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Summary 

The effective use of mobile sensors (UAVs for example, but not exclusively) to 

investigate own and opponent force status in geographical regions requires planning to 

compensate for their limitations. These limitations include finite endurance, and realistic 

mission unreliability: the failure propensities of platform and sensing packages, and the 

consequent need for maintenance and logistics support. 

This paper supplies analytical {mathematical) models (AMM) to assist planners, and 

the acquirers and operational testers of mobile sensor assets. The results are formulas 

(that can be quickly evaluated numerically) for the expected time on station (fraction of 

time a region has sensor presence) of several cooperatively operating systems supported 

by several maintenance facilities. These results can be used to estimate the number of 

sensors of a particular type needed to cover a region adequately. 

Limited evidence indicates usefully satisfactory agreement between analytical model 

estimates and those from more detailed and elaborate Monte Carlo simulations (MCS). 



Even with modern fast computers the exercise of AMMs is more rapid than of MCSs, so 

initial exploratory investigation by AMMs is indicated. 

1. A Generic Situation 

A platform carrying sensing equipment, e.g. JSTARS, AWACS, or an RPV/UAV is 

used to carry out surveillance of a region. The platform has finite endurance: it requires a 

time T to transit outbound from home base (airbase on land, Navy carrier) to the target 

region, then can remain on-station over that region, performing surveillance, for time S, 

and finally transit back again for time T. Once back on base it spends a time D for 

refueling, maintenance, etc. 

Often several such platforms must operate cooperatively in order to achieve adequate 

coverage of a relatively distant region. These may be serviced at home base by several 

maintenance facilities; in some cases there are fewer maintenance "paths" than platforms, 

in which case queues can form and the coverage correspondingly degenerates. We 

provide models that describe and predict the long-run consequences in such cases. 

1.1 A Basic Formula: Consider that a cycle begins each time the UAV takes off from its 

home base, and ends when it is again ready to do so. Let Y(t) = 1 if the platform is on 

station and Y(t) = 0 otherwise. {Y(t); t> 0} is a degenerate alternating renewal process. 

The long-run proportion of time the platform is on station if no systems fail is seen to be 

lim ^Y(t)dt = 7t=S (1.1) 
s^0oSJ 2T + S + D 

However, it is realistic, and essential, to account for failures during the mission, and their 

effect on time on station. Failures, and their repair times, make the on-station availability 

predicted by (1.1) degenerate, and our analytical models efficiently show how this 

occurs, although approximately. The Monte Carlo simulations of Pendergast and 

Stoneman (1998) are potentially more versatile and accurate, but require more setup and 



computer time. The analytical models (here) are convenient and adequate for 

explorations. 

2. Single System Models 

VARIATION 1: Assume mission-affecting failures (MAP) occur according to a Poisson 

process with rate A. Once a single MAF occurs, the UAV immediately returns to base 

(crashes are not modeled here). If additional failures occur when returning to base, these 

influence the total repair time. Model the repair times as independent and random, with 

mean l//z and let C be the duration of a cycle: total time from one takeoff to the next. 

Let X be the time until failure. Let A be a random on-station time, and let B be the 

time from platform take-off until return to base, then it is shown in Appendix I that 

E[A] 
E[C] 

^it1- -e-U] 

!H -«•]+e -"iH" u]+D+[l- .e-(2T+S)U 

(2.1) 

VARIATION 2: Suppose the need for unscheduled maintenance activities (UMA) occur 

according to a Poisson process with rate ecu during the platform flight. These (UMA) do 

not shorten the flight but each requires a random time to perform with mean l/ßu hours. 

In addition there is one Administrative logistic down time (ALDT) with mean l/ß/j. 

Assume that scheduled maintenance activities (SMA) occur at a rate of ocs per flight hour. 

Each scheduled activity requires 1/ßs hours. Model E[D] as follows 

E[D]=    avE[B]   -J-+    asE[B]   J-+- X 

ßu expected approx. 
number of number of 
UMA'sto SMA'sto 

occur in a cycle occur in a cycle 

As   PA 



Numerical Example. 

