
AFRL-IF-RS-TR-1998-75
Final Technical Report
May 1998

HIGH PERFORMANCE ACTIVE DATABASE
MANAGEMENT ON A SHARED-NOTHING
PARALLEL PROCESSOR

University of Florida

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. A0-D959

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE

taO QUALITY INSPECTED I R°ME' NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-75 has been reviewed and is approved for publication.

APPROVED:
JOSEPH P. CAVANO
Project Engineer

FOR THE DIRECTOR:
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

HIGH PERFORMANCE ACTIVE DATABASE
MANAGEMENT ON A SHARED-NOTHING

PARALLEL PROCESSOR

Eric N. Hanson

Contractor: University of Florida
Contract Number: F3 0602-96-1-0190
Effective Date of Contract: 1 June 1996
Contract Expiration Date: 31 May 1997
Program Code Number: 6E20
Short Title of Work: High Performance Active

Database Management
Period of Work Covered: Jun 96 - May 97

Principal Investigator: Eric N. Hanson
Phone: (352) 392-2691

AFRL Project Engineer: Joseph P. Cavano
Phone: (315)330-4033

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Joseph P. Cavano, AFRL/IFTB, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering end maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimete or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 1998
3. REPORT TYPE AND DATES COVERED

Final Jun 96 - May 97
4. TITLE AND SUBTITLE

HIGH PERFORMANCE ACTIVE DATABASE MANAGEMENT ON A
SHARED-NOTHING PARALLEL PROCESSOR
6. AUTHOR(S)

Eric N. Hanson

5. FUNDING NUMBERS

C - F30602-96-1-0190
PE -62301E
PR -H137
TA -00
WU-P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida
CISE Department
Gainesville FL 32611-6120

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

AFRL/IFTB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-75

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Joseph P. Cavano/IFTB/(3135) 330-4033

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

A new type of system was designed for testing trigger conditions and running trigger actions outside of a data base
management system. This system processes triggers asynchronously, after triggering updates have committedin the source
database.

14. SUBJECT TERMS

Active databases, triggers, asynchronous processing, data base management, parallel

15. NUMBER OF PAGES

36
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

High Performance Active Database Management on
a Shared-Nothing Parallel Processor

Abstract

A new type of system for testing trigger conditions and running trigger actions outside of a DBMS
was designed as part of this project. Such a system is called an asynchronous trigger processor
since it processes triggers asynchronously, after triggering updates have committed in the source
database. The architecture of a prototype asynchronous trigger processor called TriggerMan is
described. TriggerMan is designed to be able to gather updates from a wide variety of sources,
including relational databases, object-relational databases, legacy databases, flat files, the web, and
others. TriggerMan achieves the ability to gather updates from so many sources using an
extensible data source mechanism. TriggerMan can make use of the asynchronous replication
features of commercial database products to gather updates. When cooperating with a source
DBMS with direct support for asynchronous replication, TriggerMan can gather updates in an
efficient and robust manner. TriggerMan supports simple, single-table (single data-source)
triggers, as well as sophisticated multiple-table (multiple-data-source) triggers. It also will support
temporal triggers using an extensible temporal function mechanism. Moreover, TriggerMan takes
advantage of parallelism for high performance, utilizing a shared-nothing model of parallel
computation.

1. Introduction
The main goal of this project was to develop technology to support efficient trigger

processing for shared-nothing parallel database management systems. Mid-way through
the one-year period of the grant, the design and implementation focus of the project
shifted away from developing trigger extensions for the Paradise parallel DMBS, toward
developing an independent system, an "asynchronous trigger processor" called
TriggerMan [Hans97b]. This shift was brought on because it was not possible for us to
get full source code for the Paradise DBMS from Wisconsin. Focusing effort on
TriggerMan instead of Paradise was fully consistent with the original goals of the project,
since TriggerMan is also a parallel trigger processing system. In fact, the shift was

beneficial in terms of the potential for technology transfer, since the prototype we
develop will be usable with existing information systems applications built using current
commercial database systems. The rest of this final report covers the design of
TriggerMan, our goals for its future implementation, and plans for developing technology
to support parallel asynchronous trigger processing.

There has been a great deal of interest in active database systems over the last ten
years. Many database vendors now include active database capability (triggers) in their
products. Nevertheless, a problem exists with many commercial trigger systems as well
as research efforts into development of database triggers. Most work on database
triggers follows the event-condition-action (ECA) rule model. In addition, trigger
conditions are normally checked and actions are normally run in the same transaction as
the triggering update event. In other words, the so-called immediate binding mode is
used. The main difficulty with this approach is that if there are more than a few triggers,
or even if there is one trigger whose condition is expensive to check, then update
response time can become too slow. A general principle for designing high-throughput
transaction processing (TP) systems put forward by Jim Gray can be paraphrased as
follows: avoid doing extra work that is synchronous with transaction commit [Gray93].
Running rules just before commit violates this principle.

Moreover, many advances have been made in active database research which have
yet to show up in database products because of their implementation complexity, or
because of the expense involved in testing sophisticated trigger conditions. For example,
sophisticated discrimination networks have been developed for testing rule conditions
[Hans96]. In addition, techniques have been developed for processing temporal triggers
(triggers whose conditions are based on time, e.g. an increase of 20% in one hour).
Neither of these approaches has been tried in a commercial DBMS.

In this report, the author proposes a new kind of system called an asynchronous
trigger processor, or ATP. An ATP is a system that can process triggers asynchronously,
after updates have committed in a source database, or have been completed in some other
data source. Processing triggers asynchronously avoids slowing down update
transactions with trigger processing logic. Moreover, since an ATP could be used with
many different source DBMSs, the effort to develop the trigger processing code could be
amortized over use with more applications. Really, an arbitrary application program can
be used to transmit descriptions of database updates (update descriptors) to the ATP, and
triggers can be processed on top of these update descriptors. The ability to process
triggers based on updates from many different sources can help make it economically
viable to implement sophisticated trigger processing code.

We are currently developing an ATP called TriggerMan as a vehicle for
investigating issues related to asynchronous trigger processing. A simple subset of the
functionality discussed in this report has been implemented. We are actively doing the
detailed design and implementation of the more advanced features of TriggerMan.

