Grant Number DAMD17-94-J-4140

TITLE: Characterization and Consequences of Estrogen Receptor Exon Five Deletion

PRINCIPAL INVESTIGATOR: Irina Erenburg
Beth Schachter, M.D.

CONTRACTING ORGANIZATION: Mount Sinai School of Medicine
New York, New York 10029-6574

REPORT DATE: August 1996

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Comparison of mRNA ratios of an non-DNA binding estrogen receptor (ERα) isoform, missing exon 3 (ERαA3), to the full length ERα, in breast cancer, cancer cell lines and normal mammary epithelial cells and fibroblasts, revealed a 29 fold reduction of this ratio in cancer cells (p < 0.001). This suggested a link between ERαA3 reduction and breast carcinogenesis. To test directly its effect on breast cancer cells, stable clones of MCF-7 cells expressing ectopic ERαA3 protein at levels not exceeding those of physiological ERα, were generated. In vector transfected controls the ERαA3-mRNA and protein were less than 10% of total ERα, while in the ERαA3-expressing clones, ERαA3-mRNA and protein represented approximately 50% of the total ERα. Estrogen (E2) stimulation of PS2-mRNA was inhibited by more than 90% in all ERαA3-MCF-7 clones, as compared with the pMV7 controls. In presence of 1x 10^-8 M E2, compared to control cells, the ERαA3-expressing cells were density arrested at 50%, and their invasiveness in vivo was reduced by up to 79%. As expected, estrogen stimulated anchorage independent growth of both the control pMV7 and the parental MCF-7 cells, but reduced it to below baseline levels in ERαA3 clones. The relative lack of response of PS2 gene expression to E2, and the blocking of anchorage-independent growth by E2 suggest that, aside from the dominant negative effect, E2 may activate an additional, ERαA3-dependent inhibitory pathway. The drastic reduction of ERαA3 to ERα ratio in breast cancer, combined with the fact that ERαA3 reverts the stimulation of the phenotypic tumor properties by E2 to suppression, suggests that an altered splice regulation of ERα-mRNA may be a component of breast carcinogenesis.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

N/A In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

N/A For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

N/A In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

✓ In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Signature

Date
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
<td>1</td>
</tr>
<tr>
<td>Report Documentation Page</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body: Materials and Methods</td>
<td>5</td>
</tr>
<tr>
<td>Body: Results</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion: Discussion</td>
<td>9</td>
</tr>
<tr>
<td>Figures</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
</tbody>
</table>
INTRODUCTION

Estrogen, a key regulator of normal breast growth and differentiation, has been shown to promote both cancer cell proliferation and invasion (1,2). Although the estrogen receptor (ER) is the major mediator of estrogen action, the precise mechanism by which ER contributes to altered estrogen response in cancer remains unclear.

Estrogen receptor (ER) is one of many transcriptional regulatory proteins of the steroid receptor family that act principally as ligand-activated DNA-binding dimers (3). ER has distinct functional domains, including two transcriptional activating regions (the NH-terminal AF1 and the COOH-terminal, ligand-dependent, AF2), an internal zinc finger, DNA-binding domain, dimerization regions, and several nuclear localization sequences (4) (Fig. 1a). Like other ligand-activated transcriptional regulators (5), ER is not a single protein, but rather a set of proteins coded by two genes giving rise to ERα and ERβ (6) as well as isoforms generated by alternative splicing (exon skipping) of a single pre-mRNA. Since alternatively spliced ERα-mRNAs were first noted in breast tumors and tumor cell lines, before their normal counterparts were thoroughly examined, it was proposed that overexpression of aberrant ER isoforms is characteristic of breast cancer (7-23). One ER isoform (ERα3), missing exon 3, which encodes the second zinc finger of the DNA-binding domain, was shown to be an in-frame deletion which in an in vitro translation reaction yielded a protein of 61.2kDa (20). This protein was unable to form specific complexes with ER or transactivate an ERE-reporter plasmid in transient transfection assays (20). In addition, ERα3 was capable of inhibiting ERα function; its inhibition of ERα binding to ERE followed the expected pattern for a dominant negative effect, while the inhibition of transactivating activity required a large excess of ERα3 (20).

The importance of dominant negative receptors in controlling cellular responses to agonists and antagonists has been underscored by several recent studies of the steroid receptor family (25-28). Given that ERα3 is a naturally occurring form of ERα, as such, if expressed at high relative levels to full length ERα, it may have a profound effect on several estrogen dependent functions. For example, ERα3 expression in normal breast tissue may provide a means of regulating the magnitude of estrogen responses, and a relative loss of ERα3 expression in breast tumor tissue may lead to unchecked estrogen stimulation. Alternatively, a rise in ERα3 expression during breast carcinogenesis may facilitate the disabling of the normal differentiation-inducing function of estrogen. Finally, the isoform may represent such a minor component that it would not influence estrogen mediated pathways in either normal or malignant breast tissue.

To distinguish between these possibilities we have compared the relative levels of ERα3 and ERα expression in breast cancers, and cell lines, and in luminal and basal epithelium and fibroblasts purified from reduction mammoplasty specimens. This comparison, and the subsequent analysis of breast cancer cells expressing ectopic ERα3, yielded strong support for the hypothesis that ERα3 causes a profound change in cell response to E2 and that the relative loss of ERα3 may be important in carcinogenesis.