Assume MTBMAF=25 hours. There is scheduled maintenance of 7 hours at 50 hr. 

intervals. UM As occur at a rate of X = 1/5 per hour and each requires 1/ßu = 1.9 hours of 

maintenance; the mean ALDT time 1/^ = 0.5. The mean repair time for a MAF is 1.9 

hours +0.5 ALDT. The total time the platform can be in the air is 20 hours. T is the 

ingress/egress time. 

Fraction of Time at Least One UAV is On Station 
ETOS [Estimated Time on Station] 

"■"■■■p.:-i Analytic ETOS Simulation ETOS 
(95% Confidence Interval) 

1 0.52 0.5200-0.5332 
2 0.45 0.4389-0.4511 
3 0.38 0.3697 - 0.3849 
4 0.32 0.3121-0.3284 
5 0.26 0.2526 - 0.2667 
6 0.21 0.1978-0.2094 

3. Many-System Models: Ample Service 

VARIATION 3: Assume there are N platforms. Assume there is ample service capacity, here 

N < s, the number of maintenance paths or servers so that no platform needs to wait for 

maintenance or repair. The platforms are launched independently of one another when 

they are available; a pessimistic assumption. Then an approximation for the long-run 

proportion of time the region is under surveillance by at least one platform is 1 - (1 - n)N. 

For the parameters of the previous numerical example, wherein N = 4, the long-run 

proportion of time the region is under surveillance by at least one platform is 



Fraction of Time at Least One UAV is On Station 
Analytical Model 
Fraction of Time 

0.95 
0.91 
0.85 
0.79 
0.70 
0.60 

95% 
Confidence Interval 

0.9565-0.9642 
0.9161-0.9247 
0.8694-0.8946 
0.8279-0.8451 
0.7535-0.7949 
0.6921-0.7093 

The simulation results are from the MASS model; Pendergast and Stoneman (1998). 

The analytical model gives smaller fractions of time the region is covered. This 

behavior is because the simulation includes scheduling of the UAVs, which the analytical 

model does not include. 

4. A Model With Limited Service: Markovian Approximation 

Suppose there are s maintenance paths: servers in queuing theory parlance. Let the 

times between maintenance/repair for a UAV be iid exponential with mean 1/% and 

assume the times for maintenance/repair are iid exponential with 1/p. Let X(f) be the 

number of UAVs down (receiving or awaiting maitenance/repair) at time t. 

Model: {*(/); t > 0} is a continuous time Markov chain with limiting distribution 

y{x) = \knP{X(t) = x} = ff    <*-'> 
to min(/+l,5)p 

¥(0) 
(4.1) 

for x = 1,..., N where N is the number of UAVs. y<0) is found by solving 

N 
1 = 5>(0 (4.2) 

Ku ~ Al       *" aPProximation for the fraction of time a flying UAV is 

station. Model the long-run fraction of time the region is covered by a UAV by 

is on 



^ZHi-^r-yu) 
x=0 (4-3) 

Numerical Example 

Take l/y=E[B] and l/p = E[D]+[-/-+———]—. For the parameter values of 
\Al  A    2/ + 5 / fl 

the previous numerical example with 4 UAVs, T = 3 and a variable number of servers: 

Fraction of Time at Least One UAV is On Station 
Number 

of 
Servers 

Model 
Fraction of Time 

Area Covered 

Simulation 
95% Confidence 

Interval 
1 0.62 0.8299-0.8601 
2 0.80 0.8754-0.8947 
3 0.85 0.8713-0.8951 
4 0.85 0.8750-0.8891 

If there are 4 UAVs , one maintenance path and variable ingress/egress time 

Fraction of Time at Least One UAV is On Station 
Model 

Fraction of Time 
Area Covered 

0.73 
0.68 
0.62 
0.55 
0.48 
0.40 

Simulation 
95% Confidence 

Interval 
0.9529 - 0.9604 
0.8977 - 0.9194 
0.8299-0.8601 
0.7678-0.7916 
0.6540 - 0.6836 
0.5230 - 0.5493 

5. A Model with Scheduling: Replacement UAVs Always Available 

In this section we describe a model that accounts for scheduling the UAVs so that one 

is always on station. Initially assume that there are always UAVs to replace on-station 

UAVs. Let T be the ingress/egress time and 5 be the time on station. We assume IT < S. 

