Cost of Delay Module

November 1991
DOT/FAA/CT-TN91/52

Document is on file at the Technical Center Library, Atlantic City International Airport, N.J. 08405
NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>v</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>2</td>
</tr>
<tr>
<td>2. COST ARRAY DEVELOPMENT</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Passenger Delay</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Airborne Delay</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Ground Delay</td>
<td>3</td>
</tr>
<tr>
<td>3. COST OF DELAY MODULE DEVELOPMENT</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Module Input</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Data Preparation</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Data Processing</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Module Output</td>
<td>6</td>
</tr>
<tr>
<td>4. VALIDITY ISSUES</td>
<td>7</td>
</tr>
<tr>
<td>5. USER INTERFACE IN RELEASE 2</td>
<td>7</td>
</tr>
<tr>
<td>6. FUTURE DEVELOPMENT EFFORTS</td>
<td>9</td>
</tr>
<tr>
<td>7. CONCLUSIONS</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
</tbody>
</table>
This paper addresses the cost of the delay module that was developed by Federal Aviation Administration Technical Center to be incorporated into the National Airspace System Analysis Capability (NASPAC) model. This module was developed to address the savings which could be realized when changes are made to the Air Traffic Control (ATC) System. The purpose of this module is to translate delay into a cost metric and, thus, give policy makers a better understanding of potential cost saving measures. These cost saving measures are a direct result of an operational or procedural change to the ATC System. Cost estimates for major air carriers using the National Airspace System (NAS) were derived from Form 41 (operating expenses) data provided by the Office of Airline Statistics. General aviation and military cost estimates were derived from the Economic Values for Evaluation of Federal Aviation Administration Investment and Regulatory Programs, FAA-APO-89-10. The cost of the delay module has been tested and is fully operational with the latest release of NASPAC.
1. INTRODUCTION.

1.1 BACKGROUND.

The MITRE Corporation, at the directional guidance of the Federal Aviation Administration (FAA), has developed an analysis tool called National Airspace Systems Performance Analysis Capability (NASPAC) Simulation Modeling System. NASPAC is a discrete-event simulation model which captures flight operation events occurring throughout the National Airspace System (NAS) for an entire day. NASPAC was designed to study system-wide performance of the NAS under existing operational conditions and to predict its performance under a proposed set of changes to the NAS Air Traffic Control (ATC) System. Alternate operating policies can be evaluated to determine which best meet the needs of the ATC System in terms of system performance. The model is used to study the relationships and interactions that occur between components of the ATC System. An evaluation of proposed system changes are necessary before any procedural or operational changes to the ATC System are implemented.

The NASPAC simulation model is used to study the NAS on a macro level and the effects of projected changes to it in demand, capacity, and operational procedures. The model describes NAS performance in terms of throughput and delay at modeled entities. Delay occurs whenever aircraft must wait to use a resource in the ATC System (e.g., arrival runway, departure runway, arrival departure fix, sectors, etc.) as demand for that resource exceeds its capacity to serve aircraft. There are two types of delays modeled by NASPAC. Technical delay is the delay absorbed by aircraft while waiting to use ATC resources. Technical delay can be encountered at airports, fixes, and in sectors and is the type of delay that FAA regulations and procedures may affect. Effective delay measures the difference between planned (scheduled) and actual arrival time. Effective arrival delay is the type of delay that directly affects passengers.

NASPAC measures throughput and delay as a quantitative basis for decision-making concerning changes to the ATC System. Although these metrics provide an analyst with estimates of system performance, the amount of money saved along with safety considerations generally determine whether such changes are implemented. Delays reported in the NASPAC simulation can be translated into a cost metric. These estimates are designed to evaluate monetary gains as a result of reducing delay. The value of time saved by reducing delays is important in determining whether investment and regulatory decisions affecting the aviation system are economically rational.

NASPAC can be applied to a wide variety of long-term strategic planning studies for the NAS. Each application must be customized to reflect specific issues of the study. The model is customized through system parameter definitions and scenario development. Each study will include the following two generalized scenarios:
Baseline scenario: Provides baseline throughput and delays for the existing system.

Alternative scenario: Provides throughput and delay for the NAS for the proposed alternatives under study.

The cost of the delay module will provide the analyst with estimates of delay costs when comparisons are made between baseline conditions and proposed changes to the ATC System. When the cost of delay module is executed for a study, delay cost estimates for each scenario developed will be provided. These estimates include cost of technical delay and cost of effective delay. These estimates can be compared between baseline and alternate proposals to see if any benefits will be realized.

This document addresses the procedure used in determining cost estimates for each type of delay that the NASPAC simulation model produces.

1.2 PURPOSE

A milestone identified in the NASPAC transition plan is to complete and integrate a cost of delay module into the model with Release 2. This module provides cost/savings estimates for both the technical and effective delay components modeled in the system. It translates each type of delay recorded by the model into a cost figure.

This effort can be summarized into three main activities. These activities are not trivial and each contain a number of tasks.

a. Develop an estimate of cost per time unit of delay based on operational expenses comprised of airborne and ground operations and on passenger time.

b. Develop an algorithm that applies the cost estimate to the delays accrued at each ATC resource modeled.

c. Summarize the cost metric in a usable format.

2. COST ARRAY DEVELOPMENT

When estimating technical unit/cost values, care must be given to include only operational costs. Delay affecting passengers will be addressed in the effective cost estimate. The total delay savings associated with a study will be the sum of the technical delay and passenger delay savings.

2.1 PASSENGER DELAY

Effective delay measures the difference between Official Airline Guide scheduled arrival times and the arrival times measured by the simulation model. This metric measures a cost to passengers as a result of lost time. The savings in cost associated with a study would
be the time savings to passengers realized from the reduction in effective delay. The cost of effective delay is a constant derived from the Office of Aviation Policy and Plans (APO-1), Economic Analysis Branch (APO-220). The constant ($39.50/hour) used in the cost of delay module measures the cost per hour of a delay incurred by a passenger. Passenger utilization factors derived from report FAA-APO-89-10 (Economic Values For Evaluation of Federal Aviation Administration Investment and Regulatory Programs) were used to determine the average number of passengers aboard a flight.

2.2 AIRBORNE DELAY.

Airborne and ground delay costs were calculated for air carriers from Form 41 - Traffic and Capacity Data Summarized by Aircraft Type (schedule T2) and Aircraft Operating Expenses (schedule P05) from the Office of Airline Statistics. These reports are accumulated on a quarterly basis for most of the major air carriers which use the NAS. Total operating expenses for each carrier and aircraft reported were used in developing the cost arrays. Total flying hours aggregated by air carrier and aircraft were determined from schedule T-2 and used in conjunction with the operating expense data (schedule P-05) to produce costs estimates.