METHODS

Estrogen receptor RT-PCR. Total RNA was extracted using RNazol B reagent (Biotex Laboratories, Houston, TX), and 1 µg was reverse-transcribed using Superscript reverse transcriptase (Gibco BRL, Githerburg, MD) and a primer specific to exon 4 (5'−GGAGACATGAGAGCTGCCAAC-3') of ERα. This Exon 4 primer and a primer specific to exon 2 (5'−CCGCAATGCTAGAAGTTG-3') were used to amplify ERα-cDNA in a 25 cycle reaction of 1 min. each at 95°, 60° and 72°. PCR products were fractionated on a 2% agarose gel, Southern blotted onto Hybond nylon membrane (Amersham, Arlington Heights, IL), and probed using either a 32P end-labeled internal exon 4 probe (5'−GAATGTGGAAACACACAGCGCC-3'), detecting full length ERα and ERα3 or an exon 3 specific probe (5'−CCGCAATGCTAGAAGTTG-3') detecting full length ERα only. Quantitation was performed using the phosphoimager ImageQuant program.

Preparation of ERα3 (ERα3/pMV7) expression vector. A partial ERα-cDNA fragment, containing exons 1, 2 and 4, but missing exon 3 (21), (a gift of Dr. R. Miksicek, SUNY, Stony Brook, NY) was used to replace exon 1 - 4 in a similarly digested HEGO vector (a gift of Dr. P. Chambon, Strasbourg, France). The resulting ERα3 coding sequence was purified and ligated into a retroviral expression vector, pMV7 (32) under the MuLV promoter. This vector also contains the neomycin resistance gene. The “empty” pMV7 plasmid served as a vector control. Both vectors were used to transform DH5a bacteria and the DNAs purified using Wizard Maxi-Prep kit (Promega, Madison, WI). To prepare ERα3-coding retrovirus for infection, ERα3/pMV7 DNA was transfected into an amphotropic packaging cell line Ψ-CRIPL, selected with G418, the virus was collected, pooled and used for infection.

Maintenance of control and ERα3 clonal cells. MCF-7 cells were maintained in RPMI-1640 medium supplemented with insulin (5 µg/ml), penicillin (50U/ml), streptomycin (50 µg/ml), and 10% fetal bovine serum (FBS) (JRH, Lenexa, KS). All transfected cells were maintained in selection medium with 500 µg/ml G418. For growth of ERα3 clones, 10% charcoal stripped FBS (csFBS) was used, unless otherwise noted.

Separation of epithelial and stromal cells. Normal reduction mammoplasty specimens or breast cancer samples were obtained from the Pathology Department, Mount Sinai Medical Center. Epithelial organoids were separated from stroma by mincing and incubating the tissue overnight in hyaluronidase/collagenase as described (53). Tumor tissue was minced and
incubated in collagenase for 2 hrs at 37 °C. The organoids were collected by filtering the digest through a 400 mesh sieve, and trypsinized into single cell suspensions. The filtered single cells were plated and enriched for fibroblasts by differential trypsinization. Tumor digest was plated without filtration and the cultures enriched for fibroblasts by differential trypsinization.

Separation of basal and luminal epithelium. Basal epithelial cells were positively selected from the filtered digest using a monoclonal antibody to the common acute lymphoblastic leukemia (CALLA) antigen (DAKO, Carpinteria CA) and Dynabeads (Dynal, Norway) coated with goat anti-mouse IgG (a 10:1 bead:cell ratio) essentially as described (54). These basal epithelia enriched cells were cultured in mammary epithelial cell growth medium (MEGM; Clonetics, San Diego CA) with 5 µg/ml transferrin and 10 µM isoproterenol. The CALLA negative fraction, containing the luminal cells, was densely seeded onto collagen I-coated dishes in MEGM. After a week in culture, RNAs were extracted and cell purity determined by Northern blot analysis of cytokeratin expression (K8-luminal and K5-basal). Cell preparations with K8 to K5 ratios of 10 to 1 or 1 to 10, were defined as luminal or basal cells, respectively. Some epithelial cell preparations, not purified further, were used and designated “unselected”. RNAs were extracted from these cell types and used in RT-PCR assay for ERα3 and ERα analysis.

Generation of MCF-7 cells expressing ERα3 (Transfection/Infection). Three µg of ERα3/pMV7 or pMV7 DNA was transfected with Lipofectin into MCF-7 cell, as per manufacturer’s recommendation. For retroviral infection (44) 2 ml of growth medium containing the virus and 8µg/ml of polybrene were added to semi-confluent MCF-7 cells, the cells were rocked for 2 hrs at 37°C, the inoculum removed, cell incubated in medium with serum for 48 hrs and transferred to medium with G418 (selection medium). Infected and transfected cells were maintained in G418-containing medium for 1-2 months prior to clone isolation.

Immunoprecipitation and western blotting. Total cell protein was prepared by 4 freeze/thaw cycles in a high salt lysis buffer (0.4M NaCl,10% Glycerol, 1mM DTT, 100mM Tris, 10mM EDTA, 50 µg/ml Leupeptin, 50 µg/ml Aprotinin, 10 µg/ml Pepstatin). ERα and ERα3 were immunoprecipitated with a rabbit anti ERα antibody (Zymed, San Francisco, CA), and protein G agarose (Boehringer Manheim, Indianapolis, IN) from 400 µg of total protein diluted with lysis buffer without NaCl for a final NaCl concentration of 0.2M. Immunoprecipitated material was resuspended in 50µl of loading buffer, and electrophoresed on an 11.5% SDS/PAGE gel for 8 to 10 hrs at 200 Volts. Protein was transferred onto nitrocellulose membrane (Amersham), blocked overnight with 5% non-fat milk, washed in TBST/1% non-fat milk, and western blotted with H226 (0.7mg/ml) rat anti ERα primary antibody (1:100 dilution) overnight at 4°C, and incubated with an HRP-conjugated goat anti-rat secondary antibody (1 : 10,000 dilution) (Sigma, St.Louis, MO) for 1 hr at room temperature. Chemiluminescence (ECL Kit, Amersham) detected bands were quantitated by densitometry.