Assume a UAV has just arrived on station at time 0. Its replacement must take off at 

time S - T in order to relieve it when the first UAV starts its trip back to base. The egress 

time is T. 



Assume a UAV experiences a mission affecting failure after an exponential length of 

time having mean 1/A. 

Assume a replacement UAV is launched T time units before the on-station UAV is to 

start to return to base or upon failure of the on-station UAV whichever comes first. Let L 

be the length of time a replacement UAV is late to the region; during this time the region 

is not covered. 

E[L]=   e^ 0 + fQXe->*(x+ E[L] 
replacement  
does not fail replacement 
on ingress fails 

new 
replacement 

^ bunched   j (5.1) 

= I[l-^-(ATK-]+(l-^)£[L]. 

Thus, 

£[£] = — ^ i = ±.[e-*-l-Xr]. (5.2) 
e A 

Notice that the expected lateness increases exponentially with the transit time to station, 

which argues for getting closer to the region. 

Consider a cycle to start when a new UAV arrives on station. The expected length of 

a cycle is 

E[C]=    e^   [S + E[L]] + Jo
5"r ££^dx[x+E[L] + T]+ £jUT*dc [S + E[L]]     (5.3) 

on-station on-station UAV > „ ' 
UAV does not fails before on-station UAV fails 
fail on station replacement after replacement 

is launched is launched 

= E[L] + e-^s-T)S + -[l-e-x{s-T) -(X(S-T))e-x{5-T)] + T[l-e-x{s-T)] (5.4) 

= E[L]+-[l-e-xiS-T) -X{S-T)e-x{s-T)] + e-x(s-T)S + T[l-e-xis-T)] (5.5) 



Let V be time the region is not covered during a cycle. 

E[V] = {T + E[L]) (l - e~x(S-T)) + e^^f AT* [T-x + E[L]]dx 
probability on-station on-station UAV fails 

UAV fails before after replacement takes off 
replacement takes off 

= (T + E[L])(l-e-x{S-T)) (5.6) 

+ e-«5-T) \[T + £[Lj[l - e-"] - }[l - e'" - XTe^f, 

.   The long run fraction of time the region is not covered is 

*-&\. (5-7) E[C] 

6. A Model with Scheduling: Limited Repairs 

Let Xi be the number of failures during a cycle for the ingressing UAV. If there is 

always a replacement UAV available, then 

£[X/] = (l-e-Ar)+(l-e-"')£[X/] (6.1) 

(1-e-n 
E[Xi]=      -xr  '=e   -1. (6.2) 

e 

Let Xo be the number of failures for the UAV on station. 

E[Xo] = {l-e-«s+T)) (6.3) 

where T is the egress time. 

The long run average failure rate is 

_E[X0]+E[X,] 
A°—"E[C] • (6-4) 

Consider a queue with arrival rate ^o and a maximum number of customers waiting or 

being served equal to N, the total number of UAVs and s servers (maintenance paths, 



each with service rate p). Let <fXx) be the long run proportion of time there are x UAVs 

either waiting for or being repaired. 

x-l ^)=n— An, -0(0) 
%timn(i+l,s)p 

where 0(0) is determined so that the sum is one and N is the total number of UAVs. 

Approximate the long run fraction of time during which there is at least one UAV on 

station as 

as(l)=    (1-<P(NJ)   a     <- From (5.7) 
v , • 

long-run fraction of 
time at least one UAV 

is up from queuing model 

or 

as(2)=  (l-[0(N) + 0(N-l)]) a 
long- ran fraction of time at least 2 UAVs 

are not waiting for or being repaired 

and a is the long run fraction of time there is a UAV on station for the schedule model of 

Section 5. 

