) to verify systems with as many as 10100 states, much larger than can
be verified using an explicit state representation technique. However, these model checkers
still have the state explosion problem (i.e., BDD size explosion) while verifying large circuits.
A number of approaches [23,45] have focused on the use of partitioned transition relations to

8 CHAPTER 1. INTRODUCTION

reduce the BDD size during state machine exploration, but the capacity limitation is still a major
problem preventing model checkers from verifying industrial circuits without abstraction.

Model checkers, SPIN, Murphi and COSPAN, use other techniques to improve the capacity
of the model checking without using BDDs. SPIN uses an optimized depth-first-search graph
traversal method to perform the verification task. To avoid a purely exhaustive search, SPIN uses
a number of special purpose algorithms such as partial order reduction [54], state compression,
and sequential bitstate hashing. Murphi explicitly generates the states and stores them in a
hash table. To increase its capacity, Murphi uses many state reduction techniques including
symmetry reduction [59] and exploitation of reversible rules [60]. To increase its capacity and
performance, COSPAN uses several caching and hashing options, and a state minimization
algorithm in its explicit-state enumeration algorithm.

In general, these model checkers can verify systems with up to 500 latches. To handle the real
circuit designs in industry, the circuits must be simplified by manual abstraction. For example,
the verification of the circuit to handle the cache coherence among 16 processors must be
abstracted to a model that contains fewer processors (e.g. 4 processors) and a smaller word size
(e.g. 1 or 2 data bits instead of 32 or 64). A number of approaches [32, 84] have been proposed
to perform the abstraction automatically.

To verify arithmetic circuits, these model checkers have the following difficulties. First, their
specification languages are not powerful enough to express arithmetic properties. For arithmetic
circuits, the specifications must be expressed as Boolean functions, which is not suitable for
complex circuits. Second, these model checkers cannot represent arithmetic circuits efficiently
in their models. For example, SMV will have the BDD explosion problem for representing
integer multipliers.

In order to overcome these problems, Clarke et al presented word-level SMV based on BDDs
for Boolean functions and HDDs for integer functions [30, 33]. The specifications of arith-
metic circuits are expressed in word-level and represented by HDDs. Chen et al [29] have
applied word-level SMV to verify arithmetic circuits in one of Intel's processors. In this work,
floating-point circuits were partitioned into several sub-circuits whose specifications could be
expressed in terms of integer operations, because HDDs can not represent floating-point func-
tions efficiently. The main drawback of this partitioning approach is that the specifications are
implementation dependent and cannot be reused for for different implementations. For exam-
ple, two different implementations of the floating-point adder can yield different partitions, and
thus the specifications for the sub-circuits for one design are different from those in another.
Another drawback is that this approach requires user intervention to partition the circuits and
reason about the correctness of the overall specifications from the verified sub-specifications.

Symbolic Simulation
Symbolic simulation is a well know technique for simulation and verification of digital circuits

1.2. RELATED WORK 9

and is an extension of conventional digital simulation, where a simulator evaluates circuit
behavior using symbolic Boolean variables to encode a range of circuit operating conditions.
The initial internal state variables as well as the input values can be Boolean expressions, which
are usually expressed in parametric form [12]. This makes each run of a symbolic simulator
equivalent multiple runs of a conventional simulator. Jain et al [63] presented an efficient
method to generate the parametric form.

After the introduction of BDDs by Bryant, symbolic simulation became more practical. Both
COSMOS [18] developed at Carnegie Mellon University and Voss [91] developed at the Univer-
sity of British Columbia use BDDs as the representations for Boolean functions. These two sim-
ulators have been the framework for verification of different classes of circuits [6,19,61,81,82].
Beatty et al [6] verified a microprocessor using COSMOS. Voss has been used to verify memory
arrays in the PowerPC processor [82]. Bose and Fisher [7] have used symbolic simulation to a
verify pipelined hardware system.

Compared with model checking, the symbolic simulation technique can handle much larger
circuits, because this approach can only cover some of the input spaces in each simulation
run. However, symbolic simulation can not used to completely verify arithmetic circuits such
as integer multipliers, dividers, etc, because the input spaces of these circuits are very large
and the BDDs blow up exponentially for these circuits. An exhaustive simulation to cover the
entire input space is almost impossible for large integer multipliers, dividers and floating-point
circuits. Another problem for symbolic simulation is that the specifications must be expressed
as Boolean functions, which are very complicated for arithmetic circuits.

Equivalence Checking
In recent years, many CAD vendors offered equivalence checking tools for design verification.
For example, the partial list of equivalence checkers are Formality (from Synopsys), Design
Verifyer (from Chrysalis), VFormal (from Compass), Verity (from IBM). These tools perform
logic equivalence checking of two circuits based structural analysis and BDD techniques.

Some equivalence checking techniques have been described in [37, 38, 70]. The common
assumption used in the equivalence checking is that two circuits have identical state encodings
(latches) [70]. With this assumption, only the equivalence of the combinational portions of
two circuits must be checked. Coudert et al [37, 38] and Cabodi et al [24] use a symbolic
breadth first exploration of the product machine state graph to do equivalence checking for two
circuits without identical state encodings. These tools can handle the large designs with similar
structures. However, these tools can not handle the equivalent designs with little structure
similarity. For example, an array multiplier and a booth-encoding multiplier can not be proved
to be equivalent using these tools. Another drawback of equivalence checkers is that they all
need "golden" circuits as the reference to be compared with. The correctness of "golden"
circuits is still questionable.

10 CHAPTER 1. INTRODUCTION

Hybrid approaches: Theorem prover with model checking or simulation
Another approach to verifying circuits is combining a theorem prover with a model checking
or symbolic simulation tool [85, 65]. In this approach, theorem provers handle the high-level
proofs, while the low-level properties are handled by the model checking or symbolic simulation
tool.

Camilleri [25] used simulation as an aid to perform verification of circuits using the HOL
theorem prover. Kurshan et al [71] verified local properties of the low-level circuits of a
multiplier using COSPAN and verified the correctness of the whole multiplier by a theorem
prover to compose of the verified local properties. Aagaard et al [1] used Voss and a theorem
prover to verify a IEEE double-precision floating-point multiplier. Compared with the theorem
proving approach, this approach is much more automatic, but still requires user guidance.

Other Approaches
Burch [22] has implemented a BDD-based technique for verifying certain classes of integer
multipliers. His method effectively creates multiple copies of the multiplier variables, leading
to BDDs that grow cubically with the word size. The limiting factor in dealing with larger word
sizes would be the cubic growth in memory requirement. Furthermore, this approach cannot
handle multipliers that use multiplier recoding techniques, although Burch describes extensions
to handle some forms of recoding.

Jain et al [62] have used Indexed Binary Decision Diagrams (IBDDs) to verify several multiplier
circuits. This form of BDD allows multiple repetitions of a variable along a path from root
to leaf. They were able to verify C6288 (a 16-bit multiplier) in 22 minutes of CPU time on
a SUN-4/280, generating a total of 149,498 graph vertices. They were also able to verify a
multiplier using Booth encoding, but this required almost 4 hours of CPU time and generated
over 1 million vertices in the graphs.

Based on the Chinese remainder theorem, Kimura [69] introduced residue BDDs, which have
bounded size, to verify a 16 x 16 integer multiplier. In [86], Ravi et al discuss how to choose
a good modulus and also show how to build residue BDDs for complex circuits involving
function blocks. They have shown that this approach can detect the bugs efficiently. However,
this approach cannot be extended to verify larger integer multipliers such as 64-bit multipliers.

Bryant [17] has used BDD to check the properties and invariants that one iteration of the SRT
circuits must preserve for the circuit to correctly divide. To do the verification, he needed
to construct a gate-level checker-circuit (much larger than the verified circuit) to describe the
desired behavior of the verified circuit, which is not the ideal level of specification.

1.3. SCOPE OF THE THESIS 11

1.3 Scope of the thesis

Approaches based on decision diagrams have been used to verify arithmetic circuits. However,
direct application of decision diagrams in this domain is not without challenges. We classify
these challenges into two categories - representation and methodology. The main represen-
tation challenges are to overcome the explosion problem of the existing decision diagrams
and to provide a compact representation for integer and floating-point functions such that the
specification can be easily be expressed in word level. The methodology related challenges
includes problems like having a framework to specify and verify arithmetic properties, automat-
ing the verification process, and making the specification reusable. We have built on earlier
work on decision diagrams and methodologies to overcome these challenges. The principal
contributions of this thesis are the following:

•

•

•

*BMD-based hierarchical verification for integer circuits
We have developed *BMDs to represent integer functions efficiently and thus have enabled
the verification of integer circuits. Based on *BMDs and a hierarchical verification
methodology, we have built a system to verify several integer circuits such as integer
multipliers, dividers and square roots.

Representation for floating-point functions
We have developed *PHDDs to represent floating-point functions efficiently. We also
have analyzed the complexities of representing floating-point addition and floating-point
multiplication using *PHDDs.

Methodologies for verification of floating-point circuits
We have developed several methodologies for the verification of floating-point circuits,
especially floating-point adders. These methodologies have been integrated into word-
level SMV.

• Verification of floating-point adders and conversion circuits
A FP adder designed by Dr. Huff at the University of Michigan was verified by our
approach with reusable specifications. Several bugs were found in the design. A coun-
terexample for each bug can be generated within 5 minutes. The reusability of our
specifications is demonstrated by the verification of a variant of Huff's FP adder.

1.4 Thesis overview

Chapter 2 presents Multiplicative Binary Moment Diagrams (*BMDs) which enable the verifi-
cation of arithmetic circuits. The data structures and algorithms for *BMDs provide a compact

12 CHAPTER 1. INTRODUCTION

representation for integers functions.

Chapter 3 discusses the verification of integer circuits such as multipliers, dividers and square
roots. A hierarchical verification method based on *BMDs is presented for verification of
integer circuits along with other methods. Based on these methodologies, the Arithmetic
Circuit Verifier (ACV) was built to verify integer multipliers, dividers and square roots.

Chapter 4 presents Multiplicative Power Hybrid Decision Diagrams (*PHDDs) for the verifica-
tion of floating-point circuits. First, we discuss the limitations of *BMDs and HDDs and thus
the need for a new diagram to represent floating-point functions. A performance comparison
between *BMDs and *PHDDs is discussed.

Chapter 5 discusses methodologies for verification of floating-point circuits, especially floating-
point adders. First, we discuss the drawbacks of ACV which lead us to verify flattened designs
of floating-point circuits. Then, we present several improvements of word-level SMV to enable
the verification of floating-point circuits.

Chapter 6 presents the verification work of a floating-point adder obtained from the University
of Michigan. We discuss the circuit design of this FP adder and the reusable specifications for
FP adders. Several bugs were found in this design by our system. A variant of this FP adder is
created and verified to illustrate that our approach is implementation independent.

Chapter 7 rounds off the thesis with an evaluation of the work and possible future research
directions.

The appendix shows the complexity analysis of representing floating-point addition and multi-
plication using *PHDDs.

Chapter 2

Representations for Integer Functions

To verify integer arithmetic circuits, we must have concise representations for word-level
functions that map Boolean vectors to the integer values. Such Boolean vectors correspond
to the input operands and the final result. In this chapter, we discuss Multiplicative Binary
Moment Diagrams (*BMDs) which provide a compact representation for integer functions.
*BMDs have efficient representations for common integer encodings as well as operations such
as addition and multiplication, and enable us to easily verify integer circuits such as multipliers
and dividers. The verification of these circuits will be described in Chapter 3.

Section 2.1 presents the data structure for *BMDs. The *BMD representations of integer
functions and operations are shown in Section 2.2. Then, the algorithms for *BMDs are
presented in Section 2.3. Section 2.4 describes the related work.

2.1 The *BMD Data Structure

*BMDs represent functions having Boolean variables as arguments and numeric values as
results. Their structure is similar to that of Ordered BDDs, except that they are based on a
"moment" decomposition, and they have numeric values for terminal values and edge weights.
As with OBDDs we assume there is some total ordering of the variables such that variables are
tested according to this ordering along any path from the root to a leaf.

2.1.1 Function Decompositions

To illustrate ways of decomposing a function, consider the function F over a set of Boolean
variables y and z, yielding the integer values shown in the table of Figure 2.1. BDDs are

13

14 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

Function MTBDD BMD

y z F
0 0 8
0 1 -12
1 0 10
l l -6

Figure 2.1: Example Function Decompositions. MTBDDs are based on a pointwise decom-
position (left), while BMDs are based on a linear decomposition (right).

based on a pointwise decomposition, characterizing a function by its value for every possible
set of argument values. By extending BDDs to allow numeric leaf values, the pointwise
decomposition leads to a "Multi-Terminal" BDD (MTBDD) representation of a function [34]
(also called "ADD" [4]), as shown on the left side of Figure 2.1. In this drawing, the dashed
line from a vertex denotes the case where the vertex variable is 0, and the solid line denotes the
case where the variable is 1. Observe that the leaf values correspond directly to the entries in
the function table.

Exploiting the fact that the function variables take on only the values 0 and 1, we can write a
linear expression for function F directly from the function table. For variable y, the assignment
y = 1 is encoded as y, and the assignment y = 0 is encoded as 1 — y. Expanding and simplifying
the resulting expression yields:

F(x,y)

= 8 - 20c + 2y + 4yc

This expansion leads to the BMD representation of a function, as shown on the right side of
Figure 2.1. In our drawings of graphs based on a moment decomposition, the dashed line from
a vertex indicates the case where the function is independent of the vertex variable, while the
solid line indicates the case where the function varies linearly. Observe that the leaf values
correspond to the coefficients in the linear expansion.

Generalizing from this example, one can view each vertex in the graphical representation of a
function as denoting the decomposition of a function with respect to the vertex variable. The
different representations can be categorized according to which decomposition they use.

8 (l-y) (1-*) +
-12 (l-y) z +
10 y (1--) +
-6 y z

2.1. THE *BMD DATA STRUCTURE 15

Boolean function / can be decomposed in terms of variable x in terms of an expansion (variously
credited to Shannon and to Boole): / = x A £ V xA fx. In this equation we use A and V to
represent Boolean sum and product, and overline to represent Boolean complement Term /
(respectively, fx) denotes the positive (resp., negative) cofactor of / with respect to variable x
i.e., the function resulting when constant 1, (resp., 0) is substituted for x. This decomposition
is the basis for the BDD representation.

For expressing functions having numeric range, the Boole-Shannon expansion can be general-
ized as:

/ = (l-x)-fx + x-fx (2.1)

where ■, +, and - denote multiplication, addition, and subtraction, respectively. Note that this
expansion relies on the assumption that variable x is Boolean, i.e., it will evaluate to either 0
or 1. Both MTBDDs and EVBDDs [73] are based on such a pointwise decomposition As
with BDDs, each vertex describes a function in terms of its decomposition with respect to the
variable labeling the vertex. The two outgoing arcs denote the negative and positive cofactors
with respect to this variable.

The moment decomposition of a function is obtained by rearranging the terms of Equation 2.1:

/ = /* + *•(/«- h)
= h + x ■ fSx (2.2)

where fSx = fx - f- is called the linear moment of / with respect to z. This terminology
arises by viewing / as being a linear function with respect to its variables, and thus fs is the
partial derivative of/ with respect to x. Since we are interested in the value of the function for
only two values of x, we can always extend it to a linear form. The negative cofactor will be
termed the constant moment, i.e., it denotes the portion of function / that remains constant with
respect to x. Each vertex of a BMD describes a function in terms of its moment decomposition
with respect to the variable labeling the vertex. The two outgoing arcs denote the constant and
linear moments of the function with respect to the variable.

The moment decomposition of Equation 2.2 is analogous to the Reed-Muller expansion for
Boolean functions: / = /* © a: A (/* ©/*). The expression fx@ /?is commonly known
as the Boolean difference of / with respect to x, and in many ways is analogous to our linear
moment. Other researchers [68] have explored the use of graphs for Boolean functions based
on this expansion, calling them Functional Decision Diagrams (FDDs). By our terminology
we would refer to such a graph as a "moment" diagram rather than a "decision" diagram.

2.1.2 Edge Weights

16 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

Figure 2.2: Example of BMD vs. *BMD. Both represent the function 8 - 20z + 2y + Ayz +
12.r + 2Axz + 15xy. *BMDs have weights on the edges that combine multiplicatively.

The BMD data structure encodes numeric values only in the terminal vertices. As a second
refinement, we adopt the concept of edge weights, similar to those used in EVBDDs. In our
case, however, edge weights combine multiplicatively, and hence we call these data structures
*BMDs. As an illustration, Figure 2.2 shows representations of the function 8 - 20c + 2y +
Ayz + 12a: + 24xz + I5xy. In the BMD representation, leaf values correspond to the coefficients
in the linear expansion. As the figure shows, the BMD data structure misses some opportunities
for sharing of common subexpressions. For example, the terms 2y + Ayz and \2x + 2Axz can
be factored as 2y(l + 2z) and 12.T(1 + 2s), respectively. The representation could therefore
save space by sharing the subexpression 1 + 2z. For more complex functions, one might expect
more opportunities for such sharing.

The *BMD shown in Figure 2.2 indicates how *BMDs are able to exploit the sharing of common
subexpressions. In our drawings of *BMDs, we indicate the weight of an edge in a square
box. Unlabeled edges have weight 1. In evaluating the function for a set of arguments, the
weights are multiplied together when traversing downward. Several rules for manipulating edge
weights can be formulated that guarantee the resulting graph form is canonical. For representing
functions with integer ranges, we require that the edge weights for the two branches leaving
a vertex be relatively prime. We also require that weight 0 only appear as a terminal value,
and that when a node has one such branch, the other branch has weight 1. This property is
maintained by the way in which the *BMDs are generated, in a manner analogous to BDD
generation methods. For the remainder of the presentation we will consider only *BMDs, The
effort required to implement weighted edges is justified by the savings in graph sizes.

2.2. REPRESENTATION OF INTEGER FUNCTIONS 17

Unsigned Two's Complement Sign-Magnitude

Figure 2.3: Representations of Integers. All commonly used encodings can be represented
with linear complexity.

2.2 Representation of Integer Functions

*BMDs provide a concise representation of functions defined over "words" of data, i.e., vec-
tors of bits having a numeric interpretation. Let x represent a vector of Boolean variables:
£„-i,. ..,XI,XQ. These variables can be considered to represent an integer X according to
some encoding, e.g., unsigned binary, two's complement, BCD, etc. Figure 2.3 illustrates the
*BMD representations of several common encodings for integers. An unsigned number is
encoded as a sum of weighted bits. The *BMD representation has a simple linear structure with
the different weights forming the leaf values. For representing signed numbers, we assume
xn_i is the sign bit. The two's complement encoding has a *BMD representation similar to
that for unsigned integers, but with bit xn^ having weight -2n_1. For a one's complement
encoding (not shown), the sign bit has weight -2n_1 + 1. Sign-magnitude integers also have
*BMD representations of linear complexity, but with the constant moment with respect to xn_i
scaling the remaining unsigned number by 1, and the linear moment scaling the number by -2.
In evaluating the function for xn_i = 1, we would add these two moments effectively scaling
the number by — 1.

2.2.1 Integer Operations

18 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

255

15

X+Y XY 2*

Figure 2.4: Representations of Word-Level Sum, Product, and Exponentiation. The graphs
grow linearly with word size.

2.2. REPRESENTATION OF INTEGER FUNCTIONS 19

Figure 2.4 illustrates the *BMD representations of several common arithmetic operations on
word-level data. Observe that the sizes of the graphs grow only linearly with the word size n.
Word-level addition can be viewed as summing a set of weighted bits, where bits X{ and m both
have weight 2\ Word-level multiplication can be viewed as summing a set of partial products
of the form X{2lY. In representing the function cx (in this case c = 2), the *BMD expresses
the function as a product of factors of the form cVxi — (c2')Xl. In the graph, a vertex labeled
by variable X{ has outgoing edges with weights 1 and c2' - 1 both leading to a common vertex
denoting the product of the remaining factors. Interestingly, the sizes of these representations
are hardly sensitive to the variable ordering—they remain of linear complexity in all cases.
We have found that variable ordering is much less of a concern when representing word-level
functions with *BMDs than it is when representing Boolean functions with BDDs.

These examples illustrate the advantage of *BMDs over other methods of representing word-
level functions. MTBDDs are totally unsuited—the function ranges are so large that they
always require an exponential number of terminal vertices. EVBDDs have linear complexity
representing word-level data and for representing "additive" operations (e.g, addition and
subtraction) at the word level. On the other hand, they have exponential size when representing
more complex functions such as multiplication, and exponentiation.

2.2.2 Representation of Boolean Functions

In verifying arithmetic circuits, we abstract from the bit-level representation of a circuit, where
each signal is binary-valued, to a word level, where bundles of signals encode words of data.
In performing this transformation we must represent both Boolean and word-level functions.
Hence we require our data structure to be suitable for representing Boolean functions as well.

Boolean functions are just a special case of numeric functions having a restricted range.
Therefore such functions can be represented as *BMDs. Figure 2.5 illustrates the *BMD
representations of several common Boolean functions over multiple variables, namely then-
Boolean product and sum, as well as their exclusive-or sum. As this figure shows, the *BMD
of Boolean functions may have values other than 0 or 1 for edge weights and leaf values. Under
all variable assignments, however, the function will evaluate to 0 or to 1. As can be seen in the
figure, these functions all have representations that grow linearly with the number of variables,
as is the case for their BDD representations.

Figure 2.6 shows the the bit-level representation of a 3-bit adder. It represents the 4 adder outputs
as a single *BMD having multiple roots, much as is done with a shared BDD representation.
The complexity of this representation grows linearly with the word size. Observe the relation
between the word-level representation (Figure 2.4, left) and the bit-level representation of
addition. Both are functions over variables representing the adder inputs, but the former is a

20 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

AND OR EXCLUSIVE-OR

Figure 2.5: Representations of Boolean Functions. Representations as *BMDs are compa-
rable in size to BDDs.

2.2. REPRESENTATION OF INTEGER FUNCTIONS 21

Cout

Figure 2.6: Bit-Level Representation of Addition Functions. The graph represents all four
outputs of a 3-bit adder.

22 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

single function yielding an integer value, while the latter is a set of Boolean functions: one
for each circuit output. The relation between these two representations will be discussed more
fully in our development of a verification methodology.

In all of the examples shown, the *BMD representation of a Boolean function is of comparable
size to its BDD representation. In general this will not always be the case. Enders [43] has
characterized a number of different function representations and shown that *BMDs can be
exponentially more complex than BDDs, and vice-versa. The two representations are based
on different expansions of the function, and hence their complexity for a given function can
differ dramatically. In our experience, *BMDs generally behave almost as well as BDDs when
representing Boolean functions.

2.3 Algorithms for *BMDs

In this section we describe key algorithms for constructing and manipulating *BMDs. The
algorithms have a similar style to their counterparts for BDDs. Unlike operations on BDDs
where the complexities are at worst polynomial in the argument sizes, most operations on
*BMDs potentially have exponential complexity. We will show in the experimental results,
however, that these exponential cases do not arise in our applications.

2.3.1 Representation of *BMDs

We will represent a function as a "weighted pair" of the form («■, r) where w is a numeric
weight and v designates a graph vertex. Weights can either be maintained as integers or real
numbers. Maintaining rational-valued weights follows the same rules as the real case. Vertex
v = A denotes a terminal leaf, in which case the weight denotes the leaf value. The weight «J

must be nonzero, except for the terminal case. Each vertex r has the following attributes:

Var(v): The vertex variable.

Hi(v): The pair designating the linear moment.

Lo(v): The pair designating the constant moment.

Uid(v): Unique identifier for vertex.

Observe that each edge in the graph is also represented as a weighted pair.