Phosphatase treatment of protein extract from pMV7 and ERα3 clone. Total ERα was immunoprecipitated from 2 mg of protein from pMV7pool and ERα3 clonal cells, using rabbit polyclonal anti-ERα antibody (Zymed). Immunoprecipitated material was split into two equal aliquots, resuspended in 25 µl 1X phosphatase buffer (Boehringer Mannheim, 10 x phosphatase buffer: 0.5 M Tris-Hcl pH 8.5, 1 mM EDTA), containing a 2X protease cocktail (100 µg/ml Leupeptin, 200 µg/ml Bacitracin, 100 µg/ml Aprotinin, 20 µg/ml Pepstatin). One aliquot of each of pMV7pool and ERα3-3, was treated with 3 Units of calf intestinal phosphatase (CIP) (Boehringer Mannheim), and along with the mock treated aliquots, were incubated for 30min. at 30°C. The reaction was terminated by the addition of 25 µl of 2X loading buffer and heating to 95°C for 3 min. Western blot analysis was performed as described above.

Expression of pS2. pMV7pool and ERα3-1, 2, 3, and 4 clonal cells (1x10^6) were grown for 3 days in 100mm tissue culture dishes in the presence of FBS, and subsequently treated with either ICI 164,384 (1x10^-7) or two concentrations of E2 (1x10^-8 M and 1x10^-10 M) for 2 days. pS2 expression was assessed by northern blotting 20 µg of total RNA, hybridized with random primed pS2 and GAPDH (as a loading control) cDNA probes. pS2-mRNA level was determined by Densitometric analysis.

Saturation density. pMV7pool and ERα3 clonal cells (4x10^6) were plated in 100 mm tissue culture dishes in the presence of FBS and 1x10^-8 M Estradiol (E2) (Sigma). Cells were maintained for four days beyond visual confluence, with a medium change every 2 days, trypsinized and counted. Mean and standard deviation were calculated from four independent experiments.

Growth in soft agar. A two layer low melt agarose (Seaplaque) system was used to assess anchorage independent growth of pMV7pool and ERα3 clonal cells. A 1% lower layer and an 0.4% upper layer of agarose, prepared in DMEM medium supplemented with insulin (5 µg/ml), penicillin (50 U/ml), streptomycin (50 µg/ml), and 10% FBS (+/-E2 1x10^-8 M or +/- Tamoxifen 1 x 10^-6 M) inoculated into 60mm gridded plates. Cells (2x10^3 cells/ml), distributed in the upper layer, were allowed to grow for 2 weeks and colony formation in the three conditions was scored. The effect of E2 and Tamoxifen was determined by comparison to cloning efficiency in FBS.

Chorioallantoic membrane invasion. Invasion was assayed as previously described (39). ERα3 clones or pMV7pool cells were grown in the presence of selection medium supplemented with 10% FBS and estradiol (1x10^-8 M) for 48 hrs. Cells
were trypsinized, counted, allowed to attach overnight in the same medium (4x10^6 cells per 100-mm dish), and labelled with 0.2 μCi/ml of 125IUrD for 24 hrs. (specific activity of 0.1 - 0.2 cpm/cell). An artificial air chamber above the CAM of a 10 day old embryo was created, and the CAM was allowed to reseal for 22 hrs and the labelled cells (3x10^5 per CAM) were inoculated onto the CAM. Following a 24 hr. incubation, CAMs were washed with PBS, excised, incubated for 20 min in trypsin-EDTA (0.05% trypsin, 1mM EDTA), to remove surface attached tumor cells, and rinsed with PBS. The radioactivity remaining in CAMs after the trypsin-EDTA incubation and the PBS wash, expressed as percent of total radioactivity (associated with CAMs before trypsinization and present in washes), represent the proportion of cells that invaded. The Mann-Whitney U test was used for the statistical analysis.

RESULTS

Comparison of ERα and ERαA3 expression in cancer and normal breast cells.

RNA extracted from aliquots of 33 breast cancers was analyzed for ERα and ERαA3 expression using a semi-quantitative RT-PCR assay capable of distinguishing between mRNA encoding the full length and the ERαA3 forms of the receptor. The two forms of ERα were detected by Southern blot analysis of ERα-cDNA amplified with primers within exons 2 and 4, using internal probes hybridizing either with exon 4, to detect both forms of the receptor, or within exon 3 to detect only the full length ERα. The median ratio of ERαA3 to ERα expression in these tumors was 0.12 (range of 0.03 to 0.47) (Fig. 1b, upper panel and 1d, group 1). Analysis of 9 cancer cell lines, (7 of which were ERα-positive) confirmed the low relative levels of ERαA3 in pure populations of cancer cells (median ratio of 0.1, range 0.06 to 0.3, Fig. 1b, lower panel and 1d, group 2). A similar test of epithelial cells isolated from 10 reduction mammoplasties, which included purified populations of luminal and basal cells, unselected epithelial cells and one immortalized, myoepithelial mammary cell line (Hs 578Bst), yielded a median ratio of ERαA3 to ERα of 3.4 (range 0.4 to 9.8), which is approximately 29 fold greater than the ratio found in breast cancer (Fig. 1c and 1d, group 3). Interestingly, breast fibroblasts were also found to have high ERαA3 to ERα ratios (median 2.4, range 1.5 to 4.5), regardless of their source (reduction mammoplasty, n= 4 or breast cancer, n=2). (Fig. 1d, group 4). The median ratio of ERαA3 to ERα in three purified luminal epithelial cell populations, as identified by the predominance of cytokeratin K8 expression (K8/K5 ratio of 10:1), (Fig. 1d, lane 4, encircled crosses) was 0.42 (range 0.36 to 0.53) a value almost 4 fold greater than the median ratio found in breast cancer tissue (Fig. 1c and 1d, group 3). This is significant since cytokeratin K8, normally present in luminal epithelium, have been shown to be expressed in a large proportion of breast cancers suggesting that these cells may be the target of oncogenic transformation in breast. In basal cell lines and unselected epithelial cells, most of which contained predominantly basal cells, (Fig. 1d, lane 4) the median ERαA3 to ERα ratio was even greater (median 4.0; range 0.55 - 9.8). This high ratio may explain the low in vivo proliferation rate of basal epithelial cells (24).