Part of the motivation for TriggerMan has been the surge in popularity of
asynchronous replication features in commercial database systems. In actual practice, to
achieve replication of data in a distributed DBMS, most database customers greatly
prefer asynchronous replication to a synchronous replication policy based on distributed
transactions using two-phase commit. The reason for this is that update availability and
response time are both better with asynchronous replication. This was a motivating

factor behind the choice to move to an external, asynchronous trigger processor, which
also would avoid slowing down updates. Furthermore, as shall be explained later, the
update capture mechanism built in to asynchronous replication systems can be used to
send update descriptors to an ATP.

With respect to related research, many active database systems have been developed,
including POSTGRES, HiPAC, Ariel, the Starburst rule system, A-RDL, Chimera, and
others [Wido96]. In addition, there has been a notion of "de-coupled" rule
condition/action binding mode for some time, as introduced in HiPAC [McAr89].
However, the implicit assumption regarding de-coupled rule condition evaluation and
action execution was that the DBMS itself would still do the needed work. This report
outlines an alternative architecture that would off-load rule condition testing and action
execution to a separate system.

Ultimately, the proposed TriggerMan/ATP architecture will provide an "active
information server" capability that can support a wide variety of applications. This
architecture will be able to support different tasks that involve monitoring of information
sources, filtering of data, and selective propagation of information. TriggerMan can be
used to augment traditional data management applications, as well as support new,
distributed, heterogeneous information systems applications.

TriggerMan will be extensible in a number of ways, including the ability to add new
data sources, new data types, and new temporal functions. To handle extended data
types, the approach used will be similar to that used in object-relational database systems
such as Informix Universal server.

2. The TriggerMan Command Language
Commands in TriggerMan have a keyword-delimited, SQL-like syntax. TriggerMan

supports the notion of a connection to a remote database or a generic data source
program. A connection description for a remote database contains information about the
host name where the database resides, the type of database system running (e.g. Informix,
Oracle, Sybase, etc.), the name of the database server, a userid, and a password. A single
connection is designated as the default connection. There can be multiple data sources
defined for a single connection. Data sources can be defined using this command:

define data source [connectionName.]sourceName [as localName]
[(attributeList)]
[propertyName=propertyString,

propertyName=propertyString]

Suppose a connection "salesDB" had been defined on a remote database called
"sales." An example data source definition for the table "sale" in the sales database
might look like this:

define data source salesDB.sale as sale

This command would read the schema from the salesDB connection for the "sale"
table to gather the necessary information to allow triggers to be defined on that table.

Triggers can be defined using the following command:

create trigger <triggerName> [in setName] [-inactive]
from fromList
[on eventSpec]
[start time timePoint]
[end time timePoint]
[calendar calendarName]
[when condition]
[group by attr-list]
[having group-condition]
do action

Triggers are normally eligible to run as soon as they are created if a triggering event
occurs. However, if the -inactive flag is specified the trigger remains ineligible to run
until it is enabled later using a separate activate trigger command. The start time and
end time clauses define an interval within which the trigger can be eligible to run. In
addition, the name of a calendar object can be specified as part of a trigger. A calendar
indicates "on" and "off time periods. For example, a simple business calendar might
specify "on" periods to be Monday through Friday from 8:00AM to 5:00PM. A trigger
with a calendar is only eligible to be triggered during an "on" period for the calendar. In
addition, whether a trigger is eligible to be triggered is determined by the logical AND of
the eligibility criteria determined by (1) whether the trigger is active or not, (2) whether
the current time is between the start time and end time, and (3) whether the associated
calendar is in an "on" time period.

Triggers can be added to a specific trigger set, otherwise they belong to a default
trigger set. The from, on, and when clauses are normally present to specify the trigger
condition. Optionally, group by and having clauses, similar to those available in SQL
[Date93], can be used to specify trigger conditions involving aggregates or temporal
functions. Multiple remote tables (or other data streams) can be referenced in the from
clause. This allows multiple-table triggers to be defined.

An example of a rule, based on an emp table from a database for which a connection
has been defined, is given below. This rule sets the salary of Fred to the salary of Bob:

create trigger updateFred
from emp
on update emp.salary
when emp.name = "Bob"
do execSQL "update emp set salary=:NEW.emp.salary where emp.name=
'Fred'"

This rule illustrates the use of an execSQL TriggerMan command that allows SQL
statements to be run against data source databases. The :NEW notation in the rule action
(the do clause) allows reference to new updated data values, the new emp.salary value in
this case. Similarly, :OLD allows access to data values that were current just before an
update. Values matching the trigger condition are substituted into the trigger action using
macro substitution. After substitution, the trigger action is evaluated. This procedure
binds the rule condition to the rule action.

An example of a more sophisticated rule (one whose condition involves joins) is as
follows. Consider the following schema for part of a real-estate database, which would
be imported by TriggerMan using define data source commands:

house(hno,address,price,nno,spno)
salesperson(spno,name,phone)
represents(spno,nno)
neighborhood(nno,name,location)

A rule on this schema might be "if a new house is added which is in a neighborhood
that salesperson Iris represents then notify her," i.e.:

create trigger IrisHouseAlert
on insert to house
from salesperson s, house h, represents r
when s.name = 'Iris' and s.spno=r.spno and r.nno=h.nno
do raise event NewHouseInIrisNeighborhood(:NEW.h.hno, :NEW.h.address)

This command refers to three tables. The raise event command used in the rule
action is a special command that allows rule actions to communicate with the outside
world [Hans97]. Application programs written using a library provided with TriggerMan
can register for events. When triggers raise events, the applications registered for the
events will be notified. Applications can run on machines running anywhere on the
network that is reachable from the machine where TriggerMan is running.

3. System Architecture
The general architecture of the TriggerMan system is illustrated in Figure 1. Each

box in this diagram represents a system component. These components can run on the
same machine or different machines. Most components are single processes. The
exception to this is the TriggerMan server component, which has a parallel internal
structure, consisting of a number of virtual processors, or vprocs. The vprocs
communicate with each other via message passing. Hence, the TriggerMan server code
can be made to run with little modification on shared-memory multiprocessors, shared-
nothing machines, and collections of SMP machines connected by an interconnect. The
first parallel implementation is designed to run on an SMP. The vproc concept has been
used before successfully in the implementation of parallel DBMS software, such as the
Teradata system [Witk93].