2.3. ALGORITHMS FOR *BMDS 23

pair MakeBranch(variable x, pair (wi,vi), pair (wh,vh))
{ Create a branch, normalize weights. }
{ Assumes that x < Var(%) and x < Var(ui) }

if wh = 0 then return (wi,vi)
w <— NormWeight(wi, u>h)
wi f- wi/w

Wh <r- Wh/w

v •f- UniqueVertex(x, (w/, v{), (wh-, %))
return (w, v)

vertex UniqueVertex{variable x, pair (wi,vi), pair («%,%))
{ Maintain set of graph vertices such that no duplicates created }

key <r- [x, w;,Uid(q), u^Uid^)]

found, v <— LookUp(UTable, key)
if found then return v
v <— Afew(vertex)
Var(v) <- JC; Uid(v) f- £/md();
Lo(v) 4- (w/, «j); Hi(v) <- (teÄ, «fc>
Insert(UTable, key, v)
return v

integer iYomjWfe/g/tf (integer w/, integer u%)
{ NormaUzation function, integer weights. }

w «- gcd(w;, wh)
if w; < 0 or (wi = 0 and w^ < 0)

then return — w
else return w

Figure 2.7: Algorithms for Maintaining *BMD. These algorithms preserve a strong canonical
form.

2.3.2 Maintaining Canonical Form

The functions to be represented are maintained as a single graph in strong canonical form.
That is, pairs (u>i, v\) and («>2, t^) denote the same function if and only if wi = w2 and v\ = i^.
We assume that the set of variables is totally ordered, and that all of the vertices constructed

24 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

pair ApplyWeight(wtype u', pair («-, v))
{ Multiply function by constant }

if w' = 0 then return (0, A)
return (?/•' • w.v)

Figure 2.8: Algorithm for Multiplying Function by Weight. This algorithm ensures that
edge to a nonterminal vertex has weight 0.

Arguments Result

w

: x

w.

Figure 2.9: Normalizing Transformations Made by MakeBranch. These transformations
enforce the rules on branch weights.

2.3. ALGORITHMS FOR *BMDS 25

obey this ordering. That is, for any vertex v, its variable Var(v) must be less than any variable
appearing in the subgraphs Lo(v) and Hi(v).

Maintaining a canonical form requires obeying a set of conventions for vertex creation and for
weight manipulation. These conventions are expressed by the code shown in Figures 2.7 and
2.8. The MakeBranch algorithm provides the primary means of creating and reusing vertices in
the graph. It is given as arguments a variable and two moments, each represented as weighted
pairs. It returns a pair representing the function given by Equation 2.2. It assumes that the
argument variable is less than any variable in the argument subgraphs. The steps performed by
MakeBranch are illustrated in Figure 2.9. In this figure two moments are drawn as weighted
pointers.

When the linear moment is the constant 0, we can simply return the constant moment as the
result, since this function is independent of variable x. Observe that this rule differs from the
reduction rule for a graph based on a pointwise decomposition such as BDDs. In such cases
a vertex can be eliminated when both of its children are identical. This reflects the difference
between the two different function decompositions. Our rule for *BMDs is similar to that for
FDDs [42, 68].

For other values of the linear moment, the routine first factors out some weight w by calling
function NormWeight, adjusting the weights of the two arguments accordingly. We want to
extract any common factor while ensuring that all weights are integers. Hence we take the
greatest common divisor (gcd) of the argument weights. In addition, we adopt the convention
that the sign of the extracted weight matches that of the constant moment. This assumes that
gcd always returns a nonnegative value.

Once the weights have been normalized MakeBranch calls the function UniqueVertex to find
an existing vertex or create a new one. This function maintains a table (typically a hash table)
where each entry is indexed by a key formed from the variable and the two moments. Every
vertex in the graph is stored according to such a key and hence duplicate vertices are never
constructed.

Figure 2.8 shows the code for a function ApplyWeight to multiply a function, given as a weighted
pair, by a constant value, given as a weight w'. This procedure simply adjusts the pair weight,
detecting the special case where the multiplicative constant is 0.

As long as all vertices are created through calls to the MakeBranch function and all multipli-
cations by constants are performed by calls to ApplyWeight, the graph will remain in strongly
canonical form.

26 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

Termination conditions
op (u'i,t>i) (?r2. n) („■.,.)

+ (O.A)
+ (O.A)
+ («'1,1') (W2,v)

(»2- 12)

("'I- !'l)

ApplyWeight(u\ + i/2, (1-'))
* (w'i. A)

* («2^ A)

ApplyWeight(u 1, (»2- '2))
ApplyWeight(u<2, («j. tj))

+ (w2-A) A/?/?/yWe/g/rt(l/!r2, (t/-i, vi))

Table 2.1: Termination Cases for Apply Algorithms. Each line indicates an operation, a set
of terminations, and the returned result.

Rearrangements
Arguments

op Condition
Results

«•' (w'l-t'l) («2- «2)

* Uid(t-i) >Uid(*2)
* UidO'i) <Uid(t2)

«'1 • «2 (1, l'l) (1, 12)

«'1 ■ «2 (1. "2) (1. l'l)

+ |«'l| > | W"21
+ |w'l| < | W2I

NormWeight{u\, u2) («'i/«'', t'i) (i'^/«''-^)
NormWeight(w2, vi) (u^/ir1,^) («'i/«'', t'i)

-r «'l/«2 (l'"l) (l-"2)

Table 2.2: Rearrangements for Apply Algorithms. These rearrangements increase the
likelihood of reusing a previously-computed result.

2.3.3 The Apply Operations

As with BDDs, *BMDs are constructed by starting with base functions corresponding to
constants and single variables, and then building more complex functions by combining simpler
functions according to some operation. In the case of BDDs this combination is expressed by a
single algorithm that can apply an arbitrary Boolean operation to a pair of functions. In the case
of *BMDs we require algorithms tailored to the characteristics of the individual operations. To
simplify the presentation, we show only a few of these algorithms and attempt to do so in as
uniform a style as possible. These algorithms are referred to collectively as "Apply" algorithms.

Figure 2.10 shows the fundamental algorithm for adding two functions. The function PlusApply
takes two weighted pairs indicating the argument functions and returns a weighted pair indicat-
ing the result function. This algorithm can also be used for subtraction by first multiplying the
second argument by weight —1. This code closely follows the Apply algorithm for BDDs [9].

2.3. ALGORITHMS FOR *BMDS 27

pair PlusApply(pair (wuvi), pair (w2, i^}): pair
{ Compute sum of two functions }

done, (w, v) <— TermCheck(+, (w\, v\), («^, ^))
if done then return (w, v)

w', (wi, fi), (w2, ^2) «- Rearrange(+, {wh vi), (iv2, ^))
key «- [+, «ix, Uid(«i), «£, Uid(^)]
found, (w,v) <- LookUp(OpTable, key)
iffound then return ApplyWeight(w', (w, «))
JC <- Mw(Var(i;i), Var(^))
{ Begin recursive section }
(wihm) <~ SimpleMoment((wi, vi),x, 0)
(wihvii) *- SimpleMoment({w2, 12), x, 0)
(u>ih,vih) <— SimpleMoment((wi, vi),x, 1)
(w2h,v2h) <- SimpleMoment((u!2, vi), x, 1)
(«)j, «/> <- PlusApply((wlh vu), (w2i, «a»
(w/l, «/,) <- PlusApply((wlh, vih), {w2h, V2h}))
{ End recursive section }
(w, u) «- MakeBranch(x, (wi, vi), (wh, %))
Insert{OpTable, key, (w,v))
return ApplyWeight(w', (w, v))

pair SimpleMoment(pair {w,v), variable*, integer Z?): pair
{ Find moment of function under special condition. }
{ Variable either at root vertex v, or not present in graph. }
{ b = 0 for constant moment, b = 1 for linear }

if Var(t;) ^ x
if 6 = 0

then return (w,v)
else return (0, A)

if 6 = 0
then return Apply Weight(w, Lo(v))
else return ApplyWeight(w, Hi(v))

Figure 2.10: Apply Algorithm for Adding Two Functions. The algorithm is similar to the
counterpart for BDDs.

28 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

It utilizes a combination of recursive descent and "memoizing," where all computed results are
stored in a table and reused whenever possible. The recursion is based on the property that
taking moments of functions commutes with addition. That is, for functions / and g and for
variable x:

[f + g]x = fx + 97

[f + g]&T = fSr + 9S.r

This routine, like the other Apply algorithms, first checks a set of termination conditions to
determine whether it can return a result immediately. This test is indicated as a call to function
TermCheck having as arguments the operation and the arguments of the operation. This function
returns two values: a Boolean value done indicating whether immediate termination is possible,
and a weighted pair indicating the result to return in the event of termination. Some sample
termination conditions are shown in Table 2.1. For the case of addition, the algorithm can
terminate if either argument represents the constant 0, or if the two arguments are multiples of
each other, indicated by weighted pairs having the same vertex element.

Failing the termination test, the routine attempts to reuse a previously computed result. To
maximize possible reuse it first rearranges the arguments and extracts a common weight «'.
This process is indicated as a call to the function Rearrange having the same arguments
as TermCheck. This function returns three values: the extracted weight and the modified
arguments to the operation. Some sample rearrangements are shown in Table 2.2. For the case
of addition rearranging involves normalizing the weights according to the same conditions used
in MakeBranch and ordering the arguments so that the first has greater weight. For example,
suppose at some point we compute 6y — 9z. We will extract weight —3 (assuming integer
weights) and rearrange the arguments as 3~ and — 2y. If we later attempt to compute I5z — I0y,
we will be able to reuse this previous result with extracted weight 5.

If the routine fails to find a previously computed result, it makes recursive calls to compute
the sums of the two moments according to the minimum variable in its two arguments. In
generating the arguments for the recursion, it calls a function SimpleMoment to compute the
moments. This routine can only compute a moment with respect to a variable that either does
not appear in the graph or is at its root, a condition that is guaranteed by the selection of .?•
as the minimum variable in the two graphs. When the variable does not appear in the graph,
the constant moment is simply the original function, while the linear moment is the constant
0. When the variable appears at the root, the result is the corresponding subgraph multiplied
by the weight of the original argument. The final result of PlusApply is computed by calling
MakeBranch to generate the appropriate function and multiplying this function by the constant
extracted when rearranging the arguments.

Observe that the keys for table OpTable index prior computations by both the weights and the

2.3. ALGORITHMS FOR *BMDS 29

vertices of the (rearranged) arguments. In the worst case, the rearranging may not be effective
at creating matches with previous computations. In this event, the weights on the arcs would be
carried downward in the recursion, via the calls to SimpleMoment. In effect, we are dynamically
generating BMD representations from the *BMD arguments. Thus, if functions / and g have
BMD representations of size mf and mg, respectively, there would be no more than mfmg calls
to PlusApply, and hence the overall algorithm has worst case complexity 0(mfmg). As we have
seen, many useful functions have polynomial BMD sizes, guaranteeing polynomial performance
for PlusApply. On the other hand, some functions blow up exponentially in converting from a
*BMD to a BMD representation, in which case the algorithm may have exponential complexity.
We will see with the experimental results, however, that this exponential blow-up does not occur
for the cases we have tried. The termination checks and rearrangements are very effective at
stopping the recursion.

The Apply algorithms for multiplication has a similar overall structure to that for addition,
but differing in the recursive evaluation. Comments in the code of Figure 2.10 delimit the
"recursive section" of the routine. In this section recursive calls are made to create a pair of
weighted pointers {wh vt) and (wh, vh) from which the returned result is constructed. For the
multiplication algorithm we show only its recursive section.

The multiplication of functions / and g, denoted / -g can be defined recursively as follows.
If these functions evaluate to constants a and b, respectively, then their product is simply
f-g = a-b. Otherwise assume the functions are given by their moment expansions (Equation
2.2) with respect to some variable x. The product of the functions can then be defined as:

f-9 = h-gx+x(fx-gSx+f5x-gx)-\-x2f5:c-g5x (2.3)

Under the Boolean domain restriction, i.e., considering only variable assignments 6 such that
<f>(x) e {0,1}, we are guaranteed that x = x2. Equation 2.3 can be rewritten as following:

f-9 = h-gs + x(fx ■ g5x + fsx-gx + f5x ■ gsx) (2.4)

Figure 2.11 shows the recursive section for multiplying a pair of functions, using the formulation
of linear product given by Equation 2.4. Each call to MultApply requires four recursive calls
plus two calls to PlusApply. With the rearrangements shown in Table 2.2, we can always extract
the weights from the arguments. Hence if the arguments have *BMD representations of ms and
mg vertices, respectively, no more than mfmg calls will be made to MultApply. Unfortunately,
this bound on the calls does not suffice to show a polynomial bound on the complexity of the
algorithm. The calls to PlusApply may blow up exponentially.

30 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

{ Begin recursive section }
w'H, m) <r- SimpleMoment((iti, m), x, 0)
wii, m) <- SimpleMoment({w2, ii),x, 0)
wi/,, fi/j) <- SimpleMoment((ui, v\),x,l)
v>2h, nh) <- SimpleMoment((w2< n),x, 1)

w/, 17) «- MultApply((wu- i'u), (w2/. '2/))
«M, Vhh) *- MultApply((w\h' v\h), (W2h.l>2h))

v>hi, vhi) <- MultApply((wVl- V\h), {w2i- m))
wih, i'ih) <- MultApply((u<u, vu), (w2h- iih))
wfc, vh) 4- PlusApply({v-hh,vhh), PlusApply{{icM. vM), (un-m)))

{ End recursive section }

Figure 2.11: Recursive Section for Apply Operation for Multiplying Functions. This
operation exploits the ring properties of linear product.

2.4 Related Work

Enders [43] has shown that the representation size for Boolean functions may differ exponen-
tially for BMD, EVBDD and FDD representations. He also proved that the multiplication of
BMDs and *BMDs as well as the addition of *BMDs may have exponential operations in the
worst case. Arditi [3] used *BMDs for verification of arithmetic assembly instructions to delay
the use of theorem provers. Rotter et al [88] used *BMDs to represent polynomial functions.
Their result shows that *BMDs have better performance than ZBDDs in terms of the number
of nodes and CPU time.

Clarke, et al. [30] extended BMDs to a form they call Hybrid Decision Diagrams (HDDs),
where a function may be decomposed with respect to each variable in one of six decomposition
types. In our experience with HDDs, we found that three of their six decomposition types are
useful in the verification of arithmetic circuits. These three decomposition types are Shannon,
Positive Davio, and Negative Davio. Therefore, Equation 2.2 is generalized to the following
three equations according the variable's decomposition type:

/ =

' {l-x)-fr + x-fr {Shannon)
f- + x . fSr (Positive Davio) (2.5)
'fT + (1 - x) ■ fSj (Negative Dario)

2.4. RELATED WORK 31

Here, /fö = fe - fx is the partial derivative of / with respect to x. The BMD representation is
a subset of HDDs. In other words, the HDD graph is the same as the BMD graph, if all of the
variables use positive Davio decomposition. In their experience, the variables for the control
signals should use Shannon decomposition to achieve better performance.

Multiplicative edge weights are added into EVBDDs to yield another representation called
Factored EVBDDs (FEVBDDs). However, these diagrams still cannot represent X ■ Y in
polynomial size.

Adding both additive and multiplicative weights into HDDs yields another representation
called Kronecker *BMDs (K*BMDs). In their representation, the variables can only use one
of Shannon, positive Davio and negative Davio decompositions. Both HDDs and K*BMDs are
the superset of MTBDDs and BMDs. However, we do not find any usefulness of the additive
edge weight for the verification of arithmetic circuits.

Table 2.3 summarizes the complexity of different word-level decision diagrams to represent the
integer functions and operations such as X, X + Y, X * Y, X2 and 2X. Note that *BMDs and
K*BMDs have more compact representations than others.

Form
MTBDD
EVBDD

FEVBDD
BMD
HDD

*BMD
K*BMD

X X + Y X * Y X2 sir

exponential exponential exponential exponential exponential
linear linear exponential exponential exponential
linear linear exponential exponential exponential
linear linear quadratic quadratic exponential
linear linear quadratic quadratic exponential
linear linear linear quadratic linear
linear linear linear quadratic linear

Table 2.3: Word-Level Operation Complexity. Expressed in how the graph sizes grow
relative to the word size.

32 CHAPTER 2. REPRESENTATIONS FOR INTEGER FUNCTIONS

Chapter 3

Verification of Integer Circuits

*BMDs can serve as the basis for a hierarchical methodology for verifying integer circuits
such as multipliers and dividers. At the low level, we have a set of component modules
such as add steppers, Booth steppers, and carry save adders described at both the bit level (in
terms of logic gates) and at the word level (as algebraic expressions). Using a methodology
proposed by Lai and Vrudhula [73], we verify that the bit-level implementation of each block
implements its word-level specification. At the higher level (or levels), a system is described
as an interconnection of components having word-level representations, and the specification
is also given at the word-level. We then verify that the composition of the block functions
corresponds to the system specification. Using this technique we can verify systems such as
multipliers that cannot be represented efficiently at the bit level. We also can handle a more
abstract level of specification than can methodologies that work entirely at the bit level. Based
on *BMDs and this hierarchical verification methodology, we have built an Arithmetic Circuit
Verifier (ACV) to verify integer multipliers, dividers, and square roots successfully.

The outline of this chapter is organized as following. Section 3.1 describes our hierarchical
verification methodology using *BMDs as the underlying representation. Section 3.2 describes
the verification system based on a hierarchical verification methodology. Additional techniques
are introduced in Section 3.3 to handle some special circuits such as multipliers using carry-save
adders.

3.1 Hierarchical Verification

Figure 3.1 illustrates schematically an approach to circuit verification originally formulated by
Lai and Vrudhula [73]. The overall goal is to prove a correspondence between a logic circuit,

33

34 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

Circuit

1=1 Bit Level

■■■ Word Level

Specification

Figure 3.1: Formulation of Verification Problem. The goal of verification is to prove a
correspondence between a bit-level circuit and a word-level specification

represented by a vector of Boolean functions /, and the specification, represented by the
arithmetic function F. The Boolean functions can correspond to the outputs of a combinational
circuit in terms of the primary inputs, or to the outputs of a sequential circuit operated for a
fixed number of steps, in terms of the initial state and the input values at each step. Assume
that the circuit inputs (and possibly initial state) are partitioned into vectors of binary signals
.f1,..., xk (in the figure k = 2). For each set of signals P, we are given an encoding function
ENQ describing a word-level interpretation of the signals. An example of such an encoding
function would be as a 16-bit two's complement integer. The circuit implements a set of
Boolean functions over the inputs, denoted by the vector of functions f{x\..., xA'). Typically
this circuit is given in the form of a network of logic gates. Furthermore, we are given an
encoding function ENC0 defining a word-level interpretation of the output. Finally, we are
given as specification a arithmetic function F(Xi , A'/,), where A',- = Encj(x'). The task
of verification is then to prove the equivalence:

ENC0(/V,...,.ffr)) F(ENC!(xl),..., ENC,(.fA-)) (3.1)

That is, the circuit output, interpreted as a word should match the specification when applied
to word interpretations of the circuit inputs.

*BMDs provide a suitable data structure for this form of verification, because they can represent
both bit-level and word-level functions efficiently. EVBDDs can also be used for this purpose,
but only for the limited class of circuit functions having efficient word-level representations as
EVBDDs. By contrast, BDDs can only represent bit-level functions, and hence the specification

3.1. HIERARCHICAL VERIFICATION 35

3,0

2,0

1,0

0,0

3,1

m
2,1

' 1,1

i
0,1

3,2

m
2,2

1,2

m
0,2

(a)

3,3

2,3

I
1,3

M
0,3

X

(b)

'x'::Addx:x-
Step

xx 0 xx:

x:Add'x:
Step;:

x 0 1

t-vXvXx-Xvi)

f-'x xfN
1

fxx:-'xx\

äAddxx-
Step

xx 0 Xv.

:xAdd:x:
::Step
:x 0 XX

Figure 3.2: Multiplier Circuit Different Levels of Abstraction Each square contains an AND

gate and a full adder. The vertical rectangles indicate the word-level partitioning yielding the
representations shown on the right.

must be expanded into bit-level form. While this can be done readily for standard functions
such as binary addition, a more complex function such as binary to BCD conversion would be
difficult to specify at the bit level.

3.1.1 Hierarchical Verification

For circuits that cannot be verified efficiently at the bit level, such as multipliers, we propose a
hierarchical verification methodology. The circuit is partitioned into component modules based
on its word-level structure. Each component is verified against a word-level specification. Then
the word-level functions of the components are composed and compared to the overall circuit
specification.

Figure 3.2 illustrates the design of two different 4-bit multipliers. Each box labeled i, j in the
figure represents a "cell" consisting of an AND gate to form the partial product x{ A yj, and a full
adder to add this bit into the product. The vertical rectangles in the figure indicate a word-level
partitioning of the circuits, yielding the component interconnection structure shown on the

36 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

upper right. All word-level data in the circuit uses an unsigned binary encoding. Considering
the design labeled "Add-Step", each "Add Step ?'" component has as input the multiplicand
word X, one bit of the multiplier y,, and a (possibly 0) partial sum input word P/,. It generates
a partial sum word PO,, where the functionality is specified as PO; = PI,■ + 2' • y, • A'.

Verifying the multiplier therefore involves two steps. First, we must prove that each component
implements its specification. Second, we must prove that the composition of the word-level
functions matches that of integer multiplication, i.e.,

0 + 2° ■ j/o • A' + 21 • y, • A' + 22 • y2 ■ X + 23 • y3 ■ X

= (EI=O.32
,
'-J/,-)-A'

= XV

Observe that upon completing this process, we have truly verified that the circuit implements
unsigned integer multiplication. By contrast, BDD-based approaches just show that a circuit
is equivalent to some (hopefully) "known good" realization of the function. For such a simple
example, one can readily perform the word-level algebraic manipulation manually. For more
complex cases, however, we would like our verifier to compose and compare the functions
automatically.

3.1.2 Component Verification

The component partitioning allows us to efficiently represent both their bit-level and word-level
functions. This allows the test of Equation 3.1 to be implemented directly. As an example,
consider the adder circuit having bit-level functions given by the *BMD of Figure 2.6, where
this *BMD is obtained by evaluating BDDs from a gate-level representation of the circuit and
then translating BDDs into *BMDs. The word-level specification is given by the left-hand
*BMD of Figure 2.4. In generating the *BMD from the specification we are also incorporating
the requirement that input words A" and Y have an unsigned binary encoding. Given that the
output is also to have an unsigned binary encoding, we would use our Apply algorithms to
convert the bit-level circuit outputs to the word level as:

P = 2° • So + 21 • Si + 22 • S2 + 23 • Cout

We would then compare the *BMD for P to the one shown on the left-hand side of Figure 2.4.

3.2 Verification System: Arithmetic Circuit Verifier

Based on *BMDs and hierarchical verification methodology, we have built an Arithmetic
Circuit Verifier (ACV) to verify integer circuits such as multipliers, dividers, etc. To support

3.2. VERIFICATION SYSTEM: ARITHMETIC CIRCUIT VERIFIER 37

Transition
Layer

Figure 3.3: Module hierarchy of 4x4 multiplier. Each module in the transition layer is the
last module with word-level specifications on the path down from the root.

the hierarchical verification methodology, we devised a hardware description language, also
called ACV, to describe circuits and their specifications in a hierarchical manner. Each module
is composed structurally from other modules and primitive logic gates. In addition, a module
can be given the word-level specification consisting of definitions of the numeric encodings
of inputs and outputs, as well as the module functionality in terms of arithmetic expressions
relating input and output values.