Stratification of patients according to their menopausal status or tumor stage (defined by tumor size, (< 1.5 cm or > 1.5 cm), or presence or absence of lymph node involvement) did not identify significant difference in the ERαA3 to ERα ratios. The exception was a group of tumors (6/33) with ERα levels, defined by routine ligand binding as lower than 5 fmole/mg protein, and deemed ERα negative, in which the median ratio (0.05) was significantly different (p < 0.001) from the median ratio (0.12) of all tumors.

Cumulatively these results, showing that the ratio of ERαA3 to full length ERα is substantially reduced in all breast cancer cell lines and in breast cancers, even when tumors are smaller than 1.5 cm and have not spread to the lymph nodes, suggest that a loss of the ERαA3 isoform may be associated with an early event in carcinogenesis.

Transfection and isolation of MCF-7 cells expressing ERαA3; characterization of the native and transgenic protein.

The above findings suggested that restoring ERαA3 in cancer cells to normal relative levels may result in attenuating their transformed phenotype. To test this, ERαA3-cDNA was subcloned into a pMV7 vector (32). The ERαA3/pMV7 construct was tested by transiently transfecting COS cells, negative for ERα, and showing (Fig. 2) that transfected cells express and properly localize ERαA3 to the nucleus, and that the ERαA3 protein reacts with a well characterized rat anti-estrogen receptor antibody (H226) (33).

Stable clonal lines of MCF-7 cells were then selected from cultures transfected (or infected) with either the ERαA3 coding constructs, or the PMV7 vector alone for negative control, and analyzed both for ERαA3-mRNA, by RT-PCR (Fig. 3a), and protein expression, by immunoprecipitation and western blotting, (Fig. 3b). Attempts to generate specific ERαA3 antibodies that recognize the exon 2/exon 4 splice junction were unsuccessful. Therefore, the ERαA3 protein was identified on the basis of its reactivity with two antibodies recognizing different N-terminal epitopes of ERα, its faster mobility than ERα on SDS-PAGE, and the correlation of its expression with that of ERαA3-mRNA.

As expected, (Fig. 3a, lane 5) control pMV7 cells expressed predominantly full length ERα-mRNA and a small amount of ERαA3, similar to that observed in the parental MCF-7 cell line (Fig. 1b, lane 8). In contrast, all four ERαA3/pMV7 clones had a predominance of ERαA3-mRNA (Fig. 3a lanes 1 - 4), indicating that the transgene mRNA was efficiently expressed in these cells.
Extracts of the individual clones shown in Fig. 3b were subjected to immunoprecipitation with a polyclonal rabbit anti-ERα antibody followed by western blotting with the H226 antibody, recognizing the amino-terminus of ERα. In addition to the 65 kDa band, representing the full length ERα protein, all ERαA3 clones also contained a prominent 61 kDa band, which corresponded to the predicted molecular weight of the ERαA3 protein. Expression of the ERαA3 protein in these clones ranged from approximately 40-70% of total ERα (a relative ratio of ERαA3 to ERα of 0.7 - 2.3), comparable to that observed in the normal mammary epithelium. In parental MCF-7 extracts, a faint band (~5% of the total ERα), co-migrating with the ERαA3 form, could be detected only when excess protein was loaded onto the gel (Fig. 4, lane 2). This, and the correspondence between the low intensity of the ERαA3-mRNA band and the 61 kDa protein band (Fig. 1b, lane 8; Fig. 3, lane 5; Fig. 4, lane 2, respectively) suggest that both pMV7-carrying and the parental MCF-7 cells produce small amounts of the ERαA3 mRNA and protein. The identity of the 61 kDa band as ERαA3, and not as an under-phosphorylated form of full length ERα, was confirmed in a de-phosphorylation experiment. Total immunoprecipitated ERα from pMV7 or ERαA3 cells was mixed with protease inhibitors, one aliquot of each was dephosphorylated by incubation with calf intestinal phosphatase (CIP), the other incubated under identical conditions but without CIP. Analysis of products by western blotting showed that without CIP, ERα from both pMV7 and ERαA3 cells produced a co-migrating doublet of bands, the upper corresponding to full length ERα and the lower to ERαA3 protein (compare lanes 2 and 3 of Fig. 4). CIP treatment shifted the migration coefficient of both bands in the vector control cells as well as the ERαA3 clone to new positions, once more as a co-migrating doublet (Fig. 4, lane 1 and 4). No lower bands or smear were detected, indicating that proteolysis during CIP incubation was effectively blocked by the protease-inhibitors cocktail. Co-migration of the lower molecular weight protein from pMV7 cells with that of the ERαA3 protein, both before and after de-phosphorylation, strongly suggests the presence of endogenously produced ERαA3 protein. Similar results were obtained using the ER positive Ishikawa cells, an endometrial carcinoma cell line (data not shown).