2.3 GROUND DELAY.

Ground operating costs were derived by first determining the time each aircraft spent on the ground. This was determined by taking the difference between the gate to gate hours as recorded in schedule T-2 and the total flying hours. Flying operating expenses were subtracted from total operating expense to produce estimates of ground expense. These values were used with the time an aircraft spends on the ground to produce a unit cost estimate for all ground operations.

General aviation and military cost estimates for airborne and ground operations were derived from the FAA-APO-89-10 document "Economic Values For Evaluation of Federal Aviation Administration Investment and Regulatory Programs."

Form 41 data contain the following metrics:

- Aircraft Operating Expenses -- Flying
 - Pilots and copilots
 - Other flight personnel
 - Flight attendance expense (passenger service expense)
 - Personnel expense
 - Aircraft fuels
 - Aircraft oils
 - Employee benefits and pensions
 - Taxes -- payroll
 - Taxes -- other than payroll
3. COST OF DELAY MODULE DEVELOPMENT.

3.1 MODULE INPUT.

Delay metrics measured at ATC resources are recorded from the NASPAC model and provide the delay information needed by the cost of the delay module. This includes whether the delay was a technical delay (airborne or ground) or an effective delay type. When delay occurs, the following information is recorded to a file:

- Simulation clock time (time of simulation day)
- ATC resource type (determines delay type)
- Resource name
- Aircraft tail number
- Minutes of delay

Example Delay File

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1490.34</td>
<td>AED</td>
<td>BOS</td>
<td>3729-10</td>
<td>0.336</td>
</tr>
<tr>
<td>1490.34</td>
<td>APD</td>
<td>DEN</td>
<td>1498-6</td>
<td>1.223</td>
</tr>
<tr>
<td>1490.36</td>
<td>AED</td>
<td>ORD</td>
<td>1662-9</td>
<td>3.226</td>
</tr>
<tr>
<td>1490.37</td>
<td>DFX</td>
<td>ORD</td>
<td>664-10</td>
<td>2.654</td>
</tr>
<tr>
<td>1490.37</td>
<td>RST</td>
<td>ATL</td>
<td>1233-10</td>
<td>3.221</td>
</tr>
</tbody>
</table>

There are two types of delay modeled by NASPAC: technical delay and effective delay. Effective arrival delay is recorded for each airport. Technical delay can be subdivided into airborne and ground delay. Delay performance data are recorded for the following resources:

Technical Delay

Airborne Delay:
- Departure fix delay for each departure fix
- Restriction delay for each restriction boundary
- Sector entry delay for each sector
- Arrival fix delay for each arrival fix
- Airport arrival delay for each airport

Ground Delay:
- Airport departure delay for each airport

Effective Delay:
- Effective arrival delay for each airport
- Effective departure delay for each airport
In addition to the delay file, there is a cost array file consisting of airborne and ground costs for selected air carriers, general aviation, and military operations. The cost array file contain operating costs per minute ($/min) for each carrier and aircraft.

Example Cost Array File

<table>
<thead>
<tr>
<th>Cost</th>
<th>Carrier</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.33</td>
<td>COA</td>
<td>DC9</td>
</tr>
<tr>
<td>78.65</td>
<td>COA</td>
<td>B727</td>
</tr>
<tr>
<td>145.33</td>
<td>COA</td>
<td>B747</td>
</tr>
<tr>
<td>132.45</td>
<td>COA</td>
<td>A300</td>
</tr>
<tr>
<td>112.44</td>
<td>COA</td>
<td>DC10</td>
</tr>
</tbody>
</table>

The third input file is the equipment category file. This file consist of tail numbers and the air carrier and aircraft associated with those tail numbers. The tail numbers are generated by the NASPAC model for each run and are used by the cost of delay module to determine the air carrier and aircraft type.

Example Equipment Category File

<table>
<thead>
<tr>
<th>Tail Number</th>
<th>Carrier</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1233</td>
<td>COA</td>
<td>B747</td>
</tr>
<tr>
<td>1766</td>
<td>AAL</td>
<td>B727</td>
</tr>
<tr>
<td>3456</td>
<td>PAA</td>
<td>DC10</td>
</tr>
<tr>
<td>1022</td>
<td>AAL</td>
<td>B727</td>
</tr>
<tr>
<td>1900</td>
<td>COA</td>
<td>DC10</td>
</tr>
</tbody>
</table>

3.2 DATA PREPARATION.

The cost of delay module stores the cost figures into arrays for each of the airborne and ground delay types. This is done for each carrier and aircraft in which cost information is available. The cost estimates are accessed by addressing the appropriate carrier and/or aircraft index of the cost arrays. The equipment category file is also stored in an array and is used to translate a tail number into an air carrier and aircraft type. Each record from the delay file that is produced by the NASPAC model is processed sequentially as it appears in the file.

3.3 DATA PROCESSING.

The first procedure is to identify the air carrier and aircraft from the tail number. This is done by referencing the indexed tail number to the equipment category array. After the carrier and airframe are determined, the type of delay is categorized according to airborne, ground, or effective delay. Departure fix, restriction, sector entry, arrival fix, and airport arrival delays are considered airborne technical delays; airport departure delay is considered a ground technical delay. Effective delays include airport arrivals and airport departures.
Airborne and ground delays are translated into a cost figure by referencing the appropriate cost array (airborne, ground) based on carrier and aircraft type and multiplying it by its corresponding delay. If no cost information is present for that carrier/aircraft combination, then the cost of that delay is determined by the aircraft alone. If no cost information exist on that aircraft then it is recorded to a "no match.ext" file and the record is excluded from the analysis. Since the baseline and proposal scenario run from the same aircraft file for a given demand profile, the module will exclude the same records from each scenario and, thus, comparisons can be made. The "noname.ext" file is used to identify the aircraft types which contained no available cost information.

A constant of $39.50/hour was used to evaluate the cost of each passenger delay (effective delay). Load factors were used to estimate the number of passengers being served for each aircraft type. Passenger delay cost estimates were calculated by multiplying the average number of passengers on each flight, the total effective delay, and $39.50/hour.

3.4 MODULE OUTPUT.

A summary file is developed after all delay costs have been accumulated for each record in the delay file. Total delay time in minutes and cost of those delays for each type of delay is summarized and aggregated by air carrier, general aviation, and military operations. Those aircraft in which no cost information were available are tabulated to determine how much of the delay is translated into cost measures. These categories are broken down by percentages as a means of assessing missing information.

Example Summary File

**************************Effective Delay*****************************

<table>
<thead>
<tr>
<th>Effective Arrival</th>
<th>General Aviation</th>
<th>24843 min</th>
<th>cost $ 86355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>66 min</td>
<td>cost $ 344</td>
<td></td>
</tr>
<tr>
<td>Air Carrier</td>
<td>172009 min</td>
<td>cost $ 944906</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>196918 min</td>
<td>cost $ 1031605</td>
<td></td>
</tr>
</tbody>
</table>

**************************Technical Delay Airborne*****************************

<table>
<thead>
<tr>
<th>Departure Fix Delay</th>
<th>General Aviation</th>
<th>26 min</th>
<th>cost $ 386</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>3 min</td>
<td>cost $ 22</td>
<td></td>
</tr>
<tr>
<td>Air Carrier</td>
<td>971 min</td>
<td>cost $ 44059</td>
<td></td>
</tr>
</tbody>
</table>
4. VALIDITY ISSUES.