In the current TriggerMan system that runs on an SMP, vprocs are software objects
that live in the same address space. Each vproc owns multiple threads, including:

• a matching thread that processes update descriptors arriving from data
sources to see if trigger conditions are satisfied,

• a command server thread that handles requests from client applications,
and

• rule action execution threads to run rule actions.

The number of vprocs is normally made equal to the number of real processors in the
system. In the current implementation, single-table triggers are allocated to different

vprocs in a round-robin fashion to allow parallel condition testing. A special client
application called the Console allows a user to start the system, shut down the system,
create triggers, define data sources, and run other commands supported by TriggerMan.
Multiple threads, spread across the vprocs, allow parallel testing of trigger conditions on
an SMP machine.

Two libraries that come with TriggerMan allow writing of client applications and
data source programs. These libraries define the TriggerMan client application
programming interface (API) and the TriggerMan data source API. The console
program and other application programs use client API functions to connect to
TriggerMan, issue commands, register for events, and so forth. Data source programs,
such as a generic data source that sends a stream of update descriptors to TriggerMan, or

Generic
Data

Source

DBMS
(or Replication

Server)

Gateway

TriggerMan
ATP

;&# (Parallel)

Console

Client
Application

Client
Application

Figure 1 Architecture of the TriggerMan asynchronous trigger processor.

a DBMS gateway program that gathers updates from a DBMS and sends them to
TriggerMan, can be written using the data source API.

4. Data Source Design
A flexible strategy is being designed to gather streams of update descriptors or other

messages from data sources. A simple, generic data source could be an application that
sends a stream of new data values to TriggerMan. Such a generic data source, as
illustrated in Figure 1, would be a program written using the data source API. A more
sophisticated data source could gather a stream of update descriptors from a database by
cooperating with the replication services provided by the DBMS. E.g. with Sybase, a
gateway program, as shown in Figure 1, could be written using the TriggerMan data
source API and the Sybase replication API [Syba96]. This Gateway program would
transmit update descriptors received from the Sybase replication server and propagate
them to TriggerMan. A different gateway program could be written for each potential
DBMS that might serve as a data source. For databases for which no replication service
exists, a gateway program could be written that would query the database periodically
and compare the answers to the queries to produce update descriptors to send to
TriggerMan [Chaw96]. Alternatively, the gateway could trap inserts, updates and deletes
using simple triggers in the source DBMS. Reading the database log is another
alternative, but it is not usually realistic because DBMS vendors normally have a

proprietary log format that other systems are not allowed to read, since the vendor
reserves the right to change the log format.

TriggerMan will maintain catalogs and other persistent state information using a
transactional DBMS. To preserve transaction semantics, the first approach to handling
the stream of updates from a DBMS will be to apply the updates in TriggerMan, and run
the resulting trigger actions, in commit order. The Sybase replication server, for
example, presents updates in commit order, making this strategy feasible. The maximum
transaction ID handled so far by TriggerMan will be recorded along with updates to
TriggerMan's internal state information in a single transaction. If this transaction fails,
the updates will be rolled back and will be re-applied later. Maintaining the maximum
transaction ID applied so far will make sure TriggerMan does not forget to handle a
transaction from the primary database.

An issue that will be addressed in the future is how to deal with high update rates in
the data source databases. If updates are taking place at a high rate in the source DBMS,
TriggerMan might not be able to keep up with the source if it must handle the updates in
commit order. This is because it might not be possible to get enough concurrency or
parallelism in the ATP if the updates are handled serially. Possible solutions to this
problem will be considered, such as relaxing the requirement to handle updates in
commit order (for database data/data sources) or in the order of arrival (for generic data
sources). Piggybacking multiple update descriptors in a single message to the
TriggerMan server and in a single broadcast to the vprocs may also make it possible to
handle higher update rates.

5. Temporal Trigger Support
Temporal triggers are triggers whose conditions are based on changes in a value or

set of values over time. For example, a temporal trigger could be defined to fire if the
sales from a particular store rise by more than 20% in one month. Prior work on
temporal triggers has focused on logic-based trigger languages [Sist95]. The difficulty
with these languages is that the user must specify the trigger in a logic-based notation,
and logic-based languages with quantifiers may be difficult for typical application
developers to master. Moreover, certain kinds of temporal conditions may be quite
useful, yet be extremely difficult or impossible to specify using temporal logic. For
example, one might envision a temporal trigger that would fire if the price of a stock had
a "spike" in value, where the definition of "spike" is based on some application-specific
mathematical criteria, such as "the average root mean square difference on a point-by-
point basis between the actual sequence of values (curve) and an ideal spike is less than a
threshold value." An example of an ideal spike and what an observed spike might look
like is given below:

ideal spike observed spike

The capability to detect a spike based on mathematical criteria would be much easier
to express using an algorithmic language like C, C++, Java, or FORTRAN than using
temporal logic. Moreover, temporal functions written in C, for example, may be able to
evaluate temporal trigger conditions much more efficiently than the equivalent temporal
logic-based condition evaluator.

Rather than use a temporal-logic-based language, we propose to use a set of basic
temporal functions, including increase, decrease and several others, as well as temporal
aggregates such as the sum and count of values over a certain time window. The benefit
of using temporal operators to specify trigger conditions is that they are declarative, and
relatively simple to understand - you say what you want, not now to achieve it. The
implementation of the basic temporal functions will be provided as a standard part of the
system. In addition, a temporal function extensibility mechanism is being developed to
allow sophisticated application developers to write code to implement new temporal
functions and register this code with the TriggerMan system. The extension code will be
dynamically linked by the TriggerMan server when needed.