ERαA3 expression suppresses estrogen stimulated gene expression:

ERαA3 has been shown to interfere with ERα binding to its specific DNA response element *in vitro*, as well as with E2 induced transcription of an ERE-CAT reporter in transient transfection of COS cells *in vivo*. These studies suggested that ERαA3 functions as a dominant negative receptor to inhibit ERα regulation of gene expression through its cognate DNA response element. In order to determine whether the ERαA3 expressed in MCF-7 cells can interfere with estrogen induction of an endogenous gene, the expression of pS2, a gene with several imperfect ERE's in its promoter, was assessed. pMV7 control and ERαA3 clone cells were incubated either with the pure anti-estrogen, ICI 164,384 (1x10^-7 M), to establish the baseline of pS2 expression, or with E2 (1x10^-8 M and 1x10^-10 M). Total RNA was prepared and analyzed by Northern blot to determine pS2 expression. (GAPDH mRNA was used as a loading control). While E2 treatment of controls induced a 25 fold increase in pS2-mRNA (compare lane 1 with lanes 2 and 3 in Fig. 5a and Fig. 5b), in ERαA3-expressing cells pS2-mRNA was stimulated merely 2 fold (compare lane 4 with lanes 5 and 6 in Fig. 5a and Fig. 5b). In all additional ERαA3 clones tested (a total of 4), E2 induction of pS2-mRNA ranged from only 3-9% of that observed in the pMV7 control (results not shown). These results confirm that the ERαA3 s interferes with the ERα regulated gene expression *in vivo*.

ERαA3 expression alters growth properties of MCF-7 cells:

During the initial selection in medium with FBS, the ERαA3/pMV7 transfected clones grew much slower than the parental cells or the vector-transfected clones; the ERαA3/pMV7 cells divided once every 6 days while the pMV7 clones divided every 4 days. Microscopic observation of these cells also suggested that the ERαA3/pMV7 cells stopped dividing at lower confluence level. To further evaluate this difference, ERαA3 clones and pMV7 controls were plated at 50% confluence in medium containing FBS with E2, maintained for 4 days beyond visual confluence and counted. Results in Fig. 6 show that ERαA3 clones reached a plateau in cell density at cell number that was only 50% of the controls, perhaps indicating that cells expressing ERαA3 are more sensitive to signals of contact inhibition. This was the first suggestion that the expression of ERαA3 shifts the transformed phenotype of breast cancer cells toward behavior expected of normal cells.

Shifting ERαA3-expressing cells into estrogen depleted, charcoal stripped FBS, (csFBS) stimulated their growth relative to their growth in FBS. This effect on growth was accompanied by a change in the ERαA3 to ERα protein ratio. Western blot detection of estrogen receptors immunoprecipitated from an equal amount of protein of ERαA3 clone 2 cells, grown either in the presence of csFBS or E2 supplemented FBS showed that there was more overall receptor protein in cells grown in medium with csFBS (Fig. 7), and that the gain was predominantly in the full length receptor, thus increasing the ERα to ERαA3 protein ratio. (Similar results were obtained with ERαA3 clone 1, data not shown). These data indicate that when ERαA3 predominates (as in FBS-E2 containing medium) cell growth is retarded. (Such contrasting requirements for optimal growth of the controls and ERαA3-expressing cells preclude meaningful comparisons of growth rates under the same conditions). To shift the ERαA3 to ERα ratio in favor of the transgenic protein, all further experiments were carried out on cells grown in medium with FBS and estradiol (although for daily cell maintenance the clones were kept in medium supplemented with csFBS).
ERαΔ3 attenuates the transformed phenotype of MCF-7 cells.

An in vitro property of tumor cells that is thought to predict their in vivo tumorigenicity is their ability for anchorage-independent growth. We examined the consequence of ERαΔ3 expression on the anchorage-independent growth of MCF-7 cells (Fig. 8). As shown by others, estrogen stimulated the ability of parental MCF-7 cells (and of the pMV7 control cells) to form colonies in soft agar. In contrast, hormone treatment drastically reduced the ability of ERαΔ3 expressing clones to form colonies in agar, even below the baseline level (Fig. 8). The magnitude of this reduction was similar to that obtained with an anti-estrogen, tamoxifen (Fig. 8). Accordingly, these data suggest that, in vivo, ERαΔ3 may reverse the tumorigenic phenotype of breast cancer cells through an as yet undetermined mechanism.

To assess the effect of ERαΔ3 expression on the ability of MCF-7 cells to invade host tissue, which is linked to protease production known to be under the control of E2 in these cells (34-38), we inoculated chick embryo chorioallantoic membrane (CAMs), in vivo, with a pMV7 clone or ERαΔ3 expressing clones 1,2,3,4 grown in the presence of E2 and metabolically labeled with 32P-3H for 24 hrs, and measured their invasive ability 24 hrs later by a previously described method (39). We determined that, compared with the parental MCF-7 cells or pMV7 vector control cells, the ability of ERαΔ3-expressing clones to invade CAM was reduced by 52-79% (Fig. 9).

DISCUSSION

We determined that a non-DNA binding ERα isoform (ERαΔ3) is expressed in normal breast epithelial cells with a median ratio of ERαΔ3 to ERα of 3.4, with a subset of purified luminal epithelial cells having a median ratio of ERαΔ3 to ERα of 0.4. In contrast, the median ERαΔ3 to ERα ratio in breast tumors and tumor cell lines is only 0.1, indicating a substantial under-representation of ERαΔ3 in cancer cells.

It is a paradox that the same hormone, estrogen, exerts the tightly controlled effects on growth and differentiation of normal breast cells during puberty, and on their cyclical proliferation in an adult non-pregnant female, while also acting as a potent mitogen in breast cancer during its uncontrolled growth and invasion (1,2). This dichotomy suggests that, during oncogenic transformation, mammary epithelial cells may undergo signaling pathway changes leading to aberrant or inappropriate estrogenic responses. The evidence presented in the current study is the first demonstration that a selective loss of ERαΔ3 may contribute to the phenotypic changes of cancer. The observation showing that small tumors, or tumors that have not spread to the lymph nodes, have ratios of ERαΔ3 to ERα as low as the more advanced tumors, suggests that the loss of ERαΔ3 may be an early event in carcinogenesis. (However, the finding of significantly lower ratios in tumors with ERα < 5 fmol/mg, considered more aggressive, hints that a further drop of ERαΔ3 may be associated with disease progression.) It is also worth noting that, in spite of the fact that these tumors and the normal breast cells have equally low levels of the receptor, they have contrasting ratios of ERαΔ3 to ERα, indicating that the high relative level of ERαΔ3 in normal cells is not the consequence of their overall low receptor level.