Higher economic costs occur when larger aircraft must absorb delay at a particular ATC resource. Aircraft type, therefore, becomes an important factor in calculating operational costs and in determining loading factors essential for calculating passenger costs. There has been some concern over the validity of using delay information from the NASPAC model at this level of detail for determining costs. The NASPAC simulation model has been validated on a macro-level only. NASPAC builds aircraft itineraries by linking flights based on OAG data, which includes aircraft type information. The validation effort consists of comparing aircraft type sequencing at a resource to independent data sources such as: Host Z sequencing, terminal area sequencing data, and priority landing schemes to identify any significant differences. There is expected to be localized differences, but no significant differences are expected on the aggregate. The cost estimates of delay should be considered as "ballpark" estimates since they were derived from a macro model (NASPAC).

An additional area of concern is the convergence of the model's stochastic components. Analysis of the variability in the output from the NASPAC simulation model has indicated that multiple simulation runs are needed to address statistical reliability issues. The effect of output variability on the implementation of the cost of delay module needs to be addressed. At present, FY-92 plans call for development and implementation of a post processing module which summarizes results and provides statistical measures of precision.

5. USER INTERFACE IN RELEASE 2.

If the user wishes to determine the cost of delay for a given scenario the utilities heading of the main menu should be selected. The Cost Delay should then be selected along with Calculate.

<table>
<thead>
<tr>
<th>NASPAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Props.. Run Data Utilities</td>
</tr>
<tr>
<td>Select Table Cost Delay Calculate</td>
</tr>
<tr>
<td>File Formats View Results</td>
</tr>
</tbody>
</table>

A scenario file must be defined in order to determine which simulation the cost estimates will be applied to.
The user may then select from several cost array files in which different quarterly statistics by year and month are provided. The user will be asked to provide a file name extension in which the output results file may be referenced by. After the file name extension is given, the Run Calculate Cost of Delay should be selected.

A running cost module will appear at the user prompt and a finished running cost module will appear when the module finishes. At this point the output results may be viewed by selecting the appropriate output file. This is accomplished by selecting the review results from the Main Menu. In addition to evaluating the results file, the nomatch file can be examined. This file contains all the aircraft with no available cost information.
6. FUTURE DEVELOPMENT EFFORTS.

While comparisons of cost of delay summary files produce reasonable daily estimates of cost savings, the need to annualize these figures must be addressed. However, the evaluation of cost saving measures for the entire year is not a trivial issue. The cost associated with fuel, taxes, crew salaries, and maintenance are subject to change throughout the year. In addition, each scenario run of the NASPAC model generate specific conditions based on the assumptions used in that scenario which may not be representative of the entire year. The future cost of the delay module should be flexible in order to quantify cost figures for a given year that reflect changes to the economy.

7. CONCLUSIONS.

The overall objective is to develop a cost of the delay module that can be applied in the post-processing stage of the data analysis. The cost of the delay module will be activated upon the users request within the menu driven system of Release 2. The unit cost of operation for any carrier/aircraft configuration is sensitive to the condition of the economy. Factors such as fuel, salary, maintenance, depreciation, etc., will be affected. As a result, NASPAC customers can select from a number of cost arrays which reflect different quarterly cost statistics. Cost analysis as performed by the cost module is not intended to be a cost-benefit analysis, but a measure of the loss/savings that result on an operational level associated with a change to the ATC System. NASPAC is designed to evaluate the difference between the way the ATC System operates currently and how it will operate with a proposed ATC change. Absolute cost saving measures can be determined by comparing total cost figures for each scenario tested.
APPENDIX A
SOURCE LISTING COST OF DELAY MODULE

program cost_mod; { program translates delay into cost metric }
{ airborne and ground delays are transitioned }
{ Form 41 February, 1991 Quarterly Traffic and }
{ Capacity Data Master Data File Schedule P 05 }

const
num_ac = 76;
eff_cst = 39.50;
maxrec = 12000;

var

sum_aea, sum_aed, sum_dfx, sum_rst, sum_scc,
sum_unacc_del_air, sum_afx, sum_apa, sum_apd, cost, sm_aea,
sm_aed, sm_dfx, sm_rst, sm_scc, sm_afx, sm_apa, sm_apd : real;
sum_ga_aea, sm_ga_aea, sum_ga_aed, sm_ga_aed,
sum_ga_dfx, sm_ga_dfx, sum_ga_rst, sm_ga_rst, sum_unacc_del_ga,
sum_ga_scc, sm_ga_scc, sum_ga_afx, sm_ga_afx, sum_unacc_del_mil,
sm_ga_apa, sm_ga_apd, sm_ga_apd,
sum_mil_aea, sm_mil_aea, sum_mil_apa, sm_mil_apa,
sum_mil_dfx, sm_mil_dfx, sum_mil_rst, sm_mil_rst,
sum_mil_scc, sm_mil_scc, sum_mil_afx, sm_mil_afx,
sum_mil_apa, sm_mil_apa, sum_mil_apd, sm_mil_apd : real;
error : integer32;
n1,n2,n3 : text;
inf,fout,infl,tout : text;
str36 : varying [36] of char;
eq_typ_cd : array[1..90000] of str7;
air_occ : array[1..maxrec] of real;
nmatchsort : integer;
emclass_ta : integer;
eqclass_er : integer32;
k,i,n,1 code : str3;
tail_num : str5;

carrier,acar : integer;
actyp : str4;
fp_id : integer;
dly_typ : varying [3] of char;
procedure read_air_grd_cst;
var
carr : ac_car;
typp : integer;
carrra : array[1..3] of char;
dummya : array[1..2] of char;
typppa : array[1..4] of char;
carrrg : array [1..3] of char;
dummyg : array [1..4] of char;
typppg : array [1..4] of char;
begin
writeln('Running Cost Module...... ',error);
argv(1,array_cost_name);
reset(n2,array_cost_name);
for carr := COA to XXX do
begin
 for typp := 1 to num_ac do
 begin
 read(n2,carrra);
 read(n2,dummya);
 read(n2,typppa);
 readln(n2,air_dly[carr,typp]);
 end;
 end;
for carr := COA to XXX do
begin
 for typp := 1 to num_ac do
 begin
 read(n2,carrrg);
 read(n2,dummyg);
 end;
end;

read(n2,typppg);
readln(n2,grd_dly[carr,typp]);
end;
end;
close(n2);
end;