Numerical Example 

Take - = £[£>]+ 
P 

{l/(U —. Suppose there are 4 UAVs, one maintenance 
U/ U   2T+SJJP 

path and variable ingress/egress time. For the parameter values of the previous examples 

Fraction of Time at Least One UAV is On Si tation 
111 Simulation 

: :-95% 
Confidence 

Interval 

Schedule 
Model UAV 

always 
available 

Schedule Model 
times Probability 
at least one UAV 

is available 

Schedule Model 
time Probability 

at least two UAVs 
are available 

1 0.95-0.96 0.96 0.95 0.91 
2 0.90-0.92 0.91 0.90 0.86 
3 0.83-0.86 0.87 0.85 0.80 
4 0.77-0.79 0.82 0.80 0.75 
5 0.65-0.68 0.76 0.73 0.64 
6 0.52-0.55 0.71 0.63 0.52 

The simulation results are from Stoneman (1998). 



REFERENCES 

F.P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons, New York, 
1979. 

K.D. Pendergast and J. Stoneman, "Military Aircraft Suitability Simulation (MASS)," 
Presentation Slides, Institute for Defense Analysis, 1998. 

J.A. Post and C.W. Warner, "A Discrete-Event Simulation of Predator UAV Target Area 
Presence," Presentation Slides, Institute for Defense Analysis, January 6,1997. 

10 



APPENDIX I 

B is the time between takeoff and return to base. Then 

IX if X < T (fails on flight out) 

5 = < X+T ifT<Z<r + 5 (fails during surveillance time) 

2T + S       if X>T + S (fails on flight back or does not fail) 

Thus, 

T 

E[B] = J2sXe~Xsds 
o 

s 

+e~xrj(s+2T)Xe~bds 
0 

+e-X{T+S)(2T+S) 

Let A be the time on station 

0 if X < T (Platform fails on ingress) 

X-T i£T<X<T + S (Platform fails during surveillance) 

S i£X>T+S 

A = 

Thus, 

E[A] = 0[l - e^y e-a \shT*ds + e~x^S)S 

= e -XT   1 #-.-] 
The expected length of a cycle is 

£[C] = E[B]+D + (l-e-x(2T+S))   - 
prob of failure w 
during cycle expected 

repair time 

(ALI) 

(AI.2) 

(AI.3) 

(AI.4) 

(AI.5) 

11 



The long-run proportion of time the platform is performing surveillance: 

£[C] 

«,-![!_<,-*] (AI.6) 

2 [l_^]+^||-1_e-«j+z)+j1_e-(2r+5)jl 

12 



APPENDIX II 
A Closed Queueing Network Model 

Consider a closed queuing network with 4 "service centers" or states labeled as 

follows: 

Center Number of Servers 
D Down s (number of maintenance paths) 
I Ingress infinite 
S On Station infinite 
E Egress infinite 

Consider a closed migration process in the sense of Kelly (1979). The state of the 

process is {(XD(0, X/(f), Xs(t), XE(t)); t > 0} where XD{t) is the number of platforms down 

at time t; Xi(f) is the number traveling to the region at time r, Xs(t) is the number on 

station at time t, and Xg(t) is the number traveling from the region at time t. Assume 

{(XD(t), X/(f), Xs(0, XE(t)); t > 0}; is a continuous time Markov chain with 

P{ (Xt (t + h) = Xi -1,Xj (t + h) = xj +1,X* (t + h) = xkfoT k * i, j\ Xe (t) = xt for all £} 

■ =hij(pi(xi)h + o(h) 

13 



Put 

Xß; = 0 for; = S, E 

I/O =A 

Xjj = 0 fory = E 

<Pl(xl) = xI 

XSE = E[A] 

XSj = 0 for; = D, I 

<Ps(xs) = xs 

A-ED = — 

X%j = 0 for; =1, S 

<PE{
X
E) = 

X
E 

Theorem 2.3 of Kelly (1979) states that 

]imP{(XD{tlX,(t),Xs(t),XE(t)) = (xD,x„xs,xE)} 

where K is a normalizing constant, Q = {D, /, S, E) and § is the unique solution to the 

system of equations 

14 



^■E*jA = YaSkhj for; = D, I, S, E 
k k 

Numerical Example 

Suppose there are 4 UAVs; MTBMAF=25; there is one maintenance path; and the 

other parameters are as before with the ingress/egress time T variable 

Long-run proportion of time at least 1UAV is on station 
1 server 

T Limited 
Service 
Model 

Queuing 
Network 
Model 

Simulation 

1 0.76 0.79 0.93 
2 0.70 0.74 0.88 
3 0.64 0.68 0.83 
4 0.58 0.61 0.75 
5 0.50 0.54 0.60 
6 0.42 0.45 0.48 

