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Numerical Model of a Photolytic Reactor
for VOC Destruction

Meryl Reis Mallery and Robert Jennings Heinsohn
140 Reber Building
Pennsylvania State University
University Park, PA 16802

ABSTRACT

A computational fluid dynamics (CFD) model has been developed which describes the .
interaction between the fluid dynamics of a volatile organic compound (VOC) laden gas stream and the
photochemical and chemical processes occurring within a photolytic reactor. The VOCs chosen for
study are formaldehyde and methanol, and it is the goal of this paper to describe the mechanisms (fluid
dynamic, chemical or photochemical) which most directly influence the destruction of formaldehyde in
the reactor.

Modeling studies show how formaldehyde destruction in the reactor is influenced by the
distribution of ultraviolet energy in the reactor, the gas stream residence time and the inlet ozone dosage
to the reactor. It was found that increasing the inlet ozone dose, increasing the gas stream residence time
and increasing the light intensity all produced higher rates of formaldehyde destruction.

INTRODUCTION

Passage of the Clean Air Act Amendments by Congress in 1990 is placing more stringent control
on VOC emissions. These emerging regulations are forcing industries to reduce VOC emissions through
new manufacturing techniques or through the use of air pollution control equipment. An emerging air
pollution control technology is the use of ultraviolet (UV) photochemical and radical oxidation to
destroy pollutant VOCs in process gas streams. A commercial system based in part on this technology
has been developed and a pilot scale version has been installed at the Applied Research Laboratory
(ARL) at The Pennsylvania State University. Research is currently being performed with the pilot scale
system to determine the system’s effectiveness in removing different classes of VOCs and to
recommend design improvements that enhance VOC destruction throughout the system. A numerical
model of the photolytic reactor in the pilot scale system has been developed in support of this research
effort.

The numerical model is used to predict the gas velocities and chemical species concentrations as
a function of spatial location within the reactor under steady state conditions. Formaldehyde (HCHO) in
moist air with trace amounts of ozone is used to evaluate the reactor performance.

PHYSICAL SYSTEM DESCRIPTION

The photolytic reactor design modeled in this study is provided in Figure 1. The reactor is a
rectangular duct containing two cylindrical lamps in series which emit electromagnetic radiation in the
ultraviolet light spectrum. An air stream containing formaldehyde, methanol, ozone and water vapor
enters the reactor from the left and passes perpendicular to the lamp axes. Asthe VOC laden gas stream
passes over the lamps, O3, H;0, and HCHO absorb electromagnetic radiation which leads to the
dissociation of these species.

The reactor is 0.19 meters (7.5 inches) tall and 0.54 meters (21 inches) long. Two TQ 718 (700
W) medium-pressure mercury arc lamps manufactured by Hereaus Amersil in Germany provide energy

Mallery, M.R. and R.J. Heinsohn. "Numerical Model of a Photolytic Reactor for VOC Destruction.” Proceedings of the Air & Waste
Management Association Conference on Emerging Solutions to VOC and Air Toxics Control, Clearwater, FL, February 1996.
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over the wavelength range 238 to 579 nm (ultraviolet). The bulb diameters are 0.0635 meters (2.5
inches) and are placed in the center of the reactor.

MODEL DESCRIPTION

The mathematical model of the reactor was constructed using Harwell (CFDS)-FLOW3D, which
is a Computational Fluid Dynamics (CFD) package developed by Harwell Laboratory in the United
Kingdom. The photolytic reactor model consists of three components:

1) a description of the light intensity distribution in the reactor

2) a description of the reaction kinetics for HCHO destruction in air in the
presence of UV light

3) a description of the velocity field through the reactor.

A two-dimensional model of the reactor was developed based on the design configuration
provided in Figure 1. Steady-state predictions of air stream velocity and chemical species
concentrations as a function of spatial location within the reactor are generated to evaluate the efficiency
of the reactor in removing HCHO.

Light Intensity Model

The strength and distribution of the ultraviolet energy source at given wavelengths plays a crucial
role in the destruction of HCHO in the photolytic reactor. HCHO is destroyed in the reactor through two
primary routes (Calvert et al., 1966):

HCHO photolysis: ~HCHO+hv— H* + HCO
HCHO+hv— H,+CO

Radical Oxidation: =~ HCHO+OH" — HCO' + H,0

The radical oxidation process is dependent on the production of OH' radicals from the photolysis of O
and to a minor extent on the photolysis of H,0,. Two OH" radicals are produced from the reaction of
(O'D) radicals (produced from O, photolysis) with water vapor (Demore et al., 1992). The photolytic
rate constants for these processes (HCHO, O3 and H,0, photolysis) are dependent on the strength and
distribution of electromagnetic radiation in the reactor. Assuming that the TQ 718 lamps emit radiation
solely in the radial direction, the integrated form of the Beer-Lambert Law is applied to calculate the
photolytic rate constants at ambient conditions. This is illustrated with equation (1) which predicts the
light intensity distribution in the reactor. It is assumed with the use of equation (1) that HCHO and O3
are the only chemical species which contribute significantly to light attenuation in the reactor. This
assumption is based on a review of the absorption cross-sections multiplied by the species
concentrations analyzed in the model (Mallery, 1995).