(fnd_typ converts tail number into carrier and aircraft type)
(if no match is found carrier and type are written to file nomatch)

procedure fnd_typ(var idx_typ : integer;var tail_num : integer32;
var accar : str3);
var
kl : integer;
blank : str1;
begin
if(tail_num < 90000) then
begin
blank := '•';
idx_typ := num_ac;
atype := substr(eq_typ_cd[tail_num],4,4);
accar := substr(eq_typ_cd[tail_num],1,3);
for kl := 1 to num_ac do
begin
 if(atype = Ind_typ[kl]) then
 idx_typ := kl;
end; { for loop }
if((idx_typ = num_ac) and (atype <> '•') and (kkk < maxrec)) then
{ write nomatch aircraft to array nmatchsort }
begin
 kkk := kkk + 1;
nmatchsort[kkk] := atype + blank + accar;
end;
else
 writeln('tail number out of bounds - ',tail_num);
end; { procedure }

{ convert string to real value }
procedure str_to_real(var dlaystr : str7;var dly : real);
var
kk,ii,ip,it : integer;
vall : array[1..3] of real;
val2 : array[1..7] of real;
begin
 for ip := 1 to 3 do
 vall[ip] := 0;
 for it := 1 to 7 do
 dly := dly + vall[it] * val2[it];
end; { procedure str_to_real }
val2[it] := 0;
dly := 0.0;
for kk := 1 to 3 do
begin
 case dlaystr[kk] of
 '0' : vall[kk] := 0;
 '1' : vall[kk] := 1;
 '2' : vall[kk] := 2;
 '3' : vall[kk] := 3;
 '4' : vall[kk] := 4;
 '5' : vall[kk] := 5;
 '6' : vall[kk] := 6;
 '7' : vall[kk] := 7;
 '8' : vall[kk] := 8;
 '9' : vall[kk] := 9;
 ' ' : vall[kk] := 0
 end;
end;
for ii := 5 to 7 do
begin
 case dlaystr[ii] of
 '0' : val2[ii] := 0;
 '1' : val2[ii] := 1;
 '2' : val2[ii] := 2;
 '3' : val2[ii] := 3;
 '4' : val2[ii] := 4;
 '5' : val2[ii] := 5;
 '6' : val2[ii] := 6;
 '7' : val2[ii] := 7;
 '8' : val2[ii] := 8;
 '9' : val2[ii] := 9;
 ' ' : val2[ii] := 0
 end;
end;
dly := vall[1]*100.0 + vall[2]*10.0 + vall[3] +
((val2[5]*100 + val2[6]*10 + val2[7])/1000.0);

(convert string to integer value)

procedure str_to_integer(var tailnum : str5;var tailnumm : integer32);
var
 kkl : integer;
 valuel : array[1..5] of integer32;
begin
 for kkl := 1 to 5 do
 valuel[kkl] := 0;
 tailnum := 0;
 for kkl := 1 to 5 do
begin
 case tailnum[kkl] of
 '0' : value1[kkl] := 0;
 '1' : value1[kkl] := 1;
 '2' : value1[kkl] := 2;
 '3' : value1[kkl] := 3;
 '4' : value1[kkl] := 4;
 '5' : value1[kkl] := 5;
 end;
end;
procedure read_eq_typ_cat;
begin
argv(2, array_eq_cat_name);
reset(infl, array_eq_cat_name);
repeat
begin
read(infl, tal_num);
str_to_integer(tal_num, tail_num);
read(infl, carrier);
readln(infl, actyp);
eq_typ_cd[tail_num] := carrier + actyp;
end;
until eof(infl);
close(infl);
end;

procedure process_data;
(reads data from TRACE FILE OF NASPAC model and start processing)
var
idx_typ : integer;
idx_carr : ac_car;
begin { initialize variables for summing }
sum_aea := 0; sum_aed := 0; sum_dfx := 0; sum_rst := 0;
sum_scc := 0; sum_afx := 0; sum_apa := 0; sum_apd := 0;
sm_dfx := 0; sm_rst := 0; sm_scc := 0; sm_afx := 0;
sm_apa := 0; sm_apd := 0; sm_aea := 0; sm_aed := 0;
sum_ga_aea := 0; sum_ga_aea := 0; sum_ga_aed := 0;
sm_ga_aed := 0; sum_ga_dfx := 0; sm_ga_dfx := 0;
sm_ga_rst := 0; sm_ga_rst := 0; sum_ga_scc := 0;
sm_ga_scc := 0; sum_ga_afx := 0; sm_ga_afx := 0;
sm_ga_apa := 0; sm_ga_apa := 0; sm_ga_apd := 0;
sm_ga_apd := 0;
sm_mil_aea := 0; sm_mil_aea := 0; sm_mil_aed := 0;
sm_mil_aed := 0; sum_mil_dfx := 0; sm_mil_dfx := 0;
sm_mil_rst := 0; sm_mil_rst := 0; sum_mil_scc := 0;
sm_mil_scc := 0; sum_mil_afx := 0; sm_mil_afx := 0;
sm_mil_apa := 0; sm_mil_apa := 0; sm_mil_apd := 0;
sm_mil_apd := 0; sum_unacc_del_air := 0; sum_unacc_del_ga := 0;
sum_unacc_del_mil := 0;
while not eof(inf) do
begin
delay := 0; cost := 0;
readln(inf,str36);

{ read in trace file from scenario }
if (str36[5] = '.') then
begin
dly_typ := substr (str36,9,3);
tal_num := substr (str36,20,5);
delaystr := substr (str36,30,7);
str_to_real (delaystr,delay);
str_to_integer (tal_num,tail_num);

{ convert tail number to aircraft type }
fnd_typ(idx_typ,tail_num,carrier);

{ convert string to index of enumerated type }
idx_carr := XXX;
for jcar := COA to XXX do
if (Ind_carrier[jcar] = carrier) then idx_carr := jcar;

{ sum delay and associated costs with delay type }
{ first see if there is a match }
if(idx_typ = num_ac) then
begin
if(carrier = 'ga ') then sum_unacc_del_ga :=
 sum_unacc_del_ga + delay
else
 if(carrier = 'ml ') then sum_unacc_del_mil :=
 sum_unacc_del_mil + delay
 else
 sum_unacc_del_air := sum_unacc_del_air + delay
end;

if(idx_typ < num_ac) then
begin
if(dly_typ = 'AEA') then

{ Airport Arrival Delay - " Effective Delay " }
begin
 cost := eff_cst / 60.0 * delay * air_occ[idx_typ];
 if(carrier = 'ga ') then
 begin
 sum_ga_aea := sum_ga_aea + delay;
 sm_ga_aea := sm_ga_aea + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 if(carrier = 'ml ') then
 begin
 sum_mil_aea := sum_mil_aea + delay;
 sm_mil_aea := sm_mil_aea + cost;
 end
end
}
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
begin
sum_aea := sum_aea + delay;
sm_aea := sm_aea + cost;
acarr[idx_carr] := acarr[idx_carr] + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
end
else
if(dly_typ = 'AED') then