The high relative expression of ERαΔ3 in normal breast epithelium and fibroblasts, may provide them with a mechanism to regulate and limit the magnitude of responses to estrogen. It can be argued then, that to attain maximum estrogen stimulation of growth and invasive potential during carcinogenesis, breast cells need to be released from the effects of ERαΔ3. Accordingly we demonstrated that a selective loss of this receptor occurs in breast tumors and breast cancer cell lines and that the re-introduction of physiologically relevant levels of ERαΔ3 into breast cancer cells attenuates the mitogenic action of estrogen and reverses several features that distinguish transformed from normal cells.

Most studies of ERα in normal human mammary tissue have used relatively insensitive immunohistochemical or biochemical techniques. Consequently, only a subset of luminal epithelial cells, and no other cells in normal breast tissue, were considered receptor positive (40). Our study, using RT-PCR, demonstrated ERα expression both in luminal and basal/myoepithelial cells of the normal breast epithelium (Fig. 1c), as well as in stromal fibroblasts, (unpublished results). Moreover, mammary fibroblasts, demonstrated to be estrogen responsive (41,42) were confirmed to express ERα protein by more sensitive immunochemistry techniques using a strep-avidin amplification of anti-ERα antibodies (unpublished results). Thus, several different cell types in the normal adult breast may respond directly to E2. Also, as the high ERαΔ3 ratio (median 2.4) is preserved in breast cancer fibroblasts, it is likely that their presence in cancer tissue may contribute to some degree to the difference in ERαΔ3 to ERα ratios found in tumors.

The current study has identified the ERαΔ3 protein in cell lines expressing the ERαΔ3 transgene as well as in parental MCF-7 cells and Ishikawa cells; in all cases the ERαΔ3 to ERα protein ratios were similar to the ERαΔ3 to ERα RNA ratios (Figs. 3 and 4). The very low abundance of ERα in normal mammary cells preclude such a direct analysis of ERα protein in these cells. However, the finding that in cell lines ERα-RNA ratios reflect those of the corresponding proteins, make the likelihood of such correspondence in normal cells highly plausible.

The relevance of our findings is further underscored by the demonstration of an autoregulatory loop in the clones with re-expressed ERαΔ3. In these cells exposure to estrogen can shift the complement of estrogen receptors from mostly ERα to predominantly ERαΔ3 (Fig. 7). This is achieved by a more pronounced down-modulation of ERα than of ERαΔ3 and, as shown previously (43, 44), may occur via several mechanisms, including mRNA and protein stability. If a similar
mechanism of auto-regulation exists in endogenous tissue, then during periods of peak estrogen availability, a rise in the ER_A to ER_a protein ratio may protect breast tissue from over-stimulation. Thus, oncogenic transformation of breast cancer cells, resulting in a selective reduction in ER_A expression, would lead to a disruption of this response, promote unchecked estrogen action, and establish permissive conditions for further carcinogenic events.

The re-establishment of a less tumorigenic phenotype in the ER_A transfected MCF-7 cells deserves further comment because certain of the properties, such as reduced plateau density and reduced invasion may result be the result of dominant negative inhibition by ER_A, while others, such as anchorage-independent growth, may be mediated via additional pathways. Since, as noted, in the ER_A-transfected clones, the relative level of this isoform is highest in the presence of estrogen, it is interesting that estrogen treatment of these clones causes a marked reduction of growth and, more importantly, a much lower saturation density, as is characteristic of a normal phenotype. These effects are specific to the ER_A isoform, since a similar transfection of full length ER_a into either MCF-7 or T47D cells (which are also ER_a-positive), did not reduce their proliferative response to hormone (45). Although not yet examined, a testable hypothesis is that a dominant negative receptor interferes with estrogen stimulation of genes critical for growth regulation, such as cyclin D1, myc, and the fos/jun family of transcription factors (46, 47). These gene products, in turn, may reduce growth factor receptor expression, resulting in a lower saturation plateau.

The reduced invasiveness of the ER_A-expressing cells may be also mediated via a dominant negative effect. It is known that estrogen is necessary for MCF-7 tumor growth and metastasis in nude mice. Estrogen also stimulates the expression of several proteolytic enzymes (such as plasminogen activators, collagenase IV, cathepsin D), shown to be involved in cancer invasion (34-38). It is likely that the presence of ER_A will effectively interfere with stimulation of these proteases by E2 to result in reduced invasiveness.

In contrast to the above effects, E2 not only fails to stimulate anchorage independent growth in ER_A expressing cells, but inhibits it to below baseline levels, as obtained with the anti-estrogen, tamoxifene. This inhibition cannot be explained purely on the basis of a dominant negative effect, since in most of the clones tested, the ratio of ER_A to ER_a is not greater than 1 to 1 and suggests the existence of an additional pathway of ER_A action. This conclusion is supported by published observation showing that co-transfection of ER_A and ER_a proteins, at ratios comparable to those present in our clones, produced only a 30% inhibition of estrogen dependent transactivation (20), and is further supported by our findings of almost complete abolishment of E2 stimulation of pS2-mRNA in cells expressing ER_A. Since the total ER_a level in the clones is either equal to, or less than, that in the parental MCF-7 cells, the observed effect could not be due to the general over-expression of ER_a protein, shown by some to lead to E2 inhibition of growth (48, 49). Although, we have not yet investigated the mechanism of the suppressive signal transduction pathway of ER_A, it is likely that this receptor isoform, in addition to its dominant negative action, participates in the non-classic regulation of gene expression via protein-protein interaction with other transcription factors, that have been shown recently to be both, independent of ER_a binding to DNA (50), and importantly, independent of the ER_a-DNA-binding domain (51).