—(r-ry) Clo
1,:5{%‘ 2. (€] (1)

The photolytic rate constants for HCHO, O; and H,0, are then calculated with equation (2)
which takes into account the radial variation in the intensity distribution derived in equation (1).

k=23 Vo0, a0 C7LICE 5, @
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where 1) s the quantum yield of the reaction

(A7) s the absorption cross-section of a given molecule and

JA) s the actinic flux emitted by the light source

The quantum yield accounts for the fact that not all of the light energy absorbed by a molecule results in
dissociation of the molecule, and the absorption cross-section is a measure of the probability that the
interaction between the electromagnetic wave and the molecular cross-section will lead to absorption of
a quantum of light energy. As can be seen by equation (2), the photolytic rate constants are calculated
by summing over discrete wavelengths. Twelve wavelengths were analyzed that ranged between 248
and 366 nm. Equation (2) also illustrates that the photolytic rate constants vary inversely with radlal
distance from the bulb surface.

Chemical Kinetics Model

Twenty-three chemical reactions involving 14 chemical species are analyzed in the model. This
is a reduced chemical kinetic model for the oxidation of HCHO in the presence of ultraviolet light and
O; based on a more complex system consisting of 56 chemical reactions for 21 chemical species that
were compiled from the literature (Schmelzle, 1994 and Albano, 1994). A reduced chemical equation
set is essential for use in flow field modeling to reduce computational time and cost. The validity of the
reduced chemical kinetic model was verified by comparing predictions for the two chemical kinetic
models under well-mixed reactor conditions. It was found that the reduced chemical kinetic model was
valid for the residence times analyzed in the reactor under study.

The kinetic mechanisms are incorporated into the flow field model by introducing the species
mass conservation equation for each of the following chemical species: HCHO, CH30H, OH®, H®,
HO,*, O(3P), O(1D), HyO5, 03, HCO and CO. Water vapor, O, and N, species are also included in
the model but it is assumed that their concentrations remained fixed throughout the calculation process.
This assumption is valid since the species have a large concentration within the reactor and have slow
rates of removal.

The kinetic mechanisms which lead to generation or removal of a given species are incorporated
as source/sink terms, symbolized by S, in the species mass conservation equation given below:

_ oC - oC

pHj O (EL, +pD)==)=$ 3)
Xj Oxj Og X j

S=8,C+8, @

This equation includes advection, diffusion and chemical transformation for a given chemical species.
To account for the chemical reaction kinetics in each scalar equation, the source term is linearized into
two components: S, and S,. S, includes all source terms which contain the dependent variable and act as
a sink for that variable. S, contains all other source terms including those terms which act as a source
for the dependent variable. Table 1 provides the chemical reactions included in the kinetic model along
with their rate constants.

Flow Field Model
Time averaged velocity distributions are calculated in the reactor using the Reynolds Averaged
Navier-Stokes (RANS) form of the momentum equation and the mass conservation equation. A two-
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equation k-g turbulence model with incompressible Newtonian flow is also assumed with this model.
The photolytic reactor geometry provided in Figure 1 was modeled with a two dimensional body fitted
grid containing 136 nodes in the flow wise direction and 24 nodes in the cross-wise direction. Low
concentration levels for the eleven species calculated in the model allow the momentum and species
conservation equations to be decoupled. This leads to a simplification of the solution methods for this
problem which are pressure based.

The equation set modeled is provided below. The final model includes the numerical solution of
16 equations for the following 16 unknowns: x-velocity (u,), y-velocity (u,), pressure (p), turbulent
kinetic energy dissipation rate (), turbulent kinetic energy (k) and 11 chemical species concentrations.
The temperature variation within the reactor induced by radiant energy emitted by the TQ 718 lamp was
not modeled at this time.

Mass Conservation: % =0 6)
i -
Effective Viscosity: Heff =H+Rp =R+ CH p——g—— 6)
RANS equation: P aa::—; = —agj;j + afj (Keff (gxlzji_—‘*'%g‘)) )]
k-equation:
pszai’;=afj<(u+‘;,f)ai’;>—pe+ueﬂ§z(§;‘; Z{) ®)
€- equation:
— % 0 ur. o g2 £ ou; om; Odj
P e MG 5 TP A G ) O
RESULTS .