{ Airport Departure - "Effective Delay" }

begin
cost := eff_cst / 60.0 * delay * air_occ[idx_typ];
if(carrier = 'ga') then
begin
sum_ga_aed := sum_ga_aed + delay;
sm_ga_aed := sm_ga_aed + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
if(carrier = 'ml') then
begin
sum_mil_aed := sum_mil_aed + delay;
sm_mil_aed := sm_mil_aed + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
begin
sum_aed := sum_aed + delay;
sm_aed := sm_aed + cost;
acarr[idx_carr] := acarr[idx_carr] + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
if(dly_typ = 'DFX') then

{ Departure Fix Delay - "Airborne Delay" }

begin
(note if 0 cost is found for carrier, type go to type)
if(air_dly[idx_carr,idx_typ] > 0.10) then
 cost := air_dly[idx_carr,idx_typ] * delay
else

cost := air_dly[XXX,idx_typ] * delay;
if(carrier = 'ga') then
begin
 sum_ga_dfx := sum_ga_dfx + delay;
 sm_ga_dfx := sm_ga_dfx + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
if(carrier = 'ml') then
begin
 sum_mil_dfx := sum_mil_dfx + delay;
 sm_mil_dfx := sm_mil_dfx + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
begin
 sum_dfx := sum_dfx + delay;
 sm_dfx := sm_dfx + cost;
 acarr[idx_carr] := acarr[idx_carr] + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
 sum_typ_del[idx_typ] := sxim_typ_del[idx_typ] + delay
end
else
if(dly_typ = 'RST') then
 begin
 if(air_dly[idx_carr,idx_typ] > 0.10) then
 cost := air_dly[idx_carr,idx_typ] * delay
 else
 cost := air_dly[XXX,idx_typ] * delay;
 if(carrier = 'ga') then
 begin
 sum_ga_rst := sum_ga_rst + delay;
 sm_ga_rst := sm_ga_rst + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 if(carrier = 'ml') then
 begin
 sum_mil_rst := sum_mil_rst + delay;
 sm_mil_rst := sm_mil_rst + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 begin
 sum_rst := sum_rst + delay;
 sm_rst := sm_rst + cost;
 acarr[idx_carr] := acarr[idx_carr] + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 end
 end
sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
end
else
 if(dly_typ = 'SCC') then
 (Sector Entry Delay - " Airborne Delay ")
 begin
 if(air_dly[idx_carr,idx_typ] > 0.10) then
 cost := air_dly[idx_carr,idx_typ] * delay
 else
 cost := air_dly[XXX,idx_typ] * delay;
 if(carrier = 'ga ') then
 begin
 sum_ga_scc := sum_ga_scc + delay;
 sm_ga_scc := sm_ga_scc + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 if(carrier = 'ml ') then
 begin
 sum_mil_scc := sum_mil_scc + delay;
 sm_mil_scc := sm_mil_scc + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 begin
 sum_scc := sum_scc + delay;
 sm_scc := sm_scc + cost;
 acarr[idx_carr] := acarr[idx_carr] + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 end
 else
 if(dly_typ = 'AFX') then
 (Arrival Fix Delay - " Airborne Delay ")
 begin
 if(air_dly[idx_carr,idx_typ] > 0.10) then
 cost := air_dly[idx_carr,idx_typ] * delay
 else
 cost := air_dly[XXX,idx_typ] * delay;
 if(carrier = 'ga ') then
 begin
 sum_ga_afx := sum_ga_afx + delay;
 sm_ga_afx := sia_ga_afx + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 else
 begin
 sum_scc := sum_scc + delay;
 sm_scc := sm_scc + cost;
 acarr[idx_carr] := acarr[idx_carr] + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 end
 end
 else
 begin
 sum_ga_afr := sum_ga_afr + delay;
 sm_ga_afr := sm_ga_afr + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
 end
end

A-9
end
else
if(carrier = 'ml ') then
begin
sum_mil_afx := sum_mil_afx + delay;
sm_mil_afx := sm_mil_afx + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
begin
sum_afx := sum_afx + delay;
sm_afx := sm_afx + cost;
acarr[idx_carr] := acarr[idx_carr] + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else

if(dly_typ = 'APA') then
{
 Airport Arrival Delay - " Airborne Delay "
}
begin
if(air_dly[idx_carr,idx_typ] > 0.10) then
 cost := air_dly[idx_carr,idx_typ] * delay
else
 cost := air_dly[XXX,idx_typ] * delay;
if(carrier = 'ga ') then
begin
sum_ga_apa := sum_ga_apa + delay;
sm_ga_apa := sm_ga_apa + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
if(carrier = 'ml ') then
begin
sum_mil_apa := sum_mil_apa + delay;
sm_mil_apa := sm_mil_apa + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
else
begin
sum_apa := sum_apa + delay;
sm_apa := sm_apa + cost;
acarr[idx_carr] := acarr[idx_carr] + cost;
atype[idx_typ] := atype[idx_typ] + cost;
sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
end
end
else
if(dly_typ = 'APD') then

{ Airport Departure Delay - "Ground Delay" }

begin
if(grd_dly[idx_carr,idx_typ] > 0.10) then
 cost := grd_dly[idx_carr,idx_typ] * delay
else
 cost := grd_dly[XXX,idx_typ] * delay;
if(carrier = 'ga ') then
 begin
 sum_ga_apd := sum_ga_apd + delay;
 sm_ga_apd := sm_ga_apd + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
else
 if(carrier = 'ml ') then
 begin
 sum_mil_apd := sum_mil_apd + delay;
 sm_mil_apd := sm_mil_apd + cost;
 atype[idx_typ] := atype[idx_typ] + cost;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay
 end
else
 begin
 sum_apd := sum_apd + delay;
 sm_apd := sm_apd + cost;
 acarr[idx_carr] := acarr[idx_carr] + cost;
 sum_car_del[idx_carr] := sum_car_del[idx_carr] + delay;
 sum_typ_del[idx_typ] := sum_typ_del[idx_typ] + delay;
 atype[idx_typ] := atype[idx_typ] + cost
 end
else
 end
end {if (.)}
end; (while not eof(inf))