We use a 4x4 array multiplier to illustrate the ACV language and system. This multiplier
can be represented by the module hierarchy shown in Figure 3.3. We define the "transition
layer", shown as the shaded box in Figure 3.3, as the collection of modules which are the
last modules with word-level specifications on the paths down from the root. Modules in or
above the transition layer must declare their word-level specifications, as well as their structural
definitions. Modules below the transition layer just declare their structural definitions. Modules
in the transition layer abstract from the bit-level, where the structure consists of logic gates
(sub-module will be evaluated recursively), to a word-level representation, where the structure
consists of blocks interconnected by bit-vectors encoding numeric values.

Figure 3.4 shows the ACV description of the top module of a 4x4 array multiplier. The
definition of a module is encompassed between keywords "MODULE" and "ENDMODULE".
First, the module name and the names of signals visible from outside of this module must be
given as shown in the first fine of Figure 3.4. The module is declared as mult A A with three
signals x, y, and p. Then, the width of these signals are declared in the VAR section. Both x
and y are declared as 4 bits wide, and p are 8 bits.

For each module, section INTERNAL and STRUCTURE define the circuit connections among

38 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

MODULE mt//f_4_4(.r, ij.p)
VAR p[8],r[4],y[4];
ENCODING P = (unsigned) p;

X = (unsigned).r;
Y = (unsigned).!/;

FUNCTION P — X*Y;
VERIFY P==X*Y;
ORDERING x,y;
INTERNAL sl[4],s2[6],s3[7];
STRUCTURE add„stepJO(y[0],x,sl);

ad(LstepA(y[l],x,sl,s2);
add _st ep_2(y[2],x ,s2,s3);
(uULsl ep_3(y[3],x ,s3,p);

ENDMODULE

Figure 3.4: ACV code for Module multAA of a 4x4 multiplier.

logic gates and sub-modules. The INTERNAL section declares the names and widths of internal
vector signals used in the STRUCTURE section to connect the circuit. Vector si, .s2 and s3 are
declared as 4,6 and 7 bits, respectively. There are two types of statements in the STRUCTURE
section. First, the assignment statements, shown in lines 1, 2, 4, 5 and 6 in the STRUCTURE
section of Figure 3.6, are used to rename part of a signal vector, or to connect the output of a
primitive logic gate. Second, the module instantiation statements, shown in the STRUCTURE
section of Figure 3.4, declare which signals are connected to the referenced modules. Note
that we do not distinguish inputs from outputs in module instantiation statements and module
definitions. As we shall see, it is often advantageous to shift the roles of inputs and outputs
as we move up in the module hierarchy. The ACV program will distinguish them during the
verification process based on the information given in the specification sections.

To give the word-level specification for a module, sections ENCODING, FUNCTION, VERIFY
and ORDERING are required in the module definition. The ENCODING section gives the
numeric encodings of the signals declared in the VAR section. For example, vector p is
declared as having an unsigned encoding and its word-level value is denoted by P. The allowed
encoding types are: unsigned, two's complement, one's complement, and sign-magnitude. The
FUNCTION section gives the word-level arithmetic expressions for how this module should be
viewed by modules higher in the hierarchy. For example, if module mult A A were used by a
higher level module, its function would be to compute output P as the product of inputs A' and
Y. In general, the variable on the left side of "==" will be treated as output and the variables
on the right side will be treated as inputs. The VERIFY section declares the specification

3.2. VERIFICATION SYSTEM: ARITHMETIC CIRCUIT VERIFIER 39

which will be verified against its circuit implementation. In the multiplier example, the module
specification is the same as its function. In other cases, such as the SRT divider example in next
section, these two may differ to allow a shifting of viewpoints as we move up in the hierarchy.
The ORDERING section not only specifies the BDD variable ordering for the inputs but also
defines which signals should be treated as inputs during the verification of this module. The
variable ordering is very important to verification, because our program does not currently do
dynamic variable reordering.

The ACV program proceeds recursively beginning with the top-level module. It performs four
tasks for each module. First, it verifies the sub-modules if they have word-level specifications.
Second, it evaluates the statements in the STRUCTURE section in the order of their appearance
to compute the output functions. For a module in the transition layer, this involves first
computing a BDD representation of the individual module output bits by recursively evaluating
the sub-module's statements given in their STRUCTURE sections. These BDDs are then
converted to a vector of bit-level *BMDs, and then a single word-level *BMD is derived by
applying the declared output encoding. For a module above the transition layer, evaluation
involves composing the submodule functions given in their FUNCTION sections. Third, ACV
checks whether the module specification given in the VERIFY section is satisfied, Finally, it
checks whether the specification given in the VERIFY section implies the module function
given in the FUNCTION section. A flag is maintained for each module indicating whether this
module has been verified. Thus, even if a module is instantiated multiple times in the hierarchy,
it will be verified only once.

For example, the verification of the 4-bit array multiplier in Figure 3.4 begins with the veri-
fication of the four add_step modules. For each one, the structural definition as well as the
structural definitions it references are evaluated recursively using BDDs to derive a bit-level
representation of the module output. These BDDs are converted to *BMDs, and then a word-
level *BMD is derived by computing the weighted sum of the bits. ACV checks whether the
circuit matches the specification given in its VERIFY section. The specification of addstep
module i is Out = In + 2' * y * X, where In is a partial sum input (0 for i=0), y is a bit of the
multiplier and Out is the output of the module.

Assuming the four addstep modules are verified correctly, ACV derives a *BMD representation
of the multiplier output. It first creates *BMD variables for the bit vectors x and y (4 each),
and computes *BMD representations of X and Y by computing weighted sums of these
bits. It evaluates the addstep instantiations to derive a word-level representation of module
output. First, it computes si by evaluating the FUNCTION statement Out = y * X of module
add.stepS) for the bindings y = y0 and X = X. Then it computes s2 by evaluating the
FUNCTION statement Out = In + 2 * y * X of module addMepA for the bindings In = s\,
y = 2/i, and X = X. This process continues for the other two modules, yielding a *BMD for

40 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

c > I >

pd_table*~ srt stage

'

i '

—* multiply "^

adder

*

left_shift_2

' ' t

d I i

pd_table*~ srt stage

'

i'

ql~* multiply^

adder

♦
left_shift_2

' ' t

D

I I
P

M =

4* (P. -QO.JD)

qo: i+l n+i
qo
n 1+7 n+i

(a) (b) (c)

Figure 3.5: Block level representation of SRT divider stage from different perspectives.
(a) The original circuit design, (b) The abstract view of the module, while verifying it. (c) The
abstract view of the module, when it is referenced.

P equivalent to P = (((y0 * A') + 2 * Vl * A') + 22 * y2 * A") + 23 * y3 * A. Note that whether
a module argument is an input or an output is determined by whether it has a binding at the
time of module instantiation. ACV then compares the *BMD for P to the one computed by
evaluating A * Y and finds that they are identical. Finally, checking whether the specification
in the VERIFY section implies the functionality given in the FUNCTION section is trivial for
this case, since they are identical.

3.3 Additional Techniques

In order to verify the integer circuits, which generate more than 1 word-level output such
as carry-save adders(CSA) and dividers, we developed some techniques within hierarchical
verification approach. We use radix-4 SRT division as an example to explain several additional
verification methodologies, and to illustrate the use of these methodologies in ACV language.

A divider based on the radix-4 SRT algorithm is an iterative design maintaining two words of
state: a partial remainder and a partial quotient, initialized to the dividend and 0, respectively.
Each iteration extracts two bits worth of quotient, subtracts the correspondingly weighted value
of the divider from the partial remainder, and shifts the partial remainder left by 2 bit positions.
The logic implementing one iteration is shown in Figure 3.5.a, where we do not show two

3.3. ADDITIONAL TECHNIQUES 41

registers storing partial remainder and partial quotient. The inputs are divisor d and partial
remainder pi} and the outputs are the extracted quotient digit qbi+l (ranging from -2 to 2) and
the updated partial remainder pi+1. The PD table, used to look up the quotient digits based
on the truncated values of the divisor and the partial remainder, is implemented in logic gates
derived from a sum of products form. After the iterations, the set of obtained quotient digits is
converted into the actual quotient by a quotient conversion circuit.

First, we prove the correctness of one iteration of the circuit. The specification is given in [36]
and is shown as Equation 3.2. This specification states that for all legal inputs (i.e., satisfying
the range constraint) the outputs also satisfy the range constraint, and that the inputs and outputs
are properly related. This specification captures the essence of the SRT algorithm.

(SD < 3Pi < SD) ->

{(SD < 3Pi+1 < SD) A [Pi+1 == 4{Pi - QOi+1 * D)]} (3.2)

This specification contains word-level function comparisons such as < and == as well as
Boolean connectives A and ->•. In [30], a branch-and-bound algorithm is proposed to do
word-level comparison operations for HDDs. It takes two word-level functions and generates
a BDD representing the set of assignments satisfying the comparison operation. We adapted
their algorithm for *BMDs to allow ACV to perform the word-level comparisons. Once these
"predicates" are converted to BDDs, we use BDD operations to evaluate the logic expression.

If Equation 3.2 is used to verify this module, the running time will grow exponentially with the
word size, because the time to convert output p,+i in Figure 3.5(a) from a vector of Boolean
functions into a word-level function grows exponentially with the word size. The reason is that
pi+x depends on output vector qbi+1 which itself has a complex function. We overcome this
problem by cutting off the dependence of pi+i on qbi+1 by introducing an auxiliary vector of
variables ql, shown in Figure 3.5(b). One can view this as a cutting of the connection from
the PD table to the multiply component in the circuit design. Now, the task of verifying this
module becomes to prove that Equation 3.3 holds:

{-SD < 3Pi <SDA QOl+x == Ql) ->

{(-SD < 3Pi+1 < SD) A [Pi+1 == 4(Pt - Ql * D)]} (3.3)

In the actual design, the requirement that QOi+\ == Ql is guaranteed by the circuit structure.
Hence Equation 3.3 is simply an alternate definition of the module behavior. By this method-
ology, the computing time of verifying this specification is reduced dramatically with a little
overhead (the computing time of performing QOi+i == Ql and an extra AND operation).
The major difference between this cutting methodology and the hierarchical partitioning is
that the latter decomposes the specification into several sub-specifications, but the former only

42 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

MODULE sristage(p. d, qo, pi)
VAR qo[3],ql[3],p[9lcl[6lpl[9];
EQUIVALENT (qo,ql);
ENCODING P = (twocomp) p;

PI = (twocomp)/) 1;
D = (unsigned)f/;
QO = (signmag)go;
Ql = (signmag)fyl;

FUNCTION PI == 4*(P-QO*D);
VERIFY

(3*P < S*D & 3*P > -S*D &Ql==QO&D> 2**5)
-+ (3*P1 < 8*D & 3*F1 > -S*D & PI ==4*(P-Q1*D));

ORDERING ql,p,d;
INTERNAL ph [l],dh [4],/ [9] ,n qd[9] ,r [10];
STRUCTURE ph =p[2 .. 8];

dh = d[l .. 4];
pdJable[ph. dh, qo);
*el = f/o[0];
iv2 = qo[l];
7i eg = not(f/o[2]);
shifter(d, ?rl, w2.t);
nega.ter(t, neg, nqd);
adder(p, nqd. neg. r);
leftshiftJ2{r,pl);

ENDMODULE

Figure 3.6: ACV code for Module srtstage.

introduces auxiliary variables to simplify the computation. We can also apply this methodology
to verify the iteration stage of such similar circuits as restoring division, restoring square root
and radix-4 SRT square root.

Module srtstage, shown in Figure 3.6, implements the function of one SRT iteration for a
6x6 divider using the ACV language. Vector variables, p, d, ejo and pi in Figure 3.6, represent
signal vectors, pt, d, cfol+1 and ;Ti+] in Figure 3.5(a), respectively. Their encoding and ordering
information is given in the relevant sections. Modules s h ifte r and n ego t e r implements module
multiply in Figure 3.6(a). Since *BMDs can only represent integers, we must scale all numbers
so that binary point is at the right. We specify one additional condition in the specification:

33. ADDITIONAL TECHNIQUES 43

o
o

%
fl>
to

o

Q

±
D

srt_stage

GO I
srt_stage

Ql I
srt_stage

G2 J
i?

o
o

<
n>
0)

o
3

*

±
D

srt_stage

■QO I
srt_stage

'Ql I
srt_stage

EEJ
i?

(b)

Figure 3.7: Block level representation of a 6 x 6 SRT divider from two different perspec-
tives, (a) The original circuit design, (b) the abstract view of the module, while verifying
it.

that the most significant bit of the divider must be 1, by the term D > 2**5.

The support for our "cutting" methodology arises in several places. First, vector gl is declared
in the VAR and ORDERING sections with the same size as qo, and is therefore treated as a
"pseudo input", i.e., an input invisible to the outside. Then, the equivalence of signals qo and
ql is declared in the EQUIVALENT section. The original signal qo must appear first in the
pair. While evaluating the statements in the STRUCTURE section, ACV automatically uses
ql's value instead of go's value for signal qo once signal qo has been assigned its value. For
example, all appearances of signal qo after the pd.table instantiation in Figure 3.6 will use
ql's value (a *BMD Ql using three Boolean variables) instead of its original value (a *BMD
function of inputs P and D) when evaluating these statements. Finally, the encoding method
of ql is declared the same as qO and Equation 3.3 is used in the VERIFY section instead of
Equation 3.2.

Figure 3.7(a) shows the block level representation of a 6x6 SRT divider. Since module
srt.stage performs a cycle of SRT division, we instantiate it multiple times, effectively unrolling
the sequential SRT division into a combinational one, and compose them with another module
Conversion which takes the set of quotient digits generated from the stages and converts
them into a quotient vector with an unsigned binary representation. The divider takes two
inputs P and D, goes through 3 srtstage and 1 Conversion modules, and generates the
outputs Q and R. Module Conversion takes a set of quotient digits, generated from the

44 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

MODULE srt.d.ivJ6j6{p, (I q, r)
VAR p[6], d[6], q[6], r[9],q0[3],ql[3], </2[3];
ENCODING P = (unsigned) p;

D = (unsigned) d;
Q = (unsigned) q;
R = (twocomp) r;
QO = (signmag) qO;
<51= (signmag) <?1;
Q2 = (signmag) ql;

FUNCTION R == 2**6 * P - 4*D*Q;
VERIFY (3*P < S*D & 3*P > -8*£> & D > 2**5) ->

((2**6* P)== 4*D*Q + R);
ORDERING p, r/, q2.q\.q0;
INTERNAL P0[9],pl[9],p2[9];
STRUCTURE ;J0[0 .. 5]= p\

7?0[6 .. 8]= 0;
srtstage(pO. d. qO. pi);
srtstagc{pl.d, ql.p2);
srtstage(p2. d, q2. r);
Convcrsion(q. qO. ql.q2);

ENDMODULE

Figure 3.8: ACV description of Module srtJivJß.6.

srtstages, and converts them into a vector in the unsigned binary form. Assume module
Conversion takes inputs q0, —, qn, and produces the output q. The specification of this module
is Q = Qn + 4 * Qn-i + ... + 4" * Qo, where Q and Q, are the word-level representations of q
and cji, 0 < i < n.

With the partitioning shown in Figure 3.7(a), we cannot directly apply hierarchical verification,
because the outputs of module srtstage do not have unique functional definitions. The
redundant encoding of the quotient digits in the SRT algorithm allows, in several cases, a
choice of values for the quotient digits. Fortunately, we do know the relation between inputs
and outputs: PJ+i = 4 * (P, — QOt+\ * D). We exploit the fact that the correctness of the
overall circuit behavior does not depend on the individual output functions, but rather on their
relation. Therefore we can apply a technique similar to one used to verify circuits with carry-
save adders[21] treating the quotient output as an input when this module is instantiated. Figure
3.5(c) shows this abstract view of the srtstage module when it is referenced. The abstract

3.4. EXPERIMENTAL RESULTS 45

view of the SRT divider is then changed as shown in Figure 3.7(b), and described in ACV as
shown in Figure 3.8. The quotient output vectors ql, ql and qO (denoted by Ql, Ql and QO
for the word-level representation) of three srtstage modules are changed to pseudo inputs
by declaring them in the VAR, ENCODING and ORDERING sections. With this additional
information, the circuit is effectively changed from Figure 3.7(a) to Figure 3.7(b) without
modifying the physical connections.

Assume both srtstage and conversion modules are verified. During verification of module
srt-div-6j6, when ACV evaluates the first srtstage statement, vector qO has its word value
QO and is treated as an input to module srtstage to compute the value of vector pi. Therefore,
the value of vector pi is 4 * (P - QO * D) and this becomes an input to the second srtstage.
ACV repeats the same procedure for the other srtstage statements to compute the value of R
which now depends on P, D, QO, Ql and Q2. It also computes the value of Q, which depends
on QO, Ql and Q2, from module Conversion. The specification of this 6x6 SRT Radix-4
divider we verified is: (-SD < 3P < W A D > 2s) -> (P * 26 == 4 * Q * D + R). The
constraints , -8D <3P <SD and D > 25, required for the first srtstage, specify the input
range constraints. Under these input constraints, the circuit performs the division, specified by
the relation P*26 = 4*Q*D + R. Since QO, Ql and Q2 can be arbitrary values, we cannot
verify the divider's output range constraint: -SD < 3R < SD. It can be deduced manually
from the initial condition and the input and output constraints of the srtstage modules.

3.4 Experimental Results

All of our results were executed on a Sun Sparc Station 10. Performance is expressed as the
number of CPU seconds and the peak number of megabytes (MB) of memory required.

Table 3.1 shows the results of verifying a number of multiplier circuits with different word
sizes. Observe that the computational requirements grow quadratically, caused by quadratical
growth of the circuit size, except Design "seq" which is linear. The design labeled "CSA"
is based on the logic design of ISCAS'85 benchmark C6288 which is a 16-bit version of the
circuit. These results are especially appealing in light of prior results on multiplier verification.
A brute force approach based on BDDs cannot get beyond even modest word sizes. Yang et
al [97] have successfully built the OBDDs for a 16-bit multiplier, requiring over 40 million
vertices. Increasing the word size by one bit causes the number of vertices to increase by a
factor of approximately 2.87, and hence even more powerful computers will not be able to get
much beyond this point.

Compared with other multipliers, the verification of CSA multiplier is slower, because the
verification of a carry-save adder is slower than a carry-propagate adder. The designs labeled

46 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

Sizes 16x16 32x32 64x64 128x128 256x256
CSA 4.68(sec) 20.08 78.55 351.18 1474.55

0.83(MB) 1.19 2.31 6.34 21.41
Booth 2.37 8.18 27.47 128.87 535.18

0.77 1.09 2.12 5.94 20.41
BitPair 1.90 5.76 15.43 69.68 288.70

0.74 0.93 1.53 3.56 11.12
Seq 1.08 2.41 5.30 14.35 36.13

0.70 0.76 0.96 1.41 2.75

Table 3.1: Verification Results of Multipliers. Results are shown in seconds and Mega Bytes.

Sizes 16x16 32x32 64x64 128x128 256x256
srt-div 16.25(sec)

1.16(MB)
23.58
1.47

40.40
2.19

109.63
4.47

398.68
10.47

r-div 5.53
0.71

26.02
0.89

153.13
1.56

1131.82
4.22

8927.18
15.34

r-sqrt 8.35
0.77

54.85
1.12

320.60
3.12

2623.11
14.97

20991.35
98.31

Table 3.2: Verification Results of Dividers and Square Roots. Results are shown in seconds
and Mega Bytes.

"Booth" and "BitPair" are based on the Booth and the modified Booth algorithms, respectively.
Verifying the BitPair circuits takes less time than the Booth circuits, because it has only half
the stages. Comparing these results with the results given in [21], we achieve around 3 to 4
times speedup, because we exploited the sharing in the module hierarchy.

Design "Seq" is an unrolled sequential multiplier obtained by defining a module corresponding
to one cycle of operation and then instantiating this module multiple times. The performance
of Design "Seq" is another example to demonstrate the advantage of sharing in our verification
methodology. The complexity of verifying this multiplier is linear in the word size, since the
same stage is repeated many times.

Table 3.2 shows the computing time and memory requirement of verifying divider and square
root circuits for a variety of sizes. We have verified divider circuits based on a restoring
method and the radix-4 SRT method. For the radix-4 SRT divider, the computing time grows
quadratically, because we exploit the sharing property of the design and apply hierarchical

3.5. RELATED WORK 47

verification as much as we can. For both restoring divide and square root, the computing time
grows cubically in the word size. This complexity is caused by verifying the subtracter. While
converting the vector of BDD functions into word-level *BMD function for the output of the
subtracter, the intermediate *BMD size and operations grow cubically, although, the size of
final *BMD function is linear.

3.5 Related Work

Our approach has to partition the circuits into hierarchical forms. However, some design may
not have hierarchical structures for us to verify. For example, the optimized design usually is
in the flattened netlist format. To overcome this constraint, Hamaguchi et al [52] proposed a
backward substitution method to compute the output of integer multipliers without any circuit
knowledge. For a 64x64 multiplier, they reported 22,340 seconds of CPU time, while our
approach only requires 27.47 seconds.

Clarke et al [30, 33] presented word-level SMV based on BDDs for Boolean functions, HDDs
for integer functions and a layered backward substitution method (a variant of hamaguchi's
method) [29]. For integer multipliers, their complexity grows cubically, but the constant
factor is much smaller than Hamaguchi's. Chen et al [29] have applied word-level SMV to
verify arithmetic circuits in one of Intel's processors. In this work, floating-point circuits
were partitioned into several sub-circuits whose specifications can be expressed in terms of
integer operations, because HDDs can not represent floating-point functions efficiently. Each
sub-circuits were verified in a flattened manner. They reported 508 seconds to verify a 64 bit
multiplier and 194 seconds to verify a 64-bit sequential divider on a HP 9000 workstation with
256MB, which is at least 2.5 times faster than Sun Sparc 10.

Both Hamaguchi's and layered backward substitution approach have cubical growth for the
correct multipliers, while our approach has quadratic growth. In general, compared with
approaches with backward substitution methods, our approach achieves greater speedup for the
larger circuits. For the incorrect multipliers, both backward substitution methods cannot build
*BMDs or HDDs for the outputs, because *BMDs or HDDs explodes exponentially in size.
However, our approach can easily detect the bugs while verifying the lower modules of the
design.

48 CHAPTER 3. VERIFICATION OF INTEGER CIRCUITS

Chapter 4

Representation for Floating-Point
Functions

When applied to verify floating-point circuits, our hierarchical approach with *BMDs has two
major problems. First, the decision diagram explodes in size, when the output of the rounding
module is computed from the word-level functions obtained from the previous module of the
circuit. This problem will be illustrated more detail in Chapter 5. Second, *BMD and/or HDDs
cannot represented floating-point functions without the use of rational edge weights. Thus, a
new representation and verification methodology is needed to verify the floating-point circuits
such as adders and multipliers. In this chapter, we present a representation, multiplicative
Power HDD (*PHDD), to address the first problem. *PHDDs can represent floating-point
functions efficiently and can be used to verify the floating-point circuits.

The rest of this chapter is organized as followings. Section 4.1 illustrates the Hmitations of
*BMDs and HDDs in representing floating-point functions. The data structure for *PHDDs are
described in Section 4.2. The *PHDD representations for integer and floating-point functions
are shown in Section 4.3. Section 4.4 shows experimental results to illustrate the advantages
of *PHDDs compared with *BMDs.

4.1 Reasons for A New Diagrams

To verify floating-point circuits, we must have a word-level diagram that can represents floating-
point functions efficiently, especially for IEEE floating-point encoding: (- l)si9n ■ 2^x~bias) ■ M,
where X and M use unsign binary encodings and bias is a constant. As summarized in

49

50 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

Section 1.2.1, many word-level decision diagrams have been proposed to represent word-
level functions efficiently. However, these diagrams do not have compact representations for
floating-point functions.

x y f
0 0 1
0 1 2
1 0 4
1 1 8

(a)

/

: 3

(c)

Figure 4.1: An integer function with Boolean variables, / = l + y + 3.r + 3.ry, is represented
by (a) Truth table, (b) BMDs, (c) *BMDs, (d) HDDs with Shannon decompositions. The
dashed-edges are 0-branches and the solid-edges are the 1-branches. The variables with
Shannon and positive Davio decomposition types are drawn in vertices with thin and thick
lines, respectively.