The goal of the current modeling effort is to describe the physical and chemical processes
occurring in a photolytic reactor and determine courses of action to increase the efficiency of the reactor
in destroying HCHO. Parametric studies were performed which varied the inlet ozone concentration and
the strength of the ultraviolet energy source. It was found that HCHO destruction by direct photolysis is
an order of magnitude slower than by OH" radical attack. For this reason methods were researched to
increase the OH" concentration in the reactor. The OH’ radical production can be enhanced by
increasing the inlet ozone concentration and by increasing the strength of the ultraviolet energy source.

Effect of Ozone Inlet Concentration on HCHO Destruction

It was found, as was expected, that the destruction of HCHO increased with increasing Oj; inlet
concentrations. This is due to the increased production of OH' radicals from the reactions provided in
Table 1. This is illustrated in Figure 2 which provides the HCHO concentration contours throughout the
reactor for an inlet HCHO concentration of 1000 ppm and inlet ozone concentrations of 300 ppm and 75
ppm respectively. For the case where 75 ppm ozone is input into the system, the HCHO destruction is
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confined in the bulb wake regions exclusively and is limited to 5% (50 ppm). The HCHO concentration
with an inlet ozone concentration of 300 ppm, on the other hand, decreases to below 850 ppm, or 15%
destruction in the immediate wake regions behind each bulb. This figure also illustrates that the region
of HCHO destruction has been enhanced. HCHO destruction occurs over the top of the second bulb and
well into the wake region behind the second bulb. The average destruction throughout the reactor for the
high ozone condition is over 4% whereas an inlet ozone concentration of 75 ppm only resulted in an
average 2% HCHO destruction in the reactor.

Although ozone enhances HCHO destruction, the model predicts that 90% of the ozone input
into the reactor is discharged out the reactor outlet. This implies that an ozone scrubber might be
required with a photolytic reactor design employing ozone to enhance VOC oxidation rates unless the
ozone can be utilized in further oxidation processes in a given air pollution control system.

Effect of Light Intensity on HCHO Destruction

The light intensity emitted by the UV radiation source and the subsequent distribution of this
radiation throughout the reactor has a significant impact on the overall destruction of HCHO in the
reactor. The light intensity which is transmitted through the reactor, as shown by equation (1), depends
on the concentration of chemical species in the reactor and on their respective absorption cross-sections.
For this reason the light intensity distribution in the reactor will be different for different wavelengths of
light. The light intensity distribution in the reactor at 254 nm (the wavelength of maximum ozone
absorption) is provided in Figure 3. As shown in this figure, the light intensity drops off quickly with
increasing distance from the UV light source. Less than 10% of the light is transmitted 2 bulb diameters
downstream of the second bulb. This is an important discovery since the HCHO, O; and H,0,
photolysis reaction rates, and therefore HCHO destruction, are directly dependent on light intensity as
shown in equation (2).

Based on Figure 3, it is therefore expected that the HCHO destruction will be significantly
reduced as distance from the bulb surface is increased. This is illustrated in Figure 4 for the nominal
light intensity case and for a 10-fold increase in light intensity. High rates of HCHO removal are
illustrated in the wake regions behind the bulb surfaces but drop off significantly as distance from the
bulb is increased in the flow wise direction. Figure 4 also shows, however, that a 10-fold increase in
light intensity significantly enhanced HCHO destruction. The HCHO concentration drops to below 700
ppm, 30% HCHO destruction, in the wake regions with 10 fold increase in light intensity compared to
950 ppm, or 5% HCHO destruction for nominal light intensity. An average HCHO destruction rate
across the outlet reactor is 14% for the 10-fold increase in light intensity compared to 1% for nominal
light intensity conditions.

Interaction Between Gas Stream Advection and Chemical Reaction Rates on HCHO Destruction

Next the interaction between gas stream advection (hence residence time) and the chemical
reaction rates was investigated. It was found that when the chemical reaction rates are much faster than
the gas stream advection the species concentration distributions are unaffected by the flow field. An
example is the OH" concentration distribution in the reactor shown in Figure 5. The distribution
essentially mimics the light intensity profile emitted by the TQ 718 lamps shown in Figure 3. HCHO
(shown in Figure 2) and O concentration distributions in the reactor, on the other hand, are influenced
strongly by the reactor flow field. Figure 6 shows an overlay of the reactor velocity field on the HCHO
concentrations contours. The concentration contours follow the velocity vectors which are overlaid on
top. The acceleration of flow over the top surfaces of the bulbs result in lower destruction of HCHO
whereas the recirculating regions behind the bulb surfaces lead to higher HCHO oxidation rates.