{ data processing over print results to a file fout }
writeln(fout,'Cost of Delay from NASPAC Simulation Results Scenario ',hold_name);
writeln(fout,'');
writeln(fout,'');
writeln(fout,'****************************** Effective Delay ');
writeln(fout,'****************************

writeln(fout,'General Aviation ','sum_ga_aea:12:0',' min',' cost:',' $','sm_ga_aea:12:0);
writeln(fout,'Effective Arrival Delay Military ','sum_mil_aea:12:0',' min',' cost:',' $','sm_mil_aea:12:0);
writeln(fout,'Air Carrier'}
',sum_aea:12:0,' min',' cost',' $',sm_aea:12:0);
writeln(fout,
Totals
',sum_ga_aea+sum_mil_aea+sum_aea:12:0,' min',' cost',' $',
sm_ga_aea+sm_mil_aea+sm_aea:12:0);
writeln(fout,' ');
writeln(fout,
General Aviation
',sum_ga_aed:12:0,' min',' cost',' $',sm_ga_aed:12:0);
writeln(fout,' ');
writeln(fout,
Effective Depart Delay Military
',sum_mil_aed:12:0,' min',' cost',' $',sm_mil_aed:12:0);
writeln(fout,' ');
writeln(fout,
Air Carrier
',sum_aed:12:0,' min',' cost',' $',sm_aed:12:0);
writeln(fout,' ');
writeln(fout,
Totals
',sum_ga_aed+sum_mil_aed+sum_aed:12:0,' min',' cost',' $',sm_ga_aed+sm_mil_aed+sm_aed:12:0);
writeln(fout,' ');
writeln(fout,
',sum_ga_dfx:12:0,' min',' cost',' $',sm_ga_dfx:12:0);
writeln(fout,' ');
writeln(fout,
Departure Fix Delay Military
',sum_mil_dfx:12:0,' min',' cost',' $',sm_mil_dfx:12:0);
writeln(fout,' ');
writeln(fout,
Air Carrier
',sum_dfx:12:0,' min',' cost',' $',sm_dfx:12:0);
writeln(fout,' ');
writeln(fout,
Totals
',sum_ga_dfx+sum_mil_dfx+sum_dfx:12:0,' min',' cost',' $',sm_ga_dfx+sm_mil_dfx+sm_dfx:12:0);
writeln(fout,' ');
writeln(fout,
',sum_ga_rst:12:0,' min',' cost',' $',sm_ga_rst:12:0);
writeln(fout,
Restriction Delay Military
',sum_mil_rst:12:0,' min',' cost',' $',sm_mil_rst:12:0);
writeln(fout,' ');
writeln(fout,
Air Carrier
',sum_rst:12:0,' min',' cost',' $',sm_rst:12:0);
writeln(fout,' ');
writeln(fout,
Totals
',sum_ga_rst+sum_mil_rst+sum_rst:12:0,' min',' cost',' $',sm_ga_rst+sm_mil_rst+sm_rst:12:0);
writeln(fout,' ');
writeln(fout,
');
writeln(fout,'Sector Entry Delay Military',' sum_mil_scc:12:0',' min',' cost',' $',sm_mil_scc:12:0);

writeln(fout,'Air Carrier',' sum_scc:12:0',' min',' cost',' $',sm_scc:12:0);

writeln(fout,' Totals',' sum_ga_scc+sum_mil_scc+sum_scc:12:0',' min',' cost',' $',sm_ga_scc+sm_mil_scc+sm_scc:12:0);

writeln(fout,' Arrival Fix Delay Military',' sum_mil_afx:12:0',' min',' cost',' $',sm_mil_afx:12:0);

writeln(fout,'Air Carrier',' sum_afx:12:0',' min',' cost',' $',sm_afx:12:0);

writeln(fout,' Totals',' sum_ga_afx+sum_mil_afx+sum_afx:12:0',' min',' cost',' $',sm_ga_afx+sm_mil_afx+sm_afx:12:0);

writeln(fout,' Airport Arrival Delay Military',' sum_mil_apa:12:0',' min',' cost',' $',sm_mil_apa:12:0);

writeln(fout,'Air Carrier',' sum_apa:12:0',' min',' cost',' $',sm_apa:12:0);

writeln(fout,' Totals',' sum_ga_apa+sum_mil_apa+sum_apa:12:0',' min',' cost',' $',sm_ga_apa+sm_mil_apa+sm_apa:12:0);

writeln(fout,' Airport Departure Delay Military',' sum_mil_apd:12:0',' min',' cost',' $',sm_mil_apd:12:0);

writeln(fout,'Air Carrier',' sum_apd:12:0',' min',' cost',' $',sm_apd:12:0);

writeln(fout,' Totals',' sum_ga_apd+sum_mil_apd+sum_apd:12:0',' min',' cost',' $',sm_ga_apd+sm_mil_apd+sm_apd:12:0);
',sum_ga_apd+sum_mil_apd+sum_apd:12:0,' min',
' cost',' $',sm_ga_apd+sm_mil_apd+sm_apd:12:0));

writeln(fout,' ');

writeln(fout,'** Total Delay Costs
**');
writeln(fout,' ');

writeln(fout,' General Aviation
',sum_ga_apd+sum_ga_apa+sum_ga_afx+
sum_ga_scc+sum_ga_rst+sum_ga_dfx+sum_ga_aed+sum_ga_aea:12:0,' min',
' cost',' $',sm_ga_aea+sm_ga_aed+
sm_ga_dfx+sm_ga_rst+sm_ga_scc+sm_ga_afx+sm_ga_apa+sm_ga_apd:12:0);

writeln(fout,'Total Delay Costs Military
',sum_mil_apd+sum_mil_apa+sum_mil_afx
+sum_mil_scc+sum_mil_rst+sum_mil_dfx+sum_mil_aed+sum_mil_aea:12:0,' min',
' cost',' $',sm_mil_aea+
sm_mil_aed+sm_mil_dfx+sm_mil_rst+sm_mil_scc+sm_mil_aed+sm_mil_apd:12:0);

writeln(fout,' Air Carrier
',sum_apd+sum_apa+sum_afx+sum_scc+
sum_rst+sum_dfx+sum_aed+sum_aea:12:0,' min',
' cost',' $',sm_aea+sm_aed+sm_dfx+sm_rst+sm_scc+
sm_afx+sm_apa+sm_apd:12:0);

writeln(fout,' Grand Total
',sum_ga_aea+sum_mil_aea+sum_aea+
sum_ga_aed+sum_mil_aed+sum_aed+sum_ga_dfx+sum_mil_dfx+sum_dfx+sum_ga_rst+sum_mil_rst+sum_rst+
sum_ga_scc+sum_mil_scc+sum_scc+sum_ga_afx+sum_mil_afx+sum_aedx+sum_ga_apa+sum_mil_apa+sum_apa+
sum_ga_apd+sum_mil_apd+sum_apd:12:0,' min',
' cost',' $',sm_ga_aea+sm_mil_aea+sm_aea+
sm_ga_aed+sm_mil_aed+sm_aed+sm_ga_dfx+sm_mil_dfx+sm_dfx+sm_ga_rst+sm_mil_rst+sm_rst+
sm_ga_scc+sm_mil_scc+sm_scc+sm_ga_afx+sm_mil_afx+sm_aedx+sm_ga_apa+sm_mil_apa+
sm_ga_apd+sm_mil_apd+sm_apd:12:0);