As mentioned earlier, the TriggerMan trigger language supports temporal condition
specification through the use of the group by and having clauses familiar to users of
SQL. For example, the following trigger will fire when there is an increase or decrease of
more than 20% in the price of IBM stock in a six month period.

create trigger BiglBMchange
from stock
when stock.symbol = "IBM"
having increase(stock.price, "20%", "6 mo") or

decrease(stock.price, "20%", "6 mo")
do raise event BigChange ("IBM")

The above trigger can be generalized to all "technology" stocks by introducing a
group by clause and modifying the when clause, as follows:

create trigger BigTechStockChange
from stock
when stock.category = "technology"
group by stock.symbol
having increase(stock.price, "20%", "6 mo") or

decrease(stock.price, "20%", "6 mo")
do raise event BigChange (:NEW.stock.symbol)

The group by capability is powerful since it allows triggers for multiple groups to be
defined using a single statement.

Temporal functions can return boolean values (temporal predicates) and scalar
values, such as integers and floating point numbers. These types of temporal functions
can be composed in the having clause to form compound temporal conditions. For
example, the following temporal function might compute a moving average of a value
over a time window of width window_size:

moving_avg (expr,window_size)

The following example shows how this function could be used in conjunction with
the increase function to detect when the 10-day moving average of the price of Oracle
stock increases by more than 15%:

create trigger ORACLE_TREND
from stock
when stock.symbol = "ORCL"
having increase(moving_avg(stock.price, "10 days"), "15%")
do...

Values of temporal aggregates computed in the having clause will sometimes need
to be used in the trigger action. The trigger language needs a way to support this form of
condition/action binding. When it is not ambiguous, the name of the temporal aggregate
function can be used in the trigger action, as in the following example:

create trigger HighYearlySales
from sale
group by sale.spno
having sum(sale.amount, "1 yr") > 1000000
do execSQL "append to highSales(:NEW.sale.spno, :NEW.sum, Date())"

If the same function appears multiple times, the as operator can be used to bind
names to the values produced by those functions, e.g.:

create trigger HighSalesAndCommssions
from sale
group by sale.spno
having sum(sale.amount, "1 yr") as si > 500000
and sum(sale.commission, "1 yr") as s2 > 50000
do execSQL "append to highSales(:NEW.sale.spno, :NEW.sl, :NEW.s2,
Date())"

5.1. Adding New Temporal Functions

The temporal function mechanism in TriggerMan is designed to be extensible. A
new temporal operator can be defined using this notation:

define temporal function returnType funcName (argumentDefinition)
dynamicLinkLibraryName functionPrefix

The dynamicLinkLibraryName is the name of the dynamic link library (DLL) where
relevant functions are kept. The DLL consists of compiled C code. The functionPrefix
is the prefix of the name of all functions that are relevant to the temporal operator being
defined. A temporal function's argument list can specify normal arguments, as well as
initialization arguments used to initialize the state of the temporal function. Initialization
arguments are preceded by the keyword init. A default value can also be provided for
init arguments. For example, a new function to compute an exponential average could be

registered with the system like this (the C:\tmanlib\expavg.dll file is a dynamic link
library):

define temporal function double expavg (double new Value,
init double multiplier = 0.9) "C:\tmanlib\expavg.dll" "double_expavg"

Also, functions can be overloaded. For example, expavg can be re-implemented for
different types, such as float, and the system will automatically use the right function
depending on the data types with which it is called.

Functions with the proper formats and naming conventions need to be available in
the dynamic link library to implement a temporal function. This kind of extensibility
technique is similar to that used in extensible database systems such as POSTGRES
[Ston90] and the Informix Universal Server [Info97]. To test the condition of a temporal
trigger, state information related to the temporal trigger condition must be maintained.
For example, state could simply be a number and a multiplier for a simple exponential
average. For most temporal triggers involving temporal aggregates such as increase,
decrease etc., the state of the trigger will be a time series. In addition, if there is a group
by clause, one piece of state information (normally a time series) must be maintained for
each group. The functions required in the DLL used to implement a temporal operator
must be able to create a temporal trigger state object, delete the object, update the state of
the object based on the arrival of new data or the passage of time, and get the current
value of the temporal operator.

We use the C language to define the interface to a temporal operator's state object.
C is used instead of C++ or Java [Arno96] because (1) we want very high performance,
meaning that fully compiled code is required, ruling out Java, and (2) because dynamic
linkers in Windows NT and Solaris (Sun Unix) support dynamic linking of C much better
than dynamic linking of C++. In addition, we provide a reusable time-series abstract data
type implemented in C for use by developers of new temporal functions, as well as for
our own internal use.

Full details of the formats of the C functions required in a DLL to define the
behavior of a temporal operator are not given here. A general description of the
functions required (but not a complete list) is as follows:

constructor A function to build the internal state object for a temporal trigger
(or a single group of a temporal trigger in case a group by clause
is used). Usually the state object will contain a time series.

destructor A function to free the space used by a temporal trigger state
object when it is no longer needed (e.g. when a trigger is
dropped).

provide new A function to take a new value and time stamp to update the
history value history information (usually a time series) contained in the state

object
provide new A function to provide a new value of the current time. This can
current time be thought of as a "clock tick" function. The state object should
value be updated as needed based on this new time value (e.g. to trim

off some of the oldest history values that have moved out of the
time window of interest). This function will be called
periodically for some operators, such as "holds(emp.salary,

10

get current
value

">30000", "2 years")". With "holds" and some other temporal
operators, it may be necessary to fire even if no new history value
arrives.
Get the current value of the temporal operator (the result may be
true/false or some other data type).

A protocol for firing temporal triggers needs to support both triggering when update
events occur, and triggering when timers expire. The interface above allows TriggerMan
to trigger both on update events and on timer expiration, as needed.

6. Support for Multiple-Table and Parallel Trigger
Condition Testing

Allowing triggers to have conditions based on multiple tables greatly increases the
power and expressiveness of the trigger language. However, efficiently testing multiple-
table trigger conditions is a challenging problem. As part of prior work, we have
developed an optimized multiple-table trigger condition testing mechanism known as the
Gator network, a generalization of the TREAT and Rete" networks used for rule condition
testing in production rule systems such as OPS5 [Hans95]. We are investigating
strategies that will allow development of a parallel version of the Gator network, as well
as cost models and caching strategies specific to the environment of an asynchronous
trigger processor. These new cost models and caching strategies are needed since
TriggerMan runs in an separate address space and possibly on a separate machine from
the DBMS or other data sources.