We used Figure 4.1 and 4.2 to illustrate the limitations of BMDs and HDDs. Figure 4.1 show an
integer function / with Boolean variables x and y represented by a truth table, BMDs, *BMDs,
and HDDs with Shannon decompositions (also called MTBDD [34]). Observe that if variables
x and y are viewed as bits forming 2-bit binary number, X=y+2x, then the function / can be
rewritten as / = 2(y+2j' = 2A. In our drawing, the variables with Shannon and positive Davio
decomposition types are drawn in vertices with thin and thick lines, respectively. The dashed
(solid) line from a vertex with variable x points to the vertex represented function fa, fj, and /,.
(fx, fsr and fsj) for Shannon, positive Davio and negative Davio decompositions, respectively.
Figure 4.1.b shows the BMD representation. To construct this graph, we apply Equation 2.2
to function / recursively. First, with respect to variable x, we can get ./V = 1 + y, represented
as the graph of the dashed-edge of vertex x, and fsx = 3 + 3y, represented by the solid branch
of vertex x. Observe that f$.r can be expressed by 3 x f¥. By extracting the factor 3 from
fsx, the graph became Figure 4.I.e. This graph is called a Multiplicative BMD (*BMD) which
extracts the greatest common divisor (GCD) from both branches. The edge weights combine
multiplicatively. The HDD with Shannon decompositions can be constructed from the truth
table. The dashed branch of vertex x is constructed from the first two entries of the table, and
the solid branch of vertex .T is constructed from the last two entries of the table.

4.2. THE *PHDD DATA STRUCTURE 51

Observe that HDDs with Shannon decompositions and BMDs grow exponentially for this type
of functions. *BMDs can represent them efficiently, due to the edge weights. However, *BMDs
and HDDs cannot represent the functions as / = 2x~bms, where bias is a constant, because
they can only represent integer functions without introducing the rational numbers in the edges
or leaf nodes as shown in Figure 4.2. However, the overhead of storing and manipulating
the rational numbers in the edges or leaf nodes make them less attractive for representing
floating-point functions.

/

1/4

: fT

L

(a)

Figure 4.2: *BMDs and HDDs for function / = 2X~2, where X = x + 2y. (a) *BMDs, (d)
HDDs.

4.2 The *PHDD Data Structure

In this section, we introduce a new data structure, Multiplicative Power Hybrid Decision
Diagrams (*PHDDs), to represent functions that map Boolean vectors to integer or floating-
point values. This structure is similar to that of HDDs, except that they use power-of-2 edge
weights and negation edges. The power-of-2 edge weights allow us to represent and manipulate
functions mapping Boolean vectors to floating-point values. Negation edges can further reduce
graph size by as much as a factor of 2. We assume that there is a total ordering of the variables
such that the variables are tested according to this ordering along any path from the root to a
leaf. Each variable is associated with its own decomposition type and all nodes of that variable
use the corresponding decomposition.

52 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

4.2.1 Edge Weights

*PHDDs use three of HDD's six decompositions as expressed in Equation 2.5. Similar to
*BMDs, we adapt the concept of edge weights to *PHDDs. Unlike *BMD edge weights, we
restrict our edge weights to be powers of a constant c. Thus, Equation 2.5 is rewritten as:

(«>,/> =

C
U
'-(((1-.T)./F + .T-/X

CW-(fr + .T-fSr)
C" - (fr + (1 - X) ■ fST)

[Shannon)
[Positive Dario)
[Negative Davio)

where (w, f) denotes cu' x /. In general, the constant c can be any positive integer. Since the
base value of the exponent part of the IEEE floating-point format is 2, we will consider only c =
2 for the remainder of the paper. Observe that w can be negative, i.e., we can represent rational
numbers. The power edge weights enable us to represent functions mapping Boolean variables
to floating-point values without using rational numbers in our representation.

wl>wO wO=wl wl<wO

C=>

wO

G)
V S^

\ / /
1

wl-wO

A /
) X

Figure 4.3: Normalizing the edge weights.

In addition to the HDD reduction rules [30], we apply several edge weight manipulating rules
to maintain the canonical form of the resulting graph. Let wO and irl denote the weights at
branch 0 and 1 respectively, and /0 and f\ denote the functions represented by branch 0 and 1.
To normalize the edge weights, we chose to extract the minimum of the edge weight wO and
w\. This is a much simpler computation than the GCD of integer *BMDs or the reciprocal
of rational *BMDs [20]. Figure 4.3 illustrates the manipulation of edge weights to maintain a
canonical form. The first step is to extract the minimum of n0 and icl. Then, the new edge
weights are adjusted by subtracting the minimum from wO and ivl respectively. A node is
created with the index of the variable, the new edge weights, and pointers to /o and f\. Base on

4.3. REPRESENTATION OF WORD-LEVEL FUNCTIONS 53

the relation of wO and wl, the resulting graph is one of three graphs in Figure 4.3. Note that at
least one branch has zero weight. In addition, the manipulation rule of the edge weight is the
same for all of the three decomposition types. In other words, the representation is normalized
if and only if the following holds:

• The leaf nodes can only have odd integers or 0.

• At most one branch has non-zero weight.

• The edge weights are greater than or equal to 0, except the top one.

4.2.2 Negation Edge

Negation edges are commonly used in BDDs [9] and KFDDs [42], but not in *BMDs, HDDs
and K*BMDs. Since our edge weights extract powers-of-2 which are always positive, negation
edges are added to *PHDDs to increase sharing among the diagrams. In *PHDDs, the negation
edge of function / represents the negation of /. Note that -/is different from J for Boolean
functions.

Negation edges allow greater sharing and make negation a constant computation. In the
*PHDD data structure, we use the low order bit of each pointer to denote negation, as is done
with the complement edges of BDDs. To maintain a canonical form, we must constrain the
use of negation edges. Unlike KFDDs [42], where Shannon decompositions use a different
method from positive and negative Davio decompositions, *PHDDs use the same method for
manipulating the negation edge for all three decomposition types. *PHDDs must follow these
rules: the zero edge of every node must be a regular edge, the negation of leaf 0 is still leaf 0,
and leaves must be nonnegative. These guarantee a canonical form for *PHDDs.

4.3 Representation of Word-Level Functions

*PHDDs can effectively represent word-level functions that map Boolean vectors into integer
or floating-point values. We first show that *PHDDs can represent integer functions with
comparable sizes to *BMDs. Then, we show the *PHDD representation for floating-point
numbers.

54 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

4.3.1 Representation of Integer Functions

*PHDDs, similar to *BMDs, can provide a concise representation of functions which map
Boolean vectors to integer values. Let .f represent a vector of Boolean variables: x„_i,..., xi,
x0. These variables can be considered to represent an integer A' according to some encoding,
e.g., unsigned binary or two's complement. Figure 4.4 illustrates the *PHDD representations
of several common encodings for integers. In our drawing of *PHDDs, we indicate the edge
weight and leaf node in square boxes with thick and thin lines, respectively. Edge weight i
represents 2' and Unlabeled edges have weight 0 (2°). An unsigned number is encoded as a
sum of weighted bits. The *PHDD representation has a simple linear structure where the leaf
values are formed by the corresponding edge weight and leaf 1 or 0. For representing signed
numbers, we assume .T„_I is the sign bit. The two's complement encoding has a *PHDD
representation similar to that of unsigned integers, but with bit ;r„_i having weight -2"_1

represented by the edge weight ?? - 1 and the negation edge. Sign-magnitude integers also
have *PHDD representations of linear complexity, but with the constant moment with respect
to xn-i scaling the remaining unsigned number by 1, and the linear moment scaling the number
by -2 represented by edge weight 1 and the negation edge. In evaluating the function for
xn-i = 1, we would add these two moments, effectively scaling the number by -1. Note that
it is more logical to use Shannon decomposition for the sign bit.

Figure 4.4 also illustrates the *PHDD representations of several common arithmetic operations
on integer data. Observe that the sizes of the graphs grow only linearly with the word size n.
Integer addition can be viewed as summing a set of weighted bits, where bits x ,• and y; both have
weight X represented by edge weight i. Integer multiplication can be viewed as summing a set
of partial products of the form xt2'Y. In summary, while representing the integer functions,
*PHDDs with positive Davio decompositions usually will get the most compact representation
among these three decompositions.

4.3.2 Representation of Floating-Point Numbers

Let us consider the representation of floating-point numbers by IEEE standard 754. For ex-
ample, double-precision numbers are stored in 64 bits: 1 bit for the sign (,S,), 11 bits for the
exponent (EX), and 52 bits for the mantissa (A). The exponent is a signed number represented
with a bias (B) 1023. The mantissa represents a number less than 1. Based on the value of the
exponent, the IEEE floating-point format can be divided into four cases:

{-if* x LA x 2EX'B If 0 < EX < All 1 {normal)
(-If1 x 0.A x 2X~B If EX = 0 (denormal)
NaN If EX = All 1 & A + 0
(-If- x oo // EX = All 1 & A = 0

4.3. REPRESENTATION OF WORD-LEVEL FUNCTIONS 55

Two's Complement Sign-Magnitude X+Y X*Y

Figure 4.4: *PHDD Representations of Integers and Integer operations. Each variable
uses positive Davio decomposition. The graphs grow linearly with word size.

56 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

*PHDDs do not handle infinity and NaN (not a number) cases in the floating-point representa-
tion. Instead, assume they are normal numbers.

Figure 4.5 shows *PHDD representations for 2EX and 2EX ~B using different decompositions.
To represent function cEX (in this case c — 2), *PHDDs express the function as a product
of factors of the form c2'tx' = (c2')er". In the graph with Shannon decompositions, a vertex
labeled by variable e,r, has outgoing edges with weights 0 and c2' both leading to a common
vertex denoting the product of the remaining factors. But in the graph with positive Davio
decompositions, there is no sharing except for the vertices on the layer just above the leaf nodes.
Observe that the size of *PHDDs with positive Davio decomposition grows exponentially in the
word size while the size of *PHDDs with Shannon grows linearly. Interestingly, *BMDs have a
linear growth for this type of function, while *PHDDs with positive Davio decompositions grow
exponentially. To represent floating-point functions symbolically, it is necessary to represent
2EX~B efficiently, where B is a constant. *PHDD can represent this type of functions, but
*BMDs, HDDs and K*BMDs cannot represent them without using rational numbers.

ex

tEX EX
(a) 2 with Davio Positive (b) 2 with Shannon

EX-B
(c) 2 with Shannon

Figure 4.5: *PHDD Representations of 2EX and 2EX B. The graph grows linearly in the
word size with Shannon, but grows exponentially with positive Davio.

Figure 4.6 shows the *PHDD representations for the floating-point encoding, where EX has 3
bits, X has 4 bits and the bias i? is 3. The sign Sr and ex variables use Shannon decomposition,

4.3. REPRESENTATION OF WORD-LEVEL FUNCTIONS 57

while variables x use positive Davio. Figure 4.6.a shows the *PHDD representation for the
sign bit (-l)Sx. When Sx is 0, the value is 1; otherwise, the value is -1 represented by the
negation edge and leaf node 1. Figure 4.6.b shows the *PHDD representation for the exponent
part 2EX~3. The graph is more complicated than Figure 4.5.C, because, in the floating-point
encoding, when EX = 0, the value of the exponent is 1 - B, instead of -B. Observe
that each exponent variable, except the top variable ex2, has two nodes: one to represent the
denormal number case and another to represent normal number case. Figure 4.6.c shows the
representation for the mantissa part 0.X obtained by dividing X by 2-3. Again, the division
by powers of 2 requires just adding the edge weight on top of the original graph. Figure 4.6.d
shows the representation for the mantissa part 1.A' which is the sum of 0.A' and 1. The weight
(2-3) of the least significant bit is extracted to the top and the leading bit 1 is represented by the
path with all variables set to 0. Finally, Figure 4.6.e shows the *PHDD representation for the
complete floating-point encoding. Observe that negation edges reduce the graph size by half.
The outlined region in the figure denotes the representation for denormal numbers. The rest
of the graph represents normal numbers. Assume the exponent is n bits and the mantissa is m
bits. Note that the edge weights are encoded into the node structure in our implementation, but
the top edge weight requires an extra node. It can be shown that the total number of *PHDD
nodes for the floating point encoding is 2(n + m) + 3. Therefore, the size of the graph grows
linearly with word size. In our experience, it is best to use Shannon decompositions for the
sign and exponent bits, and positive Davio decompositions for the mantissa bits.

4.3.3 Floating-Point Multiplication and Addition

This section presents floating-point multiplication and addition based on *PHDDs. Here, we
show the representations of these operations before rounding. In other words, the resulting
*PHDDs represent the precise results of the floating-point operations. For floating-point
multiplication, the size of the resulting graph grows linearly with the word size. For floating-
point addition, the size of the resulting graph grows exponentially with the size of the exponent
part.

Let Fx = (-1)5* x vx.X x 2EX~B and FY = (-l)s» x vy.X x 2EY~B, where vx (vy) is
0 if EX (EY) = 0, otherwise, vx (vy) is 1. EX and EY are n bits, and X and Y are m
bits. Let the variable ordering be the sign variables, followed by the exponent variables and
then the mantissa variables. Based on the values of EX and EY, Fx x FY can be written as:
(_l)S*©s„ x 2~2Bx

58 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

(a) Sign: (-1) (b) 2 with Shannon

denormal

(c) Mantissa: O.X (d) Mantissa: l.X (e) Floating Point Encoding

Figure 4.6: Representations of floating-point encodings.

4.3. REPRESENTATION OF WORD-LEVEL FUNCTIONS 59

.<%

K)
; LL

v3k I \
i
i
i

!

Si • rn
1 /

vä) sä
^ij 12I £0 @

£

m
FX*FY

Figure 4.7: Representation of floating-point multiplication.

60 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

21 x 21 x (0.A x 0.1') Case 0 EX = OEY = 0
21 x 2EY x (0.A x 1.1') Case 1 EX = OEY ^0
2EX X21 x (LA' xO.l') Case 2 EX ± 0 EY = 0
2EX X2EY x (i.x x 1.1') Case 3 EX^OEY /o

Figure 4.7 illustrates the *PHDD representation for floating-point multiplication. Observe that
two negation edges reduce the graph size to one half of the original size. When EX = 0, the
subgraph represents the function 0.A x vy.Y x 2E) . When EX ^ 0, the subgraph represents
the function LA' x vy.Y x 2EY. The size of exponent nodes grows linearly with the word size
of the exponent part. The lower part of the resulting graph shows four mantissa products(from
left to right): A x 1', A x (23 + 1), (23 + A) x Y, (23 + A) x (23 + Y). The first and
third mantissa products share the common sub-function Y shown by the solid rectangles in
Figure 4.7. The second and fourth products share the common sub-function 23 + Y shown by
the dashed rectangles in Figure 4.7. In [27], we have proved that the size of the resulting graph
of floating-point multiplication is 6(n + m) + 3 with the variable ordering given in Figure 4.7,
where n and m are the number of bits in the exponent and mantissa parts.

0.X- 2'1.X ti.X 0.X- 0.X- 2»1.X l.X- l.X l.X- 4«1.X 2«'l.X OX l.X- 4'l.X OX
■0.Y 2*1.Y -0.Y -0.Y l.Y 4'I.Y -l.Y 2*1.Y -0.Y 2*1.Y -0.Y -l.Y -0.Y 4*1 Y -l.Y -O.Y

Figure 4.8: Representation of floating-point addition. For simplicity, the graph only shows
sign bits, exponent bits and the possible combinations of mantissa sums.

For floating-point addition, the size of the resulting graph grows exponentially with the size of
the exponent part. In Appendix 8, we have proved that the number of distinct mantissa sums of
Fx + Fy is 2"+3 - 10, where n is the number of bits in the exponent part. Figure 4.8 illustrates
the *PHDD representation of floating-point addition with two exponent bits for each floating-
point operand. Observe that the negation edge reduces the graph size by half. According to
the sign bits of two words, the graphs can be divided into two sub-graphs: true addition and
true subtraction which represent the addition and subtraction of two words, respectively. There
is no sharing among the sub-graphs for true addition and true subtraction. In true subtraction,
l.X - l.Y has the same representation as 0.A' - 0.1'. Therefore, all LA' - 1.1' entries are

4.4. EXPERIMENTAL RESULTS 61

replaced by O.X - O.Y. Since the number of distinct mantissa sums grows exponentially with
the number of exponent bits, it can be shown that the total number of nodes grows exponentially
with the size of exponent bits and grows linearly with the size of the mantissa part. Readers can
refer to [27] for a detailed discussion of floating-point addition, floating-point subtraction can
be performed by the negation and addition operations. Therefore, it has the same complexity
as addition.

In our experience, the sizes of the resulting graphs for multiplication and addition are hardly
sensitive to the variables ordering of the exponent variables. They exhibit a linear growth
for multiplication and exponential growth for addition for almost all possible ordering of the
exponent variables. It is more logical to put the variables with Shannon decompositions on the
top of the variables with the other decompositions.

4.4 Experimental Results

We have implemented *PHDD with basic BDD functions and applied it to verify arithmetic
circuits. The circuit structure for four different types of multipliers are manually encoded in
a C program which calls the BDD operations as well as *BMD or *PHDD operations. Our
measurements are obtained on Sun Sparc 10 with 256 MB memory.

4.4.1 Integer Multipliers

Table 4.1 shows the performance comparison between *BMD and *PHDD for different integer
multipliers with different word sizes. For the CPU time, the complexity of *PHDDs for the
multipliers still grows quadratically with the word size. Compared with *BMDs, *PHDDs
are at least 6 times faster, since the edge weight manipulation of *PHDDs only requires
integer addition and subtraction, while *BMDs require a multiple precision representation for
integers and perform costly multiple precision multiplication, division, and GCD operations.
While increasing the word size, the *PHDD's speedup is increasing, because *BMDs require
more time to perform multiple precision multiplication and division operations. Interestingly,
*PHDDs also use less memory than *BMDs, since the edge weights in *BMDs are explicitly
represented by extra nodes, while *PHDDs embed edge weights into the node structure.

4.4.2 Floating-Point Multipliers

To perform floating-point multiplication operations before the rounding stage, we introduced
an adder to perform the exponent addition and logic to perform the sign operation in the C

62 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256

Add-Step *BMD 1.40 15.38 354.38 0.67 0.77 1.12
*PHDD 0.20 2.24 39.96 0.11 0.18 0.64

Ratio 7.0 6.8 8.9 6.0 4.3 1.8
CSA *BMD 1.61 26.91 591.70 0.67 0.80 2.09

*PHDD 0.25 3.45 50.72 0.14 0.30 0.88
Ratio 6.4 7.8 11.7 4.8 2.7 2.4

Booth *BMD 2.05 34.09 782.20 0.70 0.86 1.84
*PHDD 0.21 2.97 62.56 0.14 0.30 1.26
Ratio 9.7 11.5 12.5 5.0 2.9 1.5

Bit-Pair *BMD 1.21 17.35 378.64 0.70 0.86 2.34
*PHDD 0.20 2.17 36.10 0.15 0.33 1.33

Ratio 6.0 8.0 10.5 4.7 2.6 1.8

Table 4.1: Performance comparison between *BMD and *PHDD for different integer
multipliers. Results are shown for three different words. The ratio is obtained by dividing the
result of *BMD by that of *PHDD.

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256

Add-Step 0.24 2.29 39.77 0.13 0.18 0.65
CSA 0.29 3.08 53.98 0.14 0.30 0.88
Booth 0.25 3.85 67.38 0.16 0.30 1.26

Bit-Pair 0.21 2.10 38.54 0.15 0.33 1.33

Table 4.2: Performance for different floating-point multipliers. Results are shown for three
different mantissa word size with fixed exponent size 11.

4.4. EXPERIMENTAL RESULTS 63

program. Table 4.2 shows CPU times and memory requirements for verifying floating-point
multipliers with fixed exponent size 11. Observe that the complexity of verifying the floating-
point multiplier before rounding still grows quadratically. In addition, the computation time is
very close to the time of verifying integer multipliers, since the verification time of an 11-bit
adder and the composition and verification times of a floating-point multiplier from integer
mantissa multiplier and exponent adder are negligible. The memory requirement is also similar
to that of the integer multiplier.

4.4.3 Floating-Point Addition

Exponent

Bits
No. of Nodes CPU Time (Sec.) Memory (MB)
23 52 23 52 23 52

4 4961 10877 0.2 0.7 0.4 0.7
5 10449 22861 0.7 1.3 0.7 1.1
6 21441 46845 1.1 3.5 1.1 2.0
7 43441 94829 2.7 6.9 1.9 3.8
8 87457 190813 7.2 16.8 3.6 7.5
9 175505 382797 15.0 41.3 7.2 14.8
10 351617 766781 33.4 103.2 14.3 29.5
11 703857 1534765 72.8 262.4 26.5 54.9
12 1408353 3070749 163.2 573.7 54.1 110.9
13 2817361 6142733 398.3 1303.8 112.5 226.0

Table 4.3: Performance for floating-point additions. Results are shown for three different
exponent word size with fixed mantissa size 23 and 52 bits.

Table 4.3 shows the performance measurements of precise floating-point addition operations
with different exponent bits and fixed mantissa sizes of 23 and 52 bits, respectively. Both
the number of nodes and the required memory double, while increasing one extra exponent
bit. For the same number of exponent bits, the measurements for the 52-bit mantissa are
approximately twice the corresponding measurements for the 23-bit mantissa. In other words,
the complexity grows linearly with the mantissa's word size. Due to the cache behavior, the
CPU time is not doubling (sometimes, around triple), while increasing one extra exponent bit.
For the double precision of IEEE standard 754 (the numbers of exponent and mantissa bits are
11 and 52 respectively), it only requires 54.9MB and 262.4 seconds. These values indicate the
possibility of the verification of an entire floating-point adder for IEEE double precision. For
IEEE extended precision, floating-point addition will require at least 226.4 x 8 = 1811.2MB

64 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

memory. In order to verify IEEE extended precision addition, it is necessary to avoid the
exponential growth of floating-point addition.

4.5 Related Work

The major difference between *PHDD and the other three diagrams is in their ability to represent
functions that map Boolean variables into floating-point values and their use of negation edges.
Table 4.4 summarizes the differences between them.

Features *PHDD *BMD HDD K*BMD
Additive weight

Multiplicative weight
Number of decompositions

Negation edge

No
Powers of 2

3
Yes

No
GCD

1
No

No
No
6

No

Yes
GCD

3
No

Table 4.4: Differences among four different diagrams.

Compared to *BMDs [21], *PHDDs have three different decomposition types and a different
method to represent and extract edge weights. These features enable *PHDDs to represent
floating-point functions effectively. *BMD's edge weights are extracted as the greatest common
divisor (GCD) of two children. In order to verify the multiplier with a size larger than 32 bits,
*BMDs have to use multiple precision representation for integers to avoid the machine's 32-
bit limit. This multiple precision representation and the GCD computation are expensive for
*BMDs in terms of CPU time. Our powers of 2 method not only allows us to represent
the floating-point functions but also improves the performance compared with *BMD's GCD
method.

Compared with HDDs having six decompositions [30], *PHDDs have only three of them. In
our experience, these three decompositions are sufficient to represent floating-point functions
and verify floating-point arithmetic circuits. The other three decomposition types in HDDs
may be useful for other application domains. Another difference is that *PHDDs have negation
edges and edge weights, but HDDs do not. These features not only allow us to represent the
floating-point functions but also reduce the graph size.