writeln(fout,' ');

writeln(fout,'** Cost by Airlines and Aircraft Types
**');
writeln(fout,' ');

writeln(fout,' ');
for jcar := COA to XXX do
writeln(fout,' Airlines ',Ind_carrier[jcar],',
',sum_car_del[jcar]:14:0,' min',
' cost $',acarr[jcar]:14:0);
writeln(fout,'');
for jtyp := 1 to num_ac do
writeln(fout,' Aircraft Type ',Ind_typ[jtyp],',
 sum_typ_del[jtyp]:14:0, ' min', ' cost $',atype[jtyp]:14:0);
writeln(fout,'');

writeln(fout,'');
writeln(fout,'************ Unaccountable Delay - Measures Delay with no Cost Information ************');
if (sum_unacc_del_ga > 0.001) then
begin
writeln(fout,' ,sum_unacc_del_ga:12:0, ' min', ' representing ',sum_unacc_del_ga/(sum_ga_aea+sum_ga_aed+
 sum_ga_dfx+sum_ga_rst+
 sum_ga_scc+sum_ga_afx+
 sum_ga_apa+sum_ga_apd+sum_unacc_del_ga)*100:6:0, ' % of the Total Delay');
end;
if (sum_unacc_del_mil > 0.001) then
begin
writeln(fout,' ,sum_unacc_del_mil:12:0, ' min', ' representing ',sum_unacc_del_mil/(sum_mil_aea+sum_unacc_del_mil+
 sum_mil_aed+sum_mil_dfx+sum_mil_rst+
 sum_mil_scc+sum_mil_afx+
 sum_mil_apa+sum_mil_apd)*100:6:0, ' % of the Total Delay');
end;
if (sum_unacc_del_ga > 0.001) then
begin
writeln(fout,' ,sum_unacc_del_ga:12:0, ' min', ' representing ',sum_unacc_del_ga/(sum_ga_aea+sum_ga_aed+
 sum_ga_dfx+sum_ga_rst+
 sum_ga_scc+sum_ga_afx+
 sum_ga_apa+sum_ga_apd+sum_unacc_del_ga)*100:6:0, ' % of the Total Delay');
end;
if ((sum_unacc_del_mil+sum_unacc_del_air+sum_unacc_del_ga) > 0.001) then
begin
writeln(fout,'');
writeln(fout,'Total Delay ',sum_unacc_del_air+sum_unacc_del_ga+sum_unacc_del_mil:12:0, ' min', ' representing',(sum_unacc_del_air+
 sum_unacc_del_ga+sum_unacc_del_mil)/(sum_unacc_del_air+sum_unacc_del_ga+sum_unacc_del_mil));
end;
sum_unacc_del_mil+
sum_ga_aea+sum_mil_aea+sum_aea+sum_ga_aed+
sum_mil_aed+sum_aeda+sum_ga_dfx+sum_mil_dfx+sum_dfx+sum_ga_rst+sum_mil_rst+
sum_rst+sum_ga_scc+sum_mil_scc+sum_scc+sum_ga_apd+sum_mil_apd+sum_apd)*100:6:
0,' % of the Total Delay');
writeln(fout,' ');
end;

close(fout)
end;

procedure keyswap(var rr,ss : str8);
var
 t : str8;
begin
 t := rr;
 rr := ss;
 ss := t
end;

{ sorts nomatch array }

procedure dosort(low, high : integer);
var
 i, j : integer;
 pivot : str8;
begin
 if low < high then
 begin
 i := low;
 j := high;
 pivot := nmatchsort[j];
 repeat
 while ((i < j) and (nmatchsort[i] <= pivot)) do i := i + 1;
 while ((j > i) and (nmatchsort[j] >= pivot)) do j := j - 1;
 if i < j then keyswap(nmatchsort[i],nmatchsort[j]);
 until i >= j;
 keyswap(nmatchsort[i],nmatchsort[high]);
 if (i - low < high - i) then
 begin
 dosort(low,i-1);
 dosort(i + 1,high)
 end
 else
 A-16
begin
 dosort(i + 1, high);
 dosort(low, i-1)
end
end

{ writes sorted array to file nomatch and frequency of occurrence }

procedure writsort;
var
 knt, cnt : integer;
begin
 writeln(tout,'Missing Cost Information from Scenario ',hold_name);
 writeln(tout,'Type Carrier Frequency');
 for knt := 1 to maxrec do
 begin
 if (nmatchsort[knt] = nmatchsort[knt + 1]) then
 cnt := cnt + 1
 else
 begin
 if (nmatchsort[knt] <> '') then
 writeln(tout,' ', nmatchsort[knt] ', ', cnt : 5);
 cnt := 1;
 end;
 end;
 close(tout);
end;

begin {main}
argv(3, trace_file_name);
reset(inf, trace_file_name);
argv(4, results_file_name);
rewrite(fout, results_file_name);
xxx := 1;
while (results_file_name[xxx] <> '.') do
 begin
 absolutepath := absolutepath + results_file_name[xxx];
 xxx := xxx + 1
 end;
for xjx := xxx to 256 do
 begin
 holdextension := holdextension + results_file_name[xjx]
 end;
for xjx := (xxx + 1) to (xxx + 8) do
 begin
 hold_name := hold_name + results_file_name[xjx]
 end;
nomatch_file := absolutepath + '.' + '_nomatch' + holdextension
open(tout, nomatch_file, 'new');
rewrite(tout);
{ initialize carrier and type arrays }
for jcar := COA to XXX do
begin
Ind_carrier[jcar] := 'COA';
acarr[jcar] := 0;
sum_car_del[jcar] := 0
end;
for jtyp := 1 to num_ac do
begin
Ind_typ[jtyp] := 'AAL';
atype[jtyp] := 'SWA';
sum_typ_del[jtyp] := 0
end;
kkk := 0;
for k := 1 to maxrec do
nmatchsort[k] := 0;
for k := 1 to 90000 do
 eq_typ_cd[k] := 'AAL';

(load carrier names)
Ind_carrier[COA] := 'COA';
Ind_carrier[DAL] := 'DAL';
Ind_carrier[UAL] := 'UAL';
Ind_carrier[USA] := 'USA';
Ind_carrier[PAA] := 'PAA';
Ind_carrier[TWA] := 'TWA';
Ind_carrier[HAL] := 'HAL';
Ind_carrier[FDX] := 'FDX';
Ind_carrier[UP] := 'UP';
Ind_carrier[PCM] := 'PCM';
Ind_carrier[ASA] := 'ASA';
Ind_carrier[AMT] := 'AMT';
Ind_carrier[MID] := 'MID';
Ind_carrier[SWA] := 'SWA';
Ind_carrier[AAH] := 'AAH';
Ind_carrier[SJM] := 'SJM';
Ind_carrier[WCA] := 'WCA';
Ind_carrier[AWE] := 'AWE';
Ind_carrier[XXX] := 'XXX';