Thus we have demonstrated a novel function for a non-DNA binding estrogen receptor isoform in breast biology. Relative high expression of this isoform in normal mammary tissue may provide a mechanism for attenuating estrogenic effects, and its reduction in breast cancer may lead to excessive, unregulated mitogenic action of this hormone. Our results indicate that, as with tumor suppressor WT1 (52), carcinogenic events in breast can lead to alteration of splice choice pathways, but unlike suggested for other ER_a isoforms (8-12,14,15,17-19,21), rather than being elevated in cancer, the relative ratio of this isoform is diminished. Further studies of the mechanisms through which ER_A exerts its effect will clarify its role in controlling E2 responsiveness in mammary cells. Identifying ways to re-direct the pathway towards enhanced expression of ER_A, or finding alternative means of increasing its relative ratio, may provide a novel avenue for future breast cancer therapy.
Fig. 1. Analysis of ERα and ERαΔ3 mRNA Expression in Normal Breast and Breast Cancer Tissue and Cells

A. Diagram of mRNA and protein structures of ERα and ERαΔ3. B1: Southern blots of four cDNAs, obtained by RT-PCR of mRNA of breast cancers, probed with either an exon 4 probe (to detect both ERα and ERαΔ3) lanes 1a-4a, 5, and 6, or an exon 3 probe (to detect only full-length ERα), lanes 1-4. The examples shown represent the entire range of ERαΔ3 to ERα ratios found in breast cancers; they are 0.25, 0.10, 0.08, and 0.04 for lanes 1a, 2a, 3a, and 4a, respectively. B2: Detection with exon 4 probe only. Southern blot of ERα-positive breast cancer cell lines: lane 1, BT 474; lane 2, MDAMB175vii; lane 4, MDAMB361; lane 6, MDAMB134v; lane 7, T47D; lane 8, MCF-7; lane 9, ERα-positive endometrial cancer cell line, Ishikawa. ERα-negative breast cancer cell lines: lane 3, MDAMB231; lane 5, MDAMB461. C, Southern blot of epithelial cells from 10 reduction mammoplasties (lanes 1-10) and Hs 578Bst, a normal, immortalized myoepithelial cell line (lane 11) detected with exon 4 probe. (Lanes 1-3 represent purified luminal epithelial cell preparations; lanes 4-10 represent pools of epithelial cells with predominance of basal cells). D, ERαΔ3 to ERα RNA ratios in breast cancers (group 1), breast cancer cell lines (group 2), normal epithelium (group 3) (the pure luminal epithelium, n = 3, indicated by circled crosses), and fibroblasts (group 4) (isolated from reduction mammoplasty, n = 4, or breast cancer, n = 2). Each point in the scattergram represents the scanned relative intensity of ERαΔ3 and ERα bands produced by Southern blotting of cDNAs generated by RT-PCR of RNA extracted from individual tissue or cell samples. The median of ERαΔ3 to ERα ratios was 0.11 for breast cancers, 0.10 for breast cancer cell lines, 3.40 for normal epithelium, and 2.40 for fibroblasts. ANOVA analysis (using SYSTAT program, SYSTAT, Inc., Evanston, IL) of the ERαΔ3 to ERα ratio in the three groups, tumors, tumor cell lines, and normal epithelium, showed a significant difference (P < 0.0001). Post hoc analysis showed that the primary breast cancers were not different from the tumor cell lines (P = 0.978), but primary breast cancers and breast cancer cell lines were different from normal epithelium, P < 0.0001 and P = 0.001, respectively.
Fig. 2. Detection of Transfected ER\(_{\Delta 3}\) Protein in COS Cells

COS cells transiently transfected with ER\(_{\Delta 3}/pMV7\) vector using Lipofectin (GIBCO) were plated on coverslips 16 h after transfection, allowed to attach, fixed with 3% paraformaldehyde, and incubated overnight at 4 C with H226 antibody (35 \(\mu\)g/ml). Biotin-coupled anti-rat IgG secondary antibody (Sigma) and rhodamine-conjugated strepavidin (Sigma) were used for protein visualization. **Left panel,** Immunofluorescent detection of ER\(_{\Delta 3}\) in nuclei of three COS cells. **Right panel,** Nomarski optic view of the same field. Magnification \(\times 400\).

Fig. 3. Characterization of RNA and Protein from Clonal Cell Lines Obtained by Stable Transfection or Infection of MCF-7 Cells with ER\(_{\Delta 3}/pMV7\) or pMV7 Alone

A, Southern blot with exon 4 probe of RT-PCR-cDNA from ER\(_{\Delta 3}\)-expressing clones and pMV7 pool vector control. Lanes 1–4 are clone ER\(_{\Delta 3}\)-1, 2, 3, and 4, respectively; lane 5 is pMV7 pool vector control. **B,** Western blot of total ER\(_{\Delta 3}\) immunoprecipitated from 400 \(\mu\)g of protein extract. **Left panel,** Experiment 1, lanes 1 and 2, clones ER\(_{\Delta 3}\)-1 and 2; electrophoresis for 8 h. **Right panel,** Experiment 2, lanes 3 and 4, clones ER\(_{\Delta 3}\)-3 and 4; lane 5, pMV7-pool vector control, electrophoresis for 10 h. Arrows indicate the 65-kDa and 61-kDa ER\(_{\Delta 3}\). The ER\(_{\Delta 3}\)-mRNA as a percent of total ER was as follows: clone ER\(_{\Delta 3}\)-1, 59%; 2, 57%; 3, 64%; 4, 67%. The protein was as follows: ER\(_{\Delta 3}\)-1, 36%; 2, 40%; 3, 76%; 4, 60%. (A second determination of the ER\(_{\Delta 3}\)-mRNA and protein fraction in clone 1 yielded 66% and 42%, respectively; in clone 4, 67% in both assays).
Fig. 4. Identification of the Native 61-kDa Protein as ERαΔ3 on the Basis of Its Dephosphorylation Pattern