It is proposed that the recirculation regions in the bulb wake regions allow more contact time
between the OH' radicals and HCHO resulting in higher destruction efficiencies. - Longer contact or
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residence times in a given region are created by lower velocities in those regions. The HCHO
destruction would therefore be expected to be high throughout the wake of the second bulb due to lower
velocities in this region compared with velocities in the mainstream. This, however, does not occur
because of the variable light intensity field modeled. When the light intensity was made uniform the
HCHO destruction in the wake was enhanced to the edge of the reactor. There therefore exists an
interaction between OH" distribution (related to light intensity distribution as show in Figures 3 and 5)
and gas stream residence time that affects the spatial variability in HCHO destruction in the reactor.

The effects of residence time on HCHO removal were also investigated by varying the gas
stream inlet velocity into the reactor. Inlet velocities were varied 0.5 m/s to 3.5 m/s. The highest HCHO
removal occurred for the lowest inlet velocity case with negligible destruction occurring for an inlet
velocity of 3.5 m/s. For an inlet ozone of 300 ppm, an inlet velocity of 0.5 m/s resulted in an average
HCHO destruction of over 4% whereas an inlet velocity of 3.5 m/s resulted in an average HCHO
destruction of less than 1%.

CONCLUSIONS

Based on the results of this modeling study, a photolytic reactor design should have close
placement and arrangement of UV bulbs (one to two bulb diameters) to optimize light intensity
distribution. The UV lamps should also be chosen to maximize power output in the wavelength ranges
that produce photolysis of the target VOC and ozone. If the bulbs are placed too far apart, part of the gas
stream will remain essentially untreated due to the decrease of light intensity (hence OH' radical
concentration) with distance from the bulb. A photolytic reactor design should also optimize

recirculation of the process gas stream within the reactor to increase gas stream residence time near the
bulb surfaces. '
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NOMENCLATURE
C Species Concentration

D Molecular Diffusion Coefficient Io

I;o  Light Intensity bulb Surface
J(A)  Actinic Flux

r Distance from bulb ¢
Bulb radius p
U Gas Velocity c

uT  Turbulent Viscosity oy

Table 1 Chemical reactions incorporated into flow field model of reactor.

Radical Oxidation Reactions.Modeled

Chemical Reaction

Rate
Constant
(cm3/molecule)

Reference

OH® + 03— HO:* + Oz
HO:® + 0s > OH" + 202
HCO®* + 02— HO:" +CO

OH" +OH" - O(' D)+ H.0
OH' + HO:" — O+ H20
OH"® + H202 —» HO: + H20
CO+OH' > CO:+ H*
HCHO+ OH® — HCO' + H20
H* +0:—*— HO>
H +05—> OH+ 02
HO:® + HO:" - H20:+ O2
CO+ HO® - CO:+OH’
O(' D)+ N2 — OC P)+ N2
OCPY+ 00— 0
O(' D)+ H:0 — OH"* + OH"
O(ID)+Q2—)O(3P)+02
CHs;0OH + OH® — CH:0H + H20
CH>OH + OH® — CH>0+ H.0

6.8e-14
2.0e-15
5.5e-12
1.9e-12
1.1e-10
1.7e-12
1.5e-12
1.0e-11
1.2e-12
2.9e-11
1.6e-12
1.9e-32
2.6e-11
1.0e-14
2.2e-10
4.0e-11

7.8e-13
1.4e-13

DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992

DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992
Anastasi ef al., 1993
DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992

DeMore et al., 1992
DeMore et al., 1992
DeMore et al., 1992

Atkinson et al., 1992
Atkinson et al., 1992

Photolytic Reactions Modeled

Chemical Reaction Rate Constant at Reference
the Bulb Surface
(seconds 'l)

HCHO +hv — H* + HCO"® 0.0091 Calvert et al., 1966

HCHO +hv —> H, +CO 0.0033 Calvert et al., 1966
O, +hv— 0, +0(' D)’ 1.900 Atkinson et al., 1992
O, +hv— 0,+0CP) 0.2150 Atkinson et al., 1992
H,0,+hv— OH +OH" 0.0133 Atkinson et al., 1992
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Figure 1 Photolytic reactor
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Figure 2 Effect of inlet ozone concentration on HCHO removal in the reactor.
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Figure 3 Light intensity distribution in the reactor at 254 nm
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Figure 4 Effect of light intensity on HCHO destruction in the reactor.
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Figure 5 OH concentration distribution in the reactor for an inlet velocity of
0.5 m/s and an ozone concentration of 300 ppm.
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Figure 6 Velocity vector plot and HCHO concentration contours for an inlet
velocity of 0.5 m/s and an inlet ozone concentration of 300 ppm.




