9 July, 1998

Dr. Ronald Ferek
Office of Naval Research
800 North Quincy Street,
Ballston Tower One
Arlington, VA 22217-5660

ONR Grant # N00014-95-1-0405
OSU # N0063A

Dear Ron,

In order to complete my ONR grant entitled, “Survey of ship tracks observed by NOAA AVHRR,” I am sending three copies of the Final Technical Report to you with copies distributed as indicated below. Included is a completed Report Documentation Page (SF 298).

Sincerely,

James A. Coakley, Jr.

Defense Technical Information Center (2 copies)
8725 John J Kingman Rd, Suite 0944
Ft. Belvoir VA 22060-6218

Administrative Contracting Officer (1 copy)
Office of Naval Research
Seattle Regional Office
1107 NE 45th Street, Suite 350
Seattle, WA 98105-4631

Director, Naval Research Laboratory (1 copy)
Attn: Code 2627
Washington DC 20375
Survey of Ship Tracks Observed by NOAA AVHRR

Title and Subtitle

Survey of Ship Tracks Observed by NOAA AVHRR

Authors

James A. Coakley, Jr.

Performing Organization

Oregon State University
Corvallis, OR 97331

Sponsoring/Monitoring Agency

Office of Naval Research
Ballston Center Tower One
800 North Quincy Street
Arlington, VA 22217-5660

Abstract

High resolution, multispectral satellite imagery data from morning and afternoon satellite passes over the coast of California during June 1994 were analyzed to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons were made between the properties of clouds within 50 km of the tracks left by underlying ships in the clouds and those farther than 200 km from the tracks in order to deduce whether any special conditions were required for the appearance of ship tracks in satellite images. The results indicated that: 1) ship tracks rarely appeared in low-level clouds having altitudes greater than 1 km; 2) small cloud droplet sizes and large liquid water paths did not seem to restrict the appearance of ship tracks as was suggested by theory, and 3) ship tracks were more frequent when clouds at altitudes below 1 km were extensive and completely covered large areas, as was more frequently the case in the morning.

Subject Terms

Ship tracks, remote sensing, cloud properties

Security Classification

- Report: Unclassified
- This Page: Unclassified
- Abstract: Unclassified
- Limitation of Abstract: UL
FINAL TECHNICAL REPORT
ONR Grant # N00014-95-1-0405

SURVEY OF SHIP TRACKS OBSERVED BY NOAA AVHRR

James A. Coakley, Jr.
College of Oceanic and Atmospheric Sciences
Ocean Admin 104
Oregon State University
Corvallis, OR 97331-5503

1-km Advanced Very High Resolution Radiometer (AVHRR) observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 were analyzed to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons were made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce whether any special conditions were required for the appearance of ship tracks in satellite images. The results indicated that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appeared in low-level clouds having altitudes greater than 1 km. Contrary to what might be suggested from theories concerning the susceptibility of cloud modification due to increases in the number of particles in the environment, the distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks were imbedded were found to be the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not seem to constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California were found south of 35°N. A small rise in the height of low-level clouds appeared to explain why numerous ship tracks appeared on one day in a particular region, but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks were frequent when low-level clouds at altitudes below 1 km were extensive and completely covered large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and this difference explained why more ship tracks were observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud top altitude and the area of complete overcast by low-level clouds may be useful indices for this coupling.

List of publications that were a result of this research project.