A parallel Gator network capability will be developed for TriggerMan to allow
multiple table rule condition testing. A related approach has been successfully used to
perform parallel rule condition matching in main-memory production systems using a
Rete network [Forg82] organized as a global distributed hash table, or GDHT [Acha92].
The idea behind this strategy is as follows. A Gator network tree structure will be
constructed for each trigger. Gator networks consist of nodes to test selection and join
conditions, plus "memory" nodes that hold sets of tuples matching one or more selection
and join conditions. For example, consider the following table Schemas, trigger
definition, and one possible Gator network for the trigger:

Rl(rlno,a,b)
R2(rlno,r3no)
R3(r3no,c,d)

create trigger Tl
fromRl,R2,R3
when Rl.rlno=R2.rlno
and R2.r3no=R3.r3no
andRl.a = "x"
then do...

reln=Rl

Rl.a="x"
I

memory 1

reln=R2

memory2

reln=R3

memory2

Rl.rlno=R2.rlno

I
memory4

R2.r3no=R3.r3no

11

11

In this Gator network, memory 1 logically contains the result of

select * from Rl where Rl.a= "x"

Similarly, memory4 logically contains the result of

select * from Rl, R2 where Rl.a = "x" and Rl.rlno=R2.rlno

In addition, memory nodes can be either stored or virtual. A stored node is like a
materialized view. It actually contains the specified tuples. A virtual node is like a real
view. It only contains a predicate defining which tuples should qualify. It does not
contain the real tuples. Memory nodes at the leaf level, drawn at the top of a Gator
network, are called alpha memory nodes. Inner memory nodes, holding join results, are
called beta memory nodes. Only alpha memory nodes can be virtual.

A detailed discussion of how discrimination networks can be used for multiple-table
trigger condition testing on a single processor can be found in [Hans96]. An outline of
our approach to implementing a Gator network in parallel on a shared-nothing machine
consisting of a set of vprocs is as follows:

1. The selection predicates will be allocated round-robin among the processors.
2. The tree shape of the network will be replicated on every vproc. The contents

of alpha and beta nodes will not be replicated.
3. Stored memory nodes will be horizontally partitioned across the vprocs on a

single attribute, normally a join attribute, using hash partitioning.
4. Stored memory nodes will be cached in their entirety in memory in TriggerMan

on first use. Virtual memory nodes will never be cached. An LRU replacement
strategy will be used with an entire memory node as the cache replacement
granularity. (More sophisticated caching policies that allow caching a subset of
a memory node are being considered).

5. For other attributes for which a fast access path is required to a memory node,
such as additional join attributes or the primary key, parallel secondary hash
partitions will be created. These are analogous to secondary indexes in a single-
processor DBMS. For a memory node N(nno, X, ...) if the node has a primary
partition on X, then a secondary partition on the nno (primary key) field can be
formed by creating a table N_nno_index(nno,vproc_number) and doing a
primary hash partition of N_nno_index on nno. A row in N_nno_index tells
which vproc contains the tuple with a particular value of nno. This allows
deletion of a tuple in N given its key (nno) value with two point-to-point
messages, one to look up the processor where the tuple lives using
N_nno_index, and one to actually delete the tuple.

6. Pattern matching will operate as follows:
a. When a tuple update arrives, a description of the update will be packaged as

a "token" and will be broadcast to all the vprocs. A token contains a tuple
or an old/new tuple pair, along with a tag describing what kind of operation
was performed (insert, delete or update). If the operation is an update, then
the identification of which fields were updated will also be included in the
token.

b. Each vproc will test the token against its local collection of selection
predicates. Event conditions from the on clause and regular selection

12

conditions from the when clause will both be treated logically as selection
conditions on tokens.

c. For each matching selection predicate, the token will be forwarded onward
down the network. For a single-table trigger, a match against the selection
predicate for the trigger causes the trigger action to fire. The trigger action
is executed once for each matching tuple, on the processor where the match
is detected.

d. For a multiple-table trigger, a match of a token against a selection predicate
causes an update to the memory node below the selection predicate, and
then the token is joined to a neighboring memory node (see below for a
discussion of parallel joins of tokens to memory nodes). Resulting joining
pairs of tuples (intermediate tokens) are then propagated down the network.
When a token arrives at the bottom of the network (the P-node) the trigger
action is run for that token.

In general, the following operations may need to be performed on a memory node:
(1) insert a tuple, (2), delete a tuple and (3) join a tuple to the node. Each of these
operations can be performed using one or two point-to-point messages from one vproc to
another based on the hash partitioning scheme used. Consider memory2 from the Gator
network shown earlier. Tuples may need to be inserted into or deleted from memory2.
In addition, a tuple may sometimes be joined to memory2. This requires finding all the
memory2 tuples such that memory2.rlno=CONSTANT for some constant value
extracted from the rlno field of the tuple being joined to memory2. In this example,
memory2 would be hash partitioned across the vprocs on the rlno column. Hence, to
find all memory2 tuples satisfying memory2.rlno = CONSTANT, a vproc must do the
following. First, use the hash function h used to define the partition of memory2 to find
h(CONSTANT), yielding a value P, a vproc number. Any memory2 tuples that join to
the current tuple must be stored on vproc P due to the way memory2 is partitioned. Send
the tuple being joined to memory2 to vproc P. The join can them be completed locally
on vproc P.

An additional issue is how to deal with non-equijoins. These are joins for which the
join predicate is something other than the = operator. For example, the following trigger
has a non-equijoin condition:

create trigger NonEquiJoinExample
fromRl,R2
when Rl.X >= R2.1owerBound and R1.X < R2.upperBound
do...

For triggers like this, it is not possible to define a partitioning that can be used
effectively to speed up join processing. Hence, in cases like this, broadcasts will be used
to join a token to a memory node in parallel. Memory nodes will still be horizontally
partitioned.

It is a good idea to avoid broadcasts and use a point-to-point messaging scheme
instead when possible. This will avoid unnecessary CPU utilization. With point-to-point
messaging, a parallel speedup can still be obtained because multiple tokens can be
processed simultaneously on different processors.