*PHDDs have only multiplicative edge weights, while K*BMDs [41] allow additive and mul-
tiplicative weights at the same time. The method of extracting the multiplicative weights is
also different in these two representations. *PHDDs extract the powers-of-2 and choose the
minimum of two children, but K*BMDs extract the greatest common divisor of two children

4.5. RELATED WORK 65

like *BMDs. The additive weight in K*BMDs can be distributed down to the leaf nodes in
*PHDD by recursively distributing to one or two branches depending on the decomposition
type of the node. In our experience, additive weights do not significantly improve the sharing
in the circuits we verified. The sharing of the additive weight may occur in other application
domains.

66 CHAPTER 4. REPRESENTATION FOR FLOATING-POINT FUNCTIONS

Chapter 5

Extensions to Word-Level SMV

In Chapter 3, we presented a *BMD-based hierarchical verification approach for verification
of integer circuits. *PHDDs were presented in Chapter 4 to provide a compact representation
for integer and floating-point functions. Can we use *PHDDs in a hierarchical verification
approach, similar to the one described in Chapter 3, to verify floating-point circuits such as
adders? In this chapter, we will first discuss why *PHDD-based hierarchical verification is
not suitable for floating-point circuits. We must either verify them in a flattened manner using
pure *PHDDs or in a hierarchical manner using *PHDDs and a theorem prover. We prefer the
former approach, because it can be fully automatic. Word-level SMV, introduced by Clarke
et al [33], verifies integer circuits in a flattened manner and uses HDDs to represent integer
functions. Since *PHDDs improve on HDDs, we integrate *PHDDs into word-level SMV for
verification of floating-point circuits and develop several methodologies and additional *PHDD
algorithms to enable the verification of floating-point circuits in a flattened manner.

The remainder of this chapter is organized as follows. Section 5.1 illustrates the drawbacks of
*BMD-based hierarchical verification. Section 5.2 discusses word-level SMV with *PHDDs
and two additional techniques for verification of floating-point circuits. Two additional *PHDDs
algorithms are presented in Section 5.3.

5.1 Drawbacks of *BMD-Based Hierarchical Verification

In Chapter 3, we described our hierarchical verification method based on *BMDs to verify
integer circuits such as multipliers and dividers. One of the main drawbacks of this approach is
that the design must have a hierarchical form. From our experience, industrial designs usually
do not have the module boundaries needed by our hierarchical verification approach. Since our

67

68 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

approach has to partition the circuits into hierarchical modules, two circuit designs with the
same functionality (e.g., integer multipliers based on adder-step and booth-encoding) can yield
to two different hierarchical forms. Thus, the verification method for one circuit design cannot
be reused directly on another design.

xs xe Xm

\\\

r Y, Yn, s em

\\\

Sign, Mantissa and
Exponent operations

<
T T LT„

Rounding

' M Re I««
Figure 5.1: Block Diagrams of floating-point circuits

Another drawback is that our hierarchical verification approach cannot be easily extended to
verify floating-point circuits, even using *PHDDs. The problem is caused by the rounding
module in the floating-point circuits. Usually, floating-point circuits can be partitioned into two
parts: the rounding module and the circuits before the rounding module. Figure 5.1 shows this
partition of floating-point circuits, where Xs, Xt,Xm and Ys, Y(,Ym are the sign, exponent and
mantissa bits of inputs A' and V", respectively. TS,T(, Tm and Rs, Rm, Rm are the sign, exponent
and mantissa bits of the intermediate result T, generated from the circuit before rounding, and
the final result R after rounding, respectively. Usually, the number of bits in Tm is larger than
Xm. Rm has the same size as Xm. The lower bits of Tm are used in rounding module to
perform rounding operation. The decision diagrams explode in size during the composition of
specifications in the rounding module, when the output of the rounding module is computed
from the word-level functions obtained from the previous module of the circuit.

We use a floating-point multiplier with the round-to-nearest mode as an example to illustrate
this problem in more detail. Assume the size of Tm is 2???, where m is the size of A',„.
Figure 5.2 shows the bit vectors Tm and Rm for the mantissa, where Tm is composed of
(tim-\,tim-2, —,h,to) and Rm is composed of (rTO_1?rm_2, ...,ri,r0). When t2m-\=0, the

5.1. DRAWBACKS OF *BMD-BASED HIERARCHICAL VERIFICATION 69

hm-l ^2m-2t
• •• *m+l K-i • •• to

}m-lt Jlm-2 • •• h

Figure 5.2: Bit vectors of Tm and #n

rounding circuits use bit im_i (denoted L0) and vector 7)0=(£m-2, ...,t0) to decide whether 1
should be added into vector ThQ = (t2m-2, —,tm, tm_i). When t2m-i=l, the rounding circuits
use bit tm (denoted Lx) and vector Tn=(tm-i,..., t0) to decide whether 1 should be added into
vector Th\ = (t2m-i,...,tm+i,tm). Tm, Rm, Th0, Ti0, Th\ and Tn are encoded as unsigned
integers. The specification for the mantissa output Rm can be written as Equation 5.1:

Rr,

Tm hm-i = 0 & \roundo
Tho + 1 hm-i = 0 & roundo
Thi hm-i = 1 & Iroundi
Thi + 1 hm-i = 1 & roundi

(5.1)

where ! represent Boolean complement, roundQ is (T/0 >
and roundi is (Th0 > 2m~l) V (Li == 0 A Tn == 2m~l

> 2m-

)•

2)V(L0==OAr,o==2m-2)

Since Tm is represented as a word-level function generated from the module before rounding in
our hierarchical approach, L0, L\, Th0, Tt0, Th\ andTn must be computed from Tm. For example,
Thi is obtained from Tm/2m and Li is obtained from Thi%2. All these division and modular
operations many grow exponentially. The BDDs for Li=0 and L0=0 grows exponentially with
the value of m, because these are the middle bits of mantissa multiplier [14]. In our experience,
we could not generate them when m > 16.

Because of these drawbacks, we decided to verify floating-point circuits in a flattened manner.
Word-level SMV [33] is designed to verify circuits in the flattened manner. Thus, we improved
word-level SMV by integrating *PHDDs and incorporating several techniques described in
the rest of this chapter. The main advantage of this approach is that we can provide reusable
specifications for the floating-point circuits such as adders and converters and we can make the
verification process automatic.

70 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

5.2 Word-Level SMV with *PHDDs

Model checking is a technique to determine which states satisfy a given temporal logic formula
for a given state-transition graph. In SMV [75], BDDs are used to represent the transition
relations and set of states. The model checking process is performed iteratively on these
BDDs. SMV has been widely used to verify control circuits in industry, but for arithmetic
circuits, particularly for ones containing multipliers, the BDDs grows too large to be tractable.
Furthermore, expressing desired behavior with Boolean formulas are not appropriated.

To verify arithmetic circuits, word-level SMV [33] with HDDs extended SMV to handle word
level expressions in the specification formulas. In word-level SMV, the transition relation as
well as those formulas that do not involve words are represented using BDDs. HDDs are used
only to compute word-level expressions such as addition and multiplication. When a relational
operation is performed on two HDDs, a BDD is used to represent the set of assignments that
satisfies the relation. The BDDs for temporal formulas are computed in the same way as in
SMV. For example, the evaluation the formula AG(R — A + B), where R, A and B are
word-level functions and AG is a temporal operator, is performed by first computing the HDDs
for R, A, B and A + B, then generating BDDs for the relation R = A + B, and finally applying
the AG operator to these BDDs. The reader can refer to [33] for the details of word-level SMV.

v xn

Region 3

wi> > wo

Region 2

zk > > z(.

Region 1

yn> •>j0

Figure 5.3: Horizontal division of a combinational circuit,

5.2. WORD-LEVEL SMV WITH *PHDDS 71

We have integrated *PHDDs into word-level SMV and introduced relational operators for
floating-point numbers. As in word-level SMV, only the word-level functions are represented
by *PHDDs and the rest of the functions are represented by BDDs.

Zhao's thesis [99] describes the layering backward substitution, a variant of Hamaguchi's
backward substitution approach [52], although the public released version of word-level SMV
does not implement this feature. We have implemented this feature in our system. The main
idea of layering backward substitution is to virtually cut the circuit horizontally by introducing
auxiliary variables to avoid the explosion of BDDs while symbolically evaluating bit level
circuits. Figure 5.3 shows a horizontal division of a combinational circuit with primary inputs
x0, • • •, xm and outputs j/o, • • •, yn- For 0 < i < n, m = fi(xo,..., xm) where /,■ is a Boolean
function, but it may not be feasible to be represented as a BDD. The circuit is divided into
several layers by declaring some of the internal nodes as auxiliary variables. In this example,
Vi = fu(zo, ■ • ■ i Zk); Zi = f2i(w0, ...,wi); and Wi = f3i(x0,...,xm). Since each fa is
simpler than /4, the BDD sizes to represent them are generally much smaller. When we try to
compute *PHDD representation of the word (y0,..., y„) in terms of the variables x0,...,xm,
we first compute the *PHDD representation of the word in terms of variables zo,...,Zk as
F = J2fLo 2! x fu(zo,..., Zk). Then we replace each zu one at a time, by fn{wo,..., wi).
After this, we have obtained the *PHDD representation for the word in terms of variables
w0, — ivi. Likewise, we can replace each w{ by /3,(x0,..., xn). In this way, the *PHDD
representation of the word in terms of primary input can be computed without building BDDs
for each output bit.

The drawback of the backward substitution is that the *PHDDs may grow exponentially during
the substitution process, since the auxiliary variables may generalize the circuit behavior for
some regions. For example, suppose that the internal nodes zk and zk-\ under the original
circuit have the relation that both of them can not be 0 at the same time and that the circuit of
region 1 can only handle this case. After introducing the auxiliary variables, variables zk and
Zk-\ can be 0 simultaneously. Hence, the word-level function F represents a function more
general than the original circuit of region 1. This generalization may cause the *PHDD for F
to blowup.

5.2.1 Conditional Symbolic Simulation

To partially solve this problem, we introduced conditional symbolic simulation into word-level
SMV. Symbolic simulation [19] performs the simulation with inputs having symbolic values
(i.e., Boolean variables or Boolean functions). The simulation process builds BDDs for the
circuits. If each input is a Boolean variable, this approach may cause the explosion of BDD
sizes in the middle of the process, because it tries to simulate the entire circuit for all possible

72 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

inputs at once. The concept of conditional symbolic simulation is to perform the simulation
process under a restricted condition, expressed as a Boolean function over the inputs.

In [63], Jain and Gopalakrishnan encoded the conditions together with the original inputs as new
inputs to the symbolic simulator using a parametric form of Boolean expressions. However,
this approach is difficult to integrate into word-level SMV. Thus, we propose another approach
to integrate conditional symbolic simulation into word-level SMV. Our approach is to apply the
conditions directly during the symbolic simulation process. Right after building the BDDs for
the output of each logic gate, the conditions are used to simplify the BDDs using the restrict [39]
algorithm. Then, the simplified BDDs are used as the input function for the gates connected to
this one. This process is repeated until the outputs are reached. This approach can be viewed
as dynamically extracting the circuit behavior under the specified condition without modifying
the actual circuit.

Mx<My
d

E - E x ^y

E < E x ^ y

Figure 5.4: The compare unit in floating-point adders.

We use the following example to illustrate our conditional symbolic simulation process. Fig-
ure 5.4 shows the circuit for the compare unit in floating-point adders. Assume that k is the
condition for a simulation run represented by a BDD, and the BDDs for signals d, e, and g are
evaluated under our conditional symbolic simulation. In the simulation process, the BDD for
signal / is evaluated by applying the And operations to the BDDs for signals d and e. Then,
this BDD of signal / is simplified by the restrict operation with the condition Ä-. After that, the
simplified BDD of signal / is used as one of the input to the Or gate. With proper conditions,
this conditional symbolic simulation can reduce the BDDs of some internal signals to constant
0 or 1. For example, when the condition k is Er = Ey - 10, signals e and g become 0 and
1, respectively. On the other hand, conditional symbolic simulation sometimes cannot reduce
the BDDs of some internal signals at all. For example, condition k can not take any effect to
reduce the BDDs of signal d, because the function of d is independent of the condition k.

5.3. ADDITIONAL *PHDD ALGORITHMS 73

5.2.2 Short-Circuiting Technique

Using conditional symbolic simulation, it is possible that the BDDs for some internal signals
can be very large or cannot be build, but the BDDs for the final outputs are very small. For
example, the BDDs of signal d in Figure 5.4 can be very difficult to build under the condition
Ex — Ey- 10. If we try to build the BDDs for signal d and then signal e, then we cannot finish
the job. However, if we build the BDD for signal e first, which will be 0, then we can directly
return 0 for signal / without building the BDD for signal d.

Based on this observation, we introduce a short-circuiting technique to eliminate unnecessary
computations as early as possible. The word-level SMV and *PHDD packages are modified
to incorporate this technique. In the *PHDD package, the BDD operators, such as And and
Or, are modified to abort the operation and return a special token when the number of newly
created BDD nodes within this BDD call is greater than a size threshold. In word-level SMV,
for an And gate with two inputs, if the first input evaluates 0,0 will be returned without building
the BDDs for the second input. Otherwise, the second input will be evaluated. If the second
input evaluates to 0 and the first input evaluates to a special token, 0 is returned. Similar
technique is applied to Or gates with two inputs. Nand(Nor) gates can be decomposed into
Not and And (Or) gates and use the same technique to terminate earlier. For Xor and Xnor,
the result is a special token, if any of the inputs evaluates to a special token. If the special
token is propagated to the output of the circuit, then the size threshold is doubled and the output
is recomputed. This process is repeated until the output BDD is built. For example, when
the exponent difference is 30, the size threshold is 10000, the ordering is the best ordering of
mantissa adder, and the evaluation sequence of the compare unit shown in Figure 5.4 is d, e, f,
g and h, the values of signals d, e, f, g and h will be special token, 0, 0, 1, and 1, respectively,
by conditional forward simulation. With these modification, the new system can verify all of
the specifications for both types of FP adders by conditional forward simulation. We believe
that this short-circuiting technique can be generalized and used in the verification which only
exercises part of the circuits.

5.3 Additional *PHDD algorithms

5.3.1 Equalities and Inequalities with Conditions

To verify arithmetic circuits, it is very useful to compute the set of assignments that satisfy F ~
G, where F and G are word level functions represented by HDDs or *PHDDs, and ~ can be any
one of=,^, <,>,<,>. In general, the complexity of this problem is exponential. However,
Clarke, et al. presented a branch-bound algorithm to efficiently solve this problem for a special

74 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

class of HDDs, called linear expression functions using the positive Davio decomposition [30].
The basic idea of their algorithm is first to compute H = F — G and then to compute the
set of assignments satisfying H ~ 0 using a branch-and-bound approach. The complexity of
subtracting two HDDs is 0(| F | x | G |). This algorithm can be shown to work well for the special
class of HDDs (i.e., linear expression functions). However, the complexity of this algorithm
for other classes of HDDs or *PHDDs can grow exponentially. In the verification of arithmetic
circuits, HDDs and *PHDDs are not always in the class of linear expression functions. Thus,
the H ~ 0 operations can not be computed for most cases. In fact, Bryant and Chen have
shown that H = 0 is NP-Hard for BMDs.

To solve this problem, we introduce relational operations with conditions to compute cond =4>
{F ~ G), where F and G are word level functions and cond is a Boolean function. First, it
computes H = F - G and then computes the set of assignments satisfying // ~ 0 under the
condition cond. For example, the algorithm for H = 0 under the condition cond is given in
Figure 5.5. This algorithm produces the BDDs satisfying H = 0 under the condition cond, and
is similar to the algorithm in [30], except that it takes an extra BDD argument for the condition
and uses the condition to stop the equality checking of the algorithm as soon as possible. As
a convention, when the condition is false, the returned result is false. In line 1, the condition
is used to stop this algorithm, when the condition is false. In line 16, the condition is also
used to stop the addition of two *PHDDs and the further equality checking in lines 18 and 19,
respectively. The efficiency of this algorithm will depend on the BDDs for the condition. If the
condition is always true, then this algorithm has the same behavior as Clarke's algorithm. If the
condition is always false, then this algorithm will immediately return false regardless of how
complex the *PHDD is. We will demonstrate the usage of this algorithm to reduce computation
time dramatically in Section 6.2.2.

5.3.2 Equalities and Inequalities

The efficiency of Clarke's algorithm for relational operations of two HDDs depends on the
complexity of computing H = F-G. ThecomplexityofsubtractingtwoHDDsisO(|F| x |G'|)
and similar algorithms can be used for these relational operators with *PHDDs. However, the
complexity of subtracting two *PHDDs using disjunctive sets of supporting variables may grow
exponentially. For example, the complexity of subtraction of two FP encodings represented
by *PHDDs grows exponentially with the word size of exponent part [28]. Thus, Clarke's
algorithm is not suitable for these operators with two *PHDDs having disjunctive sets of
supporting variables.

We have developed algorithms for these relational operators with two *PHDDs having disjunc-
tive sets of supporting variables. Figure 5.6 shows the new algorithm for computing BDDs

5.3. ADDITIONAL *PHDD ALGORITHMS 75

bdd cond_equal_0(< Wh,h >, cond)
1 if cond is FALSE, return FALSE;
2 if < wh, h > is a terminal node, return (< wh, h >)= 0 ? TRUE : FALSE;
3 if the operation (cond_equal_0,< Wh, h >,cond) is in computed cache,

return result found in cache;
4 r <— top variable of h and corad;
5 < WhQ, ho>,< Whv hi ><- 0- and 1-branch of < Wh, h > with respect to variable r ;
6 condo, cond\ «- 0- and 1-branch of con<f with respect to variable r ;
7 bound_value(< w^, /i0 >, upperho, lowerho); bound_value(< whl,h>, upperhl, lowerhl);
8 if (r uses the Shannon decomposition) {
9 if (upperh0 < 0|| lower^ > 0) res0 «- FALSE;
10 else res0 <- cond_equal_0(< tw^0, ho >,cond0);
11 resi is computed similar to reso;
12 } else if (r uses the positive Davio decomposition) {
13 reso is computed the same as reso in Shannon decomposition;
14 upperhl 4- upper^ + upperho; lower^ <- lower^ + lower^;
15 if (upper hx < 0\\lowerhl > 0) re«i <- FALSE;
16 else if (condx is FALSE) resi <- FALSE;
17 else {
18 < wÄI, /j0 > f- addition(< whl,hi>,< who, h0 >);
19 resi <- cond-equal_0(< WhY,h\ >, cond\);
20 }
21 } else if (r uses the negative Davio decomposition) {

reso and res\ computation are similar to them in positive Davio decomposition.
22 }
23 result <— find BDD node (r, reso, res{) in unique table, or create one if not exists;
24 insert (cond_equal_0, < Wh,h >, cond, result) into the computed cache;
25 return result;

Figure 5.5: algorithm for H = 0 with conditions. H =< wh,h >.

76 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

bdd greater_than(< «7, / >, < irg.g >)
1 if both < w/, f > and < wg. g > are terminal nodes,

return ((< «7, />)>(< wg,g >)) ? TRUE : FALSE;
2 min f- minimum(«7, w5);
3 wj <— «7 — min; wg <— u'g— min;
4 if the operation (greater.than, < «7, f >, < ?r5.5 >) is in computed cache,

return result found in cache;
5 r f- top variable of / and g
6 < wj0, /o >, < «7,1/1 ><- 0- and 1-branch of < 1/7. / > with respect to variable r ;
7 < wgo, go >, < M'31, </i >«— 0- and 1-branch of < irg.g > with respect to variable r ;
8 bound_value(< wj0. /o >, upper j0. hirerj0); bound_value(< u'go.go >, vppcrgo. loweruo);
9 bound_value(< 1*7,,/1 >, upperjr lowerj^; bound_value(< wgi,g\ >,upper gvhwergx);
10 if (r uses the Shannon decomposition) {
11 if (upperj0 < hirergo) rcso <— FALSE;
12 else if (lower j0 > uppergo) re$o «— TRUE;
13 else res0 <- greater_than(< «70. /o >,< wgo, g0 >);
14 resi is computed similar to reso;
15 } else if (r uses the positive Davio decomposition)!
16 reso is computed the same as res0 in Shannon decomposition;
17 upper/, «- upperfl + upperj0; uppergx f- vppergi + uppergo;
18 lowerji <— lower jx + lowerf0; hwergi <— hwergi + lowergo\
19 if (upper/, < lowergi) res\ •*— FALSE;
20 else if (lower jt > uppergx) rcs\ <—TRUE;
21 else {
22 < «7,, /1 > <- addition(< «7,, /1 >, < wh. fQ >);

< wgi,9i > *- addition(< wgrgi >, < irgo.go >);
23 res\ <- greater_than(< «7,,/i >,< «'Sl,5i >)'.
24 }
25 } else if (r uses the negative Davio decomposition) {
26 reso and ?e.si are computed similar to positive Davio decomposition.
27 }
28 result f- find BDD node (r, reso, res\) in unique table, or create one if not exists.
29 insert (greater_than, < w/,f>,< wg.g >,result) into the computed cache
30 return result;

Figure 5.6: Improved algorithm for F > G. F =< «7, / > and G =< wg<g >.

5.3. ADDITIONAL *PHDD ALGORITHMS 77

for the set of assignments that satisfy F > G. Similar algorithms are used for other relational
operators. The main concept of this algorithm is to directly apply the branch-and-bound ap-
proach without performing a subtraction, whose complexity could be exponential. First, if both
arguments are constant, the algorithm returns the comparison result of the arguments. In line
2 and 3, weights wj and wg are adjusted by the minimum of them to increase the sharing of
the operations, since (2wf x /) > (2W<> x g) is the same as (2wf~min x /) > (2W<> ~min x g),
where min is the minimum of wj and wg. Line 4 checks whether the comparison is in the
computed cache and returns the result if it is found. In line 5 to 7, the top variable r is chosen
and the 0- and 1-branches of / and g are computed. In lines 8 and 9, function bound„value
is used to compute the upper and lower bounds of these four sub-functions, The algorithm of
bound-value is similar to that described in [30], except edge weights are handled. The com-
plexity of bound-value is linear in the graph size. When r uses the Shannon decomposition,
lines 11 and 12 try to bound and finish the search for the 0-branch. If it is not successful,
line 13 recursively calls this algorithm for 0-branch. The 1-branch is handled in a similar way.
When r uses the positive Davio decomposition, the computation for 0-branch is the same as
that in Shannon decomposition, since < wSl, /i > is the linear moment of < wj,f > and the
1-cofactor of < wf, f > is equal to < wh, jx > + < wIo, f0 >, the lower(upper) bound of the
1-cofactor of < wj, f > is bounded by the sum of lower (upper) bounds of < to/,, /i > and
< wh) /o > • For the 1 -branch, new upper and lower bounds for the 1 -cofactors are recomputed
in lines 17 and 18. In lines 19 and 20, new upper and lower bounds are used to bound and
stop the further checking for 1-cof actor. If it is not successful, lines 21-24 add the constant
and linear moments to get the 1-cof actors and recursively call this algorithm for the 1-cof actor
case. For the negative Davio decomposition, the 0- and 1-branches are handled similar to the
positive Davio decomposition. After generating res0 and resi for 0- and 1-cofactors, the result
BDD is built and this computed operation is inserted to the computed cache for future lookups.

This algorithm works very well for two *PHDDs with disjunctive set of supporting variables,
while Clarke's algorithm has exponential complexity. For example, let F = Yl!=o 2Txx* and
G = n"=o 22xy' • The variable ordering is xn,yn,..., x0, y0 and all variables use the Shannon
decomposition. The *PHDDs for F and G have the structure shown in Figure 5.7. It can be
proven that the complexity of this algorithm for this type of function is O^) if the computed
cache is a complete cache.