If there are 4 servers 

Long-run proportion of time at least 1 UAV is on station 
4 servers 

T Independent 
Alternating 

Renewal Process 
Model 

Limited 
Service 
Model 

Queuing 
Network 
Model 

Simulation 

1 0.95 0.96 0.96 0.95 
2 0.91 0.92 0.93 0.91 
3 0.86 0.87 0.88 0.86 
4 0.79 0.80 0.82 0.83 
5 0.71 0.71 0.74 0.78 
6 0.61 0.61 0.64 0.63 

In the present case the multi-state queuing model approach appears from the limited 

tabulation to be biased low for a limited number of repair servers (1). This is not 

conclusive, but in view of the very good results obtained by the simpler Markovian 

15 



model of Section 4 it does not now seem desirable to use the present approach. Some 

further investigation may be worthwhile. 

16 



APPENDIX m 
Display of Spreadsheet Implementation of Analytic Models 

ANALYTICAL MODELS FOR MOBILE SENSOR (UAV) COVERAGE OF A REGION 

PARAMETER VALUES 
1/lam:mean time between mission affecting failure: 
MAF(hours) 
T: ingress-egress time 
E: total endurance time 
alohau: rate of unscheduled maintenance activities (number 
per hour) 
1/alphas: time between scheduled maintenance activities 
(hours) 
1/betau: mean time to repair each unscheduled maintenance 
(hours) 
1/betas: mean time to repair each scheduled maintenance 
(hours) 
1/mu: mean time to repair mission affecting failure 

s: number of maintenance paths 
N: number of UAVs (max=10) 
S: time on station if no failures 
1/betaa:administrative and logistic down time (ALDT) 

MOEs 
Long run proportion of time at least 1 UAV is on station: limited 
service model 
Long run proportion of time 1 UAV is on station: 1 UAV and 
alternating renewal process model 
For infinite repair capacity, the fraction of time at least one 
UAV is on station 

25 
3 

20 

1/5 

50 

1.9 

7 

2.4 
1 
4 

14 
0.5 

0.617522645 

0.378147644 

0.850462838 

CALCULATED PARAMETERS 
exp model prob of failure during flight 
lam: MAF failure rate 
prob of MAF during flight 
prob of MAF during ingress 
prob of MAF during surveillance 
expected time of flight 
expected repair time (Alt Renewal) 
expected time flying UAV is on station 
proportion of flying time spent on station 
gam: rate of return for repair 

0.444444444 
0.04 

0.550671036 
0.113079563 
0.428790936 
15.16156427 
9.980959426 
9.507586109 
0.627084774 
0.065956255 

9.672902311 (limited service 

X: number of UAVs down long run prop of 
time number of 

UAV are down 
0 0.053634346 
1 0.136872366 
2 0.261968949 
3 0.334266308 
4 0.213258031 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 

17 



cald calc2 calc3 calc4 calc5 calc6 calc7 
1 1 1 18.64476906 4 0.980660713 0.052597096 

2.551953647 2.551953647 2.551953647 3 0.948140259 0.1297742 
1.913965235 1.913965235 4.884350563 2 0.860934234 0.225538037 
1.275976824 1.275976824 6.232318117 1 0.627084774 0.209613312 
0.637988412 0.637988412 3.976146737 0 0 0 

0 0 0 0 0 0 
•0.637988412 0 0 0 0 0 
•1.275976824 0 0 0 0 0 
•1.913965235 0 0 0 0 0 
■2.551953647 0 0 0 0 0 
■3.189942059 0 0 0 0 0 

Efrepairtime]: 

Model alt. renewal:        £[maintenance time]+(l-e~*f )— 

X     1 Model limited service:   Efmaintenance time! + 5— 
1 J   A+1/i 
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