Two equal aliquots of ERα immunoprecipitated with rabbit polyclonal anti-ERα antibody (Zymed) from 2 mg of protein extracts of pMV7 pool vector control or ERαΔ3-3 clone grown in medium with FBS (to enhance the ERαΔ3 to ERα ratio) were resuspended in 25 μl phosphatase buffer with protease inhibitors (100 μg/ml leupeptin, 100 μg/ml aprotinin, 20 μg/ml pepstatin) and incubated for 30 min at 30°C with 3 U (or without, controls) of CIP (Boehringer Mannheim). The products were analyzed by Western blotting using H226 antibody. The amount of protein loaded per lane was 2.5 times more than in Figs. 3 or 6. Lanes 1 and 2, pMV7 pool vector control: lane 1, CIP treatment; lane 2, buffer control; lanes 3 and 4, ERαΔ3-3, lane 3, buffer control; lane 4, CIP treatment. The dephosphorylated shifted doublets of ERα and ERαΔ3 are indicated.

Fig. 5. Effect of ERαΔ3 Expression on Estrogen Regulation of pS2-mRNA

pMV7 pool vector control (1 × 10^6) and ERαΔ3-3 clonal cells were plated in 100-mm tissue culture dishes in the presence of FBS for 3 days and treated for 48 h either with the pure antiestrogen ICI 164,384 (1 × 10^{-7} M), to establish the baseline of pS2 expression, or E2 (1 × 10^{-8} M). pS2 expression was determined by Northern blot analysis of 20 μg total RNA using pS2 cDNA probe. Ethidium bromide-stained ribosomal RNA (lower panel) was used as a loading control. pS2 mRNA in pMV7 pool, and clone ERαΔ3-4, -2, and -3 cells treated either with ICI 164,384 (shown in lanes designated as −) or E2 (shown in lanes designated + to indicate E2 addition). Exposure 2 h. Clone ERαΔ3-3 expresses the highest level (76% of total) of ERαΔ3 protein (see Fig. 3).
Fig. 6. Effect of ERαΔ3 Expression on Growth Rate and Saturation Density

pMV7pool vector control (0.2 × 10^6) and ERαΔ3-1, -2, -3, and -4 clonal cells were plated in 60-mm tissue culture dishes in the presence of FBS. Cells were maintained for 8 days and medium was replaced every 3 days. On days 1 and 2 and every second day thereafter, cells in three dishes of each cell type were detached and counted. The results shown are the mean of three determinations. (SEM values were smaller than the symbols and thus are not shown). Comparison of the saturation plateau of each of the four clones and the vector control by ANOVA statistics performed on day 8 showed a significant difference (P < 0.0001).

Fig. 7. The Effect of E2 on the Relative ERαΔ3 to ERα Protein Level

Protein (400 μg), extracted from ERαΔ3-2 cells plated at 4 × 10^6 per 100-mm dish and grown either in csFBS or FBS with 1 × 10^{-8} M E2 for 72 h, was immunoprecipitated with rabbit anti-ERα antibodies (Zymed) and analyzed by Western blotting using H226 antibody as described.
Fig. 8. Anchorage-Independent Growth of ERΔ3 and pMV7pool Cells

Low melt agarose (Seaplaque, 1% in lower and 0.4% in upper layer) was prepared in DMEM with insulin (5 μg/ml) and 10% FBS (±1 x 10^{-8} M E_2). To assess anchorage-independent growth, pMV7pool and ERΔ3 clones 1, 2, and 3 cells (2 x 10^3 cells/ml) mixed with agarose (upper layer) were distributed on top of 5 ml of lower DMEM/agarose layer, grown for 2 weeks, and scored for colony formation. Colonies were scored in one fourth to one half of each dish. The results are the mean of duplicate determinations. Stimulation or inhibition by E_2 is expressed as percent of colonies in agarose containing medium with FBS alone. The cloning efficiency of the pMV7 pool cells under control conditions (medium with FBS alone) was 6.5%.

Fig. 9. The Effect of ERΔ3 Expression on in Vivo Invasion

Eight replicate chick embryo chorioallantoic membranes (CAMs) were inoculated with 3 x 10^5 cells per CAM of pMV7pool vector control or ERΔ3- clones 1, 2, 3, or 4 cells grown in the presence of 1 x 10^{-8} M E_2 for 72 h and labeled with 0.2 μCi/ml of [125I]UdR for the last 24 h (specific activity 0.1 to 0.2 cpm/cell). Preparation of CAMs for inoculation and quantification of invasion was as described except that CAMS were resealed before inoculation for 22 h. The results are expressed as median percent invasion. Statistical analysis (ANOVA) performed on all pMV7 controls (n = 24) and all ERΔ3-expressing clones (n = 32) indicated that the groups were significantly different (P = 0.007).
REFERENCES

44. Kaneko KJ, Furlow JD, Gorski J 1993 Involvement of the coding sequence for the estrogen receptor gene in autologous ligand-dependent downregulation. Mol. Endoc. 7: 879-888

45. Zajchowski DA, Sager R, Webster L 1993 Estrogen inhibits the growth of estrogen receptor negative, but not estrogen receptor positive cells expressing a recombinant estrogen receptor. Cancer Res. 53: 5004-5011

46. Ing NH, Tsai SY, Tsai MJ 1993 Progesterone and estrogen. Genes in Mammalian Reproduction 271-291

52. Haber DA, Park S, Maheswaran S, Englert C, Re GG, Hazen-Martin DJ, Sens DA, Garvin AJ 1993 WT1 mediated growth suppression of Wilms Tumor cells expressing a WT1 splicing variant. Science 262: 2057-2059