78 CHAPTER 5. EXTENSIONS TO WORD-LEVEL SMV

t
t

Figure 5.7: *PHDDs for F and G.

Chapter 6

Verification of Floating-Point Adders

In this chapter, we present the verification of a floating-point (FP) adder, obtained from the
University of Michigan, as an example to validate our *PHDD representation and extended
word-level SMV system. First, we briefly describe the floating-point adder design. Our
methodology to verify floating-point adders is based on partitioning the input space to divide
the specifications of floating-point adders into several hundred sub-specifications. Since we
partition the input space, we introduce a BDD-based methodology to analyze the coverage of
the input space by our specifications. Each sub-specifications can be verified within 5 minutes
including counterexample generation if there is a design error in the input partition. Our
system found five types of bugs in the design. For the corrected design, the verification of all
specifications can be finished in 2 CPU hours on a Sun UltraSparc II machine.

The remainder of this chapter is organized as follows. Section 6.1 illustrates the design of the
floating-point adder. The specifications of FP adders is presented in Section 6.2. Section 6.3
discusses the verification of the FP adder obtained from the University of Michigan including
the design errors. Section 6.4 describes the verification of conversion circuits which convert
the input from one format to another.

6.1 Floating-Point Adders

Let us consider the representation of FP numbers by IEEE standard 754. Double-precision FP
numbers are stored in 64 bits: 1 bit for the sign (Sx), 11 bits for the exponent (Ex), and 52 bits
for the mantissa (Nx). The exponent is a signed number represented with a bias (B) of 1023.
The mantissa (Nx) represents a number less than 1. Based on the value of the exponent, the
IEEE FP format can be divided into four cases:

79

80 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

(-1)*' x l.Av x 2£j-B // 0 < ET < All 1 {normal)
(-l)Sj x O.Ar

r x 21-6 // £, = 0 {ck normal)
NaN If Er = All 1 & Nx ^ 0
(-l)Sj x oc // £, = All 1 & Ar

r = 0
where NaN denotes Not-a-Number and oc represents infinity. Let M.r = LAV or 0.Nx. Let m
be the number of mantissa bits including the bit on the left of the binary point and n be number
of exponent bits. For IEEE double precision, ?7?=53 and ??=11.

Due to this encoding, an operation on two FP numbers can not rewritten as an arithmetic
function of two inputs. For example, the addition of two FP numbers A" (5r, Ex, Mr) and Y
(Sy, Ey, My) can not be expressed as X + Y, because of special cases when one of them is
NaN or ±oo.

Y
+ -■DC' F + OC NaN

X
—oo — OO —oc * NaN
F — OC' Round (X + Y) + OC NaN

+ OC * +oc + OC NaN
NaN NaN NaN NaN NaN

Table 6.1: Summary of the FP addition of two numbers of A' and Y
normal and denormal numbers. * indicates FP invalid arithmetic operands.

F represents the

Table 6.1 summarizes the possible results of the FP addition of two numbers Ar and Y, where F
represents a normalized or denormalized number. The result can be expressed as Bonn cl(X+Y)
only when both operands have normal or denormal values. Otherwise, the result is determined
by the case. When one operand is +oo and the other is -oc, the FP adder should raise the FP
invalid arithmetic operand exception.

Figure 6.1 shows the block diagram of the SNAP FP adder designed at Stanford University [83].
This adder was designed for fast operation based on the following facts. First, the alignment
(right shift) and normalization (left shift) needed for addition are mutually exclusive. When a
massive right shift is performed during alignment, the massive left shift is not needed. On the
other hand, the massive left shift is required only when the mantissa adder performs subtraction
and the absolute value of exponent difference is less than 2 (i.e. no massive right shift). Second,
the rounding can be performed by having the mantissa adder generate A + C, A + C + 1 and
A + C + 2, where A and C are the inputs of the mantissa adder shown in Figure 6.1, and using
the final multiplexor to chose the correct output.

In the exponent path, the exponent subtracter computes the difference of the exponents. The
MuxAbs unit computes the absolute value of the difference for alignment. The larger exponent

6.1. FLOATING-POINT ADDERS 81

sr s
X V

Ex ^ M, M

'

"

" ' 1 '

Subtracter Swap

f -*-

\ 1

iMxAfry " - A "
Exp. Se/ec

" w 1 ,
Path
Select Mux " <

Sign Select ii

A ,C ir"

Adder
' '

—* (IRS
LZA \

Encode "

OnesGompl ' 1—».

<

'

Le# SA(#

i' "
Exp.
Offset Fine Adjust ■^

'

£!xp. Adjust
' \< U w

Mux ■4

i' } ' "

■'out "out M. out

Figure 6.1: The Stanford FP adder.

82 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

is selected as the input to the exponent adjust adder. During normalization, the mantissa may
need a right shift, no shift or a massive left shift. The exponent adjust adder is prepared to
handle all of these cases.

In the mantissa path, the operands are swapped as needed depending on the result of the
exponent subtracter. The inputs to the mantissa adder are: the mantissa with larger exponent
(A) and one of the three versions of the mantissa with small exponent (C): unshifted, right
shifted by 1, and right shifted by many bits. The path select unit chooses the correct version
of C based on the value of exponent difference. The version right shifted by many bits is
provided by the right shifter, which also computes the information needed for the sticky bit.
The mantissa adder performs the addition or subtraction of its two inputs depending on the signs
of both operands and the operation (add or subtract). If the adder performs subtraction, the
mantissa with smaller exponent will first be complemented. The adder generates all possible
outcomes (A + C,A + C+1, and A + C + 2) needed to obtain the final, normalized and rounded
result. The A + C + 2 is required, because of the possible right shift during normalization.
For example, when the most significant bits of A and C are 1, A + C will have m + 1 bits
and must be right shifted by 1 bit. If the rounding logic decides to increase 1 in the least
significant bit of the right shifted result, it means add 2 into A + C. When the operands have
the same exponent and the operation of the mantissa adder is subtraction, the outputs of the
adder could be negative. The ones complementer is used to adjust them to be positive. Then,
one of these outputs is selected by the GRS unit to account for rounding. The GRS unit also
computes the true guard (G), round(/?), sticky (5) bits and the bit to be left shifted into the
result during normalization. When the operands are close (the exponent difference is 0, 1, or
-1) and the operation of the mantissa adder is subtraction, the result may need a massive left
shift for normalization. The amount of left shift is predicted by the leading zero anticipator
(LZ4) unit in parallel with the mantissa adder. The predicted amount may differ by one from
the correct amount, but this 1 bit shift is made up by a l-bit fine adjust unit. Finally, one of the
four possible results is selected to yield the final, rounded, and normalized result based on the
outputs of the path select and GRS units.

As an alternative to the SNAP design, the ones complementer after the mantissa adder can be
avoided, if we ensure that input C of the mantissa adder is smaller than or equal to input A,
when the exponent difference is 0 and the operation of mantissa adder is subtraction. To ensure
this property, a mantissa comparator and extra circuits, as shown in [95], are needed to swap
the mantissas correctly. Figure 6.2 shows a variant of the SNAP FP adder with this modification
(the compare unit is added and the ones complementer is deleted). This compare unit exists
in many modern high-speed FP adder designs [95] and makes the verification harder described
in Section 5.2.2. Figure 6.3 shows the detailed circuit of the compare unit which generates the
signal to swap the mantissas. The signal ET < Ey comes from the exponent subtracter. When
Ex < Ey or Ex = Ey and Mx < My (i.e., h =1), A is My (i.e. the mantissas are swapped).

6.1. FLOATING-POINT ADDERS 83

sx sy E
i

X Ey M, M

'

"

' ' "• ♦ ■\r -i— '

f ■«-

Subtractor ~* 'Compare' —► Swap
1
fuxAbs ' > * A "

Exp. Selec
<£ Sricifcy £if

" w w ,
Path
Siotont Mux " '

Sign Select ,,
,C ,-/! 1

Adder
"

—^ GRS
LZA t

Encode '

Le# 5/i^ ►

" "
Exp.
Offset Fine Adjust

1 ' i

Exp. Adjust
' r y \r w

■*

 ^ Mux

" \ ' T

■'out -"out M. out

Figure 6.2: A variant of Stanford FP adder.

84 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

Otherwise, A is Mr.

Mx<My
d

Ex=Ey
e

E < E - x ^ y

Figure 6.3: Detailed circuit of the compare unit.

To verify this type of floating-point adders, the BDDs for the output bits cannot be built using
conditional symbolic simulation, when the exponent difference is large. This is caused by
a conflict of variable orderings for the mantissa adder and the mantissa comparator, which
generates the signal MT < My (i.e. signal d in Figure 6.3). The best variable ordering for the
comparator is to interleave the two vectors from the most significant bit to the least significant
bit (i.e., xm-\, ym-\, ..., XQ, yd). Table 6.2 shows the CPU time in seconds and the BDD size
of the signal d under different variable orderings, where ordering offset represents the number
of bit offset from the best ordering. For example, the ordering is xm_u ..., .r„,_6, ,y„,_i, .T„,_7,

ym-2, -, z'o, 2/5. •••> 2/0, when the ordering offset is 5. Clearly, the BDD size grows exponentially
with the offset. In contrast to the comparator, the best ordering for the mantissa adder is .r„,_i,
..., rcm_jfc_i, ym-\, a-m_A_2, ym-2, -. ^"o, IJk, •••, 2/o, when the exponent difference is k. Thus,
the BBDs for the outputs of floating-point adders cannot be built using conditional symbolic
simulation.

Observe that signals e and g cannot be 1 simultaneously and signal d is only useful when e
is 1. Thus, the BDDs of signal d must be built only when Er = Ey. In this case, it has no
problem building signal d, because the best ordering for both mantissa adder and compare unit
are the same. The short-circuiting technique described in Section 5.2.2 is used to overcome
this ordering conflict problem, when Er ^ Ey.

6.2 Specifications of FP Adders

In this section, we focus on the general specifications of the FP adder, especially when both
operands have denormal or normal values. For the cases in which at least one of operands is a
NaN or oo, the specifications can be easily written at the bit level. For example, when both
operands are NaN, the expected output is A« AT (i.e. the exponent is all Is and the mantissa

6.2. SPECIFICATIONS OF FP ADDERS 85

Ordering Offset BDD Size CPU Time (Sec.)
0 157 0.68
1 309 0.88
2 608 1.35
3 1195 2.11
4 2346 3.79
5 4601 7.16
6 9016 13.05
7 17655 26.69
8 34550 61.61
9 67573 135.22
10 132084 276.23

Table 6.2: Performance measurements of a 52-bit comparator with different orderings.

is not equal to zero). The specification can be expressed as the "AND" of the exponent output
bits is 1 and the "OR" of the mantissa output bits is 1.

When both operands have normal or denormal values, the ideal specification is OUT =
Round{X + Y). However, FP addition has exponential complexity with the word size of the
exponent part for *PHDD. Thus, the specification must be divided into several sub-specifications
for verification. According to the signs of both operands, the function X + Y can be rewritten
as Equation 6.1.

X + Y (-1)
s■ / {2Ex~B x Mx + Myx 2Ev-B) Sx = Sy (true addition) x

(2E*~B xMx-Myx 2Ey~B) Sx ^ Sy (true subtraction^

Similarly, for FP subtraction, the function X - Y can be also rewritten as true addition when
both operands have different signs and true subtraction when both operands have the same sign.

6.2.1 True Addition

The *PHDDs for the true addition and subtraction still grow exponentially. Based on the sizes
of the two exponents, the function X + Y for true addition can be rewritten as Equation 6.2.

X + Y ;-iy
2EX-B x ^Mx + ^My y> -^ Ey < Ex

2Ey-B x (Mv + ^Mx >> -jj Ey > Ex (6.2)

86 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

Mr

M, out

M,

Mv

LGR S

M. out

A/„

LGR S

(a) Ex-Ey<m (b)Ex-E>=m

Figure 6.4: Cases of true addition for the mantissa part.

where i = \ET — Ey\. When Ey < ET, the exponent is ET and the mantissa is the sum of M7.
and My right shifted by (ET — Ey) bits (i.e. My » (ET — Ey) in the equation). Er — Ey can
range from 0 to 2" — 2, but the number of mantissa bits in FP format is only m bits. Figure 6.4
illustrates the possible cases of true addition for Ey < Er based on the values of Er — Ey. In
Figure 6.4.a, for 0 < Ex — Ey < m, the intermediate (precise) result contains more than m bits.
The right portion of the result contains L, G, R and S bits, where L is the least signification bit
of the mantissa. The rounding mode will use these bits to perform the rounding and generate
the final result(Mour) in m-bit format. When ET — Ey> m as shown in Figure 6.4.b, the right
shifted My only contributes to the intermediate result in the G, R and S bits. Depending the
rounding mode, the output mantissa will be Mr or MT + 1 * 2~m+1. Therefore, we only need
one specification in each rounding mode for the cases Er — Ey > m. A similar analysis can be
applied to the case Ey > Ex. Thus, the specifications for true addition with rounding can be
written as:

Ca\[i\ =» OUT = Round{{-\)s* x 2E'~B x (Mr + (My » ?))) 0 < i < m
OUT = Round((-l)s* x 2E*~B x (Mr + {My » m))) i > m
j. riTTT — D ,,;// i\S.r .., iE,,-B w /" »f i tur ^^ -\\\ r\ ^ ■ .

all*]

Cal

Ca3[i] => OUT = Round{(-l)s* x 2Ey~B x (My + (MT » »'))) 0 < i < m
Ca4 => OUT = Rou.nd{(-l)s* x 2F

(6.3)

tEy-B (My + (Mr»m))) i> m

where Ca\[i], Cai, Caj[i] and Ca4 are Cond.add&.Er = Ey + /, OoiuLadd& Er > Ey + m,
Cond-addScEy = Ex + i, and Cond^add&Ey > ET -f rn, respectively. Cond.add represents
the condition for true addition and exponent range (i.e. normal and denormal numbers only).
OUT is composed from the outputs Sout, Eoui and Mout- Conditions Er — Ey = i and
Ex - Ey > m are represented by 2El - 2E»+l and 2El > 2E,J+m. Both sets of variables
must use Shannon decomposition to represent the FP function efficiently in [28]. With this
decomposition, the graph sizes of ET and Ey are exponential in *PHDDs, but 2Er and 2Ey will

6.2. SPECIFICATIONS OF FP ADDERS 87

have linear size. While building BDDs and *PHDDs for OUT from the circuit, the function
on left side of =4> will be used to simplify the BDDs automatically by conditional forward
simulation. We observed that the best ordering for the specification represented by *PHDDs is
the same ordering as the best ordering for the mantissa adder.

The number of specifications for true addition is 2m + 1. For instance, the value of m for IEEE
double precision is 53, thus the number of specifications for true addition is 107. Since the
specifications are very similar to one another, they can be generated by a looping construct in
word-level SMV.

6.2.2 True Subtraction

The specification for true subtraction can be divided into two cases: far (]EX — Ey\ > 1) and
close (Ex — Ey=0,l or -1). For the far case, the result of mantissa subtraction does not require
a massive left shift (i.e., LZA is not active). Similar to true addition, the specifications for true
subtraction can be written as Equation 6.4.

Csi\i] =» OUT = Round{{-\)s* x 2E*~B x (Mx - (M„ » i))) 2<i<m
Cs2 =* OUT = Round{{-\)s* x 2E*-B x (Mx - (M„ » m))) i > m
Cs3[i]^OUT = Round{(-l)sy x 2E«~B x (My - (Mx » i))) 2<i<m (6'4)

Cs4 => OUT = Round((-l)sy x 2Ey~B x (M„ - (Mx » m))) i > m

where Csl\i], Cs2, Cs3[i] and Cs4 are Cond.subScEx = Ey + i, Cond.sub &EX > Ey + m,
Cond-.sub&Ey = Ex + i, and Condsub&Ey > Ex + m, respectively. Condsub represents
the condition for true subtraction.

For the close case, the difference of the two mantissas may generate some leading zeroes such
that normalization is required to product a result in IEEE format. For example, when Ex - Ey

= 0,MX- My=0.0...01 must be left shifted by m - 1 bits to 1.0...00. The number of bits to left
shift is computed in the LZA circuit and fed into the left shifter to perform normalization and
into the subtracter to adjust the exponent. The number of bits to be left shifted ranges from 0 to
m and is a function of Mx and My. The combination of left shifting and mantissa subtraction
make the *PHDDs become irregular and grow exponentially. Therefore, the specifications for
these cases must be divided further to take care of the exponential growth of *PHDD sizes.

Based on the number of leading zeroes in the intermediate result of mantissa subtraction, we
divide the specifications for the true subtraction close case as shown in Equation 6.5.

Ccl\i] =* OUT = Round((-l)s° x 2E*~B x (Mx - (My » 1))) 0 < i < m
Cc2\i] =}► OUT = Round((-l)sy x 2^~B x (My - (Mx » 1))) 0 < i < m
Cc3\i]) => OUT = Round((-l)s* x2E°~B x {Mx - My)) \<i<m (6-5)

CJS\) => OUT = Round((-l)sy x 2Ey~B x (M„ - Mx)) l<i<m

88 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

where where Cci[i], CC2[?],Cf3[>], and Cc4[/] are Cond sub & Ex = £v + 1 & ££[■/], CoiuLsvb
&Ey = Ex + 1 & L,S'[?], Condsub&Er = Ey&Mx > My &' LS\i], and CoiuLsnb&
Ey = Er + l&Mr < il/j, & I.S'[?], respectively. I5'l[/], Z^/j, LS3[i] and Z,5'4[/'] represent
the conditions that the intermediate result has i leading zeroes to be left shifted. LS\[i],
LS2[i], LS3[i] and LS4[i] are computed by 2"'-*'-1 < Mx - {My » 1) < 253~\ 2"-''-1 <
My - {Mx » 1) < 2"!-\ 2'"-'-1 < A/, - My < 2"'-', and 2m — 1 < My - Mx < 2m-'),
respectively. A special case is that the output is zero when Ex is equal to Ey and Mx is equal
to My. The specification is as follows: (Condsub &EX = Ey &MX = My) =» Of/"T = 0.

6.2.3 Specification Coverage

Since the specifications of floating-point adders are split into several hundred sub-specifications,
do these sub-specifications cover the entire input space? To answer this question, one might
use a theorem prover to check the case splitting. In contrast, we propose a BDD approach to
compute the coverage of our specifications.

Our approach is based on the observation that our specifications are in the form "cond =$■ out —
expected .result" and cond is only dependent on the inputs of the circuits. Thus, the union of
the conds of our specifications, which can be computed by BDD operations, must be TRUE
when our specifications cover the entire input space. In other words, the union of the conds can
be used to compute the percentage of input space covered by our specifications and to generate
the cases which are not covered by our specifications.

6.3 Verification of FP Adders

In this section, we used the FP adder in the Aurora III Chip [56], designed by Dr. Huff as part
of his PhD dissertation at the University of Michigan, as an example to illustrate the verification
of FP adders. This adder is based on the same approach as the SNAP FP adder [83] at Stanford
University. Dr. Huff found several errors with the approach described in [83]. This FP adder
only handles operands with normal values. When the result is a denormal value, it is truncated
to 0. This adder supports IEEE double precision format and the 4 IEEE rounding modes. In
this verification work, we verify the adder only in round to nearest mode, because we believe
that the round to nearest mode is the hardest one to verify. All experiments were carried out on
a Sun 248 MHz UltraSPARC-II server with 1.5 GB memory.

The FP adder is described in the Verflog language in a hierarchical manner. The circuit was
synthesized into flattened, gate-level Verflog, which contains latches, multiplexors, and logic

6.3. VERIFICATION OF FP ADDERS 89

gates, by Dr. John Zhong at SGI. Then, a simple Perl script was used to translate the circuit
from gate-level Verilog to SMV format.

6.3.1 Latch Removal

Huff's FP adder is a pipelined, two phase design with a latency of three clock cycles. We
handled the latches during the translation from gate-level Verilog to SMV format. Figure 6.5.a
shows the latches in the pipelined, two phase design. In the design, phase 2 clock is the
complement of the phase 1 clock. Since we only verify the functional correctness of the design
and the FP adder does not have any feedback loops, the latches can be removed. One approach
is to directly connect the input of the latch to the output of the latch. This approach will
ehrninate some logic circuits related to the latch enable signals as shown on the right side of the
latches in Figure 6.5.a. With this approach, the correctness of these circuits can not be checked.
For example, an design error in the circuit, that always generated Os for the enable signals of
latches, can not be found, if we use this approach to remove the latches.

Our approach for latch removal is based on this observation: the data are written into the
latches when the enable signals are 1. To ensure the correctness of the circuits for the enable
signals, the latches can be replaced by And gates, as shown in Figure 6.5.b, without losing the
functional behavior of the circuit. Since phase 2 clock is the complement of the phase 1 clock,
we must replace the phase 2 clock by the phase 1 clock. Otherwise the circuit behavior will
be incorrect. With this approach, we can also check the correctness of circuits for the enable
signals of the latches.

6.3.2 Design with Bugs

In this section, we describe our experience with the verification of a FP adder with design
errors. During the verification process, our system found several design errors in Huff's FP
adder. These errors were not caught by more than 10 million simulation runs performed by
Dr. Huff in 4 days. Huff partitioned the simulation runs into three main operating regimes:
alignment equal to 0, equal to 1, and greater than 1. For each regime, random floating-point
numbers were fed to the design for simulation.

The first error we found is the case when A + C = 01.111...11, A + C + 1=10.000...00, and the
rounding logic decides to add 1 to the least significant bit (i.e., the result should be A + C + 1),
but the circuit design outputs A+C as the result. This error is caused by the incorrect logic in the
path select unit, which categorized this case as a no shift case instead of a right shift by 1. While
we were verifying the specification of true addition, our system generated a counterexample for

90 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

Phase 1
clock

Phase 2
clock

Phase 1
clock

Phase 1
clock

(a) (b)

Figure 6.5: Latch Removal, (a) The pipelined, two phase design, (b) The design after latch
removal.

this case in around 50 seconds. To ensure that this bug is not introduced by the translation, we
have used Cadence's Verilog simulation to verify this bug in the original design by simulating
the input pattern generated from our system.

The second design error we found is in the sticky bit generation. The sticky bit generation is
based on the table given in page 10 of Quach's paper describing the SNAP FP adder [83]. The
table only handles cases when the absolute value of the exponent difference is less than 54.
The sticky bit is set 1 when the absolute value of the exponent difference is greater than 53 (for
normal numbers only). The bug is that the sticky bit is not always 1 when the absolute value of
the exponent difference is equal to 54. Figure 6.6 shows the sticky bit generation when Er — Ey

= 54. Since A^ has 52 bits, the leading 1 will be the Round (7?) bit and the sticky (5) bit is
the OR of all of Ny bits, which may be 0. Therefore an entry for the case \Er — Ey\ = 54 is
needed in the table of Quach's paper [83].

The third design error occurs in the exponent path. The number of bits (6 bits) generated by
the Encode unit, shown in Figure 6.1, is insufficient for the exponent offset unit, which may
complement the vector and performs sign extension to 11 bits. 6 bits can represent values
from 0 to 63. However, when the value is greater than 31 (i.e. lxxxxx), the vector generated
from the exponent offset unit looks like (11111 lxxxxx) after sign extension. This 11-bit vector
is incorrect and the correct vector should be (00000lxxxxx). Thus, a 7-bit vector must be
generated by the Encode unit to achieve correct sign extension.

The fourth error is that Dr Huff missed one signal (denoted SHrev52 which indicates the

6.3. VERIFICATION OF FP ADDERS 91

1. NY

Nv

LG R S

Figure 6.6: Sticky bit generation, when Ex - Ey= 54.

intermediate result must be left shifted by 52 bits) in the OR gates to generate the 3rd least
significant bit of the exponent offset in the Encode unit.