13

We have outlined the basic pattern matching strategy for select/join trigger
conditions. Fully detailed algorithms for all aspects of join condition testing and
temporal condition testing are left for a future paper.

7. Extensibility
TriggerMan is designed to be extensible. This will include support for new data

types and operators, in addition to new temporal functions. Support for extended data
types such as images, time series, web pages, text, etc. within a database management
system has been supported in POSTGRES [Ston90] and Informix Universal Server
[Info97] and is being included in other commercial database products. This feature is
beginning to be used to add multimedia and object management capability to real-world
database applications. The approach taken to support extensibility has been to define a
dynamic link library of C functions with a certain format, including (1) constructor and
destructor functions, (2) functions for translating an instance of a type from internal to
external format, (3) functions for performing operations on instances of a type, (4)
functions for estimating the cost of performing certain operations, etc. This library is
then registered with the DBMS and dynamically linked when needed. As an example, an
extended data type called Document could be created, and triggers could be defined on a
stream of documents arriving from an intelligence-gathering source, implementing a form
of selective dissemination of information using TriggerMan.

If possible, the approach to handling extended data types in TriggerMan will be to
use the standard extensibility format used by Informix, and introduce commands to
register new types with the system. If this is done, the same DataBlade modules used by
Informix can be used by TriggerMan. Using the existing Informix type extension
standard in TriggerMan is preferred to defining a new standard for extended types, since
existing extended types that have already been implemented for Informix could be used
with TriggerMan. However, we will define our own type extension module format if
necessary. As part of the TriggerMan project, issues related to moving large objects
between a DBMS and TriggerMan, caching the internal representation of large objects,
and evaluating expensive predicates within the TriggerMan server will be investigated.

8. Performance of Initial Prototype
A version of the prototype TriggerMan server, consisting of roughly 20,000 lines of

C++, is already operational. It implements single-table triggers, but has no persistent
catalogs or ability to
directly communicate
with a DBMS via a
replication server
gateway. It supports
parallelism using the
concept of virtual
processors (vprocs),
making the code
portable to both SMP
and shared-nothing parallel computers. Performance tests were run on a dual-processor

for {seti2} {$i<=2700} {incri2} {
createTrigger t$i in tsl {
from EMPLOYEE
on {insert EMPLOYEE}
when {EMPLOYEE.salary = [expr 2700 % $i]}
do {}} # no trigger action was run so only

} # condition testing would be timed

14

75Mhz Sun SPARCstation 20. Originally, the TriggerMan command language was
implemented as an extension of Tel. We have since implemented a command-language
parser so Tel is not a required component of TriggerMan, and commands have a more
natural, SQL-like syntax. At the time the tests were done, the createTrigger command
was implemented as an extended Tel command. The performance tests were done in the
following manner. A single EMPLOYEE data source was defined. A total of 1350
triggers were then created using the Tel program shown inset.

The triggers created fire when the inserted employee has a salary equal to some
constant. The [expr 2700 % $i] expression is evaluated before the trigger is created. The
% symbol is the modulo operator. There are 24 triggers that will fire when the inserted
salary is zero. Triggers are allocated round-robin to the different vprocs. The tests were
run first with one vproc, then with two. With one vproc, only one of the processors is
used for rule condition testing. With two, both processors are used. The results are
summarized in the following table:

Number of Processors Average Condition Testing Average Condition Testing
Used (number of vprocs). Time for All Triggers Time Per Trigger

1 13.5 msec 10 usec
2 7.5 msec 5.6 usec

No selection predicate indexing strategy [Hans90,Hans96b] is currently used. A
selection predicate index could dramatically increase performance for this example. This
example shows that performance will be quite good for single data source triggers even
when their conditions are not or cannot be indexed, as long as the number of triggers is
not huge.

The TriggerMan code is now being ported to Windows NT, which will become our
primary development platform. Code will be written in a way so that the system will be
portable to NT and Solaris. Access to a database for storing TriggerMan's catalog
information and other persistent state will be done using the ODBC interface so that
TriggerMan will work with multiple different DBMS products.

9. Conclusion
The research outlined here seeks to develop principles that will allow the effective

construction of asynchronous, or "outboard" trigger processing systems. A prototype
ATP called TriggerMan is being implemented as a vehicle to explore asynchronous
trigger processing issues and to validate the design approach introduced here.
TriggerMan, or a system like it, could be useful in situations where current trigger
systems are not. For example, TriggerMan could trigger on a stream of updates
generated by a general application program that were never placed in any DBMS.
Moreover, TriggerMan could place a trigger on two different data sources, one from a
DBMS, and one from a program, performing an information fusion function. This type
of function could be valuable in a number of heterogeneous information systems
applications, e.g., in a chemical plant application, a trigger could correlate a stream of
reactor vessel temperature and pressure values sent by an application with known
dangerous combinations of temperature and pressure kept in a database, firing when it
saw a dangerous combination. The main benefit of an ATP system is that it can allow
sophisticated, "expensive" triggers (e.g. multiple-table and temporal triggers) to be

15

defined against a database and processed using the best available algorithms, without
adversely impacting on-line update processing. This could greatly expand the benefits of
trigger technology in demanding, update-intensive environments.

The results of the TriggerMan project could lead to a new type of system to support
applications that need to monitor changes to information - an asynchronous trigger
processor. In addition, an architecture for asynchronous trigger processing similar to the
one described here could be incorporated directly into a DBMS. This would allow the
benefits of asynchronous trigger processing, particularly good update response time plus
sophisticated trigger processing capability, without the need to incur the cost of moving
update descriptors across the boundary from the DBMS into another system. In addition,
it would not be necessary to cross back to the DBMS to run trigger actions against
database data. In summary, the work outlined here can help develop a new, useful kind
of information processing tool, the ATP, and point the way to improvements in the active
database capability of existing database management systems. In either case, it will
become possible to develop powerful information monitoring applications more easily,
and these applications will run with faster performance.

Bibliography
[Acha92] Acharya, A., M. Tambe, and A. Gupta, "Implementation of Production Systems

on Message-Passing Computers," IEEE Transactions on Knowledge and Data
Engineering, 3(4), My, 1992.