(load aircraft type names)
\[
\text{Ind_typ[45]} := \text{'DC6'}; \quad \text{Ind_typ[46]} := \text{'AC2A'}; \quad \text{Ind_typ[47]} := \text{'L188'}; \\
\text{Ind_typ[48]} := \text{'DC8'}; \quad \text{Ind_typ[49]} := \text{'G73'}; \quad \text{Ind_typ[50]} := \text{'DH3'}; \\
\text{Ind_typ[51]} := \text{'C550'}; \quad \text{Ind_typ[52]} := \text{'BE20'}; \quad \text{Ind_typ[53]} := \text{'BE90'}; \\
\text{Ind_typ[54]} := \text{'PA31'}; \quad \text{Ind_typ[55]} := \text{'BE58'}; \quad \text{Ind_typ[56]} := \text{'LR35'}; \\
\text{Ind_typ[57]} := \text{'PA28'}; \quad \text{Ind_typ[58]} := \text{'BE36'}; \quad \text{Ind_typ[59]} := \text{'BE30'}; \\
\text{Ind_typ[60]} := \text{'BE10'}; \quad \text{Ind_typ[61]} := \text{'PA32'}; \quad \text{Ind_typ[62]} := \text{'C172'}; \\
\text{Ind_typ[63]} := \text{'BE18'}; \quad \text{Ind_typ[64]} := \text{'LR55'}; \quad \text{Ind_typ[65]} := \text{'LR25'}; \\
\text{Ind_typ[66]} := \text{'LR23'}; \quad \text{Ind_typ[67]} := \text{'C421'}; \quad \text{Ind_typ[68]} := \text{'C210'}; \\
\text{Ind_typ[69]} := \text{'C650'}; \quad \text{Ind_typ[70]} := \text{'C414'}; \quad \text{Ind_typ[71]} := \text{'C182'}; \\
\text{Ind_typ[72]} := \text{'C340'}; \quad \text{Ind_typ[73]} := \text{'C500'}; \quad \text{Ind_typ[74]} := \text{'C441'}; \\
\text{Ind_typ[75]} := \text{'BE35'}; \quad \text{Ind_typ[76]} := \text{'XXXX'}; \\
\]

\{ load occupancy figures for load factors \}

\[
\begin{align*}
\text{air_occ[1]} & := 62; \quad \text{air_occ[2]} := 91; \quad \text{air_occ[3]} := 77; \quad \text{air_occ[4]} := 62; \\
\text{air_occ[5]} & := 51; \quad \text{air_occ[6]} := 189; \quad \text{air_occ[7]} := 234; \quad \text{air_occ[8]} := 2; \\
\text{air_occ[9]} & := 2; \quad \text{air_occ[10]} := 129; \quad \text{air_occ[11]} := 2; \quad \text{air_occ[12]} := 11; \\
\text{air_occ[13]} & := 117; \quad \text{air_occ[14]} := 91; \quad \text{air_occ[15]} := 3; \\
\text{air_occ[16]} & := 2; \\
\text{air_occ[17]} & := 3; \quad \text{air_occ[18]} := 11; \quad \text{air_occ[19]} := 177; \\
\text{air_occ[20]} & := 3; \\
\text{air_occ[21]} & := 135; \quad \text{air_occ[22]} := 168; \quad \text{air_occ[23]} := 125; \\
\text{air_occ[24]} & := 51; \\
\text{air_occ[25]} & := 2; \quad \text{air_occ[26]} := 2; \quad \text{air_occ[27]} := 125; \\
\text{air_occ[28]} & := 2; \\
\text{air_occ[29]} & := 51; \quad \text{air_occ[30]} := 24; \quad \text{air_occ[31]} := 2; \\
\text{air_occ[32]} & := 3; \\
\text{air_occ[33]} & := 3; \quad \text{air_occ[34]} := 2; \quad \text{air_occ[35]} := 54; \quad \text{air_occ[36]} := 150; \\
\text{air_occ[37]} & := 45; \quad \text{air_occ[38]} := 3; \quad \text{air_occ[39]} := 2; \quad \text{air_occ[40]} := 3; \\
\text{air_occ[41]} & := 2; \quad \text{air_occ[42]} := 2; \quad \text{air_occ[43]} := 3; \quad \text{air_occ[44]} := 234; \\
\text{air_occ[45]} & := 125; \quad \text{air_occ[46]} := 3; \quad \text{air_occ[47]} := 130; \\
\text{air_occ[48]} & := 135; \\
\text{air_occ[49]} & := 3; \quad \text{air_occ[50]} := 3; \quad \text{air_occ[51]} := 3; \quad \text{air_occ[52]} := 2; \\
\text{air_occ[53]} & := 3; \quad \text{air_occ[54]} := 4; \quad \text{air_occ[55]} := 3; \quad \text{air_occ[56]} := 3; \\
\text{air_occ[57]} & := 2; \quad \text{air_occ[58]} := 3; \quad \text{air_occ[59]} := 2; \quad \text{air_occ[60]} := 3; \\
\text{air_occ[61]} & := 3; \quad \text{air_occ[62]} := 2; \quad \text{air_occ[63]} := 2; \quad \text{air_occ[64]} := 3; \\
\text{air_occ[65]} & := 3; \quad \text{air_occ[66]} := 3; \quad \text{air_occ[67]} := 3; \quad \text{air_occ[68]} := 2; \\
\text{air_occ[69]} & := 3; \quad \text{air_occ[70]} := 3; \quad \text{air_occ[71]} := 2; \quad \text{air_occ[72]} := 2; \\
\text{air_occ[73]} & := 3; \quad \text{air_occ[74]} := 4; \quad \text{air_occ[75]} := 2; \\
\end{align*}
\]
read_air_grd_cst;
read_eq_typ_cat;
process_data;
dosort(l,maxrec);
writsort;
writeln('Cost Module is finished!!');
end. {program}
This paper addresses the cost of the delay module that was developed by Federal Aviation Administration Technical Center to be incorporated into the National Airspace System Analysis Capability (NASPAC) model. This module was developed to address the savings which could be realized when changes are made to the Air Traffic Control (ATC) System. The purpose of this module is to translate delay into a cost metric and, thus, give policy makers a better understanding of potential cost saving measures. These cost saving measures are a direct result of an operational or procedural change to the ATC System. Cost estimates for major air carriers using the National Airspace System (NAS) were derived from Form 41 (operating expenses) data provided by the Office of Airline Statistics. General aviation and military cost estimates were derived from the Economic Values for Evaluation of Federal Aviation Administration Investment and Regulatory Programs, FAA-APO-89-10. The cost of the delay module has been tested and is fully operational with the latest release of NASPAC.