The fifth error occurs in the LZA unit which predicts the number of leading zeroes to be left
shifted for normalization. When the exponent difference is 1 and A = 1.00...000 and C =
0.11...1111 (right shifted by 1 bit), the intermediate result is 0.00...0001, which must be left
shifted by 53 bits. However, the LZA unit generated the incorrect value: 0 bits. I believe that
this error is the most difficult one to be detected by simulation, since this is the only case in
which intermediate result needs to be left shifted by 53 bits.

In summary, our system found bugs in the mantissa and exponent paths within several minutes.
From our experience, the design errors in the mantissa path do not cause the *PHDD explosion
problem. However, when the error is in the exponent path, the *PHDD may grow exponentially
while building the output. A useful tip to overcome the *PHDD explosion problem is to reduce
the exponent value to a smaller range by changing the exponent range condition in Cond.add
or Condsub in Equation 6.3, 6.4 or 6.5.

6.3.3 Corrected Designs

After identifying the bugs, we fixed the circuit in the SMV format. In addition, we created
another FP adder by adding the compare unit in Figure 6.Lb into Huff's FP adder. This new
adder is equivalent to the FP adder in Figure 6. Lb, since the ones complement unit will not be
active at any time.

To verify the FP adders, we combined the specifications for both addition and subtraction in-
structions into the specification of true addition and subtraction. We use the same specifications
to verify both FP adders. Table 6.3 shows the CPU time in seconds and the maximum memory
required for the verification of both FP adders. The CPU time is the total time for verifying all
specifications. For example, the specifications of true addition are partitioned into 18 groups
and the specifications in the same group use the same variable ordering. The CPU time is the
sum of these 18 verification runs. The FP adder II can not be verified by conditional forward

92 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

Case
CPU Time (seconds) Max. Memory (MB)

FP adder I FP adder II FP adder I FP adder II
True addition 3283 3329 49.07 54.91

True subtraction(/ar) 2654 2668 35.20 35.33
True subtraction (close) 994 1002 53.07 47.78

Table 6.3: Performance measurements of verification of FP adders. FP adder I is Huff's FP
adder with bugs fixed. FP adder II is FP adder I with the compare unit in Figure 6.1.b. For true
subtraction,/ar represent cases \EX - Ey\ > 1, and close represent cases \Er - Ey\ < 1.

simulation without the short-circuiting technique described in Section 5.2.2. The maximum
memory is the maximum memory requirement of these 18 runs. For both FP adders, the verifi-
cation can be done within two hours and requires less than 55 MB. Each individual specification
can be verified in less than 200 seconds.

In our experience, the decomposition type of the subtrahend's variables for the true subtraction
cases is very important to the verification time. For the true subtraction cases, the best
decomposition type of the subtrahend's variables is negative Davio decomposition. If the
subtrahend's variables use the positive Davio decomposition, the *PHDDs of OUT for each
specification can not be built after a long CPU time (> 4 hours).

As for the coverage, the verified specifications cover 99.78% of the input space for the floating-
point adders in IEEE round-to-nearest mode. The uncovered input space (0.22%) is caused by
the unimplemented circuits for handling the cases of any operands with denormal, NaN or oo
values, and the cases where the result of the true subtraction is denormal value.

Our results should not be compared with the results in [29], since the FP adders handle
difference precision (i.e., their adder handles IEEE extended double precision) and the CPU
performance ratio of two different machines is unknown (they used a HP 9000 workstation
with 256MB memory). Moreover, their approach partitioned the circuit into sub-circuits which
are verified individually based on the assumptions about their inputs, while our approach is
implementation-independent.

6.4 Conversion Circuits

The overflow flag erratum of the FIST instruction (FP to integer conversion) [44] in Intel's
Pentium Pro and Pentium II processors has illustrated the importance of verification of conver-
sion circuits [56] which convert the data from one format to another. For example, the MIPS

6.4. CONVERSION CIRCUITS 93

processor supports conversions between any of the three number formats: integer, IEEE single
precision, and IEEE double precision.

We believe that the verification of the conversion circuits is much easier than the verification of
FP adders, since these circuits are much simple than FP adders and only have one operand(i.e.
less variables than FP adders). For example, the specification of the double-to-single oper-
ation, which converts the data from double precision to single precision, can be written as
"(overflow .flag = expected-overflow) A (not overflow .flag =4> (output = expected.output))",
where overflow.flag and output are directly from the circuit, and expected.overflow and ex-
pectedjoutput are computed in terms of the inputs. This specification covers double precision
which cannot be represented in single precision. For example, expectedjoutput is computed by
Round((-l)s x M x 2E~B). Similarly, expected-overflow can be computed from the inputs.

For another example, the specification of the single-to-double operation can be written as
"output = input", since every number represented in single precision can be represented in
double precision without rounding(i.e. the output represents the exact value of input).

94 CHAPTER 6. VERIFICATION OF FLOATING-POINT ADDERS

Chapter 7

Conclusion

7.1 Summary

This thesis set out to provide techniques for verifying arithmetic circuits. In the previous
chapters, we have described word-level decision diagrams and methodologies for the formal
verification of these circuits. First, we introduced Multiplicative Binary Moment Diagrams
(*BMDs) which provide a compact representation for integers functions. *BMD can serve as
the basis for a hierarchical methodology for verifying integer circuits such as multipliers and
dividers. Based on *BMDs and the hierarchical verification methodology, we have verified
several integer circuits such as multipliers, dividers, and square roots.

Our *BMD-based approach cannot be directly applied to verify floating-point circuits. Two
major challenges were that no existing word-level diagrams provide compact representations
for floating-point functions and the decision diagrams explode during the composition of spec-
ifications in the rounding module. To overcome the first problem, we introduced Multiplicative
Power Hybrid Decision Diagrams (*PHDDs) to represent integer and floating-point functions
efficiently The performance comparison between *BMDs and *PHDDs for verification of in-
teger circuits was discussed. To overcome the second problem, we changed our methodology
to verify flattened design of floating-point circuits and described several improvements to
word-level SMV to enable the verification of floating-point circuits such as adders.

We have illustrated the power of these techniques by verifying integer multipliers, dividers
and square roots as well as floating-point adders. Our system found several design errors
while verifying a floating-point adder obtained from the University of Michigan. We also
demonstrated that our specifications are reusable for different implementations of floating-
point adders. The important advantage of our system is that the verification process is fully
automatic.

95

96 CHAPTER 7. CONCLUSION

7.2 Future Work

7.2.1 Floating-Point Multipliers & Dividers

Floating-point adders, multipliers and dividers are the most common components of floating-
point units. We have fully automated the verification of floating-point adders. However, we
still have problems to automate the verification of floating-point multipliers and dividers. The
main obstacle, which prevents us from verifying floating-point multipliers automatically, is that
*PHDDs explode in size for the rounded result of floating-point multiplication and no good
partitioning scheme of the input space was found to resolve this problem. Currently, floating-
point multipliers must be divided into two sub-circuits: rounding module and the circuits before
rounding. Each sub-circuit can be verified individually using word-level SMV with *PHDDs.
However, the composition of the specifications of these sub-circuits can not be done using
*PHDDs. Theorem provers are good candidate to handle this task.

Verification of floating-point dividers is even more challenging than verification of floating-
point multipliers. Most of the circuit designs for floating-point dividers are iterative. The
iterative design must be unrolled to verify the overall correctness of the result before rounding.
Without unrolling, only the correctness of each iteration can be verified separately. Similar to
floating-point multipliers, the rounding module must be verified separately.

It would be interesting to further investigate verification of these two types of floating-point
circuits. One possible direction is to find a good partitioning scheme to partition the input space
into several hundred or thousand partitions such that the verification task for each partition can
be finished in a short time. Another possible direction is to develop another word-level diagram
to provide a compact representation for the rounded result.

7.2.2 Arithmetic Circuits for MMX and DSP

In recent years, many processors have added MMX instructions to speed up the performance of
the multimedia applications. For example, Intel introduced Pentium processors with MMX [50]
in January, 1996 and Pentium II processors (i.e. Pentium Pro with MMX) in May, 1997 [51].
Other vendors such as Digital, HP, Sun and SGI added similar instructions into their proces-
sors [49]. Many of these MMX instructions perform arithmetic operations. Thus, the circuits
for them are arithmetic circuits. Digital Signal Processors (DSP) also contain a lot of arithmetic
circuits.

Most of arithmetic circuits for MMX or DSP are based on integer adders, multipliers and
multiply-accumulate units. Recently, floating-point circuits are being used in MMX and DSP.

7.2. FUTURE WORK 97

For example, Mpact2 introduced by Chromatic at the end of 1996 [98] contains floating-point
adders and multipliers.

In addition to regular arithmetic, circuits for saturated operations are common in both MMX
and DSP. A saturated addition operation on two 32-bit operands will yield the maximum value
representable by 32 bits as the final result when the sum of two operands is greater the maximum
value. We believe that our techniques can be directly applied to verify the circuits for saturated
adders (both integer and floating-point). The verification of circuits for saturated floating-point
multiplication has the same difficulty as normal floating-point multiplication. In addition, our
techniques cannot successfully verify the saturated integer multiplication circuits, because the
*PHDD (*BMD) explodes in size. To be specific, for two 32-bit inputs X and Y, the expected
result will be (X * Y > 232)?232 - 1 : X * Y. We could not compute the BDD for X*Y> 232

and we believe that the *PHDDs for the expected result will grow exponentially with the word
size. Further investigation of this problem is needed to verify this type of integer multiplier.

98 CHAPTER 7. CONCLUSION

Chapter 8

*PHDD Complexity of Floating-Point
Operations

In this Chapter, we prove the *PHDD complexity of floating-point multiplication and addition.
The complexity of floating-point multiplication is shown to be linear in Section A. Section B
shows that the complexity of floating-point addition grows linearly with the mantissa size, but
grows exponentially with the exponent size.

A Floating-Point Multiplication

Let Fx = (-l)
s* x vx.X x 2EX~B and FY = (-if* x vy.X x 2EY~B, where vx (vy) is 0

if EX (EY) = 0, otherwise, vx (vy) is 1. EX and EY are n bits, and X and Y are m bits.
Let the variable ordering be the sign variables, followed by the exponent variables and then the
mantissa variables. Based on the value of EX, Expanding and rearranging the terms of the
multiplication Fx x Fy yields:

FxxFy = (-I)5*©5*/ x {vx.X x 2EX~B) x (vy.Y x 2EY~B

21 x (0.X x vy.Y) x 2m

2EX x (1.X x (vv.Y) x 2EY Case 1:EX^0
- (^sx®sy y2-2Byi 2lx (OX x vy.Y) x2EY CaseO:EX = 0

The following theorem shows that the size of the resulting graph grows linearly with the word
size for the floating-point multiplication.

Theorem 1 The size of the resulting graph of floating-point multiplication is 6(n + m) + 3,
where n and m are the number of bits in the exponent and mantissa parts.

99

100 CHAPTER 8. *PHDD COMPLEXITY OF FLOATING-POINT OPERATIONS

Proof: From Equation 8.1 and Figure 4.7, we know that there are no sharing in the sub-graphs
for EX = 0 and EX ^ 0. For EX = 0, the size of the sub-graph except leaf nodes is the
sum of the nodes for the exponent of Fy (2» — 1 nodes), the nodes for the mantissa of F\ (2/n
nodes), and the nodes for the mantissa of Fy (??? nodes). Similarly, for EX ^ 0, the size of
the sub-graph except leaf nodes is also 2?? + 3??? — 1. The size for the exponent part of F\ is
2?? - 1. The number of nodes for the sign bits and top level edge weight is 3, and the number
of leaf nodes is 2. Therefore, the size of the resulting graph for floating-point multiplication is
6{n + m) + 3. □

B Floating-Point Addition

In this section, we prove that the exact graph size of floating-point addition under a fixed
variable ordering grows exponentially with the size of the exponent and linearly with the size
of the mantissa. Assume that the sizes of the exponent and the mantissa are ?? and ??? bits,
respectively. We assume that the variable ordering is Sr, Sy, ex0, ey0, ..., e.r„_i, ey„-i, .r„,_i,
..., .T0, ym-\,..., j/o-

For floating-point addition, the size of the resulting graph grows exponentially with the size of
the exponent part. The following theorem proves that the number of distinct mantissa sums in
*PHDD representation grows exponentially with the size of the exponent part.

Theorem 2 For floating-point addition F\- + Fy, the number of distinct mantissa sums is
2"+3 _ 10, where n is the number of bits in the exponent part.

Proof: We first show that the floating-point addition can be divided into two cases according
to their sign bits. When ST © Sy is equal to 0, the floating-point addition must be performed as
"true addition" shown as Equation 6.1.

FA- + Fy- = (-l)s* x (2EX-B x vr.X + vy.Y x 2EY~B) (8.2)

When Sx © Sy is equal to l(i.e., they have different sign), the floating-point addition must be
performed as "true subtraction" shown as the following equation.

Fx + Fy = (-l)s*x(2EX-BxvT.X-vy.Yx2EY-B) (8.3)

There is common distinct mantissa sum among true addition and true subtraction, since one
performs addition and another performs subtraction.

B. FLOATING-POINT ADDITION 101

Let us consider the true addition operation first. Based on the relation of EX and EY,
Equation 8.2 can be rewritten as the following equation:

Fx + FY = (-

_1)S*

l)s*

_1)5.

x2EY- B X{2EX-EY x l.X + l.y}
B x{l.X + l.Y x2EY~EX}
B

(8.4)

x2EA"
x2EX~B x{l.X + l.y}
x2'-s x{2ßX-1 x 1.X + 0.Y}
x2l~B x{0.X + l.Yx2EY~1}
x2'"B x {0.X + 0.Y}

Case 0:EX >0 &EY > 0 &EX > EY
Case l:EX>0 &EY > 0 &EX < EY
Case 2 : EX > 0 &EY > 0 &.EX = £Y
Case 3 : £X > 0 &EY = 0
Case 4 : EX = 0 &£Y > 0
Case 5 : EX = EY = 0

(8.5)

For Case 5, the number of distinct mantissa sums is only 1. For Case 4, the number of distinct
mantissa sums is the same as the number of possible values of EY except 0, which is 2n - 1.
Similarly, for Case 3, the number of distinct mantissa sums is also 2n ~ 2, but O.X+l.Y has the
same representation as 1 .X+O.Y in case 1. For Case 2, the number of distinct mantissa sums is
only 1. For Case 1, the number of distinct mantissa sums is the same as the number of possible
values of EY - EX. Since both EX and EY can not be 0, the number of possible values of
EY - EX is 2n - 2. Therefore, the number of distinct mantissa sums is 2™ - 2. Similarly,
for Case 0, the number of distinct mantissa sums is also 2" - 2. Therefore the total number of
distinct mantissa sums for the true addition is 2n+2 - 5.

Similarly, Equation 8.3 can be rewritten as the following equation:

Fx + FY

-l)s>
.1)5,
.1)5.
.1)5.
.1)5.

,EX-E}
-iy*x

, x 2EX~B x {1X

x 2EX~B x {1.X
x 2l~B x {2EX~1 x IX - 0.Y}

x l.X-l.Y}
l.y x 2EY~EX}
l.Y}

X21"
X21"

B x {OX
B x {0.X

l.Y x 2BY-1}
0.Y}

Case 0 : EX > 0 &.EY > 0 &EX > EY
Case 1:EX>0 &EY > 0 &EX < EY
Case 2:EX>0 &EY > 0 &EX = EY
Case 3:EX>0 &EY = 0
Case 4:EX = 0 &EY > 0
Case 5:EX = EY = 0

(8.6)

For Case 0 and 1, the numbers of distinct mantissa sums are the same as that in the corresponding
cases of true addition. For Case 2, the mantissa sum l.X - l.Y is the same as 0.X - 0.Y in
Case 5. For both Case 3 and 4, the number of distinct mantissa sum is 2n - 1. Therefore, the
number of of distinct mantissa sums for the true subtraction is also 2n+2 - 5. Thus, the total
number of distinct mantissa sums is 2n+3 — 10. Q

Lemma 1 The size of the mantissa part of the resulting graph is 2n+1(7m - 1) - 20m
where n and m are the numbers of bits of the exponent and mantissa parts respectively.

4,

Proof: Theorem 2 showed that the number of distinct mantissa sums is 2n+3 - 10. Except
the leaf nodes, each mantissa sum can be represented by 2m nodes, but there is some sharing
among the mantissa graphs. First, let us look at the sharing among the mantissa sums of true

102 CHAPTER 8. *PHDD COMPLEXITY OF FLOATING-POINT OPERATIONS

addition. For case 4 in Equation 8.5, the graphs to represent function 0..V + 2Ey _1 x 1. Y share
the same subgraph 1.1', which is also in the graph representing function l.A' + 0.1'. Thus,
there are 2" — 1 distinct mantissa sums to share the same graph(l.Y'). Again, the graphs to
represent l.X + 1.1' in case 2 and 2 x l.A" + 0.1' in case 3, share the sub-graph 2 -f 0.1'', since
l.A + 1.1= 0.A + (2 + 0.1) and 2 x l.A + 0.1' = 2 x 0. A + (2 + 0.1'). Therefore, we have
to subtract (2" - 1)??? nodes from the total nodes.

Then, let us look at the true subtraction. First, the graph to represent 0.A' — 0.1' shares the
sub-graph 0.1' with 0.X + 0.1' in true addition, because of the negation edge. For Case 4 in
Equation 8.6, the graphs to represent function 0.A' - 2EA ~l x 1.1" share the same subgraph 1.1'
in true addition. The graphs to represent 1. A' - 0.1' in case 3 and 2 x 1. A - 1.1' in case 0, share
the sub-graph 1-0.1', since l.A+l.l'=0.A+(1-0.1") and2x l.A- l.l'=2x0.A + (l-0.1).
Therefore, we have to subtract (2" + 1)??? nodes from the total nodes. Thus, the number of
non-leaf nodes to represent these distinct mantissa sums is (7x2" — 10) x (2m).

The leaf nodes 1 and 0 are referenced by these non-leaf nodes. For true addition, the number
of leaf nodes, except leaf node 1, is 2" — 2, since the leaf nodes of the mantissa sum for
EX < EY can be shared with the mantissa sum for EX > EY. To be specific, the leaf nodes
are generated by the sum of the leading Is in the form of 1 + 1 x 2EY ~EX or 1 x 2EX ~EY + 1,
and there are only 2" — 2 sums. Similarly, for true subtraction, there are 2" — 4 leaf nodes, but
the leaf nodes 3 (22 — 1) and 0 (2° — 1) already exist. Thus, the total number of leaf nodes is
2 + (2n - 2) + (2" — 4) = 2n+1 - 4. Therefore, the size of the mantissa part of resulting graph
is (7 x 2" - 10) x (2m) + 2"+1 - 4 = 2n+1(7m - 1) - 20m - 4. [J

Lemma 2 For all n > 2, the number of *PHDD nodes of the exponent part of the resulting
graph is 5 x 2"+2 - 16 x n - 18.

Proof: As mentioned before, the resulting graph can be divided into two parts: true addition
and true subtraction. First, we prove that the number of nodes of the exponent part for true
addition is 5 x 2"+1 — 8 x n — 9. We prove this claim by the induction on the number of
exponent bits n.

Base Case: If n = 2, the number of exponent nodes for true addition is 5 x 22+1 — 8x2 — 9= 15
as shown in Figure 4.8.

Induction Step: Assume the claim holds for n = k. To prove that the claim holds for
n = k + 1, let EXk and EY\. represent the low k bits of EX and EY. Thus, EX is represented
as 2k x exk + EXk. Based on the values of EXk and EYk, Equation 6.1 can be rewritten as
the following:

FA- + Fv = (-l)*-x

B. FLOATING-POINT ADDITION 103

2\-B x{2((2*-i)xe^) xG + 2((2k-i)xeyk) x H} Case 0 : EXk = EYk = 0

2l-B x{2(BA-t-l+(2l-l)XeIt) x IJ + HX2((
2
'-')

X
»)} Case 1 : EXk > 0 &EYk = 0

2'-B x{Gx2«!'-I)xel')+U'x2lS!'»-1+(2k-1)«»*)} Case2:EXk=0&EYk >0 (8.7)
2EVi-s x{(2B^--Bn+2,txex,) x i.x+i.yx2P'«9l)} Case3:EXk > 0 &EFfc > 0 &£A'A-> EFfc

2M»-B x{2f2txe^) x l.Ax +l.yx2(Ey*-M*+2''«»)} Case 4 : EA^ > 0 &Erfc > 0 &EXk < EYk

where G (H) is 0.X (O.F) if exk (eyk) is 0; otherwise, G (H) is l.X (l.Y). Figure 8.1.a
illustrates the distinct sub-graphs after expanding variable eyk_\. These sub-graphs are divided
into five types, according to the cases in Equation 8.7. For Case 0, there is only one distinct
sub-graph. For Case 1, there are 2k - 1 distinct sub-graphs, since the number of possible value
of EXk is 2

k - 1 and each value of EXk will generate a unique function. Similarly, there are
2k - 1, 2k - 2, and 2k - 1 distinct sub-graphs for Case 2, 3, and 4, respectively. Thus, the total
number of distinct sub-graphs is 2k+2 — 4.

Figures 8.Lb shows the sub-graph for Case 0. In the graphs, each tuple (i, P, j, Q) represents
2* x P+2j x Q. For example, tuple (0,0.X, 0,0.F) represents 2° x O.X+20 x O.Y. Figures 8.1.c
to Figures 8.1.f show the graphs with a parameter i for Cases 1, 2, 3 and 4, which serve as the
template of the graphs in the cases. For instance, the graph in Case 1 with i = 1 represents the
function2(£^-1+(2fc-1)xe^)xl.X+//x2((2'I-1)x^)withEA^ = 1 in Case 2 of Equation 8.7.

Since each sub-graph is distinct, the nodes with variable exk are unique (i.e. no sharing).
Observing from these five types of sub-graphs, the possible sharing among the nodes with
variable eyk is these cases: the eyk nodes in case 2 share with that in cases 3 and 4, and the
nodes in case 3 share with that in case 4. For the first case, the possible sharing is the right
eyk nodes in Figure 8.1.e and Figure 8.1.g. Observe that these two eyk node will be that same
in the graph with i = j in case 2 and the graph with i = j + 1 in case 4. Since the possible
values of i are ranged from 0 to 2k - 3, there are 2k - 2 eyk nodes shared. When i = 2k - 2,
the right eyk node in the graph of case 2 will be shared with the left eyk node in the graph with
i=l in Figure 8.1.e. Therefore, all of the right eyk nodes in Case 2 are shared nodes and are
2k — 1 nodes. For the second case, the possible sharing is the left eyk node in Figure 8.1.e and
the right eyk node in Figure 8.1.f. Observe that when ii + i2 = 2k, the left eyk node in the
graph with i = i\ in case 3 is the same as the right eyk node in the graph with i = i2 in case 4.
Since 2 < z'i < 2k - 2 and 0 < i2 < 2k - 2, there are 2k - 3 nodes shared. Therefore, the total
number of exponent nodes are 5 x 2k+1 -Sxk-9 + 3x (2k+2 - 4) - (2k - 1) - (2k - 3) =
5 x 2<fc+1)+1 -8x(Hl)-9 = 5x 2n+1 - 8 x n - 9.

Similarly, the number of nodes of the exponent part for true subtraction is 5 x 2"+1 - 8 x n - 9.
Therefore, the size of the exponent part of the resulting graph is 5 x 2n+2 - 16 x n - 18. Q

Theorem 3 For the floating-point addition, the size of the resulting graph is 2n+l x (7m +
9) - 20m - 16n - 19.