[Arno96] Arnold, K., J. Gosling, The Java Programming Language, Addison Wesley
Longman, 1996.

[Chaw96] Chawathe, S., A. Rajaraman , H. Garcia-Molina , and J. Widom, "Change
Detection in Hierarchically Structured Information," Proc. ACM SIGMOD
Conf., 1996.

[Date93] Date, C. J. And Hugh Darwen, A Guide to the SQL Standard, 3"1 Edition,
Addison Wesley, 1993.

[Forg82] Forgy, C. L., Rete: "A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem," Artificial Intelligence, vol. 19, pp. 17-37, 1982.

[Gray93] Gray, Jim, Transaction Processing, Concepts and Techniques, Morgan
Kaufmann, 1993.

[Hans90] Hanson, Eric N., M. Chaabouni*, C. Kim and Y. Wang*, "A Predicate Matching
Algorithm for Database Rule Systems," Proceedings of the ACM-SIGMOD
Conference on Management of Data, pp. 271-280, Atlantic City, NJ, June 1990.

[Hans96] Hanson, Eric N., "The Design and Implementation of the Ariel Active Database
Rule System," IEEE Transactions on. Knowledge and Data Engineering, vol. 8,
no. 1, pp. 157-172, Feb., 1996.

[Hans96b] Hanson, Eric N. and Theodore Johnson, "Selection Predicate Indexing for Active
Databases Using Interval Skip Lists," Information Systems, vol. 21, no. 3, pp.
269-298,1996.

[Hans95] Hanson, Eric N., S. Bodagala, M. Hasan, G. Kulkarni, J. Rangarajan, Optimized
Rule Condition Testing in Ariel Using Gator Networks, University of Florida
CISE Department TR 95-027, http://www.cise.ufl.edu, October 1995.

16

[Hans97] Hanson, Eric N. et al., "Flexible and Recoverable Interaction Between
Applications and Active Databases," VLDB Journal, 1997 (accepted).

[Hans97b] Hanson, Eric N. and Samir Khosla, "An Introduction to the TriggerMan
Asynchronous Trigger Processor," Proceedings of the 1997 Workshop on Rules
in Database Systems (RIDS '97), Skovde, Sweden, June, 1997.

[Info97] "Informix Universal Server," http://www.informix.com

[McCa89] "McCarthy, Dennis R. and Umeshwar Dayal, "The Architecture of an Active
Data Base Management System," Proceedings of the. ACM S1GM0D Conference
on Management of Data., Portland, OR, June, 1989, pp. 215-224.

[Oust94] Ousterhout, John, Tel and the Tk Toolkit, Addison Wesley, 1994.

[Sist95] Sistla, Prasad A. and Ouri Wolfson, 'Temporal Triggers in Active Databases,"
IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 3, June,
1995, pp. 471-486.

[Ston90] Stonebraker, Michael., Larry Rowe and Michael Hirohama, "The Implementation
of POSTGRES," IEEE Transactions on Knowledge and Data Engineering, vol.
2, no. 7, March, 1990, pp. 125-142.

[Syba96] Sybase Replication Server Technical Overview, Sybase Inc., 1996.

[Wido96] Widom, J. and S. Ceri, Active Database Systems, Morgan Kaufmann, 1996.

[Witk93] Witkowski, A., F. Carino and P. Kostamaa, "NCR 3700 - The Next-Generation
Industrial Database Computer," Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61227

17

DISTRIBUTION LIST

addresses number
of copies

JOSEPH P. CAVANO 10
AFRL/IFTB
525 BROOKS ROAD
ROME, NY 13441-4505
5

ERIC HANSON 5
UNIVERSITY OF FLORIDA
CISE DEPARTMENT
GAINESVILLE, FL 32611-6120

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
RONE NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. BELVOIR, VA 22060-6218

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER
201 MILL ST.
ROME NY 13440-3200

ATTN: GWEN NGUYEN
GIDEP
P.O. SOX 8000
CORONA CA 91718-8000

OL-1

AFIT ACADEMIC LI8RARY/LDEE
2950 P STREET
AREA 8» BLOG 642
WRIGHT-PATTERSON AF8 OH 45433-7765

ATTN: GILBERT G- KUPERMAN
AL/CFHI, BLDG. 248
2255 H STREET
WRIGHT-PATTERSON AF3 OH 45433-7022

ATTN: TECHNICAL DOCUMENTS CENTER
OL AL HSC/HRG
2698 G STREET
WRIGHT-PATTERSON AF8 OH 45433-7604

AIR UNIVERSITY LIBRARY <AUL/L5A0)
600 CHENNAULT CIRCLE
MAXWELL AFB AL 36112-6424

US ARMY SSOC
P.O. 80X 1500
ATTN: CSSQ-IM-PA
HUNTSVILLE AL 35807-3301

TECHNICAL LIBRARY D0274CPL-TS)
SPAWARSYSCEN
53560 HULL STREET
SAN DIEGO CA 92152-5001

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 4SL0ÖÖQ
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

SPACE £. NAVAL WARFARE SYSTEMS CMD
ATTN: PMW163-1 <R. SKIANO)RM 1044A
53560 HULL ST-
SAN DIEGO, CA 92152-5002

OL-2

SPACE & NAVAL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTOR <PD13A)
ATTN: MR. CARL ANDRIANI
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE & NAVAL WARFARE
SYSTEMS COMMAND (CODE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

CDR, US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: ÄMSMI-RD-CS-Rt DOCS
REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 8 7545

AEDC LIBRARY
TECHNICAL REPORTS FILE
100 KINDEL DRIVE, SUITE C211
ARNOLD AF3 TN 37339-3211

COMMANDER
U5AXSC
ASHC-IMO-L, SLOG 61801
FT HUACHUCA A2 35613-5000

US DEPT OF TRANSPORTATION LIBRARY
F81ÖA, M-457, RM 930
800 INDEPENDENCE AVE, SW
WASH DC 22591

AtfS TECHNICAL LIBRARY
359 BUCHANAN STREET, RM- 427
SCOTT AF3 IL 62225-5118

DL-3

AFIWC/MSY
102 HALL BLVD. ST£ 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PA 15213

NSA/CSS
Kl
FT MEAÖE MO 20755-6000

ATTN: OM CHAUHAN
DCMC WICHITA
271 WEST THIRD STREET NORTH
SUITE 600 0
WICHITA KS 67202-1212

AFRL/VSOS-TL {LIBRARY)
5 WRIGHT STREET
HANSCOM AFS MA 01731-3004

ATTN: EILEEN LADUKE/0460
MITRE CORPORATION
202 BURLINGTON RO
8EOFORD MA 01730

OUSD<P)/DTSA/QUTO
ATTN: PATRICK G. SULLIVAN, JR,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

SOFTWARE ENGR*G INST TECH LIBRARY
ATTN: MR OENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

USC-ISI
ATTN: OR ROBERT M. BALZER
4676 ADMIRALTY «AY
MARINA DEL 8EY CA 90292-6695

DL-4

KESTREL INSTITUTE
ATTN: OR- CQROELL GREEN
1801 PAGE MILL ROAO
PALO ALTO CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROF J. A. LASKY
1 LOMB MEMORIAL DRIVE
P.O. 8QX 9887
ROCHESTER NY 14613-5700

WESTINGHOUSS ELECTRONICS CORP
ATTN: MR DENNIS 8IELAK
ELECTRONICS SYSTEMS GROUP
P.O. BOX 746, MAIL STOP 432
BALTIMORE MO 21203

AFIT/ENG
ATTNITOM HARTRUH
WPAFB OH 45433-6583

THE MITRE CORPORATION
ATTNJ MR EOWARD H. BENSLEY
BURLINGTON RO/MAIL STOP A350
BEOFORO MA 01730

UNIV OF ILLINOIS, URBANA-CHAMPAIGN
ATTN: OR MEHQI HARANDI
OEPT OF COMPUTER SCIENCES
1304 W. SPRINGFIELD/240 DIGITAL LAS
UR8ANA IL 61801

HONEYWELL, INC.
ATTN: MR BERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM E. HEFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2218
PITTSBURGH PA 15213-38990

UNIVERSITY OF SOUTHERN CALIFORNIA
ATTN: OR W. LEWIS JOHNSON
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY MAY/SUITE 1001
MARINA OEL REY CA 90292-6695

DL-5

COLUMBIA UNIV/DEPT COMPUTER SCIENCi
ATTN: OR GAIL £. KAISER
450 COMPUTER SCIENCE 3LDG
500 WEST 12ÖTH STRSET
NEW YORK NY 10027

SOFTWARE PRODUCTIVITY CONSORTIUM
ATTN: MR ROBERT LAI
2214 ROCK HILL ROAD
HERNDON VA 22070

AFIT/ENG
ATTN: OR GARY 8. LAMONT
SCHOOL OF ENGINEERING
OEPT ELECTRICAL 6 COMPUTER ENGRG
WPAFB OH 45433-6583

NSA/OFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9300 SAVAGE ROAD
FT GEORGE G. MEAOE MD 20755-6000

AT&T BELL LABORATORIES
ATTNt MR PETER G. SELFRIDGE
ROOM 3C-441
600 MOUNTAIN AV£
MURRAY HILL NJ 07974

ODYSSEY RESEARCH ASSOCIATES, INC.
ATTN: MS KAUREEN STILLMAN
301A HARRIS 8, GATES DRIVE
ITHACA NY 14850-1313

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. WELLS
P.O. BOX 655474, MS 238
DALLAS TX 75265

TEXAS ASM UNIVERSITY
ATTN: DR PAULA MAYER
KNOWLEDGE BASED SYSTEMS LABORATORY
DEPT OF INDUSTRIAL ENGINEERING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: OR RICHARD JULLIG
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

DL-6

DARPA/ITO
ATTN: DR KIRSTIE 8ELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CUL8ERT
MAIL CODE PT4
HOUSTON TX 77058

SAIC
ATTN: LANCE MILLER
MS Tl-6-3
PO BOX 1303 CQR 1710 G00D8IDGE OR)
MCLEAN Vfi 22102

STERLING IMD INC.
KSC OPERATIONS
ATTN: MARK MAGINN
SEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

NAVAL POSTGRADUATE SCHOOL
ATTN: 8ALA RAMESH
COOE AS/RS
ADMINISTRATIVE SCIENCES DEPT
MONTEREY CA 93943

HUGHES AIRCRAFT COMPANY
ATTN: GERRY 8ARKSDALE
P. 0. BOX 3310
8LDG 618 MS E21S
FÜLLERTON CA 92634

SCHLUM3ERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLERMO ARANGD
8311 NORTH FM620
AUSTIN, TX 78720

MOTOROLA, INC.
ATTN: MR. ARNOLD PITTLER
3701 ALGONQUIN ROAD, SUTE 501
ROLLING MEADOWS, IL 60008

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

DL-7

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS
6220 CULESRA ROAD
SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DABROWSKI
ROOM A266, SLOG 225
GAITHSBURG MO 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE £ TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLANS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 8REAUX/C00E 252
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3224

CENTER FOR EXCELLENCE IN COMPUTER'
AIDED SYSTEMS ENGINEERING

ATTN: PERRY ALEXANDER
2291 IRVING HILL ROAD
LAWRENCE KS 66049

DR JOHN SALASIN
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR BARRY 30EHH
OIRt USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 90089-0781

OR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

OR MARK MAY3URY
MITRE CORPORATION
ADVANCED INFO S*S TECH; G041
8URLINT0N ROAD, M/S K-329
BEDFORD MA 01730

DL-8

MR SCOTT FOUSE
ISX
4353 PARK TERRACE DRIVE
WE5TLAKE VILLAGE C 91361

MR SARY EDWARDS
ISX
433 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

OR ED WALKER
BBN SYSTEMS 6 TECH CORPORATION
10 MOULTON STREET
CAMBRIDGE MA Ö2238

LEE ERttAN
CIMFLEX TEKNOWLEDGE
1810 EMSACftDERQ ROAD
P.O. SOX 10119
PALO ALTO CA 94303

DR. DAVE SUNNING
DARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-9