104 CHAPTER 8. *PHDD COMPLEXITY OF FLOATING-POINT OPERATIONS

(0,0.X,0.0.Y)(0,0.X,2k-l,1.Y) (2k-l,l.X,0,0.Y) (O.l.X.OJ.Y)

(b). Case 0

Wti :«%

(i,l.X,0,0.Y)(0,l.X,2k-i-l ,1.Y) (i+2k,l.X,0,0.Y) (i+lJ.X.O.l-Y)

(c). Case 1

P\
(O.OXiJ.Y) (0,0.X,2k+i,l.Y) (2k-i-l ,1.X,0,1.Y) (0,lXi+l,l.Y)

(d). Case 2

<*i)

/ ^
(i,l.X,0,l.Y) (0,l.X,2k-i,1.Y) (i+2k,l.X,0,l.Y) (i,l.X,0,l.Y)

(e). Case 3

(O.LXXIY) (0,l.X,2k+i,l.Y) (2k-i ,1.X,0,1.Y) (O.l.X.U-Y)

(f). Case 4

Figure 8.1: Distinct sub-graphs after variable eyk—\. (a) Distinct sub-graphs after variable
eyk-i are divided into 5 types shown in graphs (b) to (f) which serve as template with a
parameter i. (b) Case 0 only has one distinct graph, (c) 0 < i'■ — EX^ — 1 < 2A — 2. (d)
0 < i = EYk-1 < 2A-2. (e) 1 < i = EXh~EYk < 2*-2. (f) 1 < i = EYk-EXk < 2l-2.

B. FLOATING-POINT ADDITION 105

Proof: The size of the resulting graph is the sum of the nodes for the sign, exponent and
mantissa parts. The nodes for the sign part are 3 as shown in Figure 4.8. Lemma 1 and 2
have shown the sizes of the mantissa and exponent parts respectively. Therefore, their sum is
2«+i x (7m + 9) _ 20?72 - 16n - 19. □

106 CHAPTER 8. *PHDD COMPLEXITY OF FLOATING-POINT OPERATIONS

Bibliography

[1] AAGAARD, M. D., AND SEGER, C.-J. H. The formal verification of a pipelined double-
precision IEEE floating-point multiplier. In Proceedings of the International Conference
on Computer-Aided Design (November 1995), pp. 7-10.

[2] AKERS, S. B. Binary decision diagrams. In IEEE Transactions on Computers (June 1978),
pp. 6:509-516.

[3] ARDITI, L. *BMDS can delay the use of theorem proving for verifying arithmetic as-
sembly instructions. In Proceedings of the Formal Methods on Computer-Aided Design
(November 1996), pp. 34-^8.

[4] BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACH, E., PARDO, A., AND

.SOMENZI, F. Algebraic decision diagrams and their applications. In Proceedings of the
International Conference on Computer-Aided Design (November 1993), pp. 188-191.

[5] BARTELINK, D. Processes of the future. In Solid State Technology (Feburary 1995),
pp. 42-53.

[6] BEATTY, D. L., AND BRYANT, R. E. Formally verifying a microprocessor using a simulation
methodology. In Proceedings of the 31st ACM/IEEE Design Automation Conference (June
1994).

[7] BOSE, S., AND FISHER, A. L. Verifying pipelined hardware using symbolic logic simula-
tion. In Proceedings of1989 IEEE Internaational Conference on Computer Design: VLSI
in Computer and Processors (October 1989), pp. 217-221.

[8] BOYER, R. S., AND MOORE, J. S. A computational Logic Handbook. Academic Press,
1988.

[9] BRACE, K., RUDELL, R, AND BRYANT, R. E. Efficient implementation of a BDD package.
In Proceedings of the 27th ACM/IEEE Design Automation Conference (June 1990), pp. 40-
45.

107

108 BIBLIOGRAPHY

[10] BRAYTON, R. K., HACHTEL, G. D., SANGIOVANNI-VINCENTELLI, A., SOMENZI, F., AZIZ,

A., CHENG, S.-T., EDWARDS, S., KHATRI, S., ANS ABELARDO PARDO, Y. K., QADEER, S.,
RANJAN, R. K., SARWARY, S., SHIPLE, T. R., SWAMY, G., AND VILLA, T. VIS: A system
for verification and synthesis. In Computer-Aided Verification, CAV '96 (New Brunswick,
NJ, July/August 1996), R. Alur and T. A. Henzinger, Eds., no. 1102 in Lecture Notes in
Computer Science, Springer-Verlag, pp. 428-436.

[11] BROCK, B., KAUFMANN, M., AND MOORE, J. S. ACL2 theorems about commerical
microprocessors. In Proceedings of the Formal Methods on Computer-Aided Design
(November 1996), pp. 275-293.

[12] BROWN, F. M. Reduced solutions of Boolean equations. In IEEE Transactions on
Computers (October 1970), pp. 10:1230-1245.

[13] BRYANT, R. E. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers (August 1986), pp. 8:677-691.

[14] BRYANT, R. E. On the complexity of VLSI implementations and graph representations
of boolean functions with application to integer multiplication. In IEEE Transactions on
Computers (Feb 1991), pp. 2:205-213.

[15] BRYANT, R. E. Symbolic boolean manipulation with ordered binary decision diagrams. In
ACM Computing Surveys (September 1992), pp. 3:293-318.

[16] BRYANT, R. E. Binary decision diagrams and beyond: Enabling technologies for formal
verification. In Proceedings of the International Conference on Computer-Aided Design
(November 1995), pp. 236-243.

[17] BRYANT, R. E. Bit-level analysis of an SRT divider circuit. In Proceedings of the 33rd
ACM/IEEE Design Automation Conference (June 1996).

[18] BRYANT, R. E., BEATTY, D. L., BRACE, K., AND CHO, K. COSMOS: a compiled simulator
for MOS circuits. In Proceedings of the 24th ACM/IEEE Design Automation Conference
(June 1987), pp. 9-16.

[19] BRYANT, R. E., BEATTY, D. L., AND SEGER, C.-J. H. Formal hardware verification by
symbolic ternary trajectory. In Proceedings of the 28th ACM/IEEE Design Automation
Conference (June 1991), pp. 397^02.

[20] BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic functions with binary moment
diagrams. Tech. Rep. CMU-CS-94-160, School of Computer Science, Carnegie Mellon
University, 1994.

BIBLIOGRAPHY 109

[21] BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic circuits with binary moment
diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation Conference (June
1995), pp. 535-541.

[22] BURCH, J. R. Using BDDs to verify multipliers. In Proceedings of the 28th ACM/IEEE
Design Automation Conference (June 1991), pp. 408^12.

[23] BURCH, J. R., CLARKE, E. M., AND LONG, D. E. Representing circuits more efficiently
in symbolic model checking. In Proceedings of the 28th ACM/IEEE Design Automation
Conference (June 1991), pp. 403^07.

[24] CABODI, G., CAMURATI, R, CORNO, E, PRINETTO, R, AND REORDA, M. S. Sequential cir-
cuit diagnosis based on formal verification techniques. In Proceedings of the International
Test Conference (1992).

[25] CAMILLERI, A. J. Simulation as an aid to verifiaction using the HOL theorem prover.
In Proceedings ofIFIP TC10 Working Conference: Design Methodologies for VLSI and
Computer Architecture (September 1988), pp. 148-168.

[26] CARREnO, V. A., AND MINER, P. S. Specification of the IEEE-854 floating-point standard
in HOL and PVS. In High Order Logic Theorem Proving and Its Applications (September
1995).

[27] CHEN, Y.-A., AND BRYANT, R. E. *PBHD: An efficient graph representation for floating
point circuit verification. Tech. Rep. CMU-CS-97-134, School of Computer Science,
Carnegie Mellon University, 1997.

[28] CHEN, Y.-A., AND BRYANT, R. E. *PHDD: An efficient graph representation for floating
point circuit verification. In Proceedings of the International Conference on Computer-
Aided Design (November 1997), pp. 2-7.

[29] CHEN, Y.-A., CLARKE, E. M., HO, P.-H., HOSKOTE, Y, KAM, T., KHAIRA, M., O'LEARY,

J., AND ZHAO, X. Verification of all circuits in a floating-point unit using word-level model
checking. In Proceedings of the Formal Methods on Computer-Aided Design (November
1996), pp. 19-33.

[30] CLARKE, E. M., FUJITA, M., AND ZHAO, X. Hybrid decision diagrams - overcoming the
limitations of MTBDDs and BMDs. In Proceedings of the International Conference on
Computer-Aided Design (November 1995), pp. 159-163.

110 BIBLIOGRAPHY

[31] CLARKE, E. M., GERMAN, S. M., AND ZHAO, X. Verifying the SRT division using
theorem proving techniques. In Computer-Aided Verification, CAV '96 (New Brunswick,
NJ, July/August 1996), R. Alur and T. A. Henzinger, Eds., no. 1102 in Lecture Notes in
Computer Science, Springer-Verlag, pp. 111-122.

[32] CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. Model checking and abstraction. In
ACM Symposium on Principles of programming Languages (1992).

[33] CLARKE, E. M., KHAIRA, M., AND ZHAO, X. Word level model checking - Avoiding
the Pentium FDIV error. In Proceedings of the 33rd ACM/IEEE Design Automation
Conference (June 1996), pp. 645-648.

[34] CLARKE, E. M., MCMILLAN, K., ZHAO, X., FUJITA, M., AND YANG, J. Spectral transforms
for large Boolean functions with applications to technology mapping. In Proceedings of
the 30th ACM/IEEE Design Automation Conference (June 1993), pp. 54-60.

[35] CLARKE, E. M., AND ZHAO, X. Analytica: A theorem prover for Mathematica. In The
Journal of Mathematica (1993).

[36] COE, T. Inside the Pentium Fdiv bug. Dr. Dobbs Journal (April 1996), pp. 129-135.

[37] COUDERT, O., BERTHET, C, AND MADRE, J. C. Verification of synchronous sequential
machines based on symbolic execution. In Proceedings of the Workshop on Automatic
Verification Methods for finite state systems (June 1989), pp. 365-373.

[38] COUDERT, O., BERTHET, C, AND MADRE, J. C. Verification of sequential machines using
Boolean function vectors. In Proceedings of the IFIP International Workshop on Applied
Formal Methods for Correct VLSI designs (1990), pp. 111-128.

[39] COUDERT, O., AND MADRE, J. C. A unified framework for the formal verification of
sequential circuits. In Proceedings of the International Conference on Computer-Aided
Design (November 1990), pp. 126-129.

[40] DILL, D. L. The Murphi Verification System. In Computer-Aided Verification, CAV '96
(New Brunswick, NJ, July/August 1996), R. Alur and T. A. Henzinger, Eds., no. 1102 in
Lecture Notes in Computer Science, Springer-Verlag, pp. 390-393.

[41] DRECHSLER, R., BECKER, B., AND RUPPERTZ, S. K*BMDS: a new data struction for
verification. In Proceedings of European Design and Test Conference (March 1996),
pp. 2-8.

BIBLIOGRAPHY 111

[42] DRECHSLER, R., SARABI, A., THEOBALD, M., BECKER, B., AND PERKOWSKI, M. A. Effi-
cient representation and manipulation of switching functions based on ordered Kronecker
functional decision diagrams. In Proceedings of the 31st ACM/IEEE Design Automation
Conference (June 1994), pp. 415^-19.

[43] ENDERS, R. Note on the complexity of binary moment diagram representations. In IFIP
WG 10.5 Workshop on Applications of Reed-Muller Expansion in circuit Design (1995).

[44] FISHER, L. M. Flaw reported in new intel chip. New York Times (May 6 1997), D, 4:3.

[45] GEIST, D., AND BEER, I. Efficient model checking by automated ordering of transition
relation partitions. In Computer-Aided Verification, CAV '94 (Stanford CA, USA, July
1994), R. Alur and T. A. Henzinger, Eds., no. 818 in Lecture Notes in Computer Science,
Springer-Verlag, pp. 299-310.

[46] GORDON, M. J. C. HOL: A proof generating system for higher-order logic. In VLSI Spec-
ification, Verification and Synthesis (1987), Birtwistle and Subramanyam, Eds., Kluwer
Academic Publishers.

[47] GWENNAP, L. Sun tweaks SuperSparc to boost performance. In Microprocessor Report
(November 1994).

[48] GWENNAP, L. Pentium Pro debuts with few bugs. In Microprocessor Report (December
1995).

[49] GWENNAP, L. Digital, mips add multimedia extensions. In Microprocessor Report
(November 1996), pp. 24-28.

[50] GWENNAP, L. Intel's MMX speeds multimedia. In Microprocessor Report (March 1996),
pp. 1-6.

[51] GWENNAP, L. Pentium II debuts at 300MHz. In Microprocessor Report (May 1997),
pp. 1-8.

[52] HAMAGUCHI, K., MORTTA, A., AND YAJIMA, S. Efficient construction of binary moment
diagrams for verifying arithmetic circuits. In Proceedings of the International Conference
on Computer-Aided Design (November 1995), pp. 78-82.

[53] HARDIN, R. H., HAR'EL, Z., AND KURSHAN, R. P. COSPAN. In Computer-Aided Verifi-
cation, CAV '96 (New Brunswick, NJ, July/August 1996), R. Alur and T. A. Henzinger,
Eds., no. 1102 in Lecture Notes in Computer Science, Springer-Verlag, pp. 423-427.

112 BIBLIOGRAPHY

[54] HOLZMANN, G. J., AND PELED, D. Partial order reductions with on-the-fly model checking.
In Computer-Aided Verification, CAV '94 (Stanford CA, USA, July 1994), R. Alur and
T. A. Henzinger, Eds., no. 818 in Lecture Notes in Computer Science, Springer-Verlag,
pp. 377-390.

[55] HOLZMANN, G. J., AND PELED, D. The state of SPIN. In Computer-Aided Verification,
CAV '96 (New Brunswick, NJ, July/August 1996), R. Alur and T. A. Henzinger, Eds.,
no. 1102 in Lecture Notes in Computer Science, Springer-Verlag, pp. 385-389.

[56] HUFF, T. R. Architectural and circuit issues for a high clock rate floating-point processor.
PhD Dissertation in Electrical Engineering Department, University of Michigan (1995).

[57] HUNT, W. A. FM8501: A verified microprocessor. In Lecture Notes in Artifical Intelligence
(1994), Springer Verlag.

[58] I. MlNATO, S. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Proceedings of the 30th ACM/IEEEDesign Automation Conference (June 1993), pp. 272-
277.

[59] IP, C. N., AND DILL, D. L. Efficient verification of symmetric concurrent systems. In
Proceedings of 1993 IEEE Internaational Conference on Computer Design: VLSI in
Computer and Processors (October 1993), pp. 230-234.

[60] IP, C. N., AND DILL, D. L. State reduction using reversible rules. In Proceedings of the
33rd ACM/IEEE Design Automation Conference (June 1996).

[61] JAIN, A., NELSON, K., AND BRYANT, R. E. Verifying nondeterministic implementations of
deterministic systems. In Proceedings of the Formal Methods on Computer-Aided Design
(November 1996), pp. 109-125.

[62] JAIN, J., BITNER, J., ABADIR, M. S., ABRAHAM, J. A., AND FUSSELL, D. S. Indexed BDDs:
Algorithmic advances in techniques to represent and verify boolean functions. In IEEE
Transactions on Computers (November 1997), pp. 11:1230-1245.

[63] JAIN, P., AND GOPALAKRISHNAN, G. Efficient symbolic simulation-based verification using
the parametric form of boolean expressions. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (August 1994), pp. 1005-1015.

[64] JOYCE, J. Formal verification and implementation of a microprocessor. In VLSI Spec-
ification, Verification and Synthesis (1987), Birtwistle and Subramanyam, Eds., Kluwer
Academic Publishers, pp. 129-157.

BIBLIOGRAPHY 113

[65] JOYCE, J. J., AND SEGER, C.-J. H. Linking BDD-based symbolic evaluation to interactive
theorem-proving. In Proceedings of the 30th ACM/IEEE Design Automation Conference
(June 1993), pp. 469-^74.

[66] KAPUR, D., AND SUBRAMANIAM, M. Mechanically verifying a family of multiplier
circuits. In Computer-Aided Verification, CAV '96 (New Brunswick, NJ, July/August
1996), R. Alur and T. A. Henzinger, Eds., no. 1102 in Lecture Notes in Computer Science,
Springer-Verlag, pp. 135-146.

[67] KAUFMANN, M., AND MOORE, J. S. ACL2: An industrial strength version of Nqthm.
In Proceedings of the 11th Annual Conference on Computer Assurance (COMPASS-96)
(June 1996), pp. 23-34.

[68] KEBSCHULL, U., SCHUBERT, E., AND ROSENTTEL, W. Multilevel logic based on functional
decision diagrams. In Proceedings of the European Design Automation Conference (1992),
pp. 43^7.

[69] KlMURA, S. Residue BDD and its application to the verification of arithmetic circuits. In
Proceedings of the 32nd ACM/IEEE Design Automation Conference (June 1995), pp. 542-
548.

[70] KUEHLMANN, A., SRINTVASAN, A., AND LAPOTTN, D. P. Verity-a formal verification
program for custom CMOS circuits. IBM Journal of Research Development (January
1995).

[71] KURSHAN, R. P., AND LAMPORT, L. Verification of a multiplier: 64 bits and beyond. In
Computer-Aided Verification, CAV '93 (Elounda,Greece, July/August 1993), C. Courcou-
beties, Ed., no. 1697 in Lecture Notes in Computer Science, Springer-Verlag, pp. 166-179.

[72] LAI, Y.-T., PEDRAM, M., AND VRUDHULA, S. B. K. EVBDD-based algorithms for inte-
ger linear programming, spectral transformation, and function decomposition. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (August
1994), pp. 959-975.

[73] LAI, Y.-T., AND SASTRY, S. Edge-valued binary decision diagrams for multi-level hierar-
chical verification. In Proceedings of the 29th ACM/IEEE Design Automation Conference
(June 1992), pp. 608-613.

[74] LEESER, M., AND O'LEARY, J. Verification of a subtractive radix-2 square root algo-
rithm and implementation. In Proceedings of 1995 IEEE Internaational Conference on
Computer Design: VLSI in Computer and Processors (October 1995), pp. 526-531.

114 BIBLIOGRAPHY

[75] MCMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[76] McSORLEY, O. L. High-speed arithmetic in binary computers. In Proceedings of IRE
(1961), pp. 67-91.

[77] MELHAM, T. F. Abstraction mechanisms for hardware verification. In VLSI Specification,
Verification and Synthesis (1987), Birtwistle and Subramanyam, Eds., Kluwer Academic
Publishers, pp. 269-291.

[78] MlNATO, S.-I. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, 1995.

[79] MINER, P. S., AND LEATHRUM, J. F. Verification of IEEE compliant subtractive division
algorithms. In Proceedings of the Formal Methods on Computer-Aided Design (November
1996), pp. 64-78.

[80] OWRE, S., RUSHBY, J., SHANKAR, N., AND SRIVAS, M. K. A tutorial on using PVS for
hardware verification. In Proceedings of Second International Conference of Theorem
provers in Circuit Design: Theory, Pracctice and Experience (September 1994), pp. 258-
279.

[81] PANDEY, M., RAIMI, R., BEATTY, D. L., AND BRYANT, R. E. Formal verification of
PowerPC(TM) arrays using symbolic trajectory evaluation. In Proceedings of the 33rd
ACM/IEEE Design Automation Conference (June 1996).

[82] PANDEY, M., RAIMI, R., BRYANT, R. E., AND ABADIR, M. S. Formal verification of content
addressable memories using symolic trajectory evaluation. In Proceedings of the 34th
ACM/IEEE Design Automation Conference (June 1997).

[83] QUACH, N., AND FLYNN, M. Design and implementation of the SNAP floating-point adder.
Tech. Rep. CSL-TR-91-501, Stanford University, December 1991.

[84] RAJAN, S., SHANKAR, N., AND SRIVAS, M. K. Automatic datapath abstraction in hardware
systems. In Computer-Aided Verification, CAV '95 (Liege, Belgium, June 1995), P. Wolper,
Ed., no. 939 in Lecture Notes in Computer Science, Springer-Verlag.

[85] RAJAN, S., SHANKAR, N., AND SRIVAS, M. K. An integeration of model-checking with
automated proof checking. In Computer-Aided Verification, CAV '95 (Liege, Belgium,
June 1995), P. Wolper, Ed., no. 939 in Lecture Notes in Computer Science, Springer-
Verlag, pp. 84-97.

BIBLIOGRAPHY 115

[86] RAVI, K., PARDO, A., HACHTEL, G. D., AND SOMENZI, F. Modular verification of mul-
tipliers. In Proceedings of the Formal Methods on Computer-Aided Design (November
1996), pp. 49-63.

[87] ROBERTSON, J. E. A new class of digital division methods. In IRE Transactions on
Electronic Computers (1958), pp. 218-222.

[88] ROTTER, D., HAMAGUCHI, K., ion MINATO, S., AND YAJIMA, S. Manipulation of large
scale polynomial using BMDs. In IEICE Transition on Fundamentals of Electronics,
Communications and Computer Sciences (October 1997), pp. 1774-1781.

[89] RUEß, H., SHANKAR, N., AND SRIVAS, M. K. Modular verification of SRT division. In
Computer-Aided Verification, CAV '96 (New Brunswick, NJ, July/August 1996), R. Alur
and T. A. Henzinger, Eds., no. 1102 in Lecture Notes in Computer Science, Springer-
Verlag, pp. 123-134.

[90] SCHROER, O., AND WEGENER, I. The theory of zero-suppressed BDDs and the number
of knights tours. Tech. Rep. 552/1994, University of Dortmund, Fachbereich Informatik,
1994.

[91] SEGER, C.-J. H. Voss- a formal hardware verification system: User's guide. Tech. Rep.
93-45, Dept. of Computer Science, University of British Columbia, 1993.

[92] SHARANGPANI, H. R, AND BARTON, M. L. Statistical analysis of floating point flag in the
pentium processor(1994). Tech. rep., Intel Corporation, November 1994.

[93] SRIVAS, M. K., AND MILLER, S. R Applying formal verification to a commercial micropro-
cessor. In CHDL '95: 12th Conference on Computer Hardware Description Languages
and their Applications (Chiba, Japan, Aug. 1995), S. D. Johnson, Ed., Proceedings pub-
lished in a single volume jointly with ASP-DAC '95, CHDL '95, and VLSI '95, IEEE
Catalog no. 95TH8102, pp. 493-502.

[94] STANKOVIC, R. S., AND SASAO, T. Decision diagrams for discrete functions: Classification
and unified interpretation. In Proceedings of ASP-DAC '98 (Yokohomajapan, Feb. 1998),
pp. 439^45.

[95] SUZUKI, H., MORINAKA, H., HIROSHI MAKINO, NAKASE, Y., MASHKO, K., AND SUMI, T.
Leading-zero anticipatory logic for high-speed floating point addition. IEEE Journal of
Solid-State Circuits (August 1996), pp. 1157-1164.

[96] TOCHTER, K. D. Techniques of muliplication and division for automatic binary computers.
In Quart. J. Mech. Appl. Match (1958), pp. 364-384.

116 BIBLIOGRAPHY

[97] YANG, B., CHEN, Y.-A., BRYANT, R. E., AND O'HALLARON, D. R. Space- and time-
efficient bdd construction via working set control. In Proceedings of ASP-DAC '98
(Yokohomajapan, Feb. 1998), pp. 423^32.

[98] YAO, Y. Chromatic's Mpact2 boosts 3D. In Microprocessor Report (November 1996),
pp. 1-10.

[99] ZHAO, X. Verification of arithmetic circuits. Tech. Rep. CMU-CS-96-149, School of
Computer Science, Carnegie Mellon University, 1